In our daily lives, we see the motion of vehicles, speedometers, and changing temperatures, which involve changing quantities. These changes are studied using limits and derivatives. So, what is a limit? A limit helps us understand the behavior of a function as it approaches a particular value. A derivative tells us the rate of change of a function. For example, speed is the derivative of distance concerning time. Derivatives are based on limits. They form the foundation of calculus and are used in physics, engineering, and economics to analyze motion, growth, and optimization problems in real-world scenarios.
This Story also Contains
Limits and Derivatives Class 11 Questions And Answers PDF Free Download Limits and Derivatives Class 11 Solutions - Important Formulae Limits and Derivatives Class 11 NCERT Solutions NCERT Solutions for Class 11 Mathematics - Chapter Wise Importance of Solving NCERT Questions for Class 11 Chapter 12 NCERT Solutions for Class 11- Subject Wise NCERT Books and NCERT Syllabus NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives Students can get all NCERT solutions in one place and practice them to develop an in-depth understanding of the concepts. Also, after practicing all the questions, students can try the advanced questions of NCERT Exemplar and can refer to the solutions created by our experts in NCERT Exemplar Solutions For Class 11 Mathematics Chapter Limits And Derivative .
Limits and Derivatives Class 11 Questions And Answers PDF Free Download Download PDF
Limits and Derivatives Class 11 Solutions - Important Formulae Limits The limit of a function f ( x ) as x approaches a , denoted as lim x → a f ( x ) , exists when both the left-hand limit and the right-hand limit exist and are equal:
lim x → a f ( x ) exists if lim x → a − f ( x ) = lim x → a + f ( x )
Left-Hand Limit:
lim x → a − f ( x ) = lim h → 0 f ( a − h )
Right-Hand Limit:
lim x → a + f ( x ) = lim h → 0 f ( a + h )
Properties of Limits: If lim x → a f ( x ) and lim x → a g ( x ) both exist:Sum Rule:
lim x → a [ f ( x ) ± g ( x ) ] = lim x → a f ( x ) ± lim x → a g ( x )
Constant Rule:
lim x → a [ k ⋅ f ( x ) ] = k ⋅ lim x → a f ( x )
Product Rule:
lim x → a [ f ( x ) ⋅ g ( x ) ] = lim x → a f ( x ) ⋅ lim x → a g ( x )
Quotient Rule:
lim x → a [ f ( x ) g ( x ) ] = lim x → a f ( x ) lim x → a g ( x ) , provided lim x → a g ( x ) ≠ 0
Standard Limits: lim x → a x n − a n x − a = n a n − 1 lim x → 0 sin x x = 1 lim x → 0 tan x x = 1 lim x → 0 a x − 1 x = ln a lim x → 0 e x − 1 x = 1 lim x → 0 ln ( 1 + x ) x = 1
Derivatives: The derivative of a function f at point x is given by:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
Properties of Derivatives:
If f ( x ) and g ( x ) are differentiable:Sum Rule:
d d x [ f ( x ) + g ( x ) ] = d d x f ( x ) + d d x g ( x )
Difference Rule:
d d x [ f ( x ) − g ( x ) ] = d d x f ( x ) − d d x g ( x )
Product Rule:
d d x [ f ( x ) ⋅ g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x )
Quotient Rule:
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2
Standard Derivatives: d d x ( x n ) = n x n − 1 d d x ( sin x ) = cos x d d x ( cos x ) = − sin x d d x ( tan x ) = sec 2 x d d x ( cot x ) = − csc 2 x d d x ( sec x ) = sec x ⋅ tan x d d x ( csc x ) = − csc x ⋅ cot x d d x ( a x ) = a x ⋅ ln a d d x ( e x ) = e x d d x ( ln x ) = 1 x
Limits and Derivatives Class 11 NCERT Solutions Class 11 Maths chapter 12 solutions Exercise: 12.1
Page number: 237-239
Total questions: 32
Limits and derivatives class 11 questions and answers - Exercise: 12.1
Question:1 Evaluate the following limits lim x → 3 x + 3
Answer:
lim x → 3 x + 3
⇒ lim x → 3 3 + 3
⇒ 6
Question:2 Evaluate the following limits lim x → π ( x − 22 / 7 )
Answer:
Below, you can find the solution:
lim x → π ( x − 22 / 7 ) = π − 22 7
Question:3 Evaluate the following limits lim r → 1 π r 2
Answer:
The limit
lim r → 1 π r 2 = π ( 1 ) 2 = π
Hence, the answer is π
Question:4 Evaluate the following limits lim x → 4 4 x + 3 x − 2
Answer:
The limit
lim x → 4 4 x + 3 x − 2
⇒ 4 ( 4 ) + 3 ( 4 ) − 2
⇒ 19 2
Question:5 Evaluate the following limits lim x → − 1 x 10 + x 5 + 1 x − 1
Answer:
The limit
lim x → 4 x 10 + x 5 + 1 x − 1
⇒ ( − 1 ) 10 + ( − 1 ) 5 + 1 ( − 1 ) − 1
⇒ 1 − 1 + 1 − 2
⇒ − 1 2
Question:6 Evaluate the following limits lim x → 0 ( x + 1 ) 5 − 1 x
Answer:
The limit
lim x → 0 ( x + 1 ) 5 − 1 x
Let's put
x + 1 = y
Since we have changed the function, its limit will also change,
So
x → 0 , y → 0 + 1 = 1
So our function has became
lim y → 1 y 5 − 1 y − 1
Now, as we know the property
lim x → 1 x 5 − a n x − a = n a n − 1
lim y → 1 y 5 − 1 y − 1 = 5 ( 1 ) 5 = 5
Hence,
lim x → 0 ( x + 1 ) 5 − 1 x = 5
Question:7 Evaluate the following limits lim x → 2 3 x 2 − x − 10 x 2 − 4
Answer:
The limit
lim x → 2 3 x 2 − x − 10 x 2 − 4
⇒ lim x → 2 ( x − 2 ) ( 3 x + 5 ) ( x − 2 ) ( x + 2 )
⇒ lim x → 2 ( 3 x + 5 ) ( x + 2 )
⇒ ( 3 ( 2 ) + 5 ) ( ( 2 ) + 2 )
⇒ 11 4
Question:8 Evaluate the following limits lim x → 3 x 4 − 81 2 x 2 − 5 x − 3
Answer:
The limit
lim x → 3 x 4 − 81 2 x 2 − 5 x − 3
At x = 2, both the numerator and denominator become zero, so let's factorise the function
lim x → 3 ( x − 3 ) ( x + 3 ) ( x 2 + 9 ) ( x − 3 ) ( 2 x + 1 )
lim x → 3 ( x + 3 ) ( x 2 + 9 ) ( 2 x + 1 )
Now we can put the limit directly, so
lim x → 3 ( x + 3 ) ( x 2 + 9 ) ( 2 x + 1 )
⇒ ( ( 3 ) + 3 ) ( ( 3 ) 2 + 9 ) ( 2 ( 3 ) + 1 )
⇒ 6 × 18 7
⇒ 108 7
Question:9 Evaluate the following limits lim x → 0 a x + b c x + 1
Answer:
The limit,
lim x → 0 a x + b c x + 1
⇒ a ( 0 ) + b c ( 0 ) + 1
⇒ b
Question:10 Evaluate the following limits lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1
Answer:
The limit
lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1
Here, on directly putting the limit, both the numerator and the denominator become zero so we factorize the function and then put the limit.
lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1 = lim z → 1 z ( 1 / 6 ) 2 − 1 2 z 1 / 6 − 1
= lim z → 1 ( z ( 1 / 6 ) − 1 ) ( z ( 1 / 6 ) + 1 ) z 1 / 6 − 1
= lim z → 1 ( z 1 / 6 + 1 )
= ( 1 1 / 6 + 1 )
= 1 + 1
= 2
Question:11 Evaluate the following limits lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
Answer:
The limit:
lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
Since the Denominator is not zero on directly putting the limit, we can directly put the limits, so,
lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
= a ( 1 ) 2 + b ( 1 ) + c c ( 1 ) 2 + b ( 1 ) + a ,
= a + b + c a + b + c ,
= 1
Question:12 Evaluate the following limits lim x → − 2 1 x + x 2 x + 2
Answer:
lim x → − 2 1 x + x 2 x + 2
Here, since the denominator becomes zero on putting the limit directly, we first simplify the function and then put the limit,
lim x → − 2 1 x + x 2 x + 2
= lim x → − 2 x + 2 2 x x + 2
= lim x → − 2 1 2 x
= 1 2 ( − 2 )
= − 1 4
Question:13 Evaluate the following limits lim x → 0 sin a x b x
Answer:
The limit
lim x → 0 sin a x b x
Here, on directly putting the limits, the function becomes 0 0 form. So we try to make the function in the form of s i n x x . so,
lim x → 0 sin a x b x
= lim x → 0 sin a x ( a x ) b x ( a x )
= lim x → 0 sin a x a x a b
As lim x → 0 s i n x x = 1
= 1 ⋅ a b
= a b
Question:14 Evaluate the following limits lim x → 0 sin a x sin b x , a , b ≠ 0
Answer:
The limit,
lim x → 0 sin a x sin b x , a , b ≠ 0
On putting the limit directly, the function takes the zero by zero form. So, we convert it in the form of s i n a a .and then put the limit,
⇒ lim x → 0 s i n a x a x s i n b x b x ⋅ a x b x
= lim a x → 0 s i n a x a x lim b x → 0 s i n b x b x ⋅ a b
= a b
Question:15 Evaluate the following limits lim x → π sin ( π − x ) π ( π − x )
Answer:
The limit
lim x → π sin ( π − x ) π ( π − x )
⇒ lim x → π sin ( π − x ) ( π − x ) × 1 π
= 1 × 1 π
= 1 π
Question:16 Evaluate the following limits lim x → 0 cos x π − x
Answer:
The limit
lim x → 0 cos x π − x
The function behaves well on directly putting the limit, so we put the limit directly. So.
lim x → 0 cos x π − x
= cos ( 0 ) π − ( 0 )
= 1 π
Question:17 Evaluate the following limits lim x → 0 cos 2 x − 1 cos x − 1
Answer:
The limit:
lim x → 0 cos 2 x − 1 cos x − 1
The function takes the zero-by-zero form when the limit is put directly, so we simplify the function and then put the limit
lim x → 0 cos 2 x − 1 cos x − 1
lim x → 0 − 2 ( s i n 2 x ) − 2 ( s i n 2 ( x 2 ) )
= lim x → 0 ( s i n 2 x ) x 2 ( s i n 2 ( x 2 ) ) ( x 2 ) 2 × x 2 ( x 2 ) 2
= 1 2 1 2 × 4
= 4
Question:18 Evaluate the following limits lim x → 0 a x + x cos x b sin x
Answer:
lim x → 0 a x + x cos x b sin x
The function takes the form zero by zero when we put the limit directly in the function Since theunction consists of the sin function and cos function, we try to make the function in the form of s i n x x as we know that it tends to 1 when x tends to 0.
So,
lim x → 0 a x + x cos x b sin x
= 1 b lim x → 0 x ( a + cos x ) sin x
= 1 b lim x → 0 x sin x × ( a + cos x )
= 1 b × 1 × ( a + cos ( 0 ) )
= a + 1 b
Question:19 Evaluate the following limits lim x → 0 x sec x
Answer:
lim x → 0 x sec x
As the function doesn't create any abnormality on putting the limit directly, we can put the limit directly. So,
lim x → 0 x sec x
= ( 0 ) × 1
= 0 .
Question:20 Evaluate the following limits lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
Answer:
lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
The function takes the zero-by-zero form when we put the limit into the function directly, so we try to eliminate this case by simplifying the function. So
lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
= lim x → 0 sin a x a x ⋅ a x + b x a x + sin b x b x ⋅ b x
= lim x → 0 sin a x a x ⋅ a + b a + sin b x b x ⋅ b
= 1 ⋅ a + b a + 1 ⋅ b
= a + b a + b
= 1
Question:21 Evaluate the following limits lim x → 0 ( csc x − cot x )
Answer:
lim x → 0 ( csc x − cot x )
On putting the limit directly, the function takes infinity by infinity form, so we simplify the function and then put the limit
lim x → 0 ( csc x − cot x )
= lim x → 0 ( 1 s i n x − c o s x s i n x )
= lim x → 0 ( 1 − c o s x s i n x )
= lim x → 0 ( 2 s i n 2 ( x 2 ) s i n x )
= lim x → 0 ( 2 s i n 2 ( x 2 ) ( x 2 ) 2 ) ( ( x 2 ) 2 s i n x )
= lim x → 0 2 4 ( s i n 2 ( x 2 ) ( x 2 ) 2 ) ( ( x ) s i n x ) ⋅ x
= 2 4 × ( 1 ) 2 × 0
= 0
Question:22 Evaluate the following limits lim x → π / 2 tan 2 x x − π / 2
Answer:
lim x → π / 2 tan 2 x x − π / 2
The function takes zero by zero form when the limit is put directly, so we simplify the function and then put the limits,
So
Let's put
y = x − π 2
Since we are changing the variable, the limit will also change.
As
x → π 2 , y = x − π 2 → π 2 − π 2 = 0
So, the function in the new variable becomes,
lim y → 0 tan 2 ( y + π 2 ) y + π / 2 − π / 2
= lim y → 0 tan ( 2 y + π ) y
As we know that property t a n ( π + x ) = t a n x
= lim y → 0 tan ( 2 y ) y
= lim y → 0 s i n 2 y 2 y ⋅ 2 c o s 2 y
= 1 × 2
= 2
Question:23 Find lim x → 0 f ( x ) lim x → 1 f ( x ) w h e r e f ( x ) = { 2 x + 3 x ≤ 0 3 ( x + 1 ) x > 0
Answer:
Given Function
f ( x ) = { 2 x + 3 x ≤ 0 3 ( x + 1 ) x > 0
Now,
Limit at x = 0 :
a t x = 0 −
: lim x → 0 − f ( x ) = lim x → 0 − ( 2 x + 3 ) = 2 ( 0 ) + 3 = 3
a t x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + 3 ( x + 1 ) = 3 ( 0 + 1 ) = 3
Hence limit at x = 0 is 3.
Limit at x = 1
a t x = 1 +
lim x → 1 + f ( x ) = lim x → 1 + 3 ( x + 1 ) = 3 ( 1 + 1 ) = 6
a t x = 1 −
lim x → 1 − f ( x ) = lim x → 1 − 3 ( x + 1 ) = 3 ( 1 + 1 ) = 6
Hence limit at x = 1 is 6.
Question:24 Find lim x → 1 f ( x ) , w h e r e f ( x ) = { x 2 − 1 x ≠ 0 − x 2 − 1 x > 1
Answer:
lim x → 1 f ( x ) , w h e r e f ( x ) = { x 2 − 1 x ≠ 0 − x 2 − 1 x > 1
Limit at x = 1 +
lim x → 1 + f ( x ) = lim x → 1 ( − x 2 − 1 ) = − ( 1 ) 2 − 1 = − 2
Limit at x = 1 −
lim x → 1 − f ( x ) = lim x → 1 ( x 2 − 1 ) = ( 1 ) 2 − 1 = 0
As we can see Limit at x = 1 + is not equal to the Limit at x = 1 − , The limit of this function at x = 1 does not exist.
Question:25 Evaluate lim x → 0 f ( x ) , w h e r e f ( x ) = { | x | x x ≠ 0 0 x = 0
Answer:
lim x → 0 f ( x ) , w h e r e f ( x ) = { | x | x x ≠ 0 0 x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + | x | x = x x = 1
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − | x | x = − x x = − 1
Since The left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Question:26 Evaluate lim x → 0 f ( x ) , w h e r e f ( x ) = { x | x | x ≠ 0 0 x = 0
Answer:
lim x → 0 f ( x ) , w h e r e f ( x ) = { x | x | x ≠ 0 0 x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + x | x | = x x = 1
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − x | x | = x − x = − 1
Since The left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Question:27 Find lim x → 5 f ( x ) , w h e r e f ( x ) = | x | − 5
Answer:
lim x → 5 f ( x ) , w h e r e f ( x ) = | x | − 5
The right-hand Limit or Limit at x = 5 +
lim x → 5 + f ( x ) = lim x → 5 + | x | − 5 = 5 − 5 = 0
The left-hand limit or Limit at x = 5 −
lim x → 5 − f ( x ) = lim x → 5 − | x | − 5 = 5 − 5 = 0
Since The left-hand limit and right-hand limit are equal, the limit of this function at x = 5 is 0.
Question:28 Suppose f ( x ) = { a + b x x < 1 4 x = 1 b − a x x > 1 f (x) = f (1) what are possible values of a and b?
Answer:
Given,
f ( x ) = { a + b x x < 1 4 x = 1 b − a x x > 1
And
lim x → 1 f ( x ) = f ( 1 )
Since the limit exists,
left-hand limit = Right-hand limit = f(1).
Left-hand limit = f(1)
lim x → 1 − f ( x ) = lim x → 1 ( a + b x ) = a + b ( 1 ) = a + b = 4
Right-hand limit
lim x → 1 + f ( x ) = lim x → 1 ( b − a x ) = b − a ( 1 ) = b − a = 4
From both equations, we get that,
a = 0 and b = 4
Hence, the possible values of a and b are 0 and 4, respectively.
Question:29 Let a1, a2, . . ., an be fixed real numbers and define a function f ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) . What is lim x → a 1 f (x) ? For some a ≠ a 1 , a 2 . . . . a n , compute l lim x → a f ( x )
Answer:
Given,
f ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) .
Now,
lim x → a 1 f ( x ) = lim x → a 1 [ ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) ] . = [ lim x → a 1 ( x − a 1 ) ] [ lim x → a 1 ( x − a 2 ) ] [ lim x → a 1 ( x − a n ) ] = 0
Hence,
lim x → a 1 f ( x ) = 0
Now,
lim x → a f ( x ) = lim x → a ( x − a 1 ) ( x − a 2 ) . . . ( x − a n )
lim x → a f ( x ) = ( a − a 1 ) ( a − a 2 ) ( a − a 3 )
Hence
lim x → a f ( x ) = ( a − a 1 ) ( a − a 2 ) ( a − a 3 ) .
Question:30 If f ( x ) = { | x | + 1 x < 0 0 x = 0 | x | − 1 x > 0 For what value (s) of a does lim x → a f ( x ) exists ?
Answer:
f ( x ) = { | x | + 1 x < 0 0 x = 0 | x | − 1 x > 0
The limit at x = a exists when the right-hand limit is equal to the left-hand limit. So,
Case 1: when a = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + | x | − 1 = 1 − 1 = 0
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − | x | + 1 = 0 + 1 = 1
Since the Left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Case 2: When a < 0
The right-hand Limit or Limit at x = a +
lim x → a + f ( x ) = lim x → a + | x | − 1 = a − 1
The left-hand limit or Limit at x = a −
lim x → a − f ( x ) = lim x → a − | x | − 1 = a − 1
Since LHL = RHL, the Limit exists at x = a and is equal to a-1.
Case 3: When a > 0
The right-hand Limit or Limit at x = a +
lim x → a + f ( x ) = lim x → a + | x | + 1 = a + 1
The left-hand limit or Limit at x = a −
lim x → a − f ( x ) = lim x → a − | x | + 1 = a + 1
Since LHL = RHL, Limit exists at x = a and is equal to a+1
Hence,
The limit exists at all points except at x=0.
Question:31 If the function f(x) satisfies lim x → 1 f ( x ) − 2 x 2 − 1 = π , evaluate lim x → 1 f ( x )
Answer:
Given
lim x → 1 f ( x ) − 2 x 2 − 1 = π
Now,
lim x → 1 f ( x ) − 2 x 2 − 1 = lim x → 1 ( f ( x ) − 2 ) lim x → 1 ( x 2 − 1 ) = π
lim x → 1 ( f ( x ) − 2 ) = π lim x → 1 ( x 2 − 1 )
lim x → 1 ( f ( x ) − 2 ) = π ( 1 − 1 )
lim x → 1 ( f ( x ) − 2 ) = 0
lim x → 1 f ( x ) = 2
Question:32 If f ( x ) = [ m x 2 + n ; x < 0 n x + m ; x ≤ 0 ≤ 1 t n x 3 + m ; x > 1 ]
Answer:
Given,
f ( x ) = [ m x 2 + n ; x < 0 n x + m ; x ≤ 0 ≤ 1 t n x 3 + m ; x > 1 ]
Case 1: Limit at x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + n x + m = n ( 0 ) + m = m
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − m x 2 + n = m ( 0 ) 2 + n = n
Hence Limit will exist at x = 0 when m = n.
Case 2: Limit at x = 1
The right-hand Limit or Limit at x = 1 +
lim x → 1 + f ( x ) = lim x → 1 + n x 3 + m = n ( 1 ) 3 + m = n + m
The left-hand limit or Limit at x = 1 −
lim x → 1 − f ( x ) = lim x → 1 − n x + m = n ( 1 ) + m = n + m
Hence Limit at 1 exists at all integers.
Class 11 Maths chapter 12 solutions Exercise: 12.2
Page number: 248-249
Total questions: 11
NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply NowClass 11 Maths Chapter 12 NCERT solutions - Exercise: 12.2
Question:1 Find the derivative of x 2 − 2 a t x = 10
Answer:
F(x)= x 2 − 2
Now, As we know, The derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 10:
f ′ ( 10 ) = lim h → 0 f ( 10 + h ) − f ( 10 ) h
f ′ ( 10 ) = lim h → 0 ( 10 + h ) 2 − 2 − ( ( 10 ) 2 − 2 ) h
f ′ ( 10 ) = lim h → 0 100 + 20 h + h 2 − 2 − 100 + 2 h
f ′ ( 10 ) = lim h → 0 20 h + h 2 h
f ′ ( 10 ) = lim h → 0 20 + h
f ′ ( 10 ) = 20 + 0
f ′ ( 10 ) = 20
Question:2 Find the derivative of x at x = 1.
Answer:
Given
f(x)= x
Now, As we know, The derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 1:
f ′ ( 1 ) = lim h → 0 f ( 1 + h ) − f ( 1 ) h
f ′ ( 1 ) = lim h → 0 ( 1 + h ) − ( 1 ) h
f ′ ( 1 ) = lim h → 0 ( h ) h
f ′ ( 1 ) = 1 (Answer)
Question:3 Find the derivative of 99x at x = l00.
Answer:
f(x)= 99x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 100:
f ′ ( 100 ) = lim h → 0 f ( 100 + h ) − f ( 100 ) h
f ′ ( 100 ) = lim h → 0 99 ( 100 + h ) − 99 ( 100 ) h
f ′ ( 100 ) = lim h → 0 99 h h
f ′ ( 100 ) = 99
Question:4 (i) Find the derivative of the following functions from the first principle. x 3 − 27
Answer:
Given
f(x)= x 3 − 27
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 ( x + h ) 3 − 27 − ( ( x ) 3 − 27 ) h
f ′ ( x ) = lim h → 0 x 3 + h 3 + 3 x 2 h + 3 h 2 x − 27 + x 3 + 27 h
f ′ ( x ) = lim h → 0 h 3 + 3 x 2 h + 3 h 2 x h
f ′ ( x ) = lim h → 0 h 2 + 3 x 2 + 3 h x
f ′ ( x ) = 3 x 2
Question:4.(ii) Find the derivative of the following function from the first principle. ( x − 1 ) ( x − 2 )
Answer:
f(x)= ( x − 1 ) ( x − 2 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 ( x + h − 1 ) ( x + h − 2 ) − ( x − 1 ) ( x − 2 ) h
f ′ ( x ) = lim h → 0 x 2 + x h − 2 x + h x + h 2 − 2 h − x − h + 2 − x 2 + 2 x + x − 2 h
f ′ ( x ) = lim h → 0 2 h x + h 2 − 3 h h
f ′ ( x ) = lim h → 0 2 x + h − 3
f ′ ( x ) = 2 x − 3 (Answer)
Question:4(iii) Find the derivative of the following functions from the first principle. 1 / x 2
Answer:
f(x)= 1 / x 2
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 1 / ( x + h ) 2 − 1 / ( x 2 ) h
f ′ ( x ) = lim h → 0 x 2 − ( x + h ) 2 ( x + h ) 2 x 2 h
f ′ ( x ) = lim h → 0 x 2 − x 2 − 2 x h − h 2 h ( x + h ) 2 x 2
f ′ ( x ) = lim h → 0 − 2 x h − h 2 h ( x + h ) 2 x 2
f ′ ( x ) = lim h → 0 − 2 x − h ( x + h ) 2 x 2
f ′ ( x ) = − 2 x − 0 ( x + 0 ) 2 x 2
f ′ ( x ) = − 2 x 3 (Answer)
Question:4(iv) Find the derivative of the following functions from the first principle. x + 1 x − 1
Answer:
Given:
f ( x ) = x + 1 x − 1
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 x + h + 1 x + h − 1 − x + 1 x − 1 h
f ′ ( x ) = lim h → 0 ( x + h + 1 ) ( x − 1 ) − ( x + 1 ) ( x + h − 1 ) ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 x 2 − x + h x − h + x − 1 − x 2 − x h + x − x − h + 1 ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 − 2 h ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 − 2 ( x − 1 ) ( x + h − 1 )
f ′ ( x ) = − 2 ( x − 1 ) ( x + 0 − 1 )
f ′ ( x ) = − 2 ( x − 1 ) 2
Question:5 For the function f ( x ) = x 100 100 + x 99 99 + . . . . + x 2 2 + x + 1 Prove that f '(1) =100 f '(0).
Answer:
f ( x ) = x 100 100 + x 99 99 + . . . . + x 2 2 + x + 1
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 100 x 99 100 + 99 x 98 99 + . . . . + 2 x 2 + 1 + 0
f ′ ( x ) = x 99 + x 98 + . . . . . . x + 1
Now.
f ′ ( 0 ) = 0 99 + 0 98 + . . . . . .0 + 1 = 1
f ′ ( 1 ) = 1 99 + 1 98 + . . . . . .1 + 1 = 100
So,
Here
1 × 100 = 100
f ′ ( 0 ) × 100 = f ′ ( 1 )
Hence Proved.
Question:6 Find the derivative of x n + a x n − 1 + a 2 x n − 2 + . . . . + a n − 1 x + a n for some fixed real number a.
Answer:
Given
f ( x ) = x n + a x n − 1 + a 2 x n − 2 + . . . . + a n − 1 x + a n
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = n x n − 1 + a ( n − 1 ) x n − 2 + a 2 ( n − 2 ) x n − 3 + . . . . + a n − 1 1 + 0
f ′ ( x ) = n x n − 1 + a ( n − 1 ) x n − 2 + a 2 ( n − 2 ) x n − 3 + . . . . + a n − 1
Question:7(i) For some constants a and b, find the derivative of ( x − a ) ( x − b )
Answer:
Given
f ( x ) = ( x − a ) ( x − b ) = x 2 − a x − b x + a b
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 2 x − a − b
Question:7(ii) For some constants a and b, find the derivative of ( a x 2 + b ) 2
Answer:
Given
f ( x ) = ( a x 2 + b ) 2 = a 2 x 4 + 2 a b x 2 + b 2
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get
f ′ ( x ) = 4 a 2 x 3 + 2 ( 2 ) a b x + 0
f ′ ( x ) = 4 a 2 x 3 + 4 a b x
f ′ ( x ) = 4 a x ( a x 2 + b )
Question:7(iii) For some constants a and b, find the derivative of x − a x − b
Answer:
Given,
f ( x ) = x − a x − b
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So,, applying this rule, we get
d ( x − a x − b ) d x = ( x − b ) d ( x − a ) d x − ( x − a ) d ( x − b ) d x ( x − b ) 2
d ( x − a x − b ) d x = ( x − b ) − ( x − a ) ( x − b ) 2
d ( x − a x − b ) d x = a − b ( x − b ) 2
Hence
f ′ ( x ) = a − b ( x − b ) 2
Question:8 Find the derivative of x n − a n x − a for some constant a.
Answer:
Given,
f ( x ) = x n − a n x − a
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( x n − a n x − a ) d x = ( x − a ) d ( x n − a n ) d x − ( x n − a n ) d ( x − a ) d x ( x − a ) 2
d ( x n − a n x − a ) d x = ( x − a ) n x n − 1 − ( x n − a n ) ( x − a ) 2
d ( x n − a n x − a ) d x = n x n − a n x n − 1 − x n + a n ( x − a ) 2
Hence
f ′ ( x ) = n x n − a n x n − 1 − x n + a n ( x − a ) 2
Question:9(i) Find the derivative of 2 x − 3 / 4
Answer:
Given:
f ( x ) = 2 x − 3 / 4
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 2 − 0
f ′ ( x ) = 2
Question:9(ii) Find the derivative of ( 5 x 3 + 3 x − 1 ) ( x − 1 )
Answer:
Given.
f ( x ) = ( 5 x 3 + 3 x − 1 ) ( x − 1 ) = 5 x 4 + 3 x 2 − x − 5 x 3 − 3 x + 1
f ( x ) = 5 x 4 − 5 x 3 + 3 x 2 − 4 x + 1
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 5 ( 4 ) x 3 − 5 ( 3 ) x 2 + 3 ( 2 ) x − 4 + 0
f ′ ( x ) = 20 x 3 − 15 x 2 + 6 x − 4
Question:9(iii) Find the derivative of x − 3 ( 5 + 3 x )
Answer:
Given
f ( x ) = x − 3 ( 5 + 3 x ) = 5 x − 3 + 3 x − 2
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( − 3 ) 5 x − 4 + 3 ( − 2 ) x − 3
f ′ ( x ) = − 15 x − 4 − 6 x − 3
Question:9(iv) Find the derivative of x 5 ( 3 − 6 x − 9 )
Answer:
Given
f ( x ) = x 5 ( 3 − 6 x − 9 ) = 3 x 5 − 6 x − 4
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( 5 ) 3 x 4 − 6 ( − 4 ) x − 5
f ′ ( x ) = 15 x 4 + 24 x − 5
Question:9(v) Find the derivative of x − 4 ( 3 − 4 x − 5 )
Answer:
Given
f ( x ) = x − 4 ( 3 − 4 x − 5 ) = 3 x − 4 − 4 x − 9
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( − 4 ) 3 x − 5 − ( − 9 ) 4 x − 10
f ′ ( x ) = − 12 x − 5 + 36 x − 10
Question:9(vi) Find the derivative of 2 x + 1 − x 2 3 x − 1
Answer:
Given
f ( x ) = 2 x + 1 − x 2 3 x − 1
As we know, the quotient rule of the derivative is:
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
So, applying this rule, we get
d ( 2 x + 1 − x 2 3 x − 1 ) d x = ( x + 1 ) d ( 2 ) d x − 2 d ( x + 1 ) d x ( x + 1 ) 2 − ( 3 x − 1 ) d ( x 2 ) d x − x 2 d ( 3 x − 1 ) d x ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − ( 3 x − 1 ) 2 x − x 2 3 ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − 6 x 2 − 2 x − 3 x 2 ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − 3 x 2 − 2 x ( 3 x − 1 ) 2
Hence
f ′ ( x ) = − 2 ( x + 1 ) 2 − 3 x 2 − 2 x ( 3 x − 1 ) 2
Question:10 Find the derivative of cos x from the first principle.
Answer:
Given,
f(x)= cos x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 cos ( x + h ) − cos ( x ) h
f ′ ( x ) = lim h → 0 cos ( x ) cos ( h ) − sin ( x ) sin ( h ) − cos ( x ) h
f ′ ( x ) = lim h → 0 cos ( x ) cos ( h ) − cos ( x ) h − sin ( x ) sin ( h ) h
f ′ ( x ) = lim h → 0 cos ( x ) ( cos ( h ) − 1 ) h − sin ( x ) sin ( h ) h
f ′ ( x ) = lim h → 0 cos ( x ) − 2 s i n 2 ( h / 2 ) h ⋅ − sin ( x ) s i n h h
f ′ ( x ) = cos ( x ) ( 0 ) − s i n x ( 1 )
f ′ ( x ) = − sin ( x )
Question:11(i) Find the derivative of the following functions: sin x cos x
Answer:
Given,
f(x)= sin x cos x
Now, as we know the product rule of derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
So, applying the rule here,
d ( sin x cos x ) d x = sin x d cos x d x + cos x d sin x d x
d ( sin x cos x ) d x = sin x ( − sin x ) + cos x ( cos x )
d ( sin x cos x ) d x = − sin 2 x + cos 2 x
d ( sin x cos x ) d x = cos 2 x
Question:11(ii) Find the derivative of the following functions: sec x
Answer:
Given
f ( x ) = sec x = 1 cos x
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 1 cos x ) d x = cos x d ( 1 ) d x − 1 d ( cos x ) d x cos 2 x
d ( 1 cos x ) d x = − 1 ( − sin x ) cos 2 x
d ( 1 cos x ) d x = sin x cos 2 x = sin x cos x 1 cos x
d ( sec x ) d x = tan x sec x
Question:11 (iii) Find the derivative of the following functions: 5 sec x + 4 cos x
Answer:
Given
f ( x ) = 5 sec x + 4 cos x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying the property, we get
d ( 5 sec x + 4 cos x ) d x = d ( 5 sec x ) d x + d ( 4 cos x ) d x
d ( 5 sec x + 4 cos x ) d x = 5 tan x sec x + 4 ( − sin x )
d ( 5 sec x + 4 cos x ) d x = 5 tan x sec x − 4 sin x
Question:11(iv) Find the derivative of the following functions: csc x
Answer:
Given :
f ( x ) = csc x = 1 sin x
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 1 sin x ) d x = ( sin x ) d ( 1 ) d x − 1 d ( sin x ) d x ( sin x ) 2
d ( 1 sin x ) d x = − 1 ( cos x ) ( sin x ) 2
d ( 1 sin x ) d x = − ( cos x ) ( sin x ) 1 sin x
d ( csc x ) d x = − cot x csc x
Question:11(v) Find the derivative of the following functions: 3 cot x + 5 csc x
Answer:
Given,
f ( x ) = 3 cot x + 5 csc x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying the property,
d ( 3 cot x + 5 csc x ) d x = d ( 3 cot x ) d x + d ( 5 csc x ) d x
d ( 3 cot x + 5 csc x ) d x = 3 d ( cos x sin x ) d x + d ( 5 csc x ) d x
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 d ( cos x sin x ) d x
Now, as we know the quotient rule of the derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ sin x d ( cos x ) d x − cos x ( d ( sin x ) d x ) sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ sin x ( − sin x ) − cos x ( cos x ) sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ − sin 2 x − cos 2 x sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 [ sin 2 x + cos 2 x sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 [ 1 sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 csc 2 x
Question:11(vi) Find the derivative of the following functions: 5 sin x − 6 cos x + 7
Answer:
Given,
f ( x ) = 5 sin x − 6 cos x + 7
Now, as we know the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
So, applying the property,
f ′ ( x ) = 5 cos x − 6 ( − sin x ) + 0
f ′ ( x ) = 5 cos x + 6 ( sin x )
f ′ ( x ) = 5 cos x + 6 sin x
Question:11(vii) Find the derivative of the following functions: 2 tan x − 7 sec x
Answer:
Given
f ( x ) = 2 tan x − 7 sec x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying this property,
d ( 2 tan x + 7 sec x ) d x = 2 d tan x d x + 7 d sec x d x
d ( 2 tan x + 7 sec x ) d x = 2 sec 2 x + 7 ( − sec x tan x )
d ( 2 tan x + 7 sec x ) d x = 2 sec 2 x − 7 sec x tan x
NCERT Limits and Derivatives Class 11 Solutions: Exercise: Miscellaneous Exercise
Page Number: 253-254
Total Questions: 30
Question:1(i) Find the derivative of the following functions from the first principle: -x
Answer:
Given.
f(x)=-x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 − ( x + h ) − ( − x ) h
f ′ ( x ) = lim h → 0 − h h
f ′ ( x ) = − 1
Question 1 (ii) Find the derivative of the following functions from the first principle: ( − x ) − 1
Answer:
Given.
f(x)= ( − x ) − 1
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 − ( x + h ) − 1 − ( − x ) − 1 h
f ′ ( x ) = lim h → 0 − 1 x + h + 1 x h
f ′ ( x ) = lim h → 0 − x + x + h x ( x + h ) h
f ′ ( x ) = lim h → 0 h ( x + h ) ( x ) h
f ′ ( x ) = lim h → 0 1 x ( x + h )
f ′ ( x ) = 1 x 2
Question:1(iii) Find the derivative of the following functions from the first principle: sin ( x + 1 )
Answer:
Given.
f ( x ) = sin ( x + 1 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 sin ( x + h + 1 ) − sin ( x + 1 ) h
f ′ ( x ) = lim h → 0 2 cos ( x + h + 1 + x + 1 2 ) sin ( x + h + 1 − x − 1 2 ) h
f ′ ( x ) = lim h → 0 2 cos ( 2 x + h + 2 2 ) sin ( h 2 ) h
f ′ ( x ) = lim h → 0 cos ( 2 x + h + 2 2 ) sin ( h 2 ) h 2
f ′ ( x ) = cos ( 2 x + 0 + 2 2 ) × 1
f ′ ( x ) = cos ( x + 1 )
Question:1(iv) Find the derivative of the following functions from the first principle: cos ( x − π / 8 )
Answer:
Given.
f ( x ) = cos ( x − π / 8 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 cos ( x + h − π / 8 ) − c o s ( x − π / 8 ) h
f ′ ( x ) = lim h → 0 − 2 sin ( x + h − π / 8 + x − π / 8 2 ) sin ( x + h − π / 8 − x + π / 8 2 ) h
f ′ ( x ) = lim h → 0 − 2 sin ( 2 x + h − π / 4 2 ) sin ( h 2 ) h
f ′ ( x ) = lim h → 0 − sin ( 2 x + h − π / 4 2 ) sin ( h 2 ) h 2
f ′ ( x ) = sin ( 2 x + 0 − π / 4 2 ) × 1
f ′ ( x ) = − sin ( x − π / 8 )
Question:2 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x+a )
Answer:
Given
f(x)= x + a
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 1 + 0
f ′ ( x ) = 1
Question:3 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( p x + q ) ( r x + s )
Answer:
Given
f ( x ) = ( p x + q ) ( r x + s )
f ( x ) = p r + p s x + q r x + q s
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 0 + p s + − q r x 2 + 0
f ′ ( x ) = p s + q ( − r x 2 )
f ′ ( x ) = p s − ( q r x 2 )
Question:4 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x + b ) ( c x + d ) 2
Answer:
Given,
f ( x ) = ( a x + b ) ( c x + d ) 2
f ( x ) = ( a x + b ) ( c 2 x 2 + 2 c d x + d 2 )
f ( x ) = a c 2 x 3 + 2 a c d x 2 + a d 2 x + b c 2 x 2 + 2 b c d x + b d 2
Now,
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 3 a c 2 x 2 + 4 a c d x + a d 2 + 2 b c 2 x + 2 b c d + 0
f ′ ( x ) = 3 a c 2 x 2 + 4 a c d x + a d 2 + 2 b c 2 x + 2 b c d
f ′ ( x ) = 3 a c 2 x 2 + ( 4 a c d + 2 b c 2 ) x + a d 2 + 2 b c d
Question:5 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): a x + b / c x + d
Answer:
Given,
f ( x ) = a x + b c x + d
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( a x + b c x + d ) d x = ( c x + d ) d ( d ( a x + b ) d x ) − ( a x + b ) ( d ( c x + d ) d x ) ( c x + d ) 2
d ( a x + b c x + d ) d x = ( c x + d ) a − ( a x + b ) c ( c x + d ) 2
d ( a x + b c x + d ) d x = a c x + a d − a c x − b c ( c x + d ) 2
d ( a x + b c x + d ) d x = a d − b c ( c x + d ) 2
Hence, the Derivative of the function is
a d − b c ( c x + d ) 2 .
Question:6 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
1 + 1 x 1 − 1 x
Answer:
Given,
f ( x ) = 1 + 1 x 1 − 1 x
can also be written as
f ( x ) = x + 1 x − 1
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( x + 1 x − 1 ) d x = ( x − 1 ) d ( d ( x + 1 ) d x ) − ( x + 1 ) ( d ( x − 1 ) d x ) ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = ( x − 1 ) 1 − ( x + 1 ) 1 ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = x − 1 − x − 1 ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = − 2 ( x − 1 ) 2
Hence, the Derivative of the function is
− 2 ( x − 1 ) 2
Question:7 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
1 a x 2 + b x + c
Answer:
Given,
f ( x ) = 1 a x 2 + b x + c
Now, as we know, the derivative of any such function is given by
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( 1 a x 2 + b x + c ) d x = ( a x 2 + b x + c ) d ( d ( 1 ) d x ) − 1 ( d ( a x 2 + b x + c ) d x ) ( a x 2 + b x + c ) 2
d ( 1 a x 2 + b x + c ) d x = 0 − ( 2 a x + b ) ( a x 2 + b x + c ) 2
d ( 1 a x 2 + b x + c ) d x = − ( 2 a x + b ) ( a x 2 + b x + c ) 2
Question:8 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a x + b p x 2 + q x + r
Answer:
Given,
f ( x ) = a x + b p x 2 + q x + r
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( a x + b p x 2 + q x + r ) d x = ( p x 2 + q x + r ) d ( d ( a x + b ) d x ) − ( a x + b ) ( d ( p x 2 + q x + r ) d x ) ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = ( p x 2 + q x + r ) a − ( a x + b ) ( 2 p x + q ) ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = a p x 2 + a q x + a r − 2 a p x 2 − a q x − 2 b p x − b q ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = − a p x 2 + a r − 2 b p x − b q ( p x 2 + q x + r ) 2
Question:9 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
p x 2 + q x + r a x + b
Answer:
Given,
f ( x ) = p x 2 + q x + r a x + b
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( p x 2 + q x + r a x + b ) d x = ( a x + b ) d ( d ( p x 2 + q x + r ) d x ) − ( p x 2 + q x + r ) ( d ( a x + b ) d x ) ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = ( a x + b ) ( 2 p x + q ) − ( p x 2 + q x + r ) ( a ) ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = 2 a p x 2 + a q x + 2 b p x + b q − a p x 2 − a q x − a r ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = a p x 2 + 2 b p x + b q − a r ( a x + b ) 2
Question 10 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a x 4 − b x 2 + cos x
Answer:
Given
f ( x ) = a x 4 − b x 2 + cos x
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = − 4 a x 5 − ( − 2 b x 3 ) + ( − sin x )
f ′ ( x ) = − 4 a x 5 + 2 b x 3 − sin x
Question 11 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): 4 x − 2
Answer:
Given
f ( x ) = 4 x − 2
It can also be written as
f ( x ) = 4 x 1 2 − 2
Now,
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 4 ( 1 2 ) x − 1 2 − 0
f ′ ( x ) = 2 x − 1 2
f ′ ( x ) = 2 x
Question 12 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
( a x + b ) n
Answer:
Given
f ( x ) = ( a x + b ) n
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And, the property,
f ′ ( x n ) = n x n − 1
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
f ′ ( x ) = n ( a x + b ) n − 1 × a
f ′ ( x ) = a n ( a x + b ) n − 1
Question:13 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x + b ) n ( c x + d ) m
Answer:
Given
f ( x ) = ( a x + b ) n ( c x + d ) m
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
And, the property,
f ′ ( x n ) = n x n − 1
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
f ′ ( x ) = ( a x + b ) n ( m ( c x + d ) m − 1 ) + ( c x + d ) ( n ( a x + b ) n − 1 )
f ′ ( x ) = m ( a x + b ) n ( c x + d ) m − 1 + n ( c x + d ) ( a x + b ) n − 1
Question 14 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): sin ( x + a )
Answer:
Given,
f ( x ) = sin ( x + a )
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
Applying this property, we get,
f ′ ( x ) = cos ( x + a ) × 1
f ′ ( x ) = cos ( x + a )
Question:15 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): csc x cot x
Answer:
Given,
f ( x ) = csc x cot x
The Multiplication Property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Applying the property
d ( csc x ) ( cot x ) ) d x = csc x d cot x d x + cot x d csc x d x
d ( csc x ) ( cot x ) ) d x = csc x ( − csc 2 x ) + cot x ( − csc x cot x )
d ( csc x ) ( cot x ) ) d x = − csc 3 x − cot 2 x csc x
Hence, thee, the derivative of the function is − csc 3 x − cot 2 x csc x .
Question:16 Find the derivative of the following functions (it is to be understood that a, b, c, d,p, q, r, and s are fixed non-zero constants and m and n are integers):
cos x 1 + sin x
Answer:
Given,
f ( x ) = cos x 1 + sin x
Now, as we know, the derivative of any function
d ( cos x 1 + sin x ) d x = ( 1 + sin x ) d ( d cos x d x ) − cos x ( d ( 1 + sin x ) d x ) ( 1 + sin x ) 2
Hence, thee derivative of f(x) is
d ( cos x 1 + sin x ) d x = ( 1 + sin x ) ( − sin x ) − cos x ( cos x ) ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − sin x − sin 2 x − cos 2 x ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − sin x − 1 ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − 1 ( 1 + sin x )
Question:17 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin x + cos x sin x − cos x
Answer:
Given
f ( x ) = sin x + cos x sin x − cos x
can also be written as
f ( x ) = tan x + 1 tan x − 1
which further can be written as
f ( x ) = − tan x + t a n ( π / 4 ) 1 − tan ( π / 4 ) tan x
f ( x ) = − tan ( x − π / 4 )
Now,
f ′ ( x ) = − sec 2 ( x − π / 4 )
f ′ ( x ) = − 1 cos 2 ( x − π / 4 )
Question:18 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
sec x − 1 sec x + 1
Answer:
Given,
f ( x ) = sec x − 1 sec x + 1
which also can be written as
f ( x ) = 1 − cos x 1 + cos x
Now,
As we know, the derivative of such a function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
So, the derivative of the function is,
d ( 1 − cos x 1 + cos x ) d x = ( 1 + cos x ) d ( d ( 1 − cos x ) d x ) − ( 1 − cos x ) ( d ( 1 + cos x ) d x ) ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = ( 1 + cos x ) ( − ( − sin x ) ) − ( 1 − cos x ) ( − sin x ) ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = sin x + sin x cos x + sin x − cos x sin x ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = 2 sin x ( 1 + cos x ) 2
This can also be written as
d ( 1 − cos x 1 + cos x ) d x = 2 sec x tan x ( 1 + sec x ) 2 .
Question:19 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin n x
Answer:
Given,
f ( x ) = sin n x
Now, as we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And, the property,
f ′ ( x n ) = n x n − 1
Applying those properties, we get
f ′ ( x ) = n sin n − 1 x cos x
Hence Derivative of the given function is n sin n − 1 x cos x
Question 20 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a + b sin x c + d cos x
Answer:
Given Function
f ( x ) = a + b sin x c + d cos x
Now, as we know, the derivative of any function of this type is:
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function will be:
d ( a + b sin x c + d cos x ) d x = ( c + d cos x ) ( d ( a + b sin x ) d x ) − ( a + b sin x ) ( d ( c + d cos x x ) d x ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = ( c + d cos x ) ( b cos x ) − ( a + b sin x ) ( d ( − sin x ) ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + b d cos 2 x + a d sin x + b d sin 2 x ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + a d sin x + b d ( sin 2 x + cos 2 x ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + a d sin x + b d ( c + d cos x ) 2
Question:21 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
sin ( x + a ) cos x
Answer:
Given,
f ( x ) = sin ( x + a ) cos x
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function is:
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( d ( sin ( x + a ) ) d x ) − sin ( x + a ) ( d ( cos x ) d x ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( cos ( x + a ) ) − sin ( x + a ) ( − sin ( x ) ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( cos ( x + a ) ) + sin ( x + a ) ( sin ( x ) ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = cos ( x + a − x ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = cos ( a ) ( cos x ) 2
Question:22 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): x 4 ( 5 sin x − 3 cos x )
Answer:
Given
f ( x ) = x 4 ( 5 sin x − 3 cos x )
Now, as we know, the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Hence, the derivative of the given function is:
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = x 4 d ( 5 sin x − 3 cos x ) d x + ( 5 sin x − 3 cos x ) d x 4 d x
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = x 4 ( 5 cos x + 3 sin x ) + ( 5 sin x − 3 cos x ) 4 x 3
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = 5 x 4 cos x + 3 x 4 sin x + 20 x 3 sin x − 12 x 3 cos x
Question 23 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x 2 + 1 ) cos x
Answer:
Given
f ( x ) = ( x 2 + 1 ) cos x
Now, as we know the product rule of derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
The derivative of the given function is
d ( ( x 2 + 1 ) cos x ) d x = ( x 2 + 1 ) d cos x d x + cos x d ( x 2 + 1 ) d x
d ( ( x 2 + 1 ) cos x ) d x = ( x 2 + 1 ) ( − sin x ) + cos x ( 2 x )
d ( ( x 2 + 1 ) cos x ) d x = − x 2 sin x − sin x + 2 x cos x
Question:24 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x 2 + sin x ) ( p + q cos x )
Answer:
Given,
f ( x ) = ( a x 2 + sin x ) ( p + q cos x )
Now, as we know, the Multiplication property of the derivative (the product rule)
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
And also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
d ( ( a x 2 + sin x ) ( p + q cos x ) ) d x = ( a x 2 + sin x ) d ( p + q cos x ) d x + ( p + q x ) d ( a x 2 + s i n x ) d x
d ( ( a x 2 + sin x ) ( p + q cos x ) ) d x = ( a x 2 + sin x ) ( − q sin x ) + ( p + q x ) ( 2 a x + cos x )
f ′ ( x ) = − a q x 2 sin x − q sin 2 x + 2 a p x + p cos x + 2 a q x 2 + q x cos x
f ′ ( x ) = x 2 ( − a q sin x + 2 a q ) + x ( 2 a p + q cos x ) + p cos x − q sin 2 x
Question:25 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x + cos x ) ( x − tan x )
Answer:
Given,
f ( x ) = ( x + cos x ) ( x − tan x )
And the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
d ( ( x + cos x ) ( x − tan x ) ) d x = ( x + cos x ) d ( x − tan x ) d x + ( x − tan x ) d ( x + cos x ) d x
= ( x + cos x ) ( 1 − sec 2 x ) + ( x − tan x ) ( 1 − sin x )
= ( x + cos x ) ( − tan 2 x ) + ( x − tan x ) ( 1 − sin x )
= ( − tan 2 x ) ( x + cos x ) + ( x − tan x ) ( 1 − sin x )
Question:26 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
4 x + 5 sin x 3 x + 7 cos x
Answer:
Given,
f ( x ) = 4 x + 5 sin x 3 x + 7 cos x
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get
d ( 4 x + 5 sin x 3 x + 7 cos x ) d x = ( 3 x + 7 cos x ) d ( d ( 4 x + 5 sin x ) d x ) − ( 4 x + 5 sin x ) ( d ( 3 x + 7 cos x ) d x ) ( 3 x + 7 cos x ) 2
d ( 4 x + 5 sin x 3 x + 7 cos x ) d x = ( 3 x + 7 cos x ) ( 4 + 5 cos x ) − ( 4 x + 5 sin x ) ( 3 − 7 sin x ) ( 3 x + 7 cos x ) 2
= 12 x + 28 cos x + 15 x cos x + 35 cos 2 x − 12 x − 15 sin x + 28 x sin x + 35 sin 2 x ( 3 x + 7 cos x ) 2
= 12 x + 28 cos x + 15 x cos x − 12 x − 15 sin x + 28 x sin x + 35 ( sin 2 x + cos 2 x ) ( 3 x + 7 cos x ) 2
= 28 cos x + 15 x cos x − 15 sin x + 28 x sin x + 35 ( 3 x + 7 cos x ) 2
Question:27 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,,r, and s are fixed non-zero constants and m and n are integers):
x 2 cos ( π / 4 ) sin x
Answer:
Given,
f ( x ) = x 2 cos ( π / 4 ) sin x
As we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function is
d ( x 2 cos ( π / 4 ) sin x ) d x = ( sin x ) d ( d ( x 2 cos ( π / 4 ) ) d x ) − ( x 2 cos ( π / 4 ) ) ( d sin x d x ) sin 2 x
d ( x 2 cos ( π / 4 ) sin x ) d x = ( sin x ) ( 2 x cos ( π / 4 ) ) − ( x 2 cos ( π / 4 ) ) ( cos x ) sin 2 x
d ( x 2 cos ( π / 4 ) sin x ) d x = 2 x sin x cos ( π / 4 ) − x 2 cos x cos ( π / 4 ) sin 2 x
Question:28 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,, r, and s are fixed non-zero constants and m and n are integers):
x 1 + tan x
Answer:
Given
f ( x ) = x 1 + tan x
Noas As we know, the derivative of any function
d ( x 1 + tan x ) d x = ( 1 + tan x ) d ( d x d x ) − x ( d ( 1 + tan x ) d x ) ( 1 + tan x ) 2
d ( x 1 + tan x ) d x = ( 1 + tan x ) ( 1 ) − x ( sec 2 x ) ( 1 + tan x ) 2
d ( x 1 + tan x ) d x = 1 + tan x − x sec 2 x ( 1 + tan x ) 2
Question:29 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x + sec x ) ( x − tan x )
Answer:
Given
f ( x ) = ( x + sec x ) ( x − tan x )
Now, ass we know the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
The derivative of the given function is,
d ( ( x + sec x ) ( x − tan x ) d x = ( x + sec x ) d ( x − tan x ) d x + ( x − tan x ) d ( x + sec x ) d x
d ( ( x + sec x ) ( x − tan x ) d x = ( x + sec x ) ( 1 − sec 2 x ) + ( x − tan x ) ( 1 + sec x tan x )
Question:30 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,,r, and s are fixed non-zero constants and m and n are integers):
x sin n x
Answer:
Given,
f ( x ) = x sin n x
As we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
As the chain rule of derivatives,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
Hence, the derivative of the given function is
d ( x sin n x ) d x = sin n x d ( d x d x ) − x ( d ( sin n x ) d x ) s i n 2 n x
d ( x sin n x ) d x = sin n x ( 1 ) − x ( n sin n − 1 x × cos x ) s i n 2 n x
d ( x sin n x ) d x = sin n x − x cos x n sin n − 1 x s i n 2 n x
d ( x sin n x ) d x = sin n x − x cos x n sin n − 1 x s i n 2 n x
d ( x sin n x ) d x = sin n − 1 x ( sin x − n x cos x ) s i n 2 n x
d ( x sin n x ) d x = ( sin x − n x cos x ) s i n n + 1 x
Students can use the below links to analyze all the exercises separately as the difficulty level of the exercises is easy to moderate level. So after analyzing each exercise, they can attempt the next on their own before checking the answers.
NCERT Solutions for Class 11 Mathematics - Chapter Wise
Importance of Solving NCERT Questions for Class 11 Chapter 12 Limits and Derivatives is not only a useful chapter in class 11 but also for higher studies and competitive exams. Strengthening basic concepts is a necessity for students so that later they do not face any difficulties solving Limits and derivatives questions in higher studies or competitive examinations. Some important facts about solving statistics in class 11 are listed below.
Students can study strategically at their own pace after accessing Class 10 Maths NCERT Solutions chapter 12. This will boost their confidence to attempt other questions from this chapter. Class 11 Maths Chapter 12 NCERT solutions are solved by subject-matter experts and are very reliable at the same time. The solutions provide shortcuts as well as detailed explanations with necessary formulae that will help students to understand the answers better. These solutions will help students manage their time efficiently in this chapter and understand which questions are easier to approach and which are time-consuming. This will be helpful during the exam. NCERT solutions for class 11 Maths chapter 12 Limits and Derivatives is designed to give the students step-by-step solutions for a particular question.
NCERT Solutions for Class 11- Subject Wise Students can check the following links for more in-depth learning.
NCERT Books and NCERT Syllabus Here is the latest NCERT syllabus, which is useful for students before strategizing their study plan. Also, it contains links to some reference books which are important for further studies.