Students found it relatively easy when they were asked to find the squares or cubes of numbers up to 50. For example, when they have to find (78)6 or (127)5, they face difficulty due to repeated multiplications. This is where the Binomial theorem makes our life easier. In these NCERT notes on Maths Chapter 7 Class 11, students will study how to expand (x + y)n or (x - y)n in an easier way, where n is an integer or a rational number. Binomial theorem class 11 notes also discuss how we get Pascal’s triangle from the expansion of (x + y)n.
This Story also Contains
These NCERT notes for class 11 Maths contain many visual graphics to make learning easier for students. Also, the latest CBSE guidelines have been followed by Careers360 experts when they made these notes. Class 11 Math chapter 7 notes help students to find the entire chapter in one place during revision after completing the textbook exercises. Students can also check the NCERT Exemplar Class 11 Maths Chapter 7 Binomial Theorem for extra practice purposes. For full syllabus coverage and solved exercises as well as a downloadable PDF, please visit this link: NCERT.
Students who wish to access the Binomial Theorem Class 11 Maths notes can click on the link below to download the entire notes in PDF.
Careers360 has prepared these Class 11 Binomial Theorem Notes to make your revision smoother and faster.
We know,
$
\begin{aligned}
& (a+b)^0=1 \\
& (a+b)^1=a+b \\
& (a+b)^2=a^2+2 a b+b^2 \\
& (a+b)^3=a^3+3 a^2 b+3 a b^2+b^3
\end{aligned}
$
If we observe each expansion,
The total number of terms of each expansion is 1 more than the index of $(a+b)$.
In the expansion, the power of the first quantity is gradually decreasing by 1, and the power of the second quantity is gradually increasing by 1.
Suppose n is the index of $(a+b)$; then the sum of the indices of a and b of each term of the expansion is n.
Now, arranging the coefficients of expansion with respect to their index.
If we observe the pattern, we can get the coefficient of the next index.
The pattern is given below.
Figure: 1
This diagram is known as Pascal's triangle.
If we apply Pascal's triangle rule, then the coefficients of $(a+b)^5$ will be 1 5 10 10 5 1.
Similarly, the coefficient of $(a+b)^6$ will be 1 6 15 20 15 6 1.
Now, we can apply the combination formula to find the coefficients.
Binomial coefficient (for a Positive integral index n) ${ }^n C_r=\frac{n!}{(n-r)!r!}$,
where n and r are positive integers and $0 \leq r<n$.
Figure 2 can be rewritten as:
Index Coefficients
$
\begin{aligned}
& 0 \quad{ }^0 C_0(=1) \\
& 1 \quad{ }^1 C_0(=1) \quad{ }^1 C_1(=1) \\
& 2 \quad{ }^2 C_0(=1) \quad{ }^2 C_1(=2) \quad{ }^2 C_2(=1) \\
& 3 \quad{ }^3 C_0(=1) \quad{ }^3 C_1(=3) \quad{ }^3 C_3(=3) \quad{ }^3 C_3(=1) \\
& 4 \quad{ }^4 C_0(=1) \quad{ }^4 C_1(=4) \quad{ }^4 C_2(=6) \quad{ }^4 C_3(=4) \quad{ }^4 C_4(=1)
\end{aligned}
$
Binomial theorem for any positive integer $n$,
$
(a+b)^n={ }^n \mathrm{C}_0 a^n+{ }^n \mathrm{C}_1 a^{n-1} b+{ }^n \mathrm{C}_2 a^{n-2} b^2+\ldots+{ }^n \mathrm{C}_{n-1} a \cdot b^{n-1}+{ }^n \mathrm{C}_n b^n
$
Proof:
The proof is obtained by applying the principle of mathematical induction.
Let the given statement be
$
\mathrm{P}(n):(a+b)^n={ }^n \mathrm{C}_0 a^n+{ }^n \mathrm{C}_1 a^{n-1} b+{ }^n \mathrm{C}_2 a^{n-2} b^2+\ldots+{ }^n \mathrm{C}_{n-1} a \cdot b^{n-1}+{ }^n \mathrm{C}_n b^n
$
For $n=1$, we have
$
\mathrm{P}(1):(a+b)^1={ }^1 \mathrm{C}_0 a^1+{ }^1 \mathrm{C}_1 b^1=a+b
$
Thus, $\mathrm{P}(1)$ is true.
Suppose $\mathrm{P}(k)$ is true for some positive integer $k$, i.e.
$
(a+b)^k={ }^k \mathrm{C}_0 a^k+{ }^k \mathrm{C}_1 a^{k-1} b+{ }^k \mathrm{C}_2 a^{k-2} b^2+\ldots+{ }^k \mathrm{C}_k b^k
---(1)$
We shall prove that $\mathrm{P}(k+1)$ is also true, i.e.,
$
(a+b)^{k+1}={ }^{k+1} \mathrm{C}_0 a^{k+1}+{ }^{k+1} \mathrm{C}_1 a^k b+{ }^{k+1} \mathrm{C}_2 a^{k-1} b^2+\ldots+{ }^{k+1} \mathrm{C}_{k+1} b^{k+1}
$
Now, $(a+b)^{k+1}=(a+b)(a+b)^k$
$
\begin{aligned}
= & (a+b)\left({ }^k \mathrm{C}_0 a^k+{ }^k \mathrm{C}_1 a^{k-1} b+{ }^k \mathrm{C}_2 a^{k-2} b^2+\ldots+{ }^k \mathrm{C}_{k-1} a b^{k-1}+{ }^k \mathrm{C}_k b^k\right) \\
\quad & \quad \text { from (1)] } \\
= & { }^k \mathrm{C}_0 a^{k+1}+{ }^k \mathrm{C}_1 a^k b+{ }^k \mathrm{C}_2 a^{k-1} b^2+\ldots+{ }^k \mathrm{C}_{k-1} a^2 b^{k-1}+{ }^k \mathrm{C}_k a b^k+{ }^k \mathrm{C}_0 a^k b \\
& +{ }^k \mathrm{C}_1 a^{k-1} b^2+{ }^k \mathrm{C}_2 a^{k-2} b^3+\ldots+{ }^k \mathrm{C}_{k-1} a b^k+{ }^k \mathrm{C}_k b^{k+1}
\end{aligned}
$
[by actual multiplication]
$
\begin{aligned}
&={ }^k \mathrm{C}_0 a^{k+1}+\left({ }^k \mathrm{C}_1+{ }^k \mathrm{C}_0\right) a^k b+\left({ }^k \mathrm{C}_2+{ }^k \mathrm{C}_1\right) a^{k-1} b^2+\ldots \\
&+\left({ }^k \mathrm{C}_k+{ }^k \mathrm{C}_{k-1}\right) a b^k+{ }^k \mathrm{C}_k b^{k+1} [\text{By grouping like terms}]\\
&={ }^{k+1} \mathrm{C}_0 a a^{k+1}+{ }^{k+1} \mathrm{C}_1 a^k b+{ }^{k+1} \mathrm{C}_2 a^{k-1} \mathrm{~b}^2+\ldots+{ }^{k+1} \mathrm{C}_k a b^k+{ }^{k+1} \mathrm{C}_{k+1} b^{k+1}
\end{aligned}
$
(by using ${ }^{k+1} \mathrm{C}_0=1,{ }^k \mathrm{C}_r+{ }^k \mathrm{C}_{r-1}={ }^{k+1} \mathrm{C}_r \quad$ and ${ }^k \mathrm{C}_k=1={ }^{k+1} \mathrm{C}_{k+1}$ )
Thus, it has been proved that $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true. Therefore, by the principle of mathematical induction, $\mathrm{P}(n)$ is true for every positive integer $n$.
1. $n!=n(n-1)(n-2)(n-3) \ldots \ldots \ldots .4 \times 3 \times 2 \times 1$
2. ${ }^n C_r={ }^n C_{n-r}$
$⇒{ }^n C_r=\frac{n!}{(n-r)!r!}$
and
${ }^n C_{n-r}=\frac{n!}{(n-r)!(n-n+r)!}$
$⇒{ }^n C_{n-r}=\frac{n!}{(n-r)!(r)!}$
Hence, it is proven that both are equal.
3. If ${ }^n C_x={ }^n C_y$ only if $x=y$ and $x+y=n$
4. ${ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r$
5. If n is a positive integer and $\mathrm{x}, \mathrm{y}$ are two complex numbers, then $(x+y)^n={ }^n C_0 x^n+{ }^n C_1 x^{n-1} y \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1} x y^{n-1}+{ }^n C_n y^n$
Here binomial coefficients are: ${ }^n C_0,{ }^n C_1, \ldots \ldots \ldots \ldots \ldots . .{ }^n C_{n-1},{ }^n C_n$
6. Total no. of terms of the given as $(n+1)$ in the expansion
$(x+y)^n={ }^n C_0 x^n+{ }^n C_1 x^{n-1} y \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1} x y^{n-1}+{ }^n C_n y^n$
The general equation of the binomial is given as:
$
\begin{aligned}
& (x+y)^n={ }^n C_0 x^n+{ }^n C_1 x^{n-1} y \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1} x y^{n-1}+{ }^n C_n y^n \\
& (x+y)^n=T_1+T_2+T_3 \ldots \ldots \ldots \ldots \ldots . T_n+T_{n+1}
\end{aligned}
$
There are two cases.
1. If n is odd.
The number of terms of $(a+b)^n$ when $n$ is an odd number is $n+1$.
Here, $n+1$ is an even number.
So there will be two middle terms.
That are $\left(\frac{n+1}{2}\right)^{\text {th }}$ and $\left(\frac{n+1}{2}+1\right)^{t h}$ terms of the expansion.
2. If n is even
The number of terms of $(a+b)^n$ when $n$ is an even number is $n+1$.
Here, $n+1$ is an odd number.
So there will be one middle term.
That is $\left(\frac{n+1+1}{2}\right)^{t h}=\left(\frac{n}{2}+1\right)^{t h}$ term of the expansion.
To find the sum of the coefficient of the binomial terms, we have to put the value of $x$ numerically as one.
For example
Q. If the binomial expression is $(x-y+1)^4$, then find the sum of the binomial coefficients is?
Solution: We have to put the value of $x=y=1$ and get the coefficient sum.
$(x-y+1)^4$
$
\begin{aligned}
& =(1-1+1)^4 \\
& =1
\end{aligned}
$
So the Sum of the binomial coefficients is 1.
$
(x+y)^n={ }^n C_0 x^n+{ }^n C_1 x^{n-1} y \ldots \ldots \ldots \ldots \ldots . .{ }^n C_{n-1} x y^{n-1}+{ }^n C_n y^n
$
Put $x=y=1$
$
\begin{aligned}
&⇒ (1+1)^n={ }^n C_0 11^n+{ }^n C_1 1{ }^{n-1} 1 \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1} 1.1^{n-1}+{ }^n C_n 1^n \\
&⇒ (2)^n={ }^n C_0+{ }^n C_1 \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1}+{ }^n C_n
\end{aligned}
$
$ (x+y)^n={ }^n C_0 x x^n+{ }^n C_1 x x^{n-1} y \ldots \ldots \ldots \ldots \ldots .{ }^n C_{n-1} x y^{n-1}+{ }^n C_n y^n$
Put $x=-y=1$
$
\begin{aligned}
&⇒ (1-1)^n={ }^n C_0 1^n+{ }^n C_1 1{ }^{n-1}(-1) \ldots \ldots \ldots \ldots . . \ldots{ }^n C_{n-1} 1 .(-1)^{n-1}+{ }^n C_n(-1)^n \\
&⇒ 0={ }^n C_0-{ }^n C_1 \ldots \ldots \ldots \ldots \ldots . .{ }^n C_{n-1}(-1)^n+{ }^n C_n(-1)^n
\end{aligned}
$
$
\begin{aligned}
& (1+x)^{-1}=1-x+x^2-x^3 \ldots \ldots . . \\
& (1-x)^{-1}=1+x+x^2+x^3 \ldots \ldots ... \\
& (1+x)^{-2}=1-2 x+3 x^2-4 x^3 . .... \\
& (1-x)^{-2}=1+2 x+3 x^2+4 x^3 . ....
\end{aligned}
$
Question 1:
Solution:
$\left ( \frac{3x^{2}}{2} - \frac{1}{3x} \right )^{15}$............... (Given)
$T_{r+1}=^{15}\textrm{C}_{r}\left ( \frac{3x^{2}}{2} \right )^{15-r}\left ( -\frac{1}{3x} \right )^{r}$ ……. (from standard formula of Tr+1)
$\Rightarrow T_{r+1}=^{15}\textrm{C}_{r}\left ( -1 \right )^{r}3^{15-2r}2^{r-15}X^{30-3r}$ …… (i)
Now, for x,
30 – 3r = 0
$\Rightarrow$r = 10
Substituting the value of r in eq (i),
$T_{r+1}=^{15}\textrm{C}_{10}3^{-5}2^{-5}$
$=\ ^{15}\textrm{C}_{10}\left ( \frac{1}{6} \right )^{5}$
Question 2:
Solution:
Given: (1+x)18
Now, T(2r+3)+1is the (2r + 4)th term
Thus, T(2r+3)+1 = 18C2r+3 (x)2r+3
Now, T(r-3)+1 is the (r-2)th term
Thus, T(r-3)+1 = 18Cr-3 xr-3
Now, it is given that the terms are equal in expansion.
Thus,
18C2r+3= 18Cr-3
i.e., 2r + 3 + r – 3 = 18 …… (nCx = nCy gives x + y = n)
Thus, 3r = 18
Therefore, r = 6
Question 3:
Solution:
Given $\left ( \sqrt[3]{2}+\frac{1}{\sqrt[3]{3}} \right )^{n}$
Now, from the beginning,
Seventh term is $T_{7}=T_{6+1}$
$=^{n}C_{6} \left (\sqrt[3]{2} \right )^{n-6}\left ( \frac{1}{\sqrt[3]{3}} \right )^{6}$...................(i)
& from the end,
The seventh term is the same ,i.e., $\left (\frac{1}{\sqrt[3]{3}}+\sqrt[2]{3} \right )^{n}$
$T_{7}=^{n}C_{6}\left ( \frac{1}{\sqrt[3]{3}} \right )^{n-6}\left ( \sqrt[3]{2} \right )^{6}$.............(ii)
Now, it is given that
$\frac{^{n}C_{6}\left (\sqrt[3]{2} \right )^{n-6}\left ( \frac{1}{\sqrt[3]{3}} \right )^{6}}{^{n}C_{6}\left ( \frac{1}{\sqrt[3]{3}} \right )^{n-6}\left ( \sqrt[3]{2} \right )^{6}} = \frac{1}{6}$
Thus
$\frac{\left ( \sqrt[3]{2} \right )^{n-12}}{\left (\frac{1}{\sqrt[3]{3}} \right )^{n-12} }=\frac{1}{6}$
Thus $(\sqrt[3]{2} \sqrt[3]{3})^{n-12}=6^{-1}$
Thus $6^\frac{n-12}{3}=6^{-1}$
$\frac{n-12}{3}=-1$
Thus $n=9$
NCERT Class 12 Maths chapter 7 notes are useful in many ways.
Access all NCERT Class 11 Maths notes from one place using the links below.
NCERT Class 11 Maths Chapter 7 Notes |
NCERT exemplar is one of the best tools for revision and practice purposes. After completing the exercises, they can compare their solutions with the solved ones.
Students can use the following links to analyse the NCERT textbook solutions for other subjects.
Students should always have access to the latest CBSE syllabus, and the following link will give them that privilege.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE