Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
Imagine you decided to save 10 rupees each day for a new bicycle, then you have 10 rupees on day 1, 20 rupees on day 2, and by the end of the month, you will have nearly 300 rupees. Also, in 1 year, you will have close to 3650 rupees, which is a decent amount for a bicycle. Here, you can notice a pattern in your savings: 10, 20, 30, ...., 300, ...., 3650. In our everyday lives, we can see many patterns where sequences and series play an important role. In the sequences and series chapter of class 11 mathematics, you will learn how some numbers follow a particular order, i.e. a sequence and the sum of their terms, i.e. a series, behaves. The main purpose of this NCERT Solutions for Class 11, sequence and series article is to help students build a clear and strong conceptual foundation.
This article on NCERT solutions for class 11 Maths Chapter 8 Sequences and Series offers clear and step-by-step solutions for the exercise problems given in the NCERT book. Careers360 Subject Matter Experts, with years of experience in the field, created these class 11 Sequences and Series solutions. They followed the latest CBSE syllabus, ensuring students effectively grasp the basic concepts. For syllabus, notes, and PDF, refer to this link: NCERT.
Students who wish to access the Class 11 Maths Chapter 8 NCERT Solutions can click on the link below to download the complete solution in PDF.
Sequences and Series class 11 questions and answers: Exercise: 8.1 |
Question 1: Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth terms are:
Answer:
Given : $a _n = n ( n +2)$
$a _1 = 1 ( 1 +2)=3$
$a _2 = 2 ( 2 +2)=8$
$a _3 = 3 ( 3 +2)=15$
$a _4 = 4 ( 4 +2)=24$
$a _5 = 5 ( 5 +2)=35$
Therefore, the required number of terms = 3, 8, 15, 24, 35
Question 2: Write the first five terms of each of the sequences in Exercises 1 to 6 whose terms are:
Answer:
Given : $a _n = \frac{n }{n+1}$
$a _1 = \frac{1}{1+1}=\frac{1}{2}$
$a _2 = \frac{2}{2+1}=\frac{2}{3}$
$a _3 = \frac{3}{3+1}=\frac{3}{4}$
$a _4 = \frac{4}{4+1}=\frac{4}{5}$
$a _5 = \frac{5}{5+1}=\frac{5}{6}$
Therefore, the required number of terms $\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{5}{6}$
Question 3: Write the first five terms of each of the sequences in Exercises 1 to 6 whose terms are:
Answer:
Given : $a _ n = 2 ^n$
$a _ 1 = 2 ^1=2$
$a _ 2 = 2 ^2=4$
$a _ 3 = 2 ^3=8$
$a _ 4 = 2 ^4=16$
$a _ 5 = 2 ^5=32$
Therefore, the required number of terms $=2,4,8,16,32.$
Question 4: Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth terms are:
Answer:
Given : $a _n = \frac{2n-3 }{6}$
$a _1 = \frac{2\times 1-3 }{6}=\frac{-1}{6}$
$a _2 = \frac{2\times 2-3 }{6}=\frac{1}{6}$
$a _3 = \frac{2\times 3-3 }{6}=\frac{3}{6}=\frac{1}{2}$
$a _4 = \frac{2\times 4-3 }{6}=\frac{5}{6}$
$a _5 = \frac{2\times 5-3 }{6}=\frac{7}{6}$
Therefore, the required number of terms $=\frac{-1}{6},\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{7}{6}$
Question 5: Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth terms are:
$a _ n = ( -1) ^{n-1} 5 ^{n+1}$
Answer:
Given : $a _ n = ( -1) ^{n-1} 5 ^{n+1}$
$a _ 1 = ( -1) ^{1-1} 5 ^{1+1}=(-1)^{0}.5^2=25$
$a _ 2 = ( -1) ^{2-1} 5 ^{2+1}=(-1)^{1}.5^3=-125$
$a _ 3 = ( -1) ^{3-1} 5 ^{3+1}=(-1)^{2}.5^4= 625$
$a _ 4 = ( -1) ^{4-1} 5 ^{4+1}=(-1)^{3}.5^5= -3125$
$a _ 5 = ( -1) ^{5-1} 5 ^{5+1}=(-1)^{4}.5^6= 15625$
Therefore, the required number of terms $=25,-125,625,-3125,15625$
Question 6: Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth terms are:
Answer:
Given : $a _n = n \frac{n^2 + 5}{4}$
$a _1 = 1. \frac{1^2 + 5}{4}=\frac{6}{4}=\frac{3}{2}$
$a _2 = 2. \frac{2^2 + 5}{4}=\frac{18}{4}=\frac{9}{2}$
$a _3 = 3. \frac{3^2 + 5}{4}=\frac{42}{4}=\frac{21}{2}$
$a _4 = 4. \frac{4^2 + 5}{4}=\frac{84}{4}=21$
$a _5 = 5. \frac{5^2 + 5}{4}=\frac{150}{4}=\frac{75}{2}$
Therefore, the required number of terms $=\frac{3}{2},\frac{9}{2},\frac{21}{2},21,\frac{75}{2}$
Question 7: Find the indicated terms in each of the sequences in Exercises 7 to 10 whose nth terms are:
$a _ n = 4 n - 3 ; a _{17} , a _{24}$
Answer:
$a _ n = 4 n - 3$
Put $n=17,$
$a_{17}=4 \times 17-3=68-3=65$
Put n = 24,
$a_{24}=4 \times 24-3=96-3=93$
Hence, we have $a_{17}=65$ and $a_{24}=93.$
Question 8: Find the indicated terms in each of the sequences in Exercises 7 to 10 whose nth terms are:
$a _n = \frac{n^2 }{2^n } ; a_7$
Answer:
Given : $a _n = \frac{n^2 }{2^n }$
Put n=7,
$a _7 = \frac{7^2 }{2^7 } =\frac{49}{128}$
Hence, we have $a _7 =\frac{49}{128}$
Question 9: Find the indicated terms in each of the sequences in Exercises 7 to 10 whose nth terms are:
$a _ n = ( -1) ^{n-1} n ^ 3 , a _9$
Answer:
Given : $a _ n = ( -1) ^{n-1} n ^ 3$
Put n = 9,
$a _ 9 = ( -1) ^{9-1} 9 ^ 3= (1).(729)=729$
The value of $a _ 9 =729$
Question 10: Find the indicated terms in each of the sequences in Exercises 7 to 10 whose nth terms are:
$a _n = \frac{n ( n-2)}{ n+3 }; a _{20}$
Answer:
Given : $a _n = \frac{n ( n-2)}{ n+3 }$
Put n = 20,
$a _{20} = \frac{20 ( 20-2)}{ 20+3 }=\frac{360}{23}$
Hence, value of $a _{20}=\frac{360}{23}$
Question 11: Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:
$a_1 = 3, a_n = 3a_{n - 1} + 2\: \: for \: \: all \: \: n > 1$
Answer:
Given : $a_1 = 3, a_n = 3a_{n - 1} + 2\: \: for \: \: all \: \: n > 1$
$a_2 = 3a_{2 - 1} + 2=3a_1+2=3(3)+2=11$
$a_3 = 3a_{3 - 1} + 2=3a_2+2=3(11)+2=35$
$a_4 = 3a_{4 - 1} + 2=3a_3+2=3(35)+2=107$
$a_5 = 3a_{5 - 1} + 2=3a_4+2=3(107)+2=323$
Hence, the five terms of the series are $3,11,35,107,323$
Series $=3+11+35+107+323+...............$
Question 12: Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:
$a _ 1 = -1 , a _ n = \frac{a_{n-1}}{n} , n \geq 2$
Answer:
Given : $a _ 1 = -1 , a _ n = \frac{a_{n-1}}{n} , n \geq 2$
$a _ 2 = \frac{a_{2-1}}{2} =\frac{a_1}{2}=\frac{-1}{2}$
$a _ 3 = \frac{a_{3-1}}{3} =\frac{a_2}{3}=\frac{-1}{6}$
$a _ 4 = \frac{a_{4-1}}{4} =\frac{a_3}{4}=\frac{-1}{24}$
$a _ 5 = \frac{a_{5-1}}{5} =\frac{a_4}{5}=\frac{-1}{120}$
Hence, five terms of series are $-1,\frac{-1}{2},\frac{-1}{-6},\frac{-1}{24},\frac {-1}{120}$
Series
$=-1+\frac{-1}{2}+\frac{-1}{-6}+\frac{-1}{24}+\frac {-1}{120}.........................$
Answer:
Given : $a_1 = a_2 = 2, a_n = a_{n - 1}-1, n > 2$
$a_3 = a_{3 - 1}-1=a_2-1=2-1=1$
$a_4 = a_{4 - 1}-1=a_3-1=1-1=0$
$a_5 = a_{5 - 1}-1=a_4-1=0-1=-1$
Hence, the five terms of the series are $2,2,1,0,-1$
Series $=2+2+1+0+(-1)+..................$
Question 14: The Fibonacci sequence is defined by $1 = a _ 1 = a _2 \: \:and \: \: a _n = a _{n-1} + a _{n-2} , n > 2$
Find $\frac{a _{n+1}}{a_n}$ , for n = 1, 2, 3, 4, 5
Answer:
Given: The Fibonacci sequence is defined by $1 = a _ 1 = a _2 \: \:and \: \: a _n = a _{n-1} + a _{n-2} , n > 2$
$a _3 = a _{3-1} + a _{3-2} =a_2+a_1=1+1=2$
$a _4 = a _{4-1} + a _{4-2} =a_3+a_2=2+1=3$
$a _5 = a _{5-1} + a _{5-2} =a_4+a_3=3+2=5$
$a _6 = a _{6-1} + a _{6-2} =a_5+a_4=5+3=8$
$For \,\,n=1,\frac{a _{n+1}}{a_n}=\frac {a_{1+1}}{a_1}=\frac{a_2}{a_1}=\frac{1}{1}=1$
$For \,\, n=2,\frac{a _{n+1}}{a_n}=\frac {a_{2+1}}{a_2}=\frac{a_3}{a_2}=\frac{2}{1}=2$
$For \,\, n=3,\frac{a _{n+1}}{a_n}=\frac {a_{3+1}}{a_3}=\frac{a_4}{a_3}=\frac{3}{2}$
$For \,\, n=4,\frac{a _{n+1}}{a_n}=\frac {a_{4+1}}{a_4}=\frac{a_5}{a_4}=\frac{5}{3}$
$For \,\, n=5,\frac{a _{n+1}}{a_n}=\frac {a_{5+1}}{a_5}=\frac{a_6}{a_5}=\frac{8}{5}$
Sequences and Series class 11 questions and answers: Exercise: 8.2 |
Question 1: Find the $20 ^{th}$ and $n ^{th}$ terms of the G.P. $\frac{5}{2},\frac{5}{4},\frac{5}{8},....$
Answer:
G.P :
$\frac{5}{2},\frac{5}{4},\frac{5}{8},....$
first term = a
$a=\frac{5}{2}$
common ratio = r
$r=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2}$
$a_n=a.r^{n-1}$
$\Rightarrow$$a_{20}=\frac{5}{2}.(\frac{1}{2})^{20-1}$
$\Rightarrow$$a_{20}=\frac{5}{2}.(\frac{1}{2^{19}})$
$\Rightarrow$$a_{20}=\frac{5}{2^{20}}$
$a_n=a.r^{n-1}$
$\Rightarrow$$a_n=\frac{5}{2}.\left ( \frac{1}{2} \right )^{n-1}$
$\Rightarrow$$a_n=\frac{5}{2}. \frac{1}{2^{n-1}}$
$\Rightarrow$$a_n=\frac{5}{2^n}$ the nth term of G.P
Question 2: Find the $12 ^{th}$ term of a G.P. whose $8 ^{th}$ term is 192 and the common ratio is 2.
Answer:
First term = a
common ratio = r = 2
$8 ^{th}$ term is 192
$a_n=a.r^{n-1}$
$\Rightarrow$$a_8=a.(2)^{8-1}$
$\Rightarrow$$192=a.(2)^{7}$
$\Rightarrow$$a=\frac{2^6.3}{2^7}$
$\Rightarrow$$a=\frac{3}{2}$
$a_n=a.r^{n-1}$
$\Rightarrow$$a_{12}=\frac{3}{2}. ( 2 )^{12-1}$
$\Rightarrow$$a_{12}=\frac{3}{2}. ( 2 )^{11}$
$\Rightarrow$$a_{12}= 3. ( 2 )^{10}$
$\Rightarrow$$a_{12}= 3072$ is the $12 ^{th}$ term of a G.P.
Answer:
To prove : $q ^2 = ps$
Let first term and common ratio = r
$a_5=a.r^4=p..................(1)$
$a_8=a.r^7=q..................(2)$
$a_{11}=a.r^{10}=s..................(3)$
Dividing equation 2 by 1, we have
$\frac{a.r^7}{a.r^4}=\frac{q}{p}$
$\Rightarrow r^3=\frac{q}{p}$
Dividing equation 3 by 2, we have
$\frac{a.r^{10}}{a.r^7}=\frac{s}{q}$
$\Rightarrow r^3=\frac{s}{q}$
Equating values of $r^3$ , we have
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^2=ps$
Hence proved.
Answer:
First term =a= -3
$4^{th}$ term of a G.P. is the square of its second term
$\Rightarrow a_4=(a_2)^2$
$\Rightarrow a.r^{4-1}=(a.r^{2-1})^2$
$\Rightarrow a.r^{3}=a^2.r^{2}$
$\Rightarrow r=a=-3$
$a_7=a.r^{7-1}$
$\Rightarrow a_7=(-3).(-3)^{6}$
$\Rightarrow a_7=(-3)^{7}=-2187$
Thus, the seventh term is -2187.
Question 5: Which term of the following sequences:
(a) $2,2\sqrt 2 , 4 .,....is \: \: 128 ?$
(b) Which term of the following sequences: $\sqrt 3 ,3 , 3 \sqrt 3 ,...is \: \: 729 ?$
Answer:
(a) Given : $GP = 2,2\sqrt 2 , 4 .,............$
$a=2\, \, \, \, \, and \, \, \, \, \, r=\frac{2\sqrt{2}}{2}=\sqrt{2}$
nth term is given as 128.
$a_n=a.r^{n-1}$
$\Rightarrow 128=2.(\sqrt{2})^{n-1}$
$\Rightarrow 64=(\sqrt{2})^{n-1}$
$\Rightarrow 2^6=(\sqrt{2})^{n-1}$
$\Rightarrow \sqrt{2}^{12}=(\sqrt{2})^{n-1}$
$\Rightarrow n-1=12$
$\Rightarrow n=12+1=13$
The 13th term is 128.
(b) Given : $GP=\sqrt 3 ,3 , 3 \sqrt 3 ,........$
$a=\sqrt{3}\, \, \, \, \, and \, \, \, \, \, r=\frac{3}{\sqrt{3}}=\sqrt{3}$
n The term is given as 729.
$a_n=a.r^{n-1}$
$\Rightarrow 729=\sqrt{3}.(\sqrt{3})^{n-1}$
$\Rightarrow 729=(\sqrt{3})^{n}$
$\Rightarrow( \sqrt{3})^{12}=(\sqrt{3})^{n}$
$\Rightarrow n=12$
The 12th term is 729.
(c) Given : $GP=\frac{1}{3} , \frac{1}{9} , \frac{1}{27} ,............$
$a=\frac{1}{3}\, \, \, \, \, and \, \, \, \, \, r=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{3}$
nth term is given as $\frac{1}{19683}$
$a_n=a.r^{n-1}$
$\Rightarrow \frac{1}{19683}=\frac{1}{3}.(\frac{1}{3})^{n-1}$
$\Rightarrow \frac{1}{19683}=\frac{1}{3^n}$
$\Rightarrow \frac{1}{3^9}=\frac{1}{3^n}$
$\Rightarrow n=9$
Thus, n = 9.
Question 6: For what values of x, the numbers $-\frac{2}{7} ,x, -\frac{7}{2}$ are in G.P.?
Answer:
$GP=-\frac{2}{7} ,x, -\frac{7}{2}$
Common ratio = r.
$r=\frac{x}{\frac{-2}{7}}=\frac{\frac{-7}{2}}{x}$
$\Rightarrow x^2=1$
$\Rightarrow x=\pm 1$
Thus, for $x=\pm 1$, the numbers will be in GP.
Answer:
Geometric progressions are 0.15, 0.015, 0.0015, ... .....
a = 0.15 , r = 0.1 , n = 20
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_{20}=\frac{0.15(1-(0.1)^{20})}{1-0.1}$
$\Rightarrow$$S_{20}=\frac{0.15(1-(0.1)^{20})}{0.9}$
$\Rightarrow$$S_{20}=\frac{0.15}{0.9}(1-(0.1)^{20})$
$\Rightarrow$$S_{20}=\frac{15}{90}(1-(0.1)^{20})$
$\Rightarrow$$S_{20}=\frac{1}{6}(1-0.1^{20})$
Answer:
$GP=\sqrt 7 , \sqrt {21} , 3 \sqrt 7 ,...............$
$a=\sqrt{7}\, \, \, \, and\, \, \, \, \, r=\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-\sqrt{3}}$
$\Rightarrow$$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-\sqrt{3}}\times \frac{1+\sqrt{3}}{1+\sqrt{3}}$
$\Rightarrow$$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{1-3} (1+\sqrt{3})$
$\Rightarrow$$S_n=\frac{\sqrt{7}(1-\sqrt{3}^n)}{-2} (1+\sqrt{3})$
$\Rightarrow$$S_n=\frac{\sqrt{7}(1+\sqrt{3})}{2} (\sqrt{3}^n-1)$
Answer:
The sum to the indicated number of terms in each of the geometric progressions is:
$GP=1,-a , a^2 , - a ^3 , .............$
$a=1\, \, \, and\, \, \, \, r=-a$
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_n=\frac{1(1-(-a)^n)}{1-(-a)}$
$\Rightarrow$$S_n=\frac{1(1-(-a)^n)}{1+a}$
$\Rightarrow$$S_n=\frac{1-(-a)^n}{1+a}$
Answer:
$GP=x ^3 , x^5 , x^7 .....................$
$a=x^3\, \, \, and\, \, r=\frac{x^5}{x^3}=x^2$
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_n=\frac{x^3(1-(x^2)^n)}{1-x^2}$
$\Rightarrow$$S_n=\frac{x^3(1-(x^2)^n)}{1-x^2}$
Question 11: Evaluate $\sum_{k = 1}^{11} ( 2+ 3 ^k )$
Answer:
Given :
$\sum_{k = 1}^{11} ( 2+ 3 ^k )$
$\Rightarrow$$\sum_{k = 1}^{11} ( 2+ 3 ^k )=\sum _{k=1}^{11}2 +\sum _{k=1}^{11} 3^k$
$=22 +\sum _{k=1}^{11} 3^k...............(1)$
$\Rightarrow$$\sum _{k=1}^{11} 3^k=3^1+3^2+3^3+....................3^{11}$
These terms form GP with a = 3 and r = 3.
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_n=\frac{3(1-3^{11})}{1-3}$
$\Rightarrow$$S_n=\frac{3(1-3^{11})}{-2}$
$\Rightarrow$$S_n=\frac{3(3^{11}-1)}{2}$ $=\sum _{k=1}^{11} 3^k$
$\Rightarrow$$\sum_{k = 1}^{11} ( 2+ 3 ^k )$ $=22+\frac{3(3^{11}-1)}{2}$
Answer:
Given: The sum of the first three terms of a G.P. is $\frac{39}{10}$ and their product is 1.
Let three terms be $\frac{a}{r},a,ar$ .
$S_n=\frac{a(1-r^n)}{1-r}$
$S_3=\frac{a(1-r^3)}{1-r}=\frac{39}{10}$
$\frac{a}{r}+a+ar=\frac{39}{10}.........1$
The product of 3 terms is 1.
$\frac{a}{r}\times a\times ar=1$
$\Rightarrow a^3=1$
$\Rightarrow a=1$
Put the value of an in equation 1,
$\frac{1}{r}+1+r=\frac{39}{10}$
$10(1+r+r^2)=39(r)$
$\Rightarrow 10r^2-29r+10=0$
$\Rightarrow 10r^2-25r-4r+10=0$
$\Rightarrow 5r(2r-5)-2(2r-5)=0$
$\Rightarrow (2r-5)(5r-2)=0$
$\Rightarrow r=\frac{5}{2},r=\frac{2}{5}$
The three terms of AP are $\frac{5}{2},1,\frac{2}{5}$ .
Question 13: How many terms of G.P. $3, 3 ^ 2 3 ^ 3 … are needed to give the sum 120?
Answer:
G.P.= $3 , 3 ^ 2 , 3 ^ 3$ , …............
Sum = 120
These terms are GP with a = 3 and r = 3.
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$120=\frac{3(1-3^n)}{1-3}$
$\Rightarrow$$120\times \frac{-2}{3}=(1-3^n)$
$\Rightarrow$$-80=(1-3^n)$
$\Rightarrow 3^n=1+80=81$
$\Rightarrow 3^n=81$
$\Rightarrow 3^n=3^4$
$\Rightarrow n=4$
Hence, we have a value of n as 4 to get a sum of 120.
Answer:
Let GP be $a,ar,ar^2,ar^3,ar^4,ar^5,ar^6................................$
Given: The sum of the first three terms of a G.P. is 16
$a+ar+ar^2=16$
$\Rightarrow a(1+r+r^2)=16...............................(1)$
Given: the sum of the next three terms is 128.
$ar^3+ar^4+ar^5=128$
$\Rightarrow ar^3(1+r+r^2)=128...............................(2)$
Dividing equation (2) by (1), we have
$\Rightarrow \frac{ar^3(1+r+r^2)}{a(1+r+r^2)}=\frac{128}{16}$
$\Rightarrow r^3=8$
$\Rightarrow r^3=2^3$
$\Rightarrow r=2$
Putting the value of r =2 in equation 1, we have
$\Rightarrow a(1+2+2^2)=16$
$\Rightarrow a(7)=16$
$\Rightarrow a=\frac{16}{7}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_n=\frac{\frac{16}{7}(1-2^n)}{1-2}$
$S_n=\frac{16}{7}(2^n-1)$
Question 15: Given a G.P. with a = 729 and $7 ^{th}$ term 64, determine $s_7$
Answer:
Given a G.P. with a = 729 and $7 ^{th}$ term 64.
$a_n=a.r^{n-1}$
$\Rightarrow 64=729.r^{7-1}$
$\Rightarrow r^6=\frac{64}{729}$
$\Rightarrow r^6=\left ( \frac{2}{3} \right )^6$
$\Rightarrow r=\frac{2}{3}$
$S_n=\frac{a(1-r^n)}{1-r}$
$S_7=\frac{729(1-\left ( \frac{2}{3} \right )^7)}{1-\frac{2}{3}}$
$S_7=\frac{729(1-\left ( \frac{2}{3} \right )^7)}{\frac{1}{3}}$
$S_7=3\times 729 \left ( \frac{3^7-2^7}{3^7} \right )$
$S_7= \left ( 3^7-2^7 \right )$
$S_7= 2187-128$
$S_7= 2059$
Question 16: Find a G.P. for which the sum of the first two terms is – 4 and the fifth term is 4 times the third term
Answer:
Given the sum of the first two terms is – 4 and the fifth term is 4 times the third term
Let the first term be a and the common ratio be r
$a_5=4.a_3$
$\Rightarrow a.r^{5-1}=4.a.r^{3-1}$
$\Rightarrow a.r^{4}=4.a.r^{2}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
If r = 2, then
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow \frac{a(1-2^2)}{1-2}=-4$
$\Rightarrow \frac{a(1-4)}{-1}=-4$
$\Rightarrow a(-3)=4$
$\Rightarrow a=\frac{-4}{3}$
If r = - 2, then
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow \frac{a(1-(-2)^2)}{1-(-2)}=-4$
$\Rightarrow \frac{a(1-4)}{3}=-4$
$\Rightarrow a(-3)=-12$
$\Rightarrow a=\frac{-12}{-3}=4$
Thus, required GP is $\frac{-4}{3},\frac{-8}{3},\frac{-16}{3},.........$ or $4,-8,-16,-32,..........$.
Answer:
Let x,y, and z be in G.P.
Let first term and common ratio = r
$a_4=a.r^3=x..................(1)$
$a_{10}=a.r^9=y..................(2)$
$a_{16}=a.r^{15}=z..................(3)$
Dividing equation 2 by 1, we have
$\frac{a.r^9}{a.r^3}=\frac{y}{x}$
$\Rightarrow r^4=\frac{y}{x}$
Dividing equation 3 by 2, we have
$\frac{a.r^{15}}{a.r^9}=\frac{z}{y}$
$\Rightarrow r^4=\frac{z}{y}$
Equating values of $r^4$ , we have
$\frac{y}{x}=\frac{z}{y}$
Thus, x, y, z are in GP.
Question 18: Find the sum to n terms of the sequence, 8, 88, 888, 8888….
Answer:
8, 88, 888, 8888… is not a GP.
It can be changed in GP by writing terms such s
$\Rightarrow$$S_n=8+88+888+8888+.............$ to n terms
$\Rightarrow$$S_n=\frac{8}{9}[9+99+999+9999+................]$
$\Rightarrow$$S_n=\frac{8}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+................]$
$\Rightarrow$$S_n=\frac{8}{9}[(10+10^2+10^3+........)-(1+1+1.....................)]$
$\Rightarrow$$S_n=\frac{8}{9}[\frac{10(10^n-1)}{10-1}-(n)]$
$\Rightarrow$$S_n=\frac{8}{9}[\frac{10(10^n-1)}{9}-(n)]$
$\Rightarrow$$S_n=\frac{80}{81}(10^n-1)-\frac{8n}{9}$
Question 19: Find the sum of the products of the corresponding terms of the sequences 2, 4, 8, 16, 32 and 128, 32, 8, 2,1/2
Answer:
$Required \, \, sum=2\times 128+4\times 32+8\times 8+16\times 2+32\times \frac{1}{2}$
$Required \, \, sum=64\left [ 4+2+1+\frac{1}{2}+\frac{1}{2^2} \right ]$
Here, $4,2,1,\frac{1}{2},\frac{1}{2^2}$ is a GP.
first term = a = 4
common ratio =r
$r=\frac{1}{2}$
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$S_5=\frac{4(1-\left ( \frac{1}{2} \right )^5)}{1-\frac{1}{2}}$
$\Rightarrow$$S_5=\frac{4(1-\left ( \frac{1}{2} \right )^5)}{\frac{1}{2}}$
$\Rightarrow$$S_5=8(1-\left ( \frac{1}{32} \right ))$
$\Rightarrow$$S_5=8(\frac{31}{32})$
$\Rightarrow$$S_5=\frac{31}{4}$
$Required \, \, sum=64\left [ \frac{31}{4} \right ]$
$Required \, \, sum=16\times 31=496$
Answer:
To prove : $aA,arAR,ar^2AR^2,...................$ is a GP.
$\frac{second \, \, term}{first\, \, term}=\frac{arAR}{aA}=rR$
$\frac{third \, \, term}{second\, \, term}=\frac{ar^2AR^2}{arAR}=rR$
Thus, the above sequence is a GP with a common ratio of rR.
Answer:
Let the first term be a and the common ratio be r.
$a_1=a,a_2=ar,a_3=ar^2,a_4=ar^3$
Given: the third term is greater than the first term by 9, and the second term is greater than the $4 ^{th}$ by 18.
$a_3=a_1+9$
$\Rightarrow ar^2=a+9$
$\Rightarrow a(r^2-1)=9.................1$
$a_2=a_4+18$
$\Rightarrow ar=ar^3+18$
$\Rightarrow ar(1-r^2)=18......................2$
By dividing equation 2 by 1 we get
$\frac{ ar(1-r^2)}{ -a(1-r^2)}=\frac{18}{9}$
$\Rightarrow r=-2$
Putting the value of r, we get
$4a=a+9$
$\Rightarrow 4a-a=9$
$\Rightarrow 3a=9$
$\Rightarrow a=3$
Thus, four terms of GP are $3,-6,12,-24.$
Answer:
To prove : $a ^{ q-r } b ^{r- p } C ^{p-q} = 1$
Let A be the first term and R be the common ratio.
According to the given information, we have
$a_p=A.R^{p-1}=a$
$a_q=A.R^{q-1}=b$
$a_r=A.R^{r-1}=c$
L.H.S : $a ^{ q-r } b ^{r- p } C ^{p-q}$
$\Rightarrow$$A^{q-r}.R^{(q-r)(p-1)}.A^{r-p}.R^{(r-p)(q-1)}.A^{p-q}.R^{(p-q)(r-1)}$
$\Rightarrow$$A^{q-r+r-p+p-q}.R^{(qp-rp-q+r)+(rq-pq+p-r)+(pr-p-qr+q)}$
$\Rightarrow$$A^0.R^0=1$ =RHS
Thus, LHS = RHS.
Hence proved.
Answer:
Given First term =a and n th term = b.
Common ratio = r.
To prove : $P^2 = ( ab)^n$
Then , $GP = a,ar,ar^2,ar^3,ar^4,..........................$
$a_n=a.r^{n-1}=b..................................1$
P = product of n terms
$\Rightarrow$$P=(a).(ar).(ar^2).(ar^3)..............(ar^{n-1})$
$\Rightarrow$$P=(a.a.a...............a)((1).(r).(r^2).(r^3)..............(r^{n-1}))$
$\Rightarrow$$P=(a^n)(r^{1+2+.........(n-1)})........................................2$
Here, $1+2+.........(n-1)$ is aananP.
$\therefore\, \, \, sum= \frac{n}{2}\left [2a+(n-1)d \right ]$
$\Rightarrow$$ \frac{n-1}{2}\left [2(1)+(n-1-1)1 \right ]$
$\Rightarrow$$ \frac{n-1}{2}\left [2+n-2 \right ]$
$\Rightarrow$$ \frac{n-1}{2}\left [n \right ]$
$\Rightarrow$$ \frac{n(n-1)}{2}$
Put in equation (2),
$P=(a^n)(r^{\frac{n(n-1)}{2}})$
$\Rightarrow$$P^2=(a^{2n})(r^{n(n-1)})$
$\Rightarrow$$P^2=(a. a.r^{(n-1)})^n$
$\Rightarrow$$P^2=(a.b)^n$
Hence proved.
Answer:
Let the first term =a and common ratio = r.
$sum \, \, of\, \, n\, \, terms=\frac{a(1-r^n)}{1-r}$
Since there are n terms from (n+1) to 2n term.
The sum of terms from (n+1) to 2n.
$S_n=\frac{a_{(n+1)}(1-r^n)}{1-r}$
$a_{(n+1)}=a.r^{n+1-1}=ar^n$
Thus, the required ratio = $\frac{a(1-r^n)}{1-r}\times \frac{1-r}{ar^n(1-r^n)}$
$=\frac{1}{r^n}$
Thus, the common ratio of the sum of the first n terms of a G.P. to the sum of terms from $( n+1)^{th} \: \: to\: \: (2n)^{th}$ term is $\frac{1}{r^n}$.
Question 25: If a, b, c, and d are in G.P. show that $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2 .$
Answer:
If a, b, c, and d are in G.P.
$bc=ad....................(1)$
$b^2=ac....................(2)$
$c^2=bd....................(3)$
To prove : $(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2 .$
RHS : $(ab + bc + cd)^2 .$
$\Rightarrow$$(ab + ad + cd)^2 .$
$\Rightarrow$$(ab + d (a+ c))^2 .$
$\Rightarrow$$a^2b^2 + d^2 (a+ c)^2 + 2(ab)(d(a+c))$
$\Rightarrow$$a^2b^2 + d^2 (a^2+ c^2+2ac) + 2a^2bd+2bcd$
Using equation (1) and (2),
$\Rightarrow$$a^2b^2 + 2a^2c^2+ 2b^2c^2+d^2a^2+2d^2b^2+d^2c^2$
$\Rightarrow$$a^2b^2 + a^2c^2+ a^2c^2+b^2c^2+b^2c^2+d^2a^2+d^2b^2+d^2b^2+d^2c^2$
$\Rightarrow$$a^2b^2 + a^2c^2+ a^2d^2+b^2.b^2+b^2c^2+b^2d^2+c^2b^2+c^2.c^2+d^2c^2$
$\Rightarrow$$a^2(b^2 + c^2+ d^2)+b^2(b^2+c^2+d^2)+c^2(b^2+c^2+d^2)$
$\Rightarrow$$(b^2 + c^2+ d^2)(a^2+b^2+c^2)$ = LHS
Hence proved.
Question 26: Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Answer:
Let A, and B be two numbers between 3 and 81 such that series 3, A, B, and 81 form a GP.
Let a=first term and common ratio =r.
$\therefore a_4=a.r^{4-1}$
$\Rightarrow$$81=3.r^{3}$
$\Rightarrow$$27=r^{3}$
$\Rightarrow$$r=3$
For $r=3$ ,
$A=ar=(3)(3)=9$
$B=ar^2=(3)(3)^2=27$
The required numbers are 9,27.
Question 27: Find the value of n so that $\frac{a^{n+1}+ b ^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b.
Answer:
M of a and b is $\sqrt{ab}.$
Given :
$\frac{a^{n+1}+ b ^{n+1}}{a^n+b^n}=\sqrt{ab}$
Squaring both sides
$\left ( \frac{a^{n+1}+ b ^{n+1}}{a^n+b^n} \right )^2=ab$
$\left (a^{n+1}+ b ^{n+1})^2=({a^n+b^n} \right )^2ab$
$\Rightarrow \left (a^{2n+2}+ b ^{2n+2}+2.a^{n+1}.b^{n+1})=({a^{2n}+b^{2n}+2.a^n.b^n} \right )ab$
$\Rightarrow \left (a^{2n+2}+ b ^{2n+2}+2.a^{n+1}.b^{n+1})=({a^{2n+1}.b+a.b^{2n+1}+2.a^{n+1}.b^{n+1}} \right )$
$\Rightarrow \left (a^{2n+2}+ b ^{2n+2})=({a^{2n+1}.b+a.b^{2n+1}} \right )$
$\Rightarrow a^{2n+1}(a-b)=b^{2n+1}( a-b)$
$\Rightarrow a^{2n+1}=b^{2n+1}$
$\Rightarrow \left ( \frac{a}{b} \right )^{2n+1}=1$
$\Rightarrow \left ( \frac{a}{b} \right )^{2n+1}=1=\left ( \frac{a}{b} \right )^0$
$\Rightarrow 2n+1=0$
$\Rightarrow 2n=-1$
$\Rightarrow n=\frac{-1}{2}$
Answer:
Let there be two numbers a and b
Geometric mean $=\sqrt{ab}$
According to the given condition,
$a+b=6\sqrt{ab}$
$\Rightarrow$$(a+b)^2=36(ab)$ .............................................................(1)
Also, $(a-b)^2=(a+b)^2-4ab=36ab-4ab=32ab$
$(a-b)=\sqrt{32}\sqrt{ab}$
$\Rightarrow$$(a-b)=4\sqrt{2}\sqrt{ab}$ .......................................................(2)
From (1) and (2), we get
$2a=(6+4\sqrt{2})\sqrt{ab}$
$\Rightarrow$$a=(3+2\sqrt{2})\sqrt{ab}$
Putting the value of 'a' in (1),
$\Rightarrow$$b=6\sqrt{ab}-(3+2\sqrt{2})\sqrt{ab}$
$\Rightarrow$$b=(3-2\sqrt{2})\sqrt{ab}$
$\Rightarrow$$\frac{a}{b}=\frac{(3+2\sqrt{2})\sqrt{ab}}{(3-2\sqrt{2})\sqrt{ab}}$
$\Rightarrow$$\frac{a}{b}=\frac{(3+2\sqrt{2})}{(3-2\sqrt{2})}$
Thus, the ratio is $( 3+ 2 \sqrt 2 ) : ( 3 - 2 \sqrt 2 )$.
Answer:
If A and Garee A.M. and G.M., respectively between two positive numbers,
Two numberarebe a and b.
$AM=A=\frac{a+b}{2}$
$\Rightarrow a+b=2A$ ...................................................................1
$GM=G=\sqrt{ab}$
$\Rightarrow ab=G^2$ ...........................................................................2
We know $(a-b)^2=(a+b)^2-4ab$
Put values from equation 1 and 2,
$(a-b)^2=4A^2-4G^2$
$\Rightarrow$$(a-b)^2=4(A^2-G^2)$
$\Rightarrow$$(a-b)^2=4(A+G)(A-G)$
$\Rightarrow$$(a-b)=4\sqrt{(A+G)(A-G)}$ ..................................................................3
From 1 and 3, we have
$2a=2A+2\sqrt{(A+G)(A-G)}$
$\Rightarrow a=A+\sqrt{(A+G)(A-G)}$
Put the value of an in equation 1, and we get
$b=2A-A-\sqrt{(A+G)(A-G)}$
$\Rightarrow b=A-\sqrt{(A+G)(A-G)}$
Thus, numbers are $A \pm \sqrt{( A+G)(A-G)}$.
Answer:
The number of bacteria in a certain culture doubles every hour. It forms GP.
Given a = 30 and r = 2.
$a_3=a.r^{3-1}=30(2)^2=120$
$a_5=a.r^{5-1}=30(2)^4=480$
$a_n+_1=a.r^{n+1-1}=30(2)^n$
Thus, bacteria present at the end of the 2nd hour, 4th hour, r, and nth hour are 120,480 and $30(2)^n$ respectively.
Answer:
Given: The Bank pays an annual interest rate of 10% compounded annually.
Rs 500 amounts are deposited in the bank.
At the end of the first year, the amount
$=500\left ( 1+\frac{1}{10} \right )=500(1.1)$
At the end of the second year, the amount $=500(1.1)(1.1)$
At the end of the third year, the amount $=500(1.1)(1.1)(1.1)$
At the end of 10 years, the amount $=500(1.1)(1.1)(1.1)........(10times)$
$=500(1.1)^{10}$
Thus, at the end of 10 years, amount $=Rs. 500(1.1)^{10}$.
Question 32: If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation
Answer:
Let the roots of the quadratic equation be a and b.
According to the given conditions,
$AM=\frac{a+b}{2}=8$
$\Rightarrow (a+b)=16$
$GM=\sqrt{ab}=5$
$\Rightarrow ab=25$
We know that $x^2-x(sum\, of\, roots)+(product\, of\, roots)=0$
$\Rightarrow$$x^2-x(16)+(25)=0$
$\Rightarrow$$x^2-16x+25=0$
Thus, the quadratic equation = $x^2-16x+25=0$
Sequences and Series class 11 NCERT solutions: Miscellaneous Exercise |
Question 1: If f is a function satisfying f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3 and
$\sum_{x=1}^{n} f(x) = 120$ , find the value of n.
Answer:
Given : f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3
$f(1) = 3$
Taking $x=y=1$ , we have
$f(1+1)=f(2)=f(1)*f(1)=3*3=9$
$\Rightarrow f(1+1+1)=f(1+2)=f(1)*f(2)=3*9=27$
$\Rightarrow f(1+1+1+1)=f(1+3)=f(1)*f(3)=3*27=81$
$f(1),f(2),f(3),f(4).....................$ is $3,9,27,81,..............................$ forms a GP with first term=3 and common ratio = 3.
$\sum_{x=1}^{n} f(x) = 120=S_n$
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$120=\frac{3(1-3^n)}{1-3}$
$\Rightarrow$$40=\frac{(1-3^n)}{-2}$
$\Rightarrow$$-80=(1-3^n)$
$\Rightarrow$$-80-1=(-3^n)$
$\Rightarrow$$-81=(-3^n)$
$\Rightarrow$$3^n=81$
Therefore, $n=4$
Thus, the value of n is 4.
Answer:
Let the sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2
$S_n=\frac{a(1-r^n)}{1-r}$
$\Rightarrow$$315=\frac{5(1-2^n)}{1-2}$
$\Rightarrow$$63=\frac{(1-2^n)}{-1}$
$\Rightarrow$$-63=(1-2^n)$
$\Rightarrow$$-63-1=(-2^n)$
$\Rightarrow$$-64=(-2^n)$
$\Rightarrow$$2^n=64$
Therefore, $n=6$
Thus, the value of n is 6.
Last term of GP = 6th term
The last term of GP =160
Question 3: The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Answer:
Given: The first term of a G.P. is 1. The sum of the third term and fifth term is 90.
$a=1$
$a_3=a.r^2=r^2$ $a_5=a.r^4=r^4$
$\therefore \, \, r^2+r^4=90$
$\therefore \, \, r^4+r^2-90=0$
$\Rightarrow \, \, r^2=\frac{-1\pm \sqrt{1+360}}{2}$
$\Rightarrow$$r^2=\frac{-1\pm \sqrt{361}}{2}$
$\Rightarrow$$r^2=-10 \, or \, 9$
$\Rightarrow$$r=\pm 3$
Thus, the common ratio of GP is $\pm 3$.
Answer:
Let three terms of GP be $a, ar,ar^2.$
Then, we have $a+ar+ar^2=56$
$a(1+r+r^2)=56$ ...............................................1
$a-1,ar-7,ar^2-21$ from an AP.
$\therefore ar-7-(a-1)=ar^2-21-(ar-7)$
$ar-7-a+1=ar^2-21-ar+7$
$ar-6-a=ar^2-14-ar$
$\Rightarrow ar^2-2ar+a=8$
$\Rightarrow ar^2-ar-ar+a=8$
$\Rightarrow a(r^2-2r+1)=8$
$\Rightarrow a(r^2-1)^2=8$ ....................................................................2
From equation 1 and 2, we get
$\Rightarrow 7(r^2-2r+1)=1+r+r^2$
$\Rightarrow 7r^2-14r+7-1-r-r^2=0$
$\Rightarrow 6r^2-15r+6=0$
$\Rightarrow 2r^2-5r+2=0$
$\Rightarrow 2r^2-4r-r+2=0$
$\Rightarrow 2r(r-2)-1(r-2)=0$
$\Rightarrow (r-2)(2r-1)=0$
$\Rightarrow r=2,r=\frac{1}{2}$
If r = 2, GP = 8,16,32
If r=0.2, GP= 32,16,8.
Thus, the numbers required are 8,16,32.
Answer:
Let GP be $A_1,A_2,A_3,...................A_{2n}$
Number of terms = 2n
According to the given condition,
Lettheme be GP as $a,ar,ar^2,..................$
$\Rightarrow \frac{ar(r^n-1)}{r-1}=\frac{4.a(r^{n}-1)}{r-1}$
$\Rightarrow ar=4a$
$\Rightarrow r=4$
Thus, the common ratio is 4.
Answer:
Given :
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x\neq 0 )$
Takin,
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx}$
$\Rightarrow (a+ bx) (b-cx) = (b+cx) (a-bx)$
$\Rightarrow ab+ b^2x-bcx^2-acx) = ba-b^2x+acx-bcx^2$
$\Rightarrow 2 b^2x = 2acx$
$\Rightarrow b^2 = ac$
$\Rightarrow \frac{b}{a}=\frac{c}{b}..................1$
Taking,
$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$
$\Rightarrow (b+cx)(c-dx)=(c+dx)(b-cx)$
$\Rightarrow bc-bdx+c^2x-cdx^2=bc-c^2x+bdx-cdx^2$
$\Rightarrow 2bdx=2c^2x$
$\Rightarrow bd=c^2$
$\Rightarrow \frac{d}{c}=\frac{c}{b}..............................2$
From equation 1 and 2, we have
$\Rightarrow \frac{d}{c}=\frac{c}{b}=\frac{b}{a}$
Thus, a,b,c,d and are in GP.
Answer:
Let there be a GP $=a,ar,ar^2,ar^3,....................$
According to the given information,
$S=\frac{a(r^n-1)}{r-1}$
$P=a^n \times r^{(1+2+...................n-1)}$
$\Rightarrow P=a^n \times r^{\frac{n(n-1)}{2}}$
$R=\frac{1}{a}+\frac{1}{ar}+\frac{1}{ar^2}+..................\frac{1}{ar^{n-1}}$
$\Rightarrow R=\frac{r^{n-1}+r^{n-2}+r^{n-3}+..............r+1}{a.r^{n-1}}$
$\Rightarrow R=\frac{1}{a.r^{n-1}}\times \frac{1(r^n-1)}{r-1}$
$\Rightarrow R= \frac{(r^n-1)}{a.r^{n-1}.(r-1)}$
To prove : $P^2 R^n = S ^n$
LHS : $P^2 R^n$
$= a^{2n}.r^{n(n-1)}\frac{(r^n-1)^n}{a^n.r^{n(n-1)}.(r-1)^n}$
$= a^{n} \frac{(r^n-1)^n}{(r-1)^n}$
$= \left ( \frac{a(r^n-1)}{(r-1)} \right )^{n}$
$=S^n=RHS$
Hence proved.
Question 8: If a, b, c, d are in G.P, prove that $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Answer:
Given: a, b, c, d are in G.P.
To prove: $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Then we can write,
$b^2=ac...............................1$
$c^2=bd...............................2$
$ad=bc...............................3$
Let $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ be in GP.
$(b^n + c^n)^2 =(a^n + b^n) (c^n + d^n)$
LHS: $(b^n + c^n)^2$
$(b^n + c^n)^2 =b^{2n}+c^{2n}+2b^nc^n$
$(b^n + c^n)^2 =(b^2)^n+(c^2)^n+2b^nc^n$
$=(ac)^n+(bd)^n+2b^nc^n$
$=a^nc^n+b^nc^n+a^nd^n+b^nd^n$
$=c^n(a^n+b^n)+d^n(a^n+b^n)$
$=(a^n+b^n)(c^n+d^n)=RHS$
Hence proved.
Thus, $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in GP
Answer:
Given: a and b are the roots of $x^2 -3 x + p = 0$
Then, $a+b=3\, \, \, \, and\, \, \, \, ab=p......................1$
Also, c, d are roots of $x^2 -12 x + q = 0$
$c+d=12\, \, \, \, and\, \, \, \, cd=q......................2$
Given: a, b, c, d form a G.P
Let, $a=x,b=xr,c=xr^2,d=xr^3$
From 1 and 2, we get
$x+xr=3$ and $xr^2+xr^3=12$
$\Rightarrow x(1+r)=3$ $xr^2(1+r)=12$
On dividing them,
$\frac{xr^2(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^2=4$
$\Rightarrow r=\pm 2$
When , r = 2,
$x=\frac{3}{1+2}=1$
When, r = -2,
$x=\frac{3}{1-2}=-3$
Case (1) when r=2 and x=1,
$ab=x^2r=2\, \, \, and \, \, \, \, cd=x^2r^5=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17:15.
Case (2) when r = -2 and x = -3,
$ab=x^2r=-18\, \, \, and \, \, \, \, cd=x^2r^5=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-305}{-270}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17 : 15.
Answer:
Let two numbers be a and b.
$AM=\frac{a+b}{2}\, \, \, and\, \, \, \, \, GM=\sqrt{ab}$
According to the given condition,
$\frac{a+b}{2\sqrt{ab}}=\frac{m}{n}$
$\Rightarrow \frac{(a+b)^2}{4ab}=\frac{m^2}{n^2}$
$\Rightarrow (a+b)^2=\frac{4ab.m^2}{n^2}$
$\Rightarrow (a+b)=\frac{2\sqrt{ab}.m}{n}$ ...................................................................1
$(a-b)^2=(a+b)^2-4ab$
We get,
$(a-b)^2=\left ( \frac{4abm^2}{n^2} \right )-4ab$
$(a-b)^2=\left ( \frac{4abm^2-4abn^2}{n^2} \right )$
$\Rightarrow (a-b)^2=\left ( \frac{4ab(m^2-n^2)}{n^2} \right )$
$\Rightarrow (a-b)=\left ( \frac{2\sqrt{ab}\sqrt{(m^2-n^2)}}{n} \right )$ .....................................................2
From 1 and 2, we get
$2a =\left ( \frac{2\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$\Rightarrow a =\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
Putting the value of an ann equation 1, we have
$b=\left ( \frac{2.\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$\Rightarrow b=\left ( \frac{\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( \sqrt{(m^2-n^2)} \right )$
$=\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )$
$\therefore a:b=\frac{a}{b}=\frac{\left ( \frac{\sqrt{ab}}{n} \right )\left (m+ \sqrt{(m^2-n^2)} \right )}{\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )}$
$=\frac{\left (m+ \sqrt{(m^2-n^2)} \right )}{\left (m- \sqrt{(m^2-n^2)} \right )}$
$a:b=\left (m+ \sqrt{(m^2-n^2)} \right ) : \left (m- \sqrt{(m^2-n^2)} \right )$
Question 11: Find the sum of the following series up to n terms:
(ii) .6 +. 66 +. 666+…
Answer:
(i) $5 + 55+ 555 + ....$ is not a GP.
It can be changed in GP by writing terms such s
$S_n=5 + 55+ 555 + ....$ to n terms
$S_n=\frac{5}{9}[9+99+999+9999+................]$
$S_n=\frac{5}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+................]$
$S_n=\frac{5}{9}[(10+10^2+10^3+........)-(1+1+1.....................)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{10-1}-(n)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{9}-(n)]$
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
Thus, the sum is
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
(ii) The sum of 0.6 +0. 66 + 0. 666+….................
It can be written as
$S_n=0.6+0.66+0.666+..........................$ to n terms
$\Rightarrow S_n=6[0.1+0.11+0.111+0.1111+................]$
$\Rightarrow S_n=\frac{6}{9}[0.9+0.99+0.999+0.9999+................]$
$\Rightarrow S_n=\frac{6}{9}[(1-\frac{1}{10})+(1-\frac{1}{10^2})+(1-\frac{1}{10^3})+(1-\frac{1}{10^4})+................]$
$\Rightarrow S_n=\frac{2}{3}[(1+1+1.....................n\, terms)-\frac{1}{10}(1+\frac{1}{10}+\frac{1}{10^2}+...................n \, terms)]$
$\Rightarrow S_n=\frac{2}{3}[n-\frac{\frac{1}{10}(\frac{1}{10}^n-1)}{\frac{1}{10}-1}]$
$\Rightarrow S_n=\frac{2n}{3}-\frac{2}{30}[\frac{10(1-10^{-n})}{9}]$
$\Rightarrow S_n=\frac{2n}{3}-\frac{2}{27}(1-10^{-n})$
Question 12: Find the 20th term of the series $2 \times 4+4\times 6+\times 6\times 8+....+n$ terms.
Answer:
The series = $2 \times 4+4\times 6+\times 6\times 8+....+n$
$\therefore n^{th}\, term=a_n=2n(2n+2)=4n^2+4n$
$\therefore a_{20}=2(20)[2(20)+2]$
$=40[40+2]$
$=40[42]$
$=1680$
Thus, the 20th term of the series is 1680
Answer:
Given Farmer pays Rs 6000 cash.
Therefore, unpaid amount = 12000-6000=Rs. 6000
According to the condition, interest paid annually is
12% of 6000,12% of 5500,12% of 5000,......................12% of 500.
Thus, the total interest to be paid
$=12\%of\, 6000+12\%of\, 5500+.............12\%of\, 500$
$=12\%of\, (6000+ 5500+.............+ 500)$
$=12\%of\, (500+ 1000+.............+ 6000)$
Here, $500, 1000,.............5500,6000$ is a AP with first term =a=500 and common difference =d = 500
We know that $a_n=a+(n-1)d$
$\Rightarrow 6000=500+(n-1)500$
$\Rightarrow 5500=(n-1)500$
$\Rightarrow 11=(n-1)$
$\Rightarrow n=11+1=12$
The sum of AP:
$S_{12}=\frac{12}{2}\left [ 2(500)+(12-1)500 \right ]$
$\Rightarrow S_{12}=6\left [ 1000+5500 \right ]$
$=6\left [ 6500 \right ]$
$=39000$
Thus, interest to be paid :
$=12\%of\, (500+ 1000+.............+ 6000)$
$=12\%of\, ( 39000)$
$=Rs. 4680$
Thus, cost of tractor = Rs. 12000+ Rs. 4680 = Rs. 16680
Answer:
Given: Shamshad Ali buys a scooter for Rs 22000.
Therefore, the unpaid amount = 22000-4000=Rs. 18000
According to the given condition, interest paid annually is
10% of 18000,10% of 17000,10% of 16000,......................10% of 1000.
Thus, the total interest to be paid
$=10\%of\, 18000+10\%of\, 17000+.............10\%of\, 1000$
$=10\%of\, (18000+ 17000+.............+ 1000)$
$=10\%of\, (1000+ 2000+.............+ 18000)$
Here, $1000, 2000,.............17000,18000$ is a AP with first term =a=1000 and common difference =d = 1000
We know that $a_n=a+(n-1)d$
$\Rightarrow 18000=1000+(n-1)1000$
$\Rightarrow 17000=(n-1)1000$
$\Rightarrow 17=(n-1)$
$\Rightarrow n=17+1=18$
The sum of AP:
$S_{18}=\frac{18}{2}\left [ 2(1000)+(18-1)1000 \right ]$
$=9\left [ 2000+17000 \right ]$
$=9\left [ 19000 \right ]$
$=171000$
Thus, interest to be paid :
$=10\%of\, (1000+ 2000+.............+ 18000)$
$=10\%of\, ( 171000)$
$=Rs. 17100$
Thus, cost of tractor = Rs. 22000 + Rs. 17100 = Rs. 39100
Answer:
The number of letters mailed from a GP: $4,4^2,4^3,.............4^8$
First term = a=4
Common ratio=r=4
Number of terms = 8
We know that the sum of GP is
$S_n=\frac{a(r^n-1)}{r-1}$
$=\frac{4(4^8-1)}{4-1}$
$=\frac{4(65536-1)}{3}$
$=\frac{4(65535)}{3}$
$=87380$
Costs to mail one letter are 50 paise.
Cost of mailing 87380 letters
$=Rs. \, 87380\times \frac{50}{100}$
$=Rs. \,43690$
Thus, the amount spent when the 8th set of the letter is mailed is Rs. 43690.
Answer:
Given: A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually.
$=\frac{5}{100}\times 10000=Rs.500$
$\therefore$ Interest in fifteen year 10000+ 14 times Rs. 500
$\therefore$ Amount in 15 th year $=Rs. 10000+14\times 500$
$=Rs. 10000+7000$
$=Rs. 17000$
$\therefore$ Amount in 20 th year $=Rs. 10000+20\times 500$
$=Rs. 10000+10000$
$=Rs. 20000$
Answer:
Cost of machine = Rs. 15625
Machines depreciate each year by 20%.
Therefore, its value every year is 80% of the original cost i.e. $\frac{4}{5}$ of the original cost.
$\therefore$ Value at the end of 5 years
$=15625\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}$
$=5120$
Thus, the value of the machine at the end of 5 years is Rs. 5120
Answer:
Let x be the number of days in which 150 workers finish the work.
According to the given information, we have
$150x=150+146+142+............(x+8)terms$
Series $150x=150+146+142+............(x+8)terms$ is a AP
First term=a=150
Common difference= -4
Number of terms = x+8
$\Rightarrow 150x=\frac{x+8}{2}\left [ 2(150)+(x+8-1)(-4) \right ]$
$\Rightarrow 300x=x+8\left [ 300-4x-28 \right ]$
$\Rightarrow 300x= 300x-4x^2-28x+2400-32x+224$
$\Rightarrow x^2+15x-544=0$
$\Rightarrow x^2+32x-17x-544=0$
$\Rightarrow x(x+32)-17(x+32)=0$
$\Rightarrow (x+32)(x-17)=0$
$\Rightarrow x=-32,17$
Since x cannot be negative so x=17.
Thus, in 17 days 150 workers finish the work.
Thus, the required number of days = 17+8=25 days.
Also Read,
Question: If $t_n$ denotes the $n^{\text {th }}$ term of the series $2+3+6+11+18+\ldots$ then $t_{50}$ is___.
Solution:
$\begin{aligned}
& S_n=2+3+6+11+18+\ldots+t_{50}(\text { Using method of difference) } \\
& S_n=0+2+3+6+11+18+\ldots+t_{50} \\
&⇒ S_n-S_n=(2-0)+(3-2)+(6-3)+(11-6)+(18-11)+\ldots-t_{50} \\
&⇒ t_{50}=2+[1+3+5+7+\ldots \text { upto } 49 \text { terms }] \\
&⇒ t_{50}=2+\frac{49}{2}[2+(49-1) 2] \\
&⇒ t_{50}=2+49^2=2403
\end{aligned}$
Hence, the correct answer is 2403.
The topics discussed in the NCERT Solutions for class 11, chapter 8, Sequences and Series are:
A sequence whose terms follow certain patterns is known as a progression.
A sequence in which the ratio of two consecutive terms is constant is called a geometric progression (GP).
The constant ratio is called the common ratio (r), i.e., $r=\frac{a_{n+1}}{a_n}$, for all n > 1.
The general term or nth term of GP is $a_n=a r^{(n-1)}$.
The nth term of a GP from the end: $a_n=\frac{1}{r^{n-1}}$, where $l$ is the last term.
If a, b, and c are three consecutive terms of a GP, then $b^2=a c$.
If a, G, and b are in a GP, then G is called the geometric mean of a and b and is given by $G=\sqrt{a b}$.
If a, G1, G2, G3, …, Gn, b are in GP, then G1, G2, G3, …, Gn are in GMs between a and b.
The common ratio r is given as: $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$.
The GM of a1, a2, a3,…, an is given by: $\mathrm{GM}=\left(a_1 \cdot a_2 \cdot a_3 \cdots a_n\right)^{\frac{1}{n}}$.
Product of n GMs is $G_1 \times G_2 \times G_3 \times \cdots \times G_n=G_n=(a b)^{\frac{n}{2}}$.
$\mathrm{A.M.}=\frac{a+b}{2} \text { and } \mathrm{G.M.}=\sqrt{a b}$
Thus, we have
$\begin{aligned}
\mathrm{A.M.}-\mathrm{G.M.} & =\frac{a+b}{2}-\sqrt{a b}=\frac{a+b-2 \sqrt{a b}}{2} \\
& =\frac{(\sqrt{a}-\sqrt{b})^2}{2} \geq 0
\end{aligned}$
Thus, we get the relationship $A.M. \geq G.M.$ always.
Concept Name |
JEE |
NCERT |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ | ❌ | |
✅ | ❌ | |
✅ |
✅ | |
✅ | ❌ | |
✅ | ❌ | |
✅ | ❌ | |
✅ | ❌ | |
If the differences of successive terms of a series are in A.P.and G.P |
✅ | ❌ |
✅ | ❌ | |
✅ | ❌ | |
✅ | ❌ |
Also Read,
Given below are some useful links for NCERT books and the NCERT syllabus for class 10:
Here are the subject-wise links for the NCERT solutions of class 10:
Chapter 8 of Class 11 Maths focuses on sequences and series, which includes Arithmetic Progression (AP) and Geometric Progression (GP). It covers the nth term of an AP and GP, the sum of the first n terms of both AP and GP and the concept of Arithmetic Mean and Geometric Mean. Understanding the relationship between terms in these progressions, as well as the formulas to find the sum and nth terms, are key parts of this chapter.
The sum of the first n terms of an arithmetic progression (AP) can be calculated using the formula $S_n=\frac {n}{2}(2a+(n−1)⋅d)$, where a is the first term, d is the common difference, and n is the number of terms.
This formula helps in finding the total sum of terms when you know the starting term and the common difference between consecutive terms.
The nth term of a geometric progression (GP) is given by the formula $T_n=a⋅r_n−1$, where a is the first term and r is the common ratio.
This formula allows you to find any term in the sequence when you know the first term and the common ratio.
The key difference between arithmetic and geometric sequences lies in how the terms are generated.
In an Arithmetic Progression (AP), the difference between any two consecutive terms is constant, referred to as the common difference.
In contrast, a Geometric Progression (GP) is defined by a constant ratio between consecutive terms, known as the common ratio. These differences in structure give rise to different formulas and methods for calculating terms and sums in each sequence.
The sum of an infinite geometric series, provided the common ratio r satisfies |r|<1, is calculated using the formula $S_{∞}=a_1−r$, where a is the first term and r is the common ratio. This formula helps in finding the sum of an infinite series when the terms approach zero and the series converges, which is a key concept in both mathematics and real-world applications.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE