NEET Most scoring concepts
ApplyThis ebook serves as a valuable study guide for NEET 2025 exam.
NCERT Solutions for Class 11 Maths Chapter 13 miscellaneous exercise covers the concepts of derivatives and limits. To find the derivative from the first principle the concept of limit is required. All the questions in the miscellaneous example and miscellaneous exercise chapter 13 Class 11 are to find the derivative of a function. The Class 11 Maths Chapter 13 miscellaneous exercise solutions covers the derivative of polynomial functions and also the questions in the Class 11 Maths chapter 13 miscellaneous solutions covers the derivative of trigonometric functions.
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
The class 11 chapter 13 maths miscellaneous solutions are meticulously crafted by subject experts, providing in-depth explanations and step-by-step guidance. Additionally, the solutions are available in a downloadable PDF format, offering students the option for offline use without any charge. This class 11 maths ch 13 miscellaneous exercise solutions is designed to facilitate a thorough understanding of conic sections and support convenient and cost-free self-study. Miscellaneous exercise Chapter 13 Class 11 and the following exercises are present in the NCERT Class 11 chapter limits and derivatives.
** In the CBSE Syllabus for 2023-24, this miscellaneous exercise class 11 chapter 13 has been renumbered as Chapter 12.
Question:1(i) Find the derivative of the following functions from first principle: -x
Answer:
Given.
f(x)=-x
Now, As we know, The derivative of any function at x is
$f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-(x+h)-(-x)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-h}{h}$
$f'(x)=-1$
Question:1(ii) Find the derivative of the following functions from first principle: $( - x ) ^{-1}$
Answer:
Given.
f(x)= $( - x ) ^{-1}$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-(x+h)^{-1}-(-x)^{-1}}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-\frac{1}{x+h}+\frac{1}{x}}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{\frac{-x+x+h}{x(x+h)}}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{\frac{h}{(x+h)(x)}}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{1}{x(x+h)}$
$f'(x)=\frac{1}{x^2}$
Question:1(iii) Find the derivative of the following functions from first principle: $\sin ( x+1)$
Answer:
Given.
$f(x)=\sin ( x+1)$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{\sin(x+h+1)-\sin(x+1)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{2\cos(\frac{x+h+1+x+1}{2})\sin(\frac{x+h+1-x-1}{2})}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{2\cos(\frac{2x+h+2}{2})\sin(\frac{h}{2})}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{\cos(\frac{2x+h+2}{2})\sin(\frac{h}{2})}{\frac{h}{2}}$
$f'(x)=\cos(\frac{2x+0+2}{2})\times 1$
$f'(x)=\cos(x+1)$
Question:1(iv) Find the derivative of the following functions from first principle: $\cos ( x - \pi /8 )$
Answer:
Given.
$f(x)=\cos ( x - \pi /8 )$
Now, As we know, The derivative of any function at x is
$f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{\cos(x+h-\pi/8)-cos(x-\pi/8)}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-2\sin\left ( \frac{x+h-\pi/8+x-\pi/8 }{2}\right )\sin\left ( \frac{x+h-\pi/8-x+\pi/8}{2} \right )}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-2\sin\left ( \frac{2x+h-\pi/4 }{2}\right )\sin\left ( \frac{h}{2} \right )}{h}$
$f'(x)=\lim_{h\rightarrow 0}\frac{-\sin\left ( \frac{2x+h-\pi/4 }{2}\right )\sin\left ( \frac{h}{2} \right )}{\frac{h}{2}}$
$f'(x)=\sin\left ( \frac{2x+0-\pi/4}{2} \right )\times 1$
$f'(x)=-\sin\left (x-\pi/8 \right )$
Answer:
Given
f(x)= x + a
As we know, the property,
$f'(x^n)=nx^{n-1}$
applying that property we get
$f'(x)=1+0$
$f'(x)=1$
Answer:
Given
$f(x)=\left(px + q\right) \left ( \frac{r}{x}+ s \right )$
$f(x)=pr+psx+\frac{qr}{x}+qs$
As we know, the property,
$f'(x^n)=nx^{n-1}$
applying that property we get
$f'(x)=0 + ps +\frac{-qr}{x^2}+0$
$f'(x)=ps + q \left ( \frac{-r}{x^2} \right )$
$f'(x)=ps - \left ( \frac{qr}{x^2} \right )$
Answer:
Given,
$f(x)=( ax + b ) ( cx + d )^2$
$f(x)=( ax + b ) ( c^2x^2+2cdx+d^2)$
$f(x)=ac^2x^3+2acdx^2+ad^2x+bc^2x^2+2bcdx+bd^2$
Now,
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=3ac^2x^2+4acdx+ad^2+2bc^2x+2bcd+0$
$f'(x)=3ac^2x^2+4acdx+ad^2+2bc^2x+2bcd$
$f'(x)=3ac^2x^2+(4acd+2bc^2)x+ad^2+2bcd$
Answer:
Given,
$f(x)=\frac{ax+b}{cx+d}$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(cx+d)}{dx})}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{(cx+d)a-(ax+b)c}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{acx+ad-acx-bc}{(cx+d)^2}$
$\frac{d(\frac{ax+b}{cx+d})}{dx}=\frac{ad-bc}{(cx+d)^2}$
Hence Derivative of the function is
$\frac{ad-bc}{(cx+d)^2}$ .
$\frac{1 + \frac{1}{x}}{1- \frac{1}{x}}$
Answer:
Given,
$f(x)=\frac{1 + \frac{1}{x}}{1- \frac{1}{x}}$
Also can be written as
$f(x)=\frac{x+1}{x-1}$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{(x-1)d(\frac{d(x+1)}{dx})-(x+1)(\frac{d(x-1)}{dx})}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{(x-1)1-(x+1)1}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{x-1-x-1}{(x-1)^2}$
$\frac{d(\frac{x+1}{x-1})}{dx}=\frac{-2}{(x-1)^2}$
Hence Derivative of the function is
$\frac{-2}{(x-1)^2}$
Answer:
Given,
$f(x)=\frac{1 }{ax ^2 + bx + c}$
Now, As we know the derivative of any such function is given by
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{(ax^2+bx+c)d(\frac{d(1)}{dx})-1(\frac{d(ax^2+bx+c)}{dx})}{(ax^2+bx+c)^2}$
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=\frac{0-(2ax+b)}{(ax^2+bx+c)^2}$
$\frac{d(\frac{1}{ax^2+bx+c})}{dx}=-\frac{(2ax+b)}{(ax^2+bx+c)^2}$
$\frac{ax + b }{px^2 + qx + r }$
Answer:
Given,
$f(x)=\frac{ax + b }{px^2 + qx + r }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)d(\frac{d(ax+b)}{dx})-(ax+b)(\frac{d(px^2+qx+r)}{dx})}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{(px^2+qx+r)a-(ax+b)(2px+q)}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{apx^2+aqx+ar-2apx^2-aqx-2bpx-bq}{(px^2+qx+r)^2}$
$\frac{d(\frac{ax+b}{px^2+qx+r})}{dx}=\frac{-apx^2+ar-2bpx-bq}{(px^2+qx+r)^2}$
$\frac{px^2 + qx + r }{ax +b }$
Answer:
Given,
$f(x)=\frac{px^2 + qx + r }{ax +b }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{(ax+b)d(\frac{d(px^2+qx+r)}{dx})-(px^2+qx+r)(\frac{d(ax+b)}{dx})}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{(ax+b)(2px+q)-(px^2+qx+r)(a)}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{2apx^2+aqx+2bpx+bq-apx^2-aqx-ar}{(ax+b)^2}$
$\frac{d(\frac{px^2+qx+r}{ax+b})}{dx}=\frac{apx^2+2bpx+bq-ar}{(ax+b)^2}$
$\frac{a}{x^4} - \frac{b}{x^2 } + \cos x$
Answer:
Given
$f(x)=\frac{a}{x^4} - \frac{b}{x^2 } + \cos x$
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=\frac{-4a}{x^5} - (\frac{-2b}{x^3 }) +( -\sin x)$
$f'(x)=\frac{-4a}{x^5} +\frac{2b}{x^3 } -\sin x$
Answer:
Given
$f(x)=4 \sqrt x - 2$
It can also be written as
$f(x)=4 x^{\frac{1}{2}} - 2$
Now,
As we know, the property,
$f'(x^n)=nx^{n-1}$
and the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying that property we get
$f'(x)=4 (\frac{1}{2})x^{-\frac{1}{2}} - 0$
$f'(x)=2x^{-\frac{1}{2}}$
$f'(x)=\frac{2}{\sqrt{x}}$
Answer:
Given
$f(x)=( ax + b ) ^ n$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And, the property,
$f'(x^n)=nx^{n-1}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
applying those properties we get,
$f'(x)=n(ax+b)^{n-1}\times a$
$f'(x)=an(ax+b)^{n-1}$
Answer:
Given
$f(x)=( ax + b ) ^ n ( cx + d ) ^ m$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
And, the property,
$f'(x^n)=nx^{n-1}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$f'(x)=(ax+b)^n(m(cx+d)^{m-1})+(cx+d)(n(ax+b)^{n-1})$
$f'(x)=m(ax+b)^n(cx+d)^{m-1}+n(cx+d)(ax+b)^{n-1}$
Answer:
Given,
$f(x)=\sin ( x + a )$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
Applying this property we get,
$f'(x)=\cos ( x + a )\times 1$
$f'(x)=\cos ( x + a )$
Answer:
Given,
$f(x)=\csc x \cot x$
the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Applying the property
$\frac{d(\csc x)(\cot x))}{dx}=\csc x\frac{d\cot x}{dx}+\cot x\frac{d\csc x}{dx}$
$\frac{d(\csc x)(\cot x))}{dx}=\csc x(-\csc^2x)+\cot x(-\csc x \cot x)$
$\frac{d(\csc x)(\cot x))}{dx}=-\csc^3x-\cot^2 x\csc x$
Hence derivative of the function is $-\csc^3x-\cot^2 x\csc x$ .
Answer:
Given,
$f(x)=\frac{\cos x }{1+ \sin x }$
Now, As we know the derivative of any function
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )d(\frac{d\cos x}{dx})-\cos x(\frac{d(1+\sin x)}{dx})}{(1+\sin x)^2}$
Hence, The derivative of f(x) is
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{(1+\sin x )(-\sin x)-\cos x(\cos x)}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-\sin^2 x -\cos^2 x}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=\frac{-\sin x-1}{(1+\sin x)^2}$
$\frac{d(\frac{\cos x}{1+\sin x})}{dx}=-\frac{1}{(1+\sin x)}$
Answer:
Given
$f(x)=\frac{\sin x + \cos x }{\sin x - \cos x }$
Also can be written as
$f(x)=\frac{\tan x + 1 }{\tan x - 1 }$
which further can be written as
$f(x)=-\frac{\tan x + tan(\pi/4) }{1-\tan(\pi/4)\tan x }$
$f(x)=-\tan(x-\pi/4)$
Now,
$f'(x)=-\sec^2(x-\pi/4)$
$f'(x)=-\frac{1}{\cos^2(x-\pi/4)}$
Answer:
Given,
$f(x)=\frac{\sec x -1}{\sec x +1}$
which also can be written as
$f(x)=\frac{1-\cos x}{1+\cos x}$
Now,
As we know the derivative of such function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
So, The derivative of the function is,
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{(1+\cos x)d(\frac{d(1-\cos x)}{dx})-(1-\cos x)(\frac{d(1+\cos x)}{dx})}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{(1+\cos x)(-(-\sin x))-(1-\cos x)(-\sin x)}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{\sin x+\sin x\cos x+\sin x-\cos x\sin x}{(1+\cos x)^2}$
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{2\sin x}{(1+\cos x)^2}$
Which can also be written as
$\frac{d(\frac{1-\cos x}{1+\cos x})}{dx}=\frac{2\sec x\tan x}{(1+\sec x)^2}$ .
Answer:
Given,
$f(x)=\sin^ n x$
Now, As we know the chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
And, the property,
$f'(x^n)=nx^{n-1}$
Applying those properties, we get
$f'(x)=n\sin^ {n-1} x \cos x$
Hence Derivative of the given function is $n\sin^ {n-1} x \cos x$
$\frac{a + b \sin x }{c+ d \cos x }$
Answer:
Given Function
$f(x)=\frac{a + b \sin x }{c+ d \cos x }$
Now, As we know the derivative of any function of this type is:
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence derivative of the given function will be:
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{(c+d\cos x)(\frac{d(a+b\sin x)}{dx})-(a+b\sin x)(\frac{d(c+d\cos x x)}{dx})}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{(c+d\cos x)(b\cos x)-(a+b\sin x)(d(-\sin x))}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+bd\cos^2 x+ad\sin x+bd\sin^2 x}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+ad\sin x+bd(\sin^2 x+\cos^2 x)}{(c+d\cos x)^2}$
$\frac{d(\frac{a+b\sin x}{c+d\cos x})}{dx}=\frac{cb\cos x+ad\sin x+bd}{(c+d\cos x)^2}$
$\frac{\sin ( x+a )}{ \cos x }$
Answer:
Given,
$f(x)=\frac{\sin ( x+a )}{ \cos x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence the derivative of the given function is:
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\frac{d(\sin (x+a))}{dx})-\sin(x+a)(\frac{d(\cos x)}{dx})}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\cos(x+a))-\sin(x+a)(-\sin (x))}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{(\cos x)(\cos(x+a))+\sin(x+a)(\sin (x))}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{\cos (x+a-x)}{(\cos x)^2}$
$\frac{d(\frac{\sin(x+a)}{\cos x})}{dx}=\frac{\cos (a)}{(\cos x)^2}$
Answer:
Given
$f(x)=x ^ 4 ( 5 \sin x - 3 \cos x )$
Now, As we know, the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Hence derivative of the given function is:
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=x^4\frac{d ( 5 \sin x - 3 \cos x )}{dx}+ ( 5 \sin x - 3 \cos x )\frac{dx^4}{dx}$
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=x^4(5\cos x+3\sin x)+ ( 5 \sin x - 3 \cos x )4x^3$
$\frac{d(x ^ 4 ( 5 \sin x - 3 \cos x ))}{dx}=5x^4\cos x+3x^4\sin x+ 20x^3 \sin x - 12x^3 \cos x$
Answer:
Given
$f(x)=( x^2 +1 ) \cos x^{}$
Now, As we know the product rule of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
The derivative of the given function is
$\frac{d(( x^2 +1 ) \cos x)}{dx}=( x^2 +1 ) \frac{d\cos x}{dx}+\cos x\frac{d( x^2 +1 ) }{dx}$
$\frac{d(( x^2 +1 ) \cos x)}{dx}=( x^2 +1 ) (-\sin x)+\cos x(2x)$
$\frac{d(( x^2 +1 ) \cos x)}{dx}= -x^2 \sin x-\sin x+2x\cos x$
Answer:
Given,
$f(x)=( ax ^2 + \sin x ) ( p + q \cos x )$
Now As we know the Multiplication property of derivative,(the product rule)
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
And also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$\frac{d(( ax ^2 + \sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)\frac{d(p+q\cos x)}{dx}+(p+qx)\frac{d(ax^2+sinx)}{dx}$
$\\\frac{d((ax ^2+\sin x ) ( p + q \cos x ))}{dx}=(ax^2+\sin x)(-q\sin x)+(p+qx)(2ax+\cos x)$
$f'(x)=-aqx^2\sin x-q\sin^2 x+2apx+p\cos x+2aqx^2+qx\cos x$
$f'(x)=x^2(-aq\sin x+2aq) +x(2ap+q\cos x)+p\cos x-q\sin^2 x$
Answer:
Given,
$f(x)=( x+ \cos x ) ( x - \tan x )$
And the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
$\frac{d(( x+ \cos x ) ( x - \tan x ))}{dx}=(x+\cos x)\frac{d(x-\tan x)}{dx}+(x-\tan x)\frac{d(x+\cos x)}{dx}$
$=(x+\cos x)(1-\sec^2x)+(x-\tan x)(1-\sin x)$
$=(x+\cos x)(-\tan^2x)+(x-\tan x)(1-\sin x)$
$=(-\tan^2x)(x+\cos x)+(x-\tan x)(1-\sin x)$
$\frac{4x + 5 \sin x }{3x+ 7 \cos x }$
Answer:
Given,
$f(x)=\frac{4x + 5 \sin x }{3x+ 7 \cos x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties,we get
$\frac{d(\frac{4x+5\sin x}{3x+7\cos x})}{dx}=\frac{(3x+7\cos x)d(\frac{d(4x+5\sin x)}{dx})-(4x+5\sin x)(\frac{d(3x+7\cos x)}{dx})}{(3x+7\cos x)^2}$
$\frac{d(\frac{4x+5\sin x}{3x+7\cos x})}{dx}=\frac{(3x+7\cos x)(4+5\cos x)-(4x+5\sin x)(3-7\sin x)}{(3x+7\cos x)^2}$
$=\frac{12x+28\cos x+15x\cos x+35\cos^2x-12x-15\sin x+28x\sin x+35\sin^2 x}{(3x+7\cos x)^2}$
$=\frac{12x+28\cos x+15x\cos x-12x-15\sin x+28x\sin x+35(\sin^2 x+\cos^2x)}{(3x+7\cos x)^2}$
$=\frac{28\cos x+15x\cos x-15\sin x+28x\sin x+35}{(3x+7\cos x)^2}$
$\frac{x ^2 \cos ( \pi /4 )}{\sin x }$
Answer:
Given,
$f(x)=\frac{x ^2 \cos ( \pi /4 )}{\sin x }$
Now, As we know the derivative of any function
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Hence the derivative of the given function is
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{(\sin x)d(\frac{d(x^2\cos(\pi/4))}{dx})-(x^2\cos(\pi/4))(\frac{d\sin x}{dx})}{\sin^2x}$
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{(\sin x)(2x\cos (\pi/4))-(x^2\cos(\pi/4))(\cos x)}{\sin^2x}$
$\frac{d(\frac{x^2\cos(\pi/4)}{\sin x})}{dx}=\frac{2x\sin x\cos (\pi/4)-x^2\cos x\cos(\pi/4)}{\sin^2x}$
Answer:
Given
$f(x)=\frac{x }{ 1+ \tan x }$
Now, As we know the derivative of any function
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{(1+\tan x)d(\frac{dx}{dx})-x(\frac{d(1+\tan x)}{dx})}{(1+\tan x)^2}$
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{(1+\tan x)(1)-x(\sec^2x)}{(1+\tan x)^2}$
$\frac{d(\frac{x}{1+\tan x})}{dx}=\frac{1+\tan x-x\sec^2x}{(1+\tan x)^2}$
Answer:
Given
$f(x)=( x + \sec x ) ( x - \tan x )$
Now, As we know the Multiplication property of derivative,
$\frac{d(y_1y_2)}{dx}=y_1\frac{dy_2}{dx}+y_2\frac{dy_1}{dx}$
Also the property
$\frac{d(y_1+y_2)}{dx}=\frac{dy_1}{dx}+\frac{dy_2}{dx}$
Applying those properties we get,
the derivative of the given function is,
$\frac{d(( x + \sec x ) ( x - \tan x )}{dx}=(x+\sec x)\frac{d(x-\tan x)}{dx}+(x-\tan x)\frac{d(x+\sec x)}{dx}$
$\frac{d(( x + \sec x ) ( x - \tan x )}{dx}=(x+\sec x)(1-\sec^2x)+(x-\tan x)(1+\sec x\tan x)$
Answer:
Given,
$f(x)=\frac{x }{\sin ^ n x }$
Now, As we know the derivative of any function
$\frac{d(\frac{y_1}{y_2})}{dx}=\frac{y_2d(\frac{dy_1}{dx})-y_1(\frac{dy_2}{dx})}{y_2^2}$
Also chain rule of derivative,
$[f(g(x))]'=f'(g(x))\times g'(x)$
Hence the derivative of the given function is
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nxd(\frac{dx}{dx})-x(\frac{d(\sin^nx)}{dx})}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx(1)-x(n\sin^{n-1}x\times \cos x)}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx-x\cos xn\sin^{n-1}x}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^nx-x\cos xn\sin^{n-1}x}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{\sin^{n-1}x(\sin x-nx\cos x)}{sin^{2n}x}$
$\frac{d(\frac{x}{\sin^nx})}{dx}=\frac{(\sin x-nx\cos x)}{sin^{n+1}x}$
Questions related to the derivatives trigonometric functions and polynomial functions are described through 30 questions in the NCERT book Class 11 Maths chapter 13 miscellaneous solutions. All the questions are important and can expect a good number of questions of a similar type for class exams and board exams. Also similar types of questions as in NCERT solutions for Class 11 Maths chapter 13 miscellaneous exercise can be expected for competitive exams like JEE Main and various state-level engineering entrance exams.
Also Read| Limits And Derivatives Class 11 Notes
Following are some important derivatives that help to solve miscellaneous exercise chapter 13 Class 11
Function | Derivative |
sinx | cosx |
cosx | -sinx |
tanx | sec2x |
cotx | -cosec2x |
secx | Secx tanx |
cosecx | -cosecx cotx |
xsinx | xcosx+sinx |
xn | nxn-1 |
The class 11 maths miscellaneous exercise chapter 13 is centred around the following topics:
Comprehensive Solutions: Solutions provided by Careers360 for the miscellaneous exercise class 11 chapter 13 are comprehensive, covering a wide range of topics related to Limits and Derivatives.
Expert-Crafted Solutions: Class 11 maths miscellaneous exercise chapter 13 solution meticulously crafted by subject matter experts, ensuring accuracy, clarity, and alignment with the prescribed syllabus. This helps students grasp complex concepts effectively.
Free Access: The class 11 chapter 13 miscellaneous exercise solutions are freely accessible to all students, promoting inclusivity and making quality education available without financial constraints.
User-Friendly Format: Class 11 maths ch 13 miscellaneous exercise solutions Presented in an easy-to-understand format, featuring step-by-step explanations, diagrams, and relevant formulas. This user-friendly approach aids in better comprehension and retention.
Additional Resources: Careers360 offers supplementary study materials and resources, providing valuable aids to reinforce learning and practice in addition to the miscellaneous exercise solutions.
Also see-
cotx=cosx/sinx
Derivative of g(x) is -cosec^2x
sin2z=2sinzcosz
The required derivative=2(cos^2x-sin^2x)
Function x: derivative=1
Function sinx: derivative=cosx
Function xsinx; derivative=xcosx+sinx
The product rule. If f(x)=u and g(x)=v, then (uv)’=uv’+u’v
[u+v]’=u’+v’
30 questions are given in the NCERT solutions for Class 11 Maths chapter 13 miscellaneous exercise
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE