Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
Suppose you were asked to expand an algebraic expression like $(a+b)^{12}$. You can just multiply the expression 12 times over, but you will need to put in a lot of effort. In this scenario, the binomial theorem can make our lives much easier, providing us with a standard way to expand binomial expressions. The chapter Binomial Theorem in class 12 mathematics contains the concepts of binomial theorem for positive integral indices, Pascal’s triangle, and binomial theorem for any positive integer. Understanding these concepts will enhance the students' problem-solving ability and guide them in their advanced algebraic journey. The main objective of these Class 11 NCERT solutions is to prepare students efficiently and boost their confidence for the board exam and other competitive exams.
This article on NCERT solutions for class 11 Maths Chapter 7 Binomial Theorem offers clear and step-by-step solutions for the exercise problems given in the NCERT book. Experienced Subject Matter Experts of Careers360 have curated these solutions following the latest CBSE syllabus, ensuring that students can grasp the basic concepts effectively. After going through these solutions, students can practice the NCERT exemplar and notes for more practice purposes. For syllabus, notes, and PDF, refer to this link: NCERT.
Students who wish to access the Class 11 Maths Chapter 7 NCERT Solutions can click on the link below to download the complete solution in PDF.
Class 11 Maths chapter 7 solutions Exercise: 7.1 Page number: 132-133 Total questions: 14 |
Question 1: Expand the expression. $(1-2x)^5$
Answer:
Given,
The Expression:
$(1-2x)^5$
the expansion of this Expression is,
$(1-2x)^5 =$
$\\^5C_0(1)^5-^5C_1(1)^4(2x)+^5C_2(1)^3(2x)^2-^5C_3(1)^2(2x)^3+^5C_4(1)^1(2x)^4-^5C_5(2x)^5$
$=1-5(2x)+10(4x^2)-10(8x^3)+5(16x^4)-(32x^5)$
$=1-10x+40x^2-80x^3+80x^4-32x^5$
Question 2: Expand the expression. $\left(\frac{2}{x} - \frac{x}{2} \right )^5$
Answer:
Given,
The Expression:
$\left(\frac{2}{x} - \frac{x}{2} \right )^5$
the expansion of this Expression is,
$\left(\frac{2}{x} - \frac{x}{2} \right )^5=$
$\\^5C_0\left(\frac{2}{x}\right)^5-^5C_1\left(\frac{2}{x}\right)^4\left(\frac{x}{2}\right)+^5C_2\left(\frac{2}{x}\right)^3\left(\frac{x}{2}\right)^2$ $-^5C_3\left(\frac{2}{x}\right)^2\left(\frac{x}{2}\right)^3+^5C_4\left(\frac{2}{x}\right)^1\left(\frac{x}{2}\right)^4-^5C_5\left(\frac{x}{2}\right)^5$
$= \frac{32}{x}-5\left ( \frac{16}{x^4} \right )\left ( \frac{x}{2} \right )+10\left ( \frac{8}{x^3} \right )\left ( \frac{x^2}{4} \right )-10\left ( \frac{4}{x^2} \right )\left ( \frac{x^2}{8} \right )$ $+5\left ( \frac{2}{x} \right )\left ( \frac{x^4}{16} \right )-\frac{x^5}{32}$
$= \frac{32}{x^5}-\frac{40}{x^3}+\frac{20}{x}-5x+\frac{5x^2}{8}-\frac{x^3}{32}$
Question 3: Expand the expression. $(2x-3)^6$
Answer:
Given,
The Expression:
$(2x-3)^6$
the expansion of this Expression is,
$(2x-3)^6$
$= ^6C_0(2x)^6-^6C_1(2x)^5(3)+^6C_2(2x)^4(3)^2-^6C_3(2x)^3(3)^3+$ $^6C_4(2x)^2(3)^4-^6C_5(2x)(3)^5+^6C_6(3)^6$
$= 64x^6-6(32x^5)(3)+15(16x^4)(9)-20(8x^3)(27)+15(4x^2)(81)-6(2x)(243)$ $+729$
$= 64x^6-576x^5+2160x^4-4320x^3+4860x^2-2916x+729$
Question 4: Expand the expression. $\left(\frac{x}{3} + \frac{1}{x} \right )^5$
Answer:
Given,
The Expression:
$\left(\frac{x}{3} + \frac{1}{x} \right )^5$
the expansion of this Expression is,
$\left(\frac{x}{3} + \frac{1}{x} \right )^5$
$= ^5C_0\left(\frac{x}{3}\right)^5+^5C_1\left(\frac{x}{3}\right)^4\left(\frac{1}{x}\right)+^5C_2\left(\frac{x}{3}\right)^3\left(\frac{1}{x}\right)^2$ $+^5C_3\left(\frac{x}{3}\right)^2\left(\frac{1}{x}\right)^3+^5C_4\left(\frac{x}{3}\right)^1\left(\frac{1}{x}\right)^4+^5C_5\left(\frac{1}{x}\right)^5$
$= \frac{x^5}{243} +5\left ( \frac{x^4}{81} \right )\left ( \frac{1}{x} \right )+10\left ( \frac{x^3}{27} \right )\left ( \frac{1}{x^2} \right )+10\left ( \frac{x^2}{9} \right )\left ( \frac{1}{x^3} \right )$ $+5\left ( \frac{x}{3} \right )\left ( \frac{1}{x^4} \right )+\frac{1}{x^5}$
$= \frac{x^5}{243}+\frac{5x^3}{81}+\frac{10x}{27}+\frac{10}{9x}+\frac{5}{3x^2}+\frac{1}{x^5}$
Question 5: Expand the expression. $\left(x + \frac{1}{x} \right )^6$
Answer:
Given,
The Expression:
$\left(x + \frac{1}{x} \right )^6$
the expansion of this Expression is,
$\left(x + \frac{1}{x} \right )^6$
$= ^6C_0(x)^6+^6C_1(x)^5\left ( \frac{1}{x} \right )+^6C_2(x)^4\left ( \frac{1}{x} \right )^2+^6C_3(x)^3\left ( \frac{1}{x} \right )^3+$ $^6C_4(x)^2\left ( \frac{1}{x} \right )^4+^6C_5(x)\left ( \frac{1}{x} \right )^5+^6C_6\left ( \frac{1}{x} \right )^6$
$= x^6+6(x^5)\left ( \frac{1}{x} \right )+15(x^4)\left ( \frac{1}{x^2} \right )+20(8x^3)\left ( \frac{1}{x^3} \right )$ $+15(x^2)\left ( \frac{1}{x^4} \right )+6(x)\left ( \frac{1}{x^5} \right )+\frac{1}{x^6}$
$= x^6+6x^4+15x^2+20+\frac{15}{x^2}+\frac{6}{x^4}+\frac{1}{x^6}$
Question 6: Using binomial theorem, evaluate the following: $(96)^3$
Answer:
As 96 can be written as (100-4);
$\\\Rightarrow (96)^3\\=(100-4)^3\\=^3C_0(100)^3-^3C_1(100)^2(4)+^3C_2(100)(4)^2-^3C_3(4)^3$
$=(100)^3-3(100)^2(4)+3(100)(4)^2-(4)^3$
$=1000000-120000+4800-64$
$=884736$
Question 7: Using binomial theorem, evaluate the following: $(102)^5$
Answer:
As we can write 102 in the form 100+2
$\Rightarrow (102)^5$
$\Rightarrow(100+2)^5$
$=^5C_0(100)^5+^5C_1(100)^4(2)+^5C_2(100)^3(2)^2$ $+^5C_3(100)^2(2)^3+^5C_4(100)^1(2)^4+^5C_5(2)^5$
$=10000000000+1000000000+40000000+800000+8000+32$
$=11040808032$
Question 8: Using binomial theorem, evaluate the following:
Answer:
As we can write 101 in the form 100 +1
$\Rightarrow (101)^4$
$\Rightarrow(100+1)^4$
$=^4C_0(100)^4+^4C_1(100)^3(1)+^4C_2(100)^2(1)^2$ $+^4C_3(100)^1(1)^3+^4C_4(1)^4$
$=100000000+4000000+60000+400+1$
$=104060401$
Question 9: Using binomial theorem, evaluate the following: $(99)^5$
Answer:
As we can write 99 in the form 100-1
$\Rightarrow (99)^5$
$\Rightarrow(100-1)^5$
$=^5C_0(100)^5-^5C_1(100)^4(1)+^5C_2(100)^3(1)^2$ $-^5C_3(100)^2(1)^3+^5C_4(100)^1(1)^4-^5C_5(1)^5$
$=10000000000-500000000+10000000-100000+500-1$
$= 9509900499$
Question 10: Using Binomial Theorem, indicate which number is larger (1.1) 10000 or 1000.
Answer:
AS we can write 1.1 as 1 + 0.1,
$(1.1)^{10000}=(1+0.1)^{10000}$
$=^{10000}C_0+^{10000}C_1(1.1)$+Other positive terms
$=1+10000\times1.1+$ Other positive term
$>1000$
Hence,
$(1.1)^{10000}>1000$
Question 11: Find $(a + b)^4 - (a-b)^4$ . Hence, evaluate $(\sqrt{3} + \sqrt2)^4 - (\sqrt3-\sqrt2)^4$.
Answer:
Using Binomial Theorem, the expressions $(a+b)^4$ and $(a-b)^4$ can be expressed as
$(a+b)^4=^4C_0a^4+^4C_1a^3b+^4C_2a^2b^2+^4C_3ab^3+^4C_4b^4$
$\Rightarrow (a-b)^4=^4C_0a^4-^4C_1a^3b+^4C_2a^2b^2-^4C_3ab^3+^4C_4b^4$
From Here,
$(a+b)^4-(a-b)^4 = ^4C_0a^4+^4C_1a^3b+^4C_2a^2b^2+^4C_3ab^3+^4C_4b^4$ $-^4C_0a^4+^4C_1a^3b-^4C_2a^2b^2+^4C_3ab^3-^4C_4b^4$
$\Rightarrow (a+b)^4-(a-b)^4 = 2\times( ^4C_1a^3b+^4C_3ab^3)$
$\Rightarrow (a+b)^4-(a-b)^4 = 8ab(a^2+b^2)$
Now, Using this, we get
$(\sqrt{3} + \sqrt2)^4 - (\sqrt3-\sqrt2)^4=8(\sqrt{3})(\sqrt{2})(3+2)=8\times\sqrt{6}\times5=40\sqrt{6}$
Question 12: Find $(x+1)^6 + (x-1)^6$ . Hence or otherwise evaluate $(\sqrt2+1)^6 + (\sqrt2-1)^6$.
Answer:
Using Binomial Theorem, the expressions $(x+1)^4$ and $(x-1)^4$ can be expressed as ,
$(x+1)^6=^6C_0x^6+^6C_1x^51+^6C_2x^41^2+^4C_3x^31^3+^6C_4x^21^4+^6C_5x1^5+^6C_61^6$
$\Rightarrow (x-1)^6=^6C_0x^6-^6C_1x^51+^6C_2x^41^2-^4C_3x^31^3+^6C_4x^21^4-^6C_5x1^5+^6C_61^6$
From Here,
$\\(x+1)^6-(x-1)^6=^6C_0x^6+^6C_1x^51+^6C_2x^41^2+^4C_3x^31^3+$ $^6C_4x^21^4+^6C_5x1^5+^6C_61^6$ $\:\:\:\:\;\:\:\;\:\:\:\ +^6C_0x^6-^6C_1x^51+^6C_2x^41^2-^4C_3x^31^3+^6C_4x^21^4-^6C_5x1^5+^6C_61^6$
$\Rightarrow (x+1)^6+(x-1)^6=2(^6C_0x^6+^6C_2x^41^2+^6C_4x^21^4+^6C_61^6)$
$\Rightarrow (x+1)^6+(x-1)^6=2(x^6+15x^4+15x^2+1)$
Now, Using this, we get
$(\sqrt2+1)^6 + (\sqrt2-1)^6=2((\sqrt{2})^6+15(\sqrt{2})^4+15(\sqrt{2})^2+1)$
$\Rightarrow (\sqrt2+1)^6 + (\sqrt2-1)^6=2(8+60+30+1)=2(99)=198$
Question 13: Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.
Answer:
If we want to prove that $9^{n+1} - 8n - 9$ is divisible by 64, then we have to prove that $9^{n+1} - 8n - 9=64k$
As we know, from binomial theorem,
$(1+x)^m=^mC_0+^mC_1x+^mC_2x^2+^mC_3x^3+....^mC_mx^m$
Here putting x = 8 and replacing m by n+1, we get,
$9^{n+1}=^{n+1}C_0+\:^{n+1}C_18+^{n+1}C_28^2+.......+^{n+1}C_{n+1}8^{n+1}$
$\Rightarrow 9^{n+1}=1+8(n+1)+8^2(^{n+1}C_2+\:^{n+1}C_38+^{n+1}C_48^2+.......+^{n+1}C_{n+1}8^{n-1})$
$\Rightarrow 9^{n+1}=1+8n+8+64(k)$
Now, Using This,
$9^{n+1} - 8n - 9=9+8n+64k-9-8n=64k$
Hence
$9^{n+1} - 8n - 9$ is divisible by 64.
Question 14: Prove that $\sum_{r = 0}^n3^r \ ^nC_r = 4^n$
Answer:
As we know from Binomial Theorem,
$\sum_{r = 0}^na^r \ ^nC_r = (1+a)^n$
Here putting a = 3, we get,
$\sum_{r = 0}^n3^r \ ^nC_r = (1+3)^n$
$\Rightarrow \sum_{r = 0}^n3^r \ ^nC_r = 4^n$
Hence Proved.
Class 11 Maths chapter 7 solutions Miscellaneous exercise Page number: 133-133 Total questions: 6 |
Question 1: If a and b are distinct integers, prove that $a - b$ is a factor of $a^n - b^n$, whenever n is a positive integer.
[ Hint: write $a^n = (a - b + b)^n$ and expand]
Answer:
we need to prove,
$a^n-b^n=k(a-b)$ where k is some natural number.
Now let's add and subtract b from a so that we can prove the above result,
$a=a-b+b$
$a^n=(a-b+b)^n=[(a-b)+b]^n$
$=^nC_0(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_nb^n$
$=(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_{n-1}(a-b)b^{n-1}+b^n$ $\Rightarrow a^n-b^n=(a-b)[(a-b)^{n-1}+^nC_2(a-b)^{n-2}+........+^nC_{n-1}b^{n-1}]$
$\Rightarrow a^n-b^n=k(a-b)$
Hence, $a - b$ is a factor of $a^n - b^n$ .
Question 2: Evaluate $\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6$.
Answer:
First let's simplify the expression $(a+b)^6-(a-b)^6$ using binomial theorem,
So,
$(a+b)^6=^6C_0a^6+^6C_1a^5b+^6C_2a^4b^2+^6C_3a^3b^3+^6C_4a^2b^4+^6C_5ab^5+^6C_6b^6$
$\Rightarrow (a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$
And
$(a-b)^6=^6C_0a^6-^6C_1a^5b+^6C_2a^4b^2-^6C_3a^3b^3+^6C_4a^2b^4-^6C_5ab^5+^6C_6b^6$
$\Rightarrow (a+b)^6=a^6-6a^5b+15a^4b^2-20a^3b^3+15a^2b^4-6ab^5+b^6$
Now,
$(a+b)^6-(a-b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$ $-a^6+6a^5b-15a^4b^2+20a^3b^3-15a^2b^4+6ab^5-b^6$
$\Rightarrow (a+b)^6-(a-b)^6=2[6a^5b+20a^3b^3+6ab^5]$
Now, Putting $a=\sqrt{3}\:and\:b=\sqrt{2},$ we get
$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[6(\sqrt{3})^5(\sqrt{2})+20(\sqrt{3})^3(\sqrt{2})^3+6(\sqrt{3})(\sqrt{2})^5]$
$\Rightarrow \left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[54\sqrt{6}+120\sqrt{6}+24\sqrt{6}]$
$\Rightarrow \left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2\times198\sqrt{6}$
$\Rightarrow \left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=396\sqrt{6}$
Question 3: Find the value of $\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4$
Answer:
First, lets simplify the expression $(x+y)^4-(x-y)^4$ using binomial expansion,
$(x+y)^4=^4C_0x^4+^4C_1x^3y+^4C_2x^2y^2+^4C_3xy^3+^4C_4y^4$
$\Rightarrow (x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4$
And
$(x-y)^4=^4C_0x^4-^4C_1x^3y+^4C_2x^2y^2-^4C_3xy^3+^4C_4y^4$
$\Rightarrow (x-y)^4=x^4-4x^3y+6x^2y^2-4xy^3+y^4$
Now,
$(x+y)^4-(x-y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4-$ $x^4+4x^3y-6x^2y^2+4xy^3-y^4$
$\Rightarrow (x+y)^4-(x-y)^4=2(x^4+6x^2y^2+y^4)$
Now, Putting $x=a^2 and\:y=\sqrt{a^2-1}$ we get,
$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[(a^2)^4+6(a^2)^2(\sqrt{a^2-1})^2+(\sqrt{a^2-1})^4]$
$\Rightarrow \left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[a^8+6a^4(a^2-1)+(a^2-1)^2]$
$\Rightarrow \left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-12a^4+2a^4-4a^2+2$
$\Rightarrow \left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-10a^4-4a^2+2$
Question 4: Find an approximation of (0.99) 5 using the first three terms of its expansion.
Answer:
As we can write 0.99 as 1-0.01,
$(0.99)^5=(1-0.001)^5=^5C_0(1)^5-^5C_1(1)^4(0.01)+^5C_2(1)^3(0.01)^2$ $+\:other \:negligible \:terms$
$\Rightarrow (0.99)^5=1-5(0.01)+10(0.01)^2$
$\Rightarrow (0.99)^5=1-0.05+0.001$
$\Rightarrow (0.99)^5=0.951$
Hence, the value of $(0.99)^5$ is 0.951 approximately.
Question 5: Expand using Binomial Theorem $\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$
Answer:
Given the expression,
$\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$
The binomial expansion of this expression is
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4\\=\left ( \left (1 + \frac{x}{2} \right ) -\frac{2}{x}\right )^4=^4C_0\left ( 1+\frac{x}{2} \right )^4-^4C_1\left ( 1+\frac{x}{2} \right )^3\left ( \frac{2}{x} \right )+$ $^4C_2\left ( 1+\frac{x}{2} \right )^2\left ( \frac{2}{x} \right )^2$ $-^4C_3\left ( 1+\frac{x}{2} \right )\left ( \frac{2}{x} \right )^3+^4C_4\left ( \frac{2}{x} \right )^4$
$= \left ( 1+\frac{x}{2} \right )^4-\frac{8}{x}\left ( 1+\frac{x}{2} \right )^3+$ $\frac{24}{x^2}+\frac{24}{x}+6$ $-\frac{32}{x^3}+\frac{16}{x^4}..........(1)$
Now Applying the Binomial Theorem again,
$\left ( 1+\frac{x}{2} \right )^4=^4C_0(1)^4+^4C_1(1)^3\left ( \frac{x}{2} \right )+^4C_2(1)^2\left ( \frac{x}{2} \right )^2+^4C_3(1)\left ( \frac{x}{2} \right )^3$ $+^4C_4\left ( \frac{x}{2} \right )^4$
$= 1+ 4\left ( \frac{x}{2} \right )+6\left ( \frac{x^2}{4} \right )+4\left ( \frac{x^3}{8} \right )+\frac{x^4}{16}$
$=1+2x+\frac{3x^2}{2}+\frac{x^3}{3}+\frac{x^4}{16}..............(2)$
And
$\left ( 1+\frac{x}{2} \right )^3=^3C_0(1)^3+^3C_1(1)^2\left ( \frac{x}{2} \right )+^3C_2(1)\left ( \frac{x}{2} \right )^2+^3C_3\left ( \frac{x}{2} \right )^3$
$\Rightarrow \left ( 1+\frac{x}{2} \right )^3= 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^3}{8}..........(3)$
Now, From (1), (2) and (3) we get,
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$ $+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$
$\Rightarrow \\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}-12-6x-x^2$ $+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$
$\Rightarrow \\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$ $=\frac{16}{x}+\frac{8}{x^2}-\frac{32}{x^3}+\frac{16}{x^4}-4x+\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^4}{16}-5$
Question 6: Find the expansion of $(3x^2 - 2ax +3a^2)^3$ using binomial theorem.
Answer:
Given $(3x^2 - 2ax +3a^2)^3$
By Binomial Theorem It can also be written as
$(3x^2 - 2ax +3a^2)^3=((3x^2 - 2ax) +3a^2)^3$
$=^3C_0(3x^2-2ax)^3+^3C_1(3x^2-2ax)^2(3a^2)+^3C_2(3x^2-2ax)(3a^2)^2+^3C_3(3a^2)^3$
$= (3x^2-2ax)^3+3(3x^2-2ax)^2(3a^2)+3(3x^2-2ax)(3a^2)^2+(3a^2)^3$
$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+36a^4x^2+81a^4x^2-54a^5x+27a^6$
$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+117a^4x^2-54a^5x+27a^6...........(1)$
Now, Again By Binomial Theorem,
$(3x^2-2ax)^3=^3C_0(3x^2)^3-^3C_1(3x^2)^2(2ax)+^3C_2(3x^2)(2ax)^2-^3C_3(2ax)^3$
$\Rightarrow (3x^2-2ax)^3= 27x^6-3(9x^4)(2ax)+3(3x^2)(4a^2x^2)-8a^2x^3$
$\Rightarrow (3x^2-2ax)^3= 27x^6-54x^5+36a^2x^4-8a^3x^3............(2)$
From (1) and (2) we get,
$(3x^2-2ax+3a^2)^3=27x^6-54x^5+36a^2x^3+81a^2x^4-108a^3x^3+117a^4x^2$ $-54a^5x+27a^6$
$\Rightarrow (3x^2-2ax+3a^2)^3=27x^6-54x^5+117a^2x^3-116a^3x^3+117a^4x^2$ $-54a^5x+27a^6$
Also Read,
Question: If the coefficients of $x^4, x^5$ and $x^6$ in the expansion of $(1+x)^n$ are in the arithmetic progression, then the maximum value of $n$ is:
Solution:
$\begin{aligned} & \text { Coeff. of } x^4={ }^n C_4 \\ & \text { Coeff. of } x^5={ }^n C_5 \\ & \text { Coeff. of } x^6={ }^n C_6 \\ & { }^n C_4,{ }^n C_5,{ }^n C_6 \ldots . A P \\ & 2 .{ }^n C_5={ }^n C_4+{ }^n C_6 \\ & ⇒2=\frac{{ }^n C_4}{{ }^n C_5}+\frac{{ }^n C_6}{{ }^n C_5} \quad\left\{\frac{{ }^n C_r}{{ }^n C_r-1}=\frac{n-r+1}{r}\right\} \\ & ⇒2=\frac{5}{n-4}+\frac{n-5}{6} \\ & ⇒12(n-4)=30+n^2-9 n+20 \\ & ⇒n^2-21 n+98=0 \\ & ⇒(n-14)(n-7)=0 \\ & ⇒n_{\max }=14 \quad n_{\min }=7\end{aligned}$.
Therefore, the maximum value of $n$ is 14.
Given below are the topics discussed in the NCERT Solutions for class 11, chapter 7, Binomial Theorem:
The Binomial Theorem provides the expansion of a binomial (a + b) raised to any positive integer n.
The expansion of (a + b)n is given by: $(a+b)^n=^{n}\textrm{c}_0 a^n+^{n}\textrm{c}_1 a^{(n-1)} b+^{n}\textrm{c}_2 a^{(n-2)} b^2+\cdots+^{n}\textrm{c}_{n-1} \cdot a b^{(n-1)}+^{n}\textrm{c}_n b^n$
Special Cases from the Binomial Theorem:
$(x-y)^n=^{n}\textrm{c}_0 x^n-^{n}\textrm{c}_1 x^{(n-1)} y+^{n}\textrm{c}_2 x^{(n-2)} y^2+\ldots +(-1)^n . ^{n}\textrm{c}_n y^n$
$(1-x)^n=^{n}\textrm{c}_0-^{n}\textrm{c}_1 x+^{n}\textrm{c}_2n^2-\cdots+(-1)^n {^n c_n} x^n$
The coefficients $^{n}\textrm{c}_0$ and $^{n}\textrm{c}_n$ are always equal to 1.
The coefficients of the expansions in the Binomial Theorem are arranged in an array called Pascal’s triangle.
For (a + b)n, the general term is $T_{r+1}=n_{C_r} a^{(n-r)} b^r$
For (a - b)n, the general term is $(-1)^r n c_r a^{(n-r)} b^r$
For (1 + x)n, the general term is $n_{C_r} x^r$
For (1 - x)n, the general term is $(-1)^r {^n c_n} x^n$
In the expansion (a + b)n, if n is even, then the middle term is the ($\frac{n}{2}$ + 1)th term.
If n is odd, then the middle terms are the ($\frac{n}{2}$ + 1)th and ($\frac{n+1}{2}$ + 1)th terms.
Here are some steps on how to approach the questions of the Binomial Theorem:
Here is a comparison list of the concepts in Binomial Theorem that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:
Concepts Name | JEE | NCERT |
Binomial Theorem - Formula, Expansion, Problems and Applications | ✅ | ✅ |
Some Standard Expansions | ✅ | ✅ |
General and Middle Terms | ✅ | ✅ |
Greatest Term (numerically) | ✅ | ✅ |
An Important Theorem | ✅ | ✅ |
Problems on Divisibility | ✅ | ❌ |
Finding last digits | ✅ | ❌ |
Important Result (Comparison) | ✅ | ❌ |
Multinomial Theorem | ✅ | ❌ |
Series Involving Binomial Coefficients | ✅ | ❌ |
Differentiation form of Binomial Coefficients | ✅ | ❌ |
Use of Integration in Binomial | ✅ | ❌ |
Product of two Binomial Coefficients | ✅ | ❌ |
Binomial Inside Binomial | ✅ | ❌ |
Binomial Theorem for any Index | ✅ | ❌ |
Important Results of Binomial Theorem for any Index | ✅ | ❌ |
Given below is the chapter-wise list of the NCERT Class 11 Maths solutions with their respective links:
Also Read,
Given below are some useful links for NCERT books and the NCERT syllabus for class 10:
Here are the subject-wise links for the NCERT solutions of class 10:
In class 11, the binomial theorem provides a formula to expand expressions of the form $(x + y)^n$, where 'n' is a positive integer, and 'x' and 'y' are any real numbers.
Expression is given by
$(x-y)^n=^{n}\textrm{c}_0 x^n-^{n}\textrm{c}_1 x^{(n-1)} y+^{n}\textrm{c}_2 x^{(n-2)} y^2+\ldots +(-1)^n . ^{n}\textrm{c}_n y^n$
The middle term in a binomial expansion depends on whether the exponent 'n' is even or odd: if 'n' is even, there's one middle term, the $(\frac{n}{2} + 1)$ th term; if 'n' is odd, there are two middle terms, the $\frac{n+1}{2}$ and $\frac{n+3}{2}$ th terms.
The Binomial Theorem finds real-world applications in diverse fields like probability, statistics, economics, and engineering, allowing for calculations of probabilities in binomial distributions, economic forecasting, and estimating costs in construction projects.
There is one exercise in which binomial expansion-related questions are given and one miscellaneous exercise in which some advanced-level questions are given in NCERT Class 11 Maths Chapter 7 book.
The general term of a binomial expansion $(a+b)^n$ is $T_{r+1} = nC_r a^{n-r} b^r$.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE