Class 11 Chemistry NCERT Chapter Equilibrium: Higher Order Thinking Skills (HOTS) Questions
HOTS questions of Chapter 7 NCERT Exemplar are designed to enhance analytical thinking and application-based understanding.
Question 1: Consider the following equilibrium,
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{g})$
0.1 mol of CO along with a catalyst is present in a $2 \mathrm{dm}^3$ flask maintained at 500 K Hydrogen is introduced into the flask until the pressure is 5 bar, and 0.04 mol of $\mathrm{CH}_3 \mathrm{OH}$ is formed. The $\mathrm{K}_{\mathrm{p}}^0$ is __________ $\times 10^{-3}$ (nearest integer).
Given : $\mathrm{R}=0.08 \mathrm{dm}^3$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
Solution: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{g})$
$\begin{array}{llll}\mathrm{t}=0 & 0.1 \mathrm{~mol} & \mathrm{a} \text { mol } & - \\ \mathrm{t}_{\mathrm{eq}} & 0.1-\mathrm{x} & \mathrm{a}-2 \mathrm{x} & \mathrm{x}=0.04 \\ & =0.06 & =\mathrm{a}-0.08 & \\ & & =0.23-0.08 & \\ & & =0.15 \text { mole } & \end{array}$
$\begin{aligned} & \mathrm{V}=2 \mathrm{~L} \\ & \mathrm{~T}=500 \mathrm{~K} \\ & \mathrm{P}_{\text {total }}=5 \mathrm{bar} \\ & \mathrm{n}_{\text {Total }}=0.25=\frac{1}{4} \mathrm{~mol} . \\ & \mathrm{P}_{\text {total }}=\mathrm{n}_{\text {total }} \times \frac{\mathrm{RT}}{\mathrm{V}}\end{aligned}$
$\begin{aligned} & \Rightarrow 5=(0.06+\mathrm{a}-0.08+0.04) \times \frac{0.08 \times 500}{2} \\ & \Rightarrow 10=(0.02+\mathrm{a}) \times 0.08 \times 500\end{aligned}$
$\Rightarrow \mathrm{a}=0.25-0.02=0.23 \mathrm{~mol} .$
$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{X}_{\mathrm{CH}_3 \mathrm{OH}}}{\mathrm{X}_{\mathrm{CO}} \times \mathrm{X}_{\mathrm{H}_2}^2} \times \frac{1}{\left(\mathrm{P}_{\mathrm{T}}\right)^2}=\frac{0.04}{0.06 \times(0.15)^2} \times\left[\frac{1 / 4}{5}\right]^2$
$\begin{aligned} & =\frac{4}{6 \times(0.15)^2 \times 16} \times \frac{1}{25} \\ & =\frac{100 \times 100}{24 \times 225 \times 25}=\frac{100 \times 100}{135000} \\ & =0.074=74 \times 10^{-3}\end{aligned}$
Hence, the answer is 74.
Question 2: $37.8 \mathrm{~g} \mathrm{~N}_2 \mathrm{O}_5$ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K
$$
2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_2 \mathrm{O}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$
The total pressure at equilibrium was found to be 18.65 bar.
Then, $\mathrm{Kp}=$ ______$\qquad$ $\times 10^{-2}$ [nearest integer]
Assume $\mathrm{N}_2 \mathrm{O}_5$ to behave ideally under these conditions
Given : $\mathrm{R}=0.082$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Solution:
$
\begin{aligned}
& \text { Initial pressure of } \mathrm{N}_2 \mathrm{O}_5 \\
& =\frac{\frac{37.8}{108} \times 0.082 \times 500}{1}=14.35 \mathrm{bar} \\
& 2 \mathrm{~N}_2 \mathrm{O}_5 \rightleftharpoons 2 \mathrm{~N}_2 \mathrm{O}_4+\mathrm{O}_2 \\
& \mathrm{t}=0 \quad 14.35 \\
& \mathrm{t}=\mathrm{eq} \quad 14.35-2 \mathrm{P} \quad 2 \mathrm{P} \quad \mathrm{P} \\
& \mathrm{P}_{\text {Total }} \text { at } \mathrm{eqb}=14.35+\mathrm{P}=18.65 \\
& \mathrm{P}=4.3 \\
& \mathrm{P}_{\mathrm{N}_2 \mathrm{O}_{\mathrm{5}}}=5.75 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{N}_2 \mathrm{O}_4}=8.6 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{O}_2}=4.3 \mathrm{bar} \\
& \mathrm{k}_{\mathrm{p}}=\frac{(8.6)^2 \times(4.3)}{(5.75)^2}=9.619=\mathrm{x} \times 10^{-2} \\
& x=961.9 \approx 962
\end{aligned}
$
Hence, the answer is (962)
Question 3. In the following system, $\mathrm{PCl}_5(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_3(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})$ at equilibrium, upon addition of xenon gas at constant $T \& p$, the concentration of
(1) $\mathrm{PCl}_5$ will increase
(2) $\mathrm{Cl}_2$ will decrease
(3) $\mathrm{PCl}_5, \mathrm{PCl}_3 \& \mathrm{Cl}_2$ remain constant
(4) $\mathrm{PCl}_3$ will increase
Solution:
Addition of xenon gas, an inert gas, to the equilibrium system $\mathrm{PCl}_5(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_3(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})$ at a constant temperature and pressure, it affects the equilibrium according to Le Chatelier's principle. The addition of an inert gas at constant pressure effectively increases the volume of the system, reducing the concentration of the gases involved.
Since the system is at constant pressure, adding an inert gas increases the total volume, which favors the side of the reaction with more moles of gas. In this reaction, there are two moles of gas on the right side $\left(\mathrm{PCl}_3\right.$ and $\left.\mathrm{Cl}_2\right)$ compared to one mole on the left $\left(\mathrm{PCl}_5\right)$. Thus, the equilibrium will shift toward the right to increase the number of moles and counteract the change, decreasing the concentration of $\mathrm{PCl}_5$ and increasing the concentrations of $\mathrm{PCl}_3$ and $\mathrm{Cl}_2$.
Hence, the correct answer is option (4).
Question 4: $\mathrm{~K}_{\text {sp }}$ of CdS is $8.0 \times 10^{-27}$ and that of $\mathrm{H}_2 \mathrm{~S}$ is $1 \times 10^{-22}$.
$1 \times 10^{-14} \mathrm{M} \mathrm{CdCl}_2$ solution is precipitated on passing $\mathrm{H}_2 \mathrm{~S}$ when pH is about $[\sqrt{1.25}=1.11]$
(1) 4
(2) 6
(5) 5
(4) 7
Answer:
$\begin{aligned} & \mathrm{H}_2 \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-} \\ & C d S \rightleftharpoons C d^{2+}+\mathrm{S}^{2-} \\ & \mathrm{K}_{s p}(C d S)=\left[C d^{2+}\right]\left[\mathrm{S}^{2-}\right] \rightarrow 8 \times 10^{-27}=1 \times 10^{-14}\left[\mathrm{~S}^{2-}\right] \\ & \therefore\left[S^{2-}\right]=8 \times 10^{-13} \mathrm{M} \\ & \mathrm{K}_{\mathrm{H}_2 \mathrm{~S}}=\left[\mathrm{H}^{+}\right]^2\left[\mathrm{~S}^{2-}\right] \\ & \Rightarrow\left[\mathrm{H}^{+}\right]^2 \times 8 \times 10^{-13}=1 \times 10^{-22} \\ & \therefore\left[\mathrm{H}^{+}\right]^2=1.25 \times 10^{-10} \\ & {\left[\mathrm{H}^{+}\right]=1.11 \times 10^{-5} M} \\ & \therefore p H \approx 5\end{aligned}$
Hence, the correct answer is option (3).
Question 5: One litre buffer solution was prepared by adding 0.10 mol each of $\mathrm{NH}_3$ and $\mathrm{NH}_4 \mathrm{Cl}$ in deionised water.
The change in pH on addition of 0.05 mol of HCl to the above solution is_______$\times 10^{-2}$, (Nearest integer) (Given : $\mathrm{pK}_{\mathrm{b}}$ of $\mathrm{NH}_3=4.745$ and $\log _{10} 3=0.477$ )
Answer:
Initially
$\begin{aligned}
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{\left[\mathrm{NH}_4 \mathrm{Cl}\right]}{\left[\mathrm{NH}_3\right]}=\mathrm{pK}_{\mathrm{b}}+\log \frac{0.1}{0.1} \\
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}
\end{aligned}$
$\mathrm{pH}=14-\mathrm{pOH} \Rightarrow \mathrm{pH}=9.255$
When 0.05 mol HCl is added
$\begin{array}{ccc}\mathrm{NH}_3 & +\mathrm{H}^{+} \rightleftharpoons & \mathrm{NH}_4^{+} \\ 0.1 & 0.05 & \\ 0.05 & 0 & 0.15\end{array}$
$\begin{aligned}
& \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{0.15}{0.05}=5.222 \\
& \mathrm{pH}=8.778
\end{aligned}$
Change in $\mathrm{pH}=0.477$ or $47.7 \times 10^{-2}$
Hence, the answer is 0.477.
Question 6: A reversible gaseous reaction occurs in a closed vessel with movable piston: $\mathrm{A}(\mathrm{g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})$ The concentration-time graph of $[\mathrm{A}]$ and $[\mathrm{B}]$ shows that the system reaches dynamic equilibrium. At $\mathrm{t}=8 \mathrm{~min}$, the volume of the container is suddenly doubled.

By observing the graph, predict the correct change at 10 Minutes time.
(1) Immediately after the volume increase, the equilibrium shifts towards A.
(2) Immediately after the volume increase, [A] slightly increases and the equilibrium shifts towards B.
(3) At the new equilibrium, the total moles of gas decrease.
(4) The reaction ceases to occur after the volume change
Answer:
Before $\mathrm{t}=8 \mathrm{~min}$ :
[A] decreases, [B] increases → system reaches dynamic equilibrium. At $t=10 \mathrm{~min}$ (volume doubled). Forward reaction produces more moles → equilibrium shifts towards B.
Concentration of $[\mathrm{A}]$ slightly increases immediately because reaction needs time to re-establish equilibrium.
New equilibrium: More B formed → total moles of gas increase, consistent with Le Chatelier's principle.
Hence, the correct answer is option (2).
Question 7: Given below are two statements
Statement I : A catalyst cannot alter the equilibrium constant (KC) of the reaction, temperature remaining constant
Statement II : A homogeneous catalyst can change the equilibrium composition of a system temperature remaining constant
In the light of the above statements, choose the correct answer from the options given below
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II is false
(4) Statement I is true but Statement II is false
Answer:
A catalyst speeds up both the forward and reverse reactions equally, allowing the system to reach equilibrium faster.
However, it does not change the energy difference between reactants and products (i.e., the Gibbs free energy change), which directly determines the equilibrium constant.
Thus, statement I is correct.
A homogeneous catalyst acts in the same phase as the reactants and, like any catalyst, it only helps the reaction reach equilibrium more quickly.
It does not alter the equilibrium position, meaning the relative concentrations of reactants and products at equilibrium remain unchanged if the temperature is constant.
Thus, statement II is false.
Hence, the correct answer is option (4).