Limits are considered one of the most important concepts in mathematics, and derivatives are the soul of calculus. Imagine you are climbing a mountain and wonder how steep it is at a certain point. Or, after baking a cake at a high temperature, when you bring it out to room temperature, it will cool down in time, not instantly. You want to know what temperature the cake is at after 30 minutes. Class 11 Maths chapter 12 solutions teach all the relevant concepts for these types of situations, including limits and derivatives. In simpler words, a limit helps us understand the behaviour of a function as it approaches a particular value. On the other hand, a derivative tells us the rate of change of a function. The main purpose of the NCERT class 11 Maths solutions is to strengthen the basics and provide conceptual clarity.
This Story also Contains
NCERT Solution for Class 11 Maths Chapter 12 Solutions: Download PDF Limits and Derivatives Class 11 Solutions: Important Formulae NCERT Solutions for Class 11 Maths Chapter 12: Exercise Questions Class 11 Maths NCERT Chapter 12: Extra Question Approach to Solve Questions of Limits and Derivatives Class 11 What Extra Should Students Study Beyond NCERT for JEE? NCERT Solutions for Class 11 Mathematics - Chapter Wise NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives In class 11 Maths NCERT chapter 9 solutions, students will be introduced to calculus, which is an Important branch of mathematics, as well as study algebra of limits and derivatives with their definitions and certain standard functions. Subject matter experts at Careers360 have curated these NCERT class 11 solutions with step-by-step explanations, ensuring clarity in every step. Students can also explore the following links for syllabus, notes, and PDF: NCERT
NCERT Solution for Class 11 Maths Chapter 12 Solutions: Download PDF Download PDF
Limits and Derivatives Class 11 Solutions: Important Formulae Limits
The limit of a function f ( x ) as x approaches a , denoted as lim x → a f ( x ) , exists when both the left-hand limit and the right-hand limit exist and are equal:
lim x → a f ( x ) exists if lim x → a − f ( x ) = lim x → a + f ( x )
Left-Hand Limit:
lim x → a − f ( x ) = lim h → 0 f ( a − h )
Right-Hand Limit:
lim x → a + f ( x ) = lim h → 0 f ( a + h )
Properties of Limits: If lim x → a f ( x ) and lim x → a g ( x ) both exist:Sum Rule:
lim x → a [ f ( x ) ± g ( x ) ] = lim x → a f ( x ) ± lim x → a g ( x )
Constant Rule:
lim x → a [ k ⋅ f ( x ) ] = k ⋅ lim x → a f ( x )
Product Rule:
lim x → a [ f ( x ) ⋅ g ( x ) ] = lim x → a f ( x ) ⋅ lim x → a g ( x )
Quotient Rule:
lim x → a [ f ( x ) g ( x ) ] = lim x → a f ( x ) lim x → a g ( x ) , provided lim x → a g ( x ) ≠ 0
Standard Limits: lim x → a x n − a n x − a = n a n − 1 lim x → 0 sin x x = 1 lim x → 0 tan x x = 1 lim x → 0 a x − 1 x = ln a lim x → 0 e x − 1 x = 1 lim x → 0 ln ( 1 + x ) x = 1
Derivatives: The derivative of a function f at point x is given by:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
Properties of Derivatives:
If f ( x ) and g ( x ) are differentiable:Sum Rule:
d d x [ f ( x ) + g ( x ) ] = d d x f ( x ) + d d x g ( x )
Difference Rule:
d d x [ f ( x ) − g ( x ) ] = d d x f ( x ) − d d x g ( x )
Product Rule:
d d x [ f ( x ) ⋅ g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x )
Quotient Rule:
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2
Standard Derivatives: d d x ( x n ) = n x n − 1 d d x ( sin x ) = cos x d d x ( cos x ) = − sin x d d x ( tan x ) = sec 2 x d d x ( cot x ) = − csc 2 x d d x ( sec x ) = sec x ⋅ tan x d d x ( csc x ) = − csc x ⋅ cot x d d x ( a x ) = a x ⋅ ln a d d x ( e x ) = e x d d x ( ln x ) = 1 x
NCERT Solutions for Class 11 Maths Chapter 12: Exercise Questions Class 11 Maths chapter 12 solutions Exercise: 12.1
Page number: 237-239
Total questions: 32
Question 1: Evaluate the following limits lim x → 3 x + 3
Answer:
lim x → 3 x + 3
⇒ lim x → 3 3 + 3
⇒ 6
Question 2: Evaluate the following limits lim x → π ( x − 22 / 7 )
Answer:
Below, you can find the solution:
lim x → π ( x − 22 / 7 ) = π − 22 7
Question 3: Evaluate the following limits lim r → 1 π r 2
Answer:
The limit
lim r → 1 π r 2 = π ( 1 ) 2 = π
Hence, the answer is π
Question 4: Evaluate the following limits lim x → 4 4 x + 3 x − 2
Answer:
The limit
lim x → 4 4 x + 3 x − 2
⇒ 4 ( 4 ) + 3 ( 4 ) − 2
⇒ 19 2
Question 5: Evaluate the following limits lim x → − 1 x 10 + x 5 + 1 x − 1
Answer:
The limit
lim x → 4 x 10 + x 5 + 1 x − 1
⇒ ( − 1 ) 10 + ( − 1 ) 5 + 1 ( − 1 ) − 1
⇒ 1 − 1 + 1 − 2
⇒ − 1 2
Question 6: Evaluate the following limits lim x → 0 ( x + 1 ) 5 − 1 x
Answer:
The limit
lim x → 0 ( x + 1 ) 5 − 1 x
Let's put
x + 1 = y
Since we have changed the function, its limit will also change,
So
x → 0 , y → 0 + 1 = 1
So our function has became
lim y → 1 y 5 − 1 y − 1
Now, as we know the property
lim x → 1 x 5 − a n x − a = n a n − 1
lim y → 1 y 5 − 1 y − 1 = 5 ( 1 ) 5 = 5
Hence,
lim x → 0 ( x + 1 ) 5 − 1 x = 5
Question 7: Evaluate the following limits lim x → 2 3 x 2 − x − 10 x 2 − 4
Answer:
The limit
lim x → 2 3 x 2 − x − 10 x 2 − 4
⇒ lim x → 2 ( x − 2 ) ( 3 x + 5 ) ( x − 2 ) ( x + 2 )
⇒ lim x → 2 ( 3 x + 5 ) ( x + 2 )
⇒ ( 3 ( 2 ) + 5 ) ( ( 2 ) + 2 )
⇒ 11 4
Question 8: Evaluate the following limits lim x → 3 x 4 − 81 2 x 2 − 5 x − 3
Answer:
The limit
lim x → 3 x 4 − 81 2 x 2 − 5 x − 3
At x = 2, both the numerator and denominator become zero, so let's factorise the function
lim x → 3 ( x − 3 ) ( x + 3 ) ( x 2 + 9 ) ( x − 3 ) ( 2 x + 1 )
lim x → 3 ( x + 3 ) ( x 2 + 9 ) ( 2 x + 1 )
Now we can put the limit directly, so
lim x → 3 ( x + 3 ) ( x 2 + 9 ) ( 2 x + 1 )
⇒ ( ( 3 ) + 3 ) ( ( 3 ) 2 + 9 ) ( 2 ( 3 ) + 1 )
⇒ 6 × 18 7
⇒ 108 7
Question 9: Evaluate the following limits lim x → 0 a x + b c x + 1
Answer:
The limit,
lim x → 0 a x + b c x + 1
⇒ a ( 0 ) + b c ( 0 ) + 1
⇒ b
Question 10: Evaluate the following limits lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1
Answer:
The limit
lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1
Here, on directly putting the limit, both the numerator and the denominator become zero so we factorize the function and then put the limit.
lim z → 1 z 1 / 3 − 1 z 1 / 6 − 1 = lim z → 1 z ( 1 / 6 ) 2 − 1 2 z 1 / 6 − 1
= lim z → 1 ( z ( 1 / 6 ) − 1 ) ( z ( 1 / 6 ) + 1 ) z 1 / 6 − 1
= lim z → 1 ( z 1 / 6 + 1 )
= ( 1 1 / 6 + 1 )
= 1 + 1
= 2
Question 11: Evaluate the following limits lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
Answer:
The limit:
lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
Since the Denominator is not zero on directly putting the limit, we can directly put the limits, so,
lim x → 1 a x 2 + b x + c c x 2 + b x + a , a + b + c ≠ 0
= a ( 1 ) 2 + b ( 1 ) + c c ( 1 ) 2 + b ( 1 ) + a ,
= a + b + c a + b + c ,
= 1
Question 12: Evaluate the following limits lim x → − 2 1 x + x 2 x + 2
Answer:
lim x → − 2 1 x + x 2 x + 2
Here, since the denominator becomes zero on putting the limit directly, we first simplify the function and then put the limit,
lim x → − 2 1 x + x 2 x + 2
= lim x → − 2 x + 2 2 x x + 2
= lim x → − 2 1 2 x
= 1 2 ( − 2 )
= − 1 4
Question 13: Evaluate the following limits lim x → 0 sin a x b x
Answer:
The limit
lim x → 0 sin a x b x
Here, on directly putting the limits, the function becomes 0 0 form. So we try to make the function in the form of s i n x x . so,
lim x → 0 sin a x b x
= lim x → 0 sin a x ( a x ) b x ( a x )
= lim x → 0 sin a x a x a b
As lim x → 0 s i n x x = 1
= 1 ⋅ a b
= a b
Question 14: Evaluate the following limits lim x → 0 sin a x sin b x , a , b ≠ 0
Answer:
The limit,
lim x → 0 sin a x sin b x , a , b ≠ 0
On putting the limit directly, the function takes the zero by zero form. So, we convert it in the form of s i n a a .and then put the limit,
⇒ lim x → 0 s i n a x a x s i n b x b x ⋅ a x b x
= lim a x → 0 s i n a x a x lim b x → 0 s i n b x b x ⋅ a b
= a b
Question 15: Evaluate the following limits lim x → π sin ( π − x ) π ( π − x )
Answer:
The limit
lim x → π sin ( π − x ) π ( π − x )
⇒ lim x → π sin ( π − x ) ( π − x ) × 1 π
= 1 × 1 π
= 1 π
Question 16: Evaluate the following limits lim x → 0 cos x π − x
Answer:
The limit
lim x → 0 cos x π − x
The function behaves well on directly putting the limit, so we put the limit directly. So.
lim x → 0 cos x π − x
= cos ( 0 ) π − ( 0 )
= 1 π
Question 17: Evaluate the following limits lim x → 0 cos 2 x − 1 cos x − 1
Answer:
The limit:
lim x → 0 cos 2 x − 1 cos x − 1
The function takes the zero-by-zero form when the limit is put directly, so we simplify the function and then put the limit
lim x → 0 cos 2 x − 1 cos x − 1
lim x → 0 − 2 ( s i n 2 x ) − 2 ( s i n 2 ( x 2 ) )
= lim x → 0 ( s i n 2 x ) x 2 ( s i n 2 ( x 2 ) ) ( x 2 ) 2 × x 2 ( x 2 ) 2
= 1 2 1 2 × 4
= 4
Question 18: Evaluate the following limits lim x → 0 a x + x cos x b sin x
Answer:
lim x → 0 a x + x cos x b sin x
The function takes the form zero by zero when we put the limit directly in the function Since theunction consists of the sin function and cos function, we try to make the function in the form of s i n x x as we know that it tends to 1 when x tends to 0.
So,
lim x → 0 a x + x cos x b sin x
= 1 b lim x → 0 x ( a + cos x ) sin x
= 1 b lim x → 0 x sin x × ( a + cos x )
= 1 b × 1 × ( a + cos ( 0 ) )
= a + 1 b
Question 19: Evaluate the following limits lim x → 0 x sec x
Answer:
lim x → 0 x sec x
As the function doesn't create any abnormality on putting the limit directly, we can put the limit directly. So,
lim x → 0 x sec x
= ( 0 ) × 1
= 0 .
Question 20: Evaluate the following limits lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
Answer:
lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
The function takes the zero-by-zero form when we put the limit into the function directly, so we try to eliminate this case by simplifying the function. So
lim x → 0 sin a x + b x a x + sin b x a , b , a + b ≠ 0
= lim x → 0 sin a x a x ⋅ a x + b x a x + sin b x b x ⋅ b x
= lim x → 0 sin a x a x ⋅ a + b a + sin b x b x ⋅ b
= 1 ⋅ a + b a + 1 ⋅ b
= a + b a + b
= 1
Question 21: Evaluate the following limits lim x → 0 ( csc x − cot x )
Answer:
lim x → 0 ( csc x − cot x )
On putting the limit directly, the function takes infinity by infinity form, so we simplify the function and then put the limit
lim x → 0 ( csc x − cot x )
= lim x → 0 ( 1 s i n x − c o s x s i n x )
= lim x → 0 ( 1 − c o s x s i n x )
= lim x → 0 ( 2 s i n 2 ( x 2 ) s i n x )
= lim x → 0 ( 2 s i n 2 ( x 2 ) ( x 2 ) 2 ) ( ( x 2 ) 2 s i n x )
= lim x → 0 2 4 ( s i n 2 ( x 2 ) ( x 2 ) 2 ) ( ( x ) s i n x ) ⋅ x
= 2 4 × ( 1 ) 2 × 0
= 0
Question 22: Evaluate the following limits lim x → π / 2 tan 2 x x − π / 2
Answer:
lim x → π / 2 tan 2 x x − π / 2
The function takes zero by zero form when the limit is put directly, so we simplify the function and then put the limits,
So
Let's put
y = x − π 2
Since we are changing the variable, the limit will also change.
As
x → π 2 , y = x − π 2 → π 2 − π 2 = 0
So, the function in the new variable becomes,
lim y → 0 tan 2 ( y + π 2 ) y + π / 2 − π / 2
= lim y → 0 tan ( 2 y + π ) y
As we know that property t a n ( π + x ) = t a n x
= lim y → 0 tan ( 2 y ) y
= lim y → 0 s i n 2 y 2 y ⋅ 2 c o s 2 y
= 1 × 2
= 2
Question 23: Find lim x → 0 f ( x ) lim x → 1 f ( x ) w h e r e f ( x ) = { 2 x + 3 x ≤ 0 3 ( x + 1 ) x > 0
Answer:
Given Function
f ( x ) = { 2 x + 3 x ≤ 0 3 ( x + 1 ) x > 0
Now,
Limit at x = 0 :
a t x = 0 −
: lim x → 0 − f ( x ) = lim x → 0 − ( 2 x + 3 ) = 2 ( 0 ) + 3 = 3
a t x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + 3 ( x + 1 ) = 3 ( 0 + 1 ) = 3
Hence limit at x = 0 is 3.
Limit at x = 1
a t x = 1 +
lim x → 1 + f ( x ) = lim x → 1 + 3 ( x + 1 ) = 3 ( 1 + 1 ) = 6
a t x = 1 −
lim x → 1 − f ( x ) = lim x → 1 − 3 ( x + 1 ) = 3 ( 1 + 1 ) = 6
Hence limit at x = 1 is 6.
Question 24: Find lim x → 1 f ( x ) , w h e r e f ( x ) = { x 2 − 1 x ≠ 0 − x 2 − 1 x > 1
Answer:
lim x → 1 f ( x ) , w h e r e f ( x ) = { x 2 − 1 x ≠ 0 − x 2 − 1 x > 1
Limit at x = 1 +
lim x → 1 + f ( x ) = lim x → 1 ( − x 2 − 1 ) = − ( 1 ) 2 − 1 = − 2
Limit at x = 1 −
lim x → 1 − f ( x ) = lim x → 1 ( x 2 − 1 ) = ( 1 ) 2 − 1 = 0
As we can see Limit at x = 1 + is not equal to the Limit at x = 1 − , The limit of this function at x = 1 does not exist.
Question 25: Evaluate lim x → 0 f ( x ) , w h e r e f ( x ) = { | x | x x ≠ 0 0 x = 0
Answer:
lim x → 0 f ( x ) , w h e r e f ( x ) = { | x | x x ≠ 0 0 x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + | x | x = x x = 1
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − | x | x = − x x = − 1
Since The left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Question 26: Evaluate lim x → 0 f ( x ) , w h e r e f ( x ) = { x | x | x ≠ 0 0 x = 0
Answer:
lim x → 0 f ( x ) , w h e r e f ( x ) = { x | x | x ≠ 0 0 x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + x | x | = x x = 1
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − x | x | = x − x = − 1
Since The left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Question 27: Find lim x → 5 f ( x ) , w h e r e f ( x ) = | x | − 5
Answer:
lim x → 5 f ( x ) , w h e r e f ( x ) = | x | − 5
The right-hand Limit or Limit at x = 5 +
lim x → 5 + f ( x ) = lim x → 5 + | x | − 5 = 5 − 5 = 0
The left-hand limit or Limit at x = 5 −
lim x → 5 − f ( x ) = lim x → 5 − | x | − 5 = 5 − 5 = 0
Since The left-hand limit and right-hand limit are equal, the limit of this function at x = 5 is 0.
Question 28: Suppose f ( x ) = { a + b x x < 1 4 x = 1 b − a x x > 1 f (x) = f (1) what are possible values of a and b?
Answer:
Given,
f ( x ) = { a + b x x < 1 4 x = 1 b − a x x > 1
And
lim x → 1 f ( x ) = f ( 1 )
Since the limit exists,
left-hand limit = Right-hand limit = f(1).
Left-hand limit = f(1)
lim x → 1 − f ( x ) = lim x → 1 ( a + b x ) = a + b ( 1 ) = a + b = 4
Right-hand limit
lim x → 1 + f ( x ) = lim x → 1 ( b − a x ) = b − a ( 1 ) = b − a = 4
From both equations, we get that,
a = 0 and b = 4
Hence, the possible values of a and b are 0 and 4, respectively.
Question 29: Let a1, a2, . . ., an be fixed real numbers and define a function f ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) . What is lim x → a 1 f (x) ? For some a ≠ a 1 , a 2 . . . . a n , compute l lim x → a f ( x )
Answer:
Given,
f ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) .
Now,
lim x → a 1 f ( x ) = lim x → a 1 [ ( x − a 1 ) ( x − a 2 ) . . . ( x − a n ) ] . = [ lim x → a 1 ( x − a 1 ) ] [ lim x → a 1 ( x − a 2 ) ] [ lim x → a 1 ( x − a n ) ] = 0
Hence,
lim x → a 1 f ( x ) = 0
Now,
lim x → a f ( x ) = lim x → a ( x − a 1 ) ( x − a 2 ) . . . ( x − a n )
lim x → a f ( x ) = ( a − a 1 ) ( a − a 2 ) ( a − a 3 )
Hence
lim x → a f ( x ) = ( a − a 1 ) ( a − a 2 ) ( a − a 3 ) .
Question 30: If f ( x ) = { | x | + 1 x < 0 0 x = 0 | x | − 1 x > 0 For what value (s) of a does lim x → a f ( x ) exists ?
Answer:
f ( x ) = { | x | + 1 x < 0 0 x = 0 | x | − 1 x > 0
The limit at x = a exists when the right-hand limit is equal to the left-hand limit. So,
Case 1: when a = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + | x | − 1 = 1 − 1 = 0
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − | x | + 1 = 0 + 1 = 1
Since the Left-hand limit and right-hand limit are not equal, The limit of this function at x = 0 does not exist.
Case 2: When a < 0
The right-hand Limit or Limit at x = a +
lim x → a + f ( x ) = lim x → a + | x | − 1 = a − 1
The left-hand limit or Limit at x = a −
lim x → a − f ( x ) = lim x → a − | x | − 1 = a − 1
Since LHL = RHL, the Limit exists at x = a and is equal to a-1.
Case 3: When a > 0
The right-hand Limit or Limit at x = a +
lim x → a + f ( x ) = lim x → a + | x | + 1 = a + 1
The left-hand limit or Limit at x = a −
lim x → a − f ( x ) = lim x → a − | x | + 1 = a + 1
Since LHL = RHL, Limit exists at x = a and is equal to a+1
Hence,
The limit exists at all points except at x=0.
Question 31: If the function f(x) satisfies lim x → 1 f ( x ) − 2 x 2 − 1 = π , evaluate lim x → 1 f ( x )
Answer:
Given
lim x → 1 f ( x ) − 2 x 2 − 1 = π
Now,
lim x → 1 f ( x ) − 2 x 2 − 1 = lim x → 1 ( f ( x ) − 2 ) lim x → 1 ( x 2 − 1 ) = π
lim x → 1 ( f ( x ) − 2 ) = π lim x → 1 ( x 2 − 1 )
lim x → 1 ( f ( x ) − 2 ) = π ( 1 − 1 )
lim x → 1 ( f ( x ) − 2 ) = 0
lim x → 1 f ( x ) = 2
Question 32: If f ( x ) = [ m x 2 + n ; x < 0 n x + m ; x ≤ 0 ≤ 1 t n x 3 + m ; x > 1 ]
Answer:
Given,
f ( x ) = [ m x 2 + n ; x < 0 n x + m ; x ≤ 0 ≤ 1 t n x 3 + m ; x > 1 ]
Case 1: Limit at x = 0
The right-hand Limit or Limit at x = 0 +
lim x → 0 + f ( x ) = lim x → 0 + n x + m = n ( 0 ) + m = m
The left-hand limit or Limit at x = 0 −
lim x → 0 − f ( x ) = lim x → 0 − m x 2 + n = m ( 0 ) 2 + n = n
Hence Limit will exist at x = 0 when m = n.
Case 2: Limit at x = 1
The right-hand Limit or Limit at x = 1 +
lim x → 1 + f ( x ) = lim x → 1 + n x 3 + m = n ( 1 ) 3 + m = n + m
The left-hand limit or Limit at x = 1 −
lim x → 1 − f ( x ) = lim x → 1 − n x + m = n ( 1 ) + m = n + m
Hence Limit at 1 exists at all integers.
Class 11 Maths chapter 12 solutions Exercise: 12.2
Page number: 248-249
Total questions: 11
Question 1: Find the derivative of x 2 − 2 a t x = 10
Answer:
F(x)= x 2 − 2
Now, As we know, The derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 10:
f ′ ( 10 ) = lim h → 0 f ( 10 + h ) − f ( 10 ) h
f ′ ( 10 ) = lim h → 0 ( 10 + h ) 2 − 2 − ( ( 10 ) 2 − 2 ) h
f ′ ( 10 ) = lim h → 0 100 + 20 h + h 2 − 2 − 100 + 2 h
f ′ ( 10 ) = lim h → 0 20 h + h 2 h
f ′ ( 10 ) = lim h → 0 20 + h
f ′ ( 10 ) = 20 + 0
f ′ ( 10 ) = 20
Question 2: Find the derivative of x at x = 1.
Answer:
Given
f(x)= x
Now, As we know, The derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 1:
f ′ ( 1 ) = lim h → 0 f ( 1 + h ) − f ( 1 ) h
f ′ ( 1 ) = lim h → 0 ( 1 + h ) − ( 1 ) h
f ′ ( 1 ) = lim h → 0 ( h ) h
f ′ ( 1 ) = 1 (Answer)
Question 3: Find the derivative of 99x at x = l00.
Answer:
f(x)= 99x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
The derivative of f(x) at x = 100:
f ′ ( 100 ) = lim h → 0 f ( 100 + h ) − f ( 100 ) h
f ′ ( 100 ) = lim h → 0 99 ( 100 + h ) − 99 ( 100 ) h
f ′ ( 100 ) = lim h → 0 99 h h
f ′ ( 100 ) = 99
Question 4 (i): Find the derivative of the following functions from the first principle. x 3 − 27
Answer:
Given
f(x)= x 3 − 27
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 ( x + h ) 3 − 27 − ( ( x ) 3 − 27 ) h
f ′ ( x ) = lim h → 0 x 3 + h 3 + 3 x 2 h + 3 h 2 x − 27 + x 3 + 27 h
f ′ ( x ) = lim h → 0 h 3 + 3 x 2 h + 3 h 2 x h
f ′ ( x ) = lim h → 0 h 2 + 3 x 2 + 3 h x
f ′ ( x ) = 3 x 2
Question 4(ii): Find the derivative of the following function from the first principle. ( x − 1 ) ( x − 2 )
Answer:
f(x)= ( x − 1 ) ( x − 2 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 ( x + h − 1 ) ( x + h − 2 ) − ( x − 1 ) ( x − 2 ) h
f ′ ( x ) = lim h → 0 x 2 + x h − 2 x + h x + h 2 − 2 h − x − h + 2 − x 2 + 2 x + x − 2 h
f ′ ( x ) = lim h → 0 2 h x + h 2 − 3 h h
f ′ ( x ) = lim h → 0 2 x + h − 3
f ′ ( x ) = 2 x − 3 (Answer)
Question 4 (iii): Find the derivative of the following functions from the first principle. 1 / x 2
Answer:
f(x)= 1 / x 2
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 1 / ( x + h ) 2 − 1 / ( x 2 ) h
f ′ ( x ) = lim h → 0 x 2 − ( x + h ) 2 ( x + h ) 2 x 2 h
f ′ ( x ) = lim h → 0 x 2 − x 2 − 2 x h − h 2 h ( x + h ) 2 x 2
f ′ ( x ) = lim h → 0 − 2 x h − h 2 h ( x + h ) 2 x 2
f ′ ( x ) = lim h → 0 − 2 x − h ( x + h ) 2 x 2
f ′ ( x ) = − 2 x − 0 ( x + 0 ) 2 x 2
f ′ ( x ) = − 2 x 3 (Answer)
Question 4 (iv): Find the derivative of the following functions from the first principle. x + 1 x − 1
Answer:
Given:
f ( x ) = x + 1 x − 1
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 x + h + 1 x + h − 1 − x + 1 x − 1 h
f ′ ( x ) = lim h → 0 ( x + h + 1 ) ( x − 1 ) − ( x + 1 ) ( x + h − 1 ) ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 x 2 − x + h x − h + x − 1 − x 2 − x h + x − x − h + 1 ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 − 2 h ( x − 1 ) ( x + h − 1 ) h
f ′ ( x ) = lim h → 0 − 2 ( x − 1 ) ( x + h − 1 )
f ′ ( x ) = − 2 ( x − 1 ) ( x + 0 − 1 )
f ′ ( x ) = − 2 ( x − 1 ) 2
Question 5: For the function f ( x ) = x 100 100 + x 99 99 + . . . . + x 2 2 + x + 1 Prove that f '(1) =100 f '(0).
Answer:
f ( x ) = x 100 100 + x 99 99 + . . . . + x 2 2 + x + 1
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 100 x 99 100 + 99 x 98 99 + . . . . + 2 x 2 + 1 + 0
f ′ ( x ) = x 99 + x 98 + . . . . . . x + 1
Now.
f ′ ( 0 ) = 0 99 + 0 98 + . . . . . .0 + 1 = 1
f ′ ( 1 ) = 1 99 + 1 98 + . . . . . .1 + 1 = 100
So,
Here
1 × 100 = 100
f ′ ( 0 ) × 100 = f ′ ( 1 )
Hence Proved.
Question 6: Find the derivative of x n + a x n − 1 + a 2 x n − 2 + . . . . + a n − 1 x + a n for some fixed real number a.
Answer:
Given
f ( x ) = x n + a x n − 1 + a 2 x n − 2 + . . . . + a n − 1 x + a n
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = n x n − 1 + a ( n − 1 ) x n − 2 + a 2 ( n − 2 ) x n − 3 + . . . . + a n − 1 1 + 0
f ′ ( x ) = n x n − 1 + a ( n − 1 ) x n − 2 + a 2 ( n − 2 ) x n − 3 + . . . . + a n − 1
Question 7(i): For some constants a and b, find the derivative of ( x − a ) ( x − b )
Answer:
Given
f ( x ) = ( x − a ) ( x − b ) = x 2 − a x − b x + a b
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 2 x − a − b
Question 7(ii): For some constants a and b, find the derivative of ( a x 2 + b ) 2
Answer:
Given
f ( x ) = ( a x 2 + b ) 2 = a 2 x 4 + 2 a b x 2 + b 2
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get
f ′ ( x ) = 4 a 2 x 3 + 2 ( 2 ) a b x + 0
f ′ ( x ) = 4 a 2 x 3 + 4 a b x
f ′ ( x ) = 4 a x ( a x 2 + b )
Question 7(iii): For some constants a and b, find the derivative of x − a x − b
Answer:
Given,
f ( x ) = x − a x − b
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So,, applying this rule, we get
d ( x − a x − b ) d x = ( x − b ) d ( x − a ) d x − ( x − a ) d ( x − b ) d x ( x − b ) 2
d ( x − a x − b ) d x = ( x − b ) − ( x − a ) ( x − b ) 2
d ( x − a x − b ) d x = a − b ( x − b ) 2
Hence
f ′ ( x ) = a − b ( x − b ) 2
Question 8: Find the derivative of x n − a n x − a for some constant a.
Answer:
Given,
f ( x ) = x n − a n x − a
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( x n − a n x − a ) d x = ( x − a ) d ( x n − a n ) d x − ( x n − a n ) d ( x − a ) d x ( x − a ) 2
d ( x n − a n x − a ) d x = ( x − a ) n x n − 1 − ( x n − a n ) ( x − a ) 2
d ( x n − a n x − a ) d x = n x n − a n x n − 1 − x n + a n ( x − a ) 2
Hence
f ′ ( x ) = n x n − a n x n − 1 − x n + a n ( x − a ) 2
Question 9(i): Find the derivative of 2 x − 3 / 4
Answer:
Given:
f ( x ) = 2 x − 3 / 4
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 2 − 0
f ′ ( x ) = 2
Question 9(ii): Find the derivative of ( 5 x 3 + 3 x − 1 ) ( x − 1 )
Answer:
Given.
f ( x ) = ( 5 x 3 + 3 x − 1 ) ( x − 1 ) = 5 x 4 + 3 x 2 − x − 5 x 3 − 3 x + 1
f ( x ) = 5 x 4 − 5 x 3 + 3 x 2 − 4 x + 1
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 5 ( 4 ) x 3 − 5 ( 3 ) x 2 + 3 ( 2 ) x − 4 + 0
f ′ ( x ) = 20 x 3 − 15 x 2 + 6 x − 4
Question 9(iii): Find the derivative of x − 3 ( 5 + 3 x )
Answer:
Given
f ( x ) = x − 3 ( 5 + 3 x ) = 5 x − 3 + 3 x − 2
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( − 3 ) 5 x − 4 + 3 ( − 2 ) x − 3
f ′ ( x ) = − 15 x − 4 − 6 x − 3
Question 9(iv): Find the derivative of x 5 ( 3 − 6 x − 9 )
Answer:
Given
f ( x ) = x 5 ( 3 − 6 x − 9 ) = 3 x 5 − 6 x − 4
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( 5 ) 3 x 4 − 6 ( − 4 ) x − 5
f ′ ( x ) = 15 x 4 + 24 x − 5
Question 9(v): Find the derivative of x − 4 ( 3 − 4 x − 5 )
Answer:
Given
f ( x ) = x − 4 ( 3 − 4 x − 5 ) = 3 x − 4 − 4 x − 9
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = ( − 4 ) 3 x − 5 − ( − 9 ) 4 x − 10
f ′ ( x ) = − 12 x − 5 + 36 x − 10
Question 9(vi): Find the derivative of 2 x + 1 − x 2 3 x − 1
Answer:
Given
f ( x ) = 2 x + 1 − x 2 3 x − 1
As we know, the quotient rule of the derivative is:
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
So, applying this rule, we get
d ( 2 x + 1 − x 2 3 x − 1 ) d x = ( x + 1 ) d ( 2 ) d x − 2 d ( x + 1 ) d x ( x + 1 ) 2 − ( 3 x − 1 ) d ( x 2 ) d x − x 2 d ( 3 x − 1 ) d x ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − ( 3 x − 1 ) 2 x − x 2 3 ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − 6 x 2 − 2 x − 3 x 2 ( 3 x − 1 ) 2
d ( 2 x + 1 − x 2 3 x − 1 ) d x = − 2 ( x + 1 ) 2 − 3 x 2 − 2 x ( 3 x − 1 ) 2
Hence
f ′ ( x ) = − 2 ( x + 1 ) 2 − 3 x 2 − 2 x ( 3 x − 1 ) 2
Question 10: Find the derivative of cos x from the first principle.
Answer:
Given,
f(x)= cos x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 cos ( x + h ) − cos ( x ) h
f ′ ( x ) = lim h → 0 cos ( x ) cos ( h ) − sin ( x ) sin ( h ) − cos ( x ) h
f ′ ( x ) = lim h → 0 cos ( x ) cos ( h ) − cos ( x ) h − sin ( x ) sin ( h ) h
f ′ ( x ) = lim h → 0 cos ( x ) ( cos ( h ) − 1 ) h − sin ( x ) sin ( h ) h
f ′ ( x ) = lim h → 0 cos ( x ) − 2 s i n 2 ( h / 2 ) h ⋅ − sin ( x ) s i n h h
f ′ ( x ) = cos ( x ) ( 0 ) − s i n x ( 1 )
f ′ ( x ) = − sin ( x )
Question 11(i): Find the derivative of the following functions: sin x cos x
Answer:
Given,
f(x)= sin x cos x
Now, as we know the product rule of derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
So, applying the rule here,
d ( sin x cos x ) d x = sin x d cos x d x + cos x d sin x d x
d ( sin x cos x ) d x = sin x ( − sin x ) + cos x ( cos x )
d ( sin x cos x ) d x = − sin 2 x + cos 2 x
d ( sin x cos x ) d x = cos 2 x
Question 11(ii): Find the derivative of the following functions: sec x
Answer:
Given
f ( x ) = sec x = 1 cos x
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 1 cos x ) d x = cos x d ( 1 ) d x − 1 d ( cos x ) d x cos 2 x
d ( 1 cos x ) d x = − 1 ( − sin x ) cos 2 x
d ( 1 cos x ) d x = sin x cos 2 x = sin x cos x 1 cos x
d ( sec x ) d x = tan x sec x
Question 11 (iii): Find the derivative of the following functions: 5 sec x + 4 cos x
Answer:
Given
f ( x ) = 5 sec x + 4 cos x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying the property, we get
d ( 5 sec x + 4 cos x ) d x = d ( 5 sec x ) d x + d ( 4 cos x ) d x
d ( 5 sec x + 4 cos x ) d x = 5 tan x sec x + 4 ( − sin x )
d ( 5 sec x + 4 cos x ) d x = 5 tan x sec x − 4 sin x
Question 11(iv): Find the derivative of the following functions: csc x
Answer:
Given :
f ( x ) = csc x = 1 sin x
Now, as we know the quotient rule of derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 1 sin x ) d x = ( sin x ) d ( 1 ) d x − 1 d ( sin x ) d x ( sin x ) 2
d ( 1 sin x ) d x = − 1 ( cos x ) ( sin x ) 2
d ( 1 sin x ) d x = − ( cos x ) ( sin x ) 1 sin x
d ( csc x ) d x = − cot x csc x
Question 11(v): Find the derivative of the following functions: 3 cot x + 5 csc x
Answer:
Given,
f ( x ) = 3 cot x + 5 csc x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying the property,
d ( 3 cot x + 5 csc x ) d x = d ( 3 cot x ) d x + d ( 5 csc x ) d x
d ( 3 cot x + 5 csc x ) d x = 3 d ( cos x sin x ) d x + d ( 5 csc x ) d x
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 d ( cos x sin x ) d x
Now, as we know the quotient rule of the derivative,
d ( y 1 y 2 ) d x = y 2 d y 1 d x − y 1 d y 2 d x y 2 2
So, applying this rule, we get
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ sin x d ( cos x ) d x − cos x ( d ( sin x ) d x ) sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ sin x ( − sin x ) − cos x ( cos x ) sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x + 3 [ − sin 2 x − cos 2 x sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 [ sin 2 x + cos 2 x sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 [ 1 sin 2 x ]
d ( 3 cot x + 5 csc x ) d x = − 5 csc x cot x − 3 csc 2 x
Question 11(vi): Find the derivative of the following functions: 5 sin x − 6 cos x + 7
Answer:
Given,
f ( x ) = 5 sin x − 6 cos x + 7
Now, as we know the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
So, applying the property,
f ′ ( x ) = 5 cos x − 6 ( − sin x ) + 0
f ′ ( x ) = 5 cos x + 6 ( sin x )
f ′ ( x ) = 5 cos x + 6 sin x
Question 11(vii): Find the derivative of the following functions: 2 tan x − 7 sec x
Answer:
Given
f ( x ) = 2 tan x − 7 sec x
As we know, the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying this property,
d ( 2 tan x + 7 sec x ) d x = 2 d tan x d x + 7 d sec x d x
d ( 2 tan x + 7 sec x ) d x = 2 sec 2 x + 7 ( − sec x tan x )
d ( 2 tan x + 7 sec x ) d x = 2 sec 2 x − 7 sec x tan x
NCERT Limits and Derivatives Class 11 Solutions: Exercise: Miscellaneous Exercise
Page Number: 253-254
Total Questions: 30
Question 1(i): Find the derivative of the following functions from the first principle: -x
Answer:
Given.
f(x)=-x
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 − ( x + h ) − ( − x ) h
f ′ ( x ) = lim h → 0 − h h
f ′ ( x ) = − 1
Question 1 (ii): Find the derivative of the following functions from the first principle: ( − x ) − 1
Answer:
Given.
f(x)= ( − x ) − 1
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 − ( x + h ) − 1 − ( − x ) − 1 h
f ′ ( x ) = lim h → 0 − 1 x + h + 1 x h
f ′ ( x ) = lim h → 0 − x + x + h x ( x + h ) h
f ′ ( x ) = lim h → 0 h ( x + h ) ( x ) h
f ′ ( x ) = lim h → 0 1 x ( x + h )
f ′ ( x ) = 1 x 2
Question 1 (iii): Find the derivative of the following functions from the first principle: sin ( x + 1 )
Answer:
Given.
f ( x ) = sin ( x + 1 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 sin ( x + h + 1 ) − sin ( x + 1 ) h
f ′ ( x ) = lim h → 0 2 cos ( x + h + 1 + x + 1 2 ) sin ( x + h + 1 − x − 1 2 ) h
f ′ ( x ) = lim h → 0 2 cos ( 2 x + h + 2 2 ) sin ( h 2 ) h
f ′ ( x ) = lim h → 0 cos ( 2 x + h + 2 2 ) sin ( h 2 ) h 2
f ′ ( x ) = cos ( 2 x + 0 + 2 2 ) × 1
f ′ ( x ) = cos ( x + 1 )
Question 1(iv): Find the derivative of the following functions from the first principle: cos ( x − π / 8 )
Answer:
Given.
f ( x ) = cos ( x − π / 8 )
Now, as we know, the derivative of any function at x is
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h
f ′ ( x ) = lim h → 0 cos ( x + h − π / 8 ) − c o s ( x − π / 8 ) h
f ′ ( x ) = lim h → 0 − 2 sin ( x + h − π / 8 + x − π / 8 2 ) sin ( x + h − π / 8 − x + π / 8 2 ) h
f ′ ( x ) = lim h → 0 − 2 sin ( 2 x + h − π / 4 2 ) sin ( h 2 ) h
f ′ ( x ) = lim h → 0 − sin ( 2 x + h − π / 4 2 ) sin ( h 2 ) h 2
f ′ ( x ) = sin ( 2 x + 0 − π / 4 2 ) × 1
f ′ ( x ) = − sin ( x − π / 8 )
Question 2: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x+a )
Answer:
Given
f(x)= x + a
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 1 + 0
f ′ ( x ) = 1
Question 3: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( p x + q ) ( r x + s )
Answer:
Given
f ( x ) = ( p x + q ) ( r x + s )
f ( x ) = p r + p s x + q r x + q s
As we know, the property,
f ′ ( x n ) = n x n − 1
Applying that property, we get
f ′ ( x ) = 0 + p s + − q r x 2 + 0
f ′ ( x ) = p s + q ( − r x 2 )
f ′ ( x ) = p s − ( q r x 2 )
Question 4: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x + b ) ( c x + d ) 2
Answer:
Given,
f ( x ) = ( a x + b ) ( c x + d ) 2
f ( x ) = ( a x + b ) ( c 2 x 2 + 2 c d x + d 2 )
f ( x ) = a c 2 x 3 + 2 a c d x 2 + a d 2 x + b c 2 x 2 + 2 b c d x + b d 2
Now,
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 3 a c 2 x 2 + 4 a c d x + a d 2 + 2 b c 2 x + 2 b c d + 0
f ′ ( x ) = 3 a c 2 x 2 + 4 a c d x + a d 2 + 2 b c 2 x + 2 b c d
f ′ ( x ) = 3 a c 2 x 2 + ( 4 a c d + 2 b c 2 ) x + a d 2 + 2 b c d
Question 5: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): a x + b / c x + d
Answer:
Given,
f ( x ) = a x + b c x + d
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( a x + b c x + d ) d x = ( c x + d ) d ( d ( a x + b ) d x ) − ( a x + b ) ( d ( c x + d ) d x ) ( c x + d ) 2
d ( a x + b c x + d ) d x = ( c x + d ) a − ( a x + b ) c ( c x + d ) 2
d ( a x + b c x + d ) d x = a c x + a d − a c x − b c ( c x + d ) 2
d ( a x + b c x + d ) d x = a d − b c ( c x + d ) 2
Hence, the Derivative of the function is
a d − b c ( c x + d ) 2 .
Question 6: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
1 + 1 x 1 − 1 x
Answer:
Given,
f ( x ) = 1 + 1 x 1 − 1 x
can also be written as
f ( x ) = x + 1 x − 1
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( x + 1 x − 1 ) d x = ( x − 1 ) d ( d ( x + 1 ) d x ) − ( x + 1 ) ( d ( x − 1 ) d x ) ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = ( x − 1 ) 1 − ( x + 1 ) 1 ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = x − 1 − x − 1 ( x − 1 ) 2
d ( x + 1 x − 1 ) d x = − 2 ( x − 1 ) 2
Hence, the Derivative of the function is
− 2 ( x − 1 ) 2
Question 7: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
1 a x 2 + b x + c
Answer:
Given,
f ( x ) = 1 a x 2 + b x + c
Now, as we know, the derivative of any such function is given by
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( 1 a x 2 + b x + c ) d x = ( a x 2 + b x + c ) d ( d ( 1 ) d x ) − 1 ( d ( a x 2 + b x + c ) d x ) ( a x 2 + b x + c ) 2
d ( 1 a x 2 + b x + c ) d x = 0 − ( 2 a x + b ) ( a x 2 + b x + c ) 2
d ( 1 a x 2 + b x + c ) d x = − ( 2 a x + b ) ( a x 2 + b x + c ) 2
Question 8: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a x + b p x 2 + q x + r
Answer:
Given,
f ( x ) = a x + b p x 2 + q x + r
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( a x + b p x 2 + q x + r ) d x = ( p x 2 + q x + r ) d ( d ( a x + b ) d x ) − ( a x + b ) ( d ( p x 2 + q x + r ) d x ) ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = ( p x 2 + q x + r ) a − ( a x + b ) ( 2 p x + q ) ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = a p x 2 + a q x + a r − 2 a p x 2 − a q x − 2 b p x − b q ( p x 2 + q x + r ) 2
d ( a x + b p x 2 + q x + r ) d x = − a p x 2 + a r − 2 b p x − b q ( p x 2 + q x + r ) 2
Question 9: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
p x 2 + q x + r a x + b
Answer:
Given,
f ( x ) = p x 2 + q x + r a x + b
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of f(x) is
d ( p x 2 + q x + r a x + b ) d x = ( a x + b ) d ( d ( p x 2 + q x + r ) d x ) − ( p x 2 + q x + r ) ( d ( a x + b ) d x ) ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = ( a x + b ) ( 2 p x + q ) − ( p x 2 + q x + r ) ( a ) ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = 2 a p x 2 + a q x + 2 b p x + b q − a p x 2 − a q x − a r ( a x + b ) 2
d ( p x 2 + q x + r a x + b ) d x = a p x 2 + 2 b p x + b q − a r ( a x + b ) 2
Question 10: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a x 4 − b x 2 + cos x
Answer:
Given
f ( x ) = a x 4 − b x 2 + cos x
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = − 4 a x 5 − ( − 2 b x 3 ) + ( − sin x )
f ′ ( x ) = − 4 a x 5 + 2 b x 3 − sin x
Question 11: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): 4 x − 2
Answer:
Given
f ( x ) = 4 x − 2
It can also be written as
f ( x ) = 4 x 1 2 − 2
Now,
As we know, the property,
f ′ ( x n ) = n x n − 1
And the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying that property, we get
f ′ ( x ) = 4 ( 1 2 ) x − 1 2 − 0
f ′ ( x ) = 2 x − 1 2
f ′ ( x ) = 2 x
Question 12: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
( a x + b ) n
Answer:
Given
f ( x ) = ( a x + b ) n
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And, the property,
f ′ ( x n ) = n x n − 1
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
f ′ ( x ) = n ( a x + b ) n − 1 × a
f ′ ( x ) = a n ( a x + b ) n − 1
Question 13: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x + b ) n ( c x + d ) m
Answer:
Given
f ( x ) = ( a x + b ) n ( c x + d ) m
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
And, the property,
f ′ ( x n ) = n x n − 1
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
f ′ ( x ) = ( a x + b ) n ( m ( c x + d ) m − 1 ) + ( c x + d ) ( n ( a x + b ) n − 1 )
f ′ ( x ) = m ( a x + b ) n ( c x + d ) m − 1 + n ( c x + d ) ( a x + b ) n − 1
Question 14: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): sin ( x + a )
Answer:
Given,
f ( x ) = sin ( x + a )
Now, ass we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
Applying this property, we get,
f ′ ( x ) = cos ( x + a ) × 1
f ′ ( x ) = cos ( x + a )
Question 15: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): csc x cot x
Answer:
Given,
f ( x ) = csc x cot x
The Multiplication Property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Applying the property
d ( csc x ) ( cot x ) ) d x = csc x d cot x d x + cot x d csc x d x
d ( csc x ) ( cot x ) ) d x = csc x ( − csc 2 x ) + cot x ( − csc x cot x )
d ( csc x ) ( cot x ) ) d x = − csc 3 x − cot 2 x csc x
Hence, the derivative of the function is − csc 3 x − cot 2 x csc x .
Question 16: Find the derivative of the following functions (it is to be understood that a, b, c, d,p, q, r, and s are fixed non-zero constants and m and n are integers):
cos x 1 + sin x
Answer:
Given,
f ( x ) = cos x 1 + sin x
Now, as we know, the derivative of any function
d ( cos x 1 + sin x ) d x = ( 1 + sin x ) d ( d cos x d x ) − cos x ( d ( 1 + sin x ) d x ) ( 1 + sin x ) 2
Hence, the derivative of f(x) is
d ( cos x 1 + sin x ) d x = ( 1 + sin x ) ( − sin x ) − cos x ( cos x ) ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − sin x − sin 2 x − cos 2 x ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − sin x − 1 ( 1 + sin x ) 2
d ( cos x 1 + sin x ) d x = − 1 ( 1 + sin x )
Question 17: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin x + cos x sin x − cos x
Answer:
Given
f ( x ) = sin x + cos x sin x − cos x
can also be written as
f ( x ) = tan x + 1 tan x − 1
which further can be written as
f ( x ) = − tan x + t a n ( π / 4 ) 1 − tan ( π / 4 ) tan x
f ( x ) = − tan ( x − π / 4 )
Now,
f ′ ( x ) = − sec 2 ( x − π / 4 )
f ′ ( x ) = − 1 cos 2 ( x − π / 4 )
Question 18: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
sec x − 1 sec x + 1
Answer:
Given,
f ( x ) = sec x − 1 sec x + 1
which also can be written as
f ( x ) = 1 − cos x 1 + cos x
Now,
As we know, the derivative of such a function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
So, the derivative of the function is,
d ( 1 − cos x 1 + cos x ) d x = ( 1 + cos x ) d ( d ( 1 − cos x ) d x ) − ( 1 − cos x ) ( d ( 1 + cos x ) d x ) ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = ( 1 + cos x ) ( − ( − sin x ) ) − ( 1 − cos x ) ( − sin x ) ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = sin x + sin x cos x + sin x − cos x sin x ( 1 + cos x ) 2
d ( 1 − cos x 1 + cos x ) d x = 2 sin x ( 1 + cos x ) 2
This can also be written as
d ( 1 − cos x 1 + cos x ) d x = 2 sec x tan x ( 1 + sec x ) 2 .
Question 19: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin n x
Answer:
Given,
f ( x ) = sin n x
Now, as we know the chain rule of derivative,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
And, the property,
f ′ ( x n ) = n x n − 1
Applying those properties, we get
f ′ ( x ) = n sin n − 1 x cos x
Hence Derivative of the given function is n sin n − 1 x cos x
Question 20: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
a + b sin x c + d cos x
Answer:
Given Function
f ( x ) = a + b sin x c + d cos x
Now, as we know, the derivative of any function of this type is:
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function will be:
d ( a + b sin x c + d cos x ) d x = ( c + d cos x ) ( d ( a + b sin x ) d x ) − ( a + b sin x ) ( d ( c + d cos x x ) d x ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = ( c + d cos x ) ( b cos x ) − ( a + b sin x ) ( d ( − sin x ) ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + b d cos 2 x + a d sin x + b d sin 2 x ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + a d sin x + b d ( sin 2 x + cos 2 x ) ( c + d cos x ) 2
d ( a + b sin x c + d cos x ) d x = c b cos x + a d sin x + b d ( c + d cos x ) 2
Question 21: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
sin ( x + a ) cos x
Answer:
Given,
f ( x ) = sin ( x + a ) cos x
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function is:
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( d ( sin ( x + a ) ) d x ) − sin ( x + a ) ( d ( cos x ) d x ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( cos ( x + a ) ) − sin ( x + a ) ( − sin ( x ) ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = ( cos x ) ( cos ( x + a ) ) + sin ( x + a ) ( sin ( x ) ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = cos ( x + a − x ) ( cos x ) 2
d ( sin ( x + a ) cos x ) d x = cos ( a ) ( cos x ) 2
Question 22: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers): x 4 ( 5 sin x − 3 cos x )
Answer:
Given
f ( x ) = x 4 ( 5 sin x − 3 cos x )
Now, as we know, the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Hence, the derivative of the given function is:
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = x 4 d ( 5 sin x − 3 cos x ) d x + ( 5 sin x − 3 cos x ) d x 4 d x
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = x 4 ( 5 cos x + 3 sin x ) + ( 5 sin x − 3 cos x ) 4 x 3
d ( x 4 ( 5 sin x − 3 cos x ) ) d x = 5 x 4 cos x + 3 x 4 sin x + 20 x 3 sin x − 12 x 3 cos x
Question 23: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x 2 + 1 ) cos x
Answer:
Given
f ( x ) = ( x 2 + 1 ) cos x
Now, as we know the product rule of derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
The derivative of the given function is
d ( ( x 2 + 1 ) cos x ) d x = ( x 2 + 1 ) d cos x d x + cos x d ( x 2 + 1 ) d x
d ( ( x 2 + 1 ) cos x ) d x = ( x 2 + 1 ) ( − sin x ) + cos x ( 2 x )
d ( ( x 2 + 1 ) cos x ) d x = − x 2 sin x − sin x + 2 x cos x
Question 24: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( a x 2 + sin x ) ( p + q cos x )
Answer:
Given,
f ( x ) = ( a x 2 + sin x ) ( p + q cos x )
Now, as we know, the Multiplication property of the derivative (the product rule)
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
And also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
d ( ( a x 2 + sin x ) ( p + q cos x ) ) d x = ( a x 2 + sin x ) d ( p + q cos x ) d x + ( p + q x ) d ( a x 2 + s i n x ) d x
d ( ( a x 2 + sin x ) ( p + q cos x ) ) d x = ( a x 2 + sin x ) ( − q sin x ) + ( p + q x ) ( 2 a x + cos x )
f ′ ( x ) = − a q x 2 sin x − q sin 2 x + 2 a p x + p cos x + 2 a q x 2 + q x cos x
f ′ ( x ) = x 2 ( − a q sin x + 2 a q ) + x ( 2 a p + q cos x ) + p cos x − q sin 2 x
Question 25: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x + cos x ) ( x − tan x )
Answer:
Given,
f ( x ) = ( x + cos x ) ( x − tan x )
And the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
d ( ( x + cos x ) ( x − tan x ) ) d x = ( x + cos x ) d ( x − tan x ) d x + ( x − tan x ) d ( x + cos x ) d x
= ( x + cos x ) ( 1 − sec 2 x ) + ( x − tan x ) ( 1 − sin x )
= ( x + cos x ) ( − tan 2 x ) + ( x − tan x ) ( 1 − sin x )
= ( − tan 2 x ) ( x + cos x ) + ( x − tan x ) ( 1 − sin x )
Question 26: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r, and s are fixed non-zero constants and m and n are integers):
4 x + 5 sin x 3 x + 7 cos x
Answer:
Given,
f ( x ) = 4 x + 5 sin x 3 x + 7 cos x
Now, as we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get
d ( 4 x + 5 sin x 3 x + 7 cos x ) d x = ( 3 x + 7 cos x ) d ( d ( 4 x + 5 sin x ) d x ) − ( 4 x + 5 sin x ) ( d ( 3 x + 7 cos x ) d x ) ( 3 x + 7 cos x ) 2
d ( 4 x + 5 sin x 3 x + 7 cos x ) d x = ( 3 x + 7 cos x ) ( 4 + 5 cos x ) − ( 4 x + 5 sin x ) ( 3 − 7 sin x ) ( 3 x + 7 cos x ) 2
= 12 x + 28 cos x + 15 x cos x + 35 cos 2 x − 12 x − 15 sin x + 28 x sin x + 35 sin 2 x ( 3 x + 7 cos x ) 2
= 12 x + 28 cos x + 15 x cos x − 12 x − 15 sin x + 28 x sin x + 35 ( sin 2 x + cos 2 x ) ( 3 x + 7 cos x ) 2
= 28 cos x + 15 x cos x − 15 sin x + 28 x sin x + 35 ( 3 x + 7 cos x ) 2
Question 27: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,,r, and s are fixed non-zero constants and m and n are integers):
x 2 cos ( π / 4 ) sin x
Answer:
Given,
f ( x ) = x 2 cos ( π / 4 ) sin x
As we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
Hence, the derivative of the given function is
d ( x 2 cos ( π / 4 ) sin x ) d x = ( sin x ) d ( d ( x 2 cos ( π / 4 ) ) d x ) − ( x 2 cos ( π / 4 ) ) ( d sin x d x ) sin 2 x
d ( x 2 cos ( π / 4 ) sin x ) d x = ( sin x ) ( 2 x cos ( π / 4 ) ) − ( x 2 cos ( π / 4 ) ) ( cos x ) sin 2 x
d ( x 2 cos ( π / 4 ) sin x ) d x = 2 x sin x cos ( π / 4 ) − x 2 cos x cos ( π / 4 ) sin 2 x
Question 28: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,, r, and s are fixed non-zero constants and m and n are integers):
x 1 + tan x
Answer:
Given
f ( x ) = x 1 + tan x
Noas As we know, the derivative of any function
d ( x 1 + tan x ) d x = ( 1 + tan x ) d ( d x d x ) − x ( d ( 1 + tan x ) d x ) ( 1 + tan x ) 2
d ( x 1 + tan x ) d x = ( 1 + tan x ) ( 1 ) − x ( sec 2 x ) ( 1 + tan x ) 2
d ( x 1 + tan x ) d x = 1 + tan x − x sec 2 x ( 1 + tan x ) 2
Question 29: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ( x + sec x ) ( x − tan x )
Answer:
Given
f ( x ) = ( x + sec x ) ( x − tan x )
Now, ass we know the Multiplication property of the derivative,
d ( y 1 y 2 ) d x = y 1 d y 2 d x + y 2 d y 1 d x
Also the property
d ( y 1 + y 2 ) d x = d y 1 d x + d y 2 d x
Applying those properties, we get,
The derivative of the given function is,
d ( ( x + sec x ) ( x − tan x ) d x = ( x + sec x ) d ( x − tan x ) d x + ( x − tan x ) d ( x + sec x ) d x
d ( ( x + sec x ) ( x − tan x ) d x = ( x + sec x ) ( 1 − sec 2 x ) + ( x − tan x ) ( 1 + sec x tan x )
Question 30: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q,,r, and s are fixed non-zero constants and m and n are integers):
x sin n x
Answer:
Given,
f ( x ) = x sin n x
As we know, the derivative of any function
d ( y 1 y 2 ) d x = y 2 d ( d y 1 d x ) − y 1 ( d y 2 d x ) y 2 2
As the chain rule of derivatives,
[ f ( g ( x ) ) ] ′ = f ′ ( g ( x ) ) × g ′ ( x )
Hence, the derivative of the given function is
d ( x sin n x ) d x = sin n x d ( d x d x ) − x ( d ( sin n x ) d x ) s i n 2 n x
d ( x sin n x ) d x = sin n x ( 1 ) − x ( n sin n − 1 x × cos x ) s i n 2 n x
d ( x sin n x ) d x = sin n x − x cos x n sin n − 1 x s i n 2 n x
d ( x sin n x ) d x = sin n x − x cos x n sin n − 1 x s i n 2 n x
d ( x sin n x ) d x = sin n − 1 x ( sin x − n x cos x ) s i n 2 n x
d ( x sin n x ) d x = ( sin x − n x cos x ) s i n n + 1 x
Also, read,
Class 11 Maths NCERT Chapter 12: Extra Question Question: lim x → 0 cosec x ( 2 cos 2 x + 3 cos x − cos 2 x + sin x + 4 ) isSolution: Evaluate the limit:lim x → 0 csc x ( 2 cos 2 x + 3 cos x − cos 2 x + sin x + 4 )
Rationalise the expression:lim x → 0 csc x ( ( 2 cos 2 x + 3 cos x ) − ( cos 2 x + sin x + 4 ) ) 2 cos 2 x + 3 cos x + cos 2 x + sin x + 4
Simplify the numerator:lim x → 0 1 sin x ⋅ ( cos 2 x + 3 cos x − 4 ) − sin x 2 cos 2 x + 3 cos x + cos 2 x + sin x + 4
Rewrite the numerator:lim x → 0 ( cos x + 4 ) ( cos x − 1 ) − sin x sin x ( 2 cos 2 x + 3 cos x + cos 2 x + sin x + 4 )
Using half-angle formulas:lim x → 0 − 2 sin 2 x 2 ( cos x + 4 ) − 2 sin x 2 cos x 2 2 sin x 2 cos x 2 ( 2 cos 2 x + 3 cos x + cos 2 x + sin x + 4 )
Cancel common terms:
lim x → 0 − sin x 2 ( cos x + 4 ) + cos x 2 cos x 2 ( 2 cos 2 x + 3 cos x + cos 2 x + sin x + 4 )
Evaluate the limit by plugging x = 0 := − 1 2 5
Hence, the correct answer is − 1 2 5 .
Approach to Solve Questions of Limits and Derivatives Class 11 Here are some approaches that students can use to approach the questions related to Limits and derivatives.
Get familiar with the properties of limits and derivatives, such as the sum rule, constant rule, product rule, quotient rule, etc. Get clarity about the standard limits and derivatives formulas. Check the indeterminate forms in limits first. Before applying the rules of limits or derivatives, simplify the expression or solve it part by part. For derivatives, decide which is better to use: the first principle of the standard rules. In higher classes, practice using factorisation or L'Hospital's rule to resolve indeterminate forms. Prepare a chart of all the standard derivatives in a notebook to revise from time to time for fast recall.
What Extra Should Students Study Beyond NCERT for JEE? NCERT Solutions for Class 11 Mathematics - Chapter Wise
Also, read,
NCERT Solutions for Class 11- Subject Wise Students can check the following links for more in-depth learning.
NCERT Books and NCERT Syllabus Here is the latest NCERT syllabus, that is useful for students before strategising their study plan. Also, it contains links to some reference books which are important for further studies.