Did you ever wonder how scientists determine the velocity of a car at a specific moment or how economists determine how rapidly financial patterns are changing? The concept of Limits and Derivatives is central to the understanding of such real-life applications. Limits assist us in determining what value a function is getting nearer to as we approach a particular number. Limits come in handy when we are unable to use the number in an equation directly. Derivatives indicate at what rate something is changing, for instance, the velocity of a travelling vehicle. Derivatives assist in determining the slope of a curve at any given point. In simple terms, limits indicate where a function is heading, and derivatives indicate at what rate it is changing. This chapter explains the fundamental concepts of calculus so that students can understand how things are changing extremely rapidly.
This Story also Contains
To grasp this chapter well, students must concentrate on the fundamental concepts of limits, continuity, and differentiation. Solving the problems of Limits and Derivatives from the NCERT Exemplar exercises will create a strong concept. Solving more problems from NCERT Class 11 Maths Solutions Chapter Limits and Derivatives will make students proficient in solving problems. Regular practice, solving sample papers, and previous years' questions will make them precise and confident in solving calculus problems.
Also, read,
| Class 11 Maths Chapter 13 Exemplar Solutions Exercise: 13.3 Page number: 239-245 Total questions: 80 |
Question 1
Evaluate $\mathop{\lim}\limits_{x \rightarrow 3}\frac{x^{2}-9}{x-3}$
Answer:
Given $\mathop{\lim }\limits_{x \rightarrow 3}\frac{x^{2}-9}{x-3}=\mathop{\lim }\limits_{x \rightarrow 3}\frac{ \left( x-3 \right) \left( x+3 \right) }{x-3}=\mathop{\lim }\limits_{x \rightarrow 3}x+3=6$
Question 2
Evaluate $\mathop{\lim }\limits\limits_{x \rightarrow \frac 12}\frac{4x^{2}-1}{2x-1}$
Answer:
Given that $\mathop{\lim }\limits_{x \rightarrow \frac 12}\frac{4x^{2}-1}{2x-1}=\mathop{\lim }\limits_{x \rightarrow \frac 12}\frac{ \left( 2x-1 \right) \left( 2x+1 \right) }{2x-1}=\mathop{\lim }\limits_{x \rightarrow \frac 12}2x+1=2$
Question 3
Evaluate $\mathop{\lim }\limits_{h \rightarrow 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}$
Answer:
$\mathop{\lim }\limits_{h \rightarrow 0}\frac{\sqrt {x+h}-\sqrt {x}}{h}$
$\\=\mathop{\lim }\limits_{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h[\sqrt{x+h}+\sqrt{x}]} \times( \sqrt{x+h}+\sqrt{x}) \ $
[Rationalising the denominator]
$\mathop{\lim }\limits_{h \rightarrow 0}\frac{x+h-x}{h[\sqrt{x+h}+\sqrt{x}]}$ $\\\\=\mathop{\lim }\limits_{h \rightarrow 0} \frac{1}{ \sqrt{x+h}+\sqrt{x}}\\\\$
Put limit
$\\= \frac{1}{ \sqrt{x}+\sqrt{x}}\\\\ =\frac{1}{2\sqrt{x}}$
Question 4
Answer:
Given $\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( x+2 \right) ^{\frac{1}{3}}-2^{\frac{1}{3}}}{x}~~ \\\\ ~$
Now put x=x-2, limits change from 0 to 2
$\\\\ =\mathop{\lim }\limits_{y \rightarrow 2}\frac{y^{\frac{1}{3}}-2^{\frac{1}{3}}}{y-2}=\frac{1}{3} \left( 2 \right) ^{\frac{1}{3}-1}=\frac{1}{3}2^{-\frac{2}{3}}$
$\text{Using}\ \left[ \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n \cdot a^{n-1}\right]$
Question 5
Answer:
$\text{Given that }\mathop{\lim }\limits_{x \rightarrow 1}\frac{ \left( 1+x \right) ^{6}-1}{ \left( 1+x \right) ^{2}-1}=\mathop{\lim }\limits_{x \rightarrow 1}\frac{ \left( \left( 1+x \right) ^{2} \right) ^{3}-1}{ \left( 1+x \right) ^{2}-1}$
$\\ =\mathop{\lim }\limits_{x \rightarrow 1}\frac{ \left( \left( 1+x \right) ^{2}-1 \right) \left[ \left( 1+x \right) ^{4}+ \left( 1+x \right) ^{2}+1 \right] }{ \left( 1+x \right) ^{2}-1} \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow 1} \left( 1+x \right) ^{4}+ \left( 1+x \right) ^{2}+1 \\\\ =2^{4}+2^{2}+1=21$
Question 6
Answer:
Given that $\mathop{\lim }\limits_{x \rightarrow a}\frac{ \left( 2+x \right) ^{\frac{5}{2}}- \left( 2+a \right) ^{\frac{5}{2}}}{x-a}$
$=\mathop{\lim }\limits_{y \rightarrow a+2}\frac{ \left( y \right) ^{\frac{5}{2}}- \left( 2+a \right) ^{\frac{5}{2}}}{y- \left( a+2 \right) }=\frac{5}{2} \left( a+2 \right) ^{\frac{5}{2}-1}=\frac{5}{2} \left( a+2 \right) ^{\frac{3}{2}}$ $\left [\text{using} \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n \cdot a^{n-1}\right]$
Question 7
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 1}\frac{x^{4}-\sqrt {x}}{\sqrt {x}-1}$
Answer:
$Given~\mathop{\lim }\limits_{x \rightarrow 1}\frac{x^{4}-\sqrt {x}}{\sqrt {x}-1}=\mathop{\lim }\limits_{x \rightarrow 1}\frac{ \left( x^{4}-\sqrt {x} \right) \left( \sqrt {x}+1 \right) }{ \left( \sqrt {x}-1 \right) \left( \sqrt {x}+1 \right) }$
$\\ =\mathop{\lim }\limits_{x \rightarrow 1}\frac{x^{4}\sqrt {x}+x^{4}-x-\sqrt {x}}{x-1} \\ \\ =\mathop{\lim }\limits_{x \rightarrow 1}\frac{\sqrt {x} \left( x^{4}-1 \right) +x \left( x^{3}-1 \right) }{x-1} \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow 1}\frac{ \left( x-1 \right) \left( \sqrt {x} \left( x^{3}+x^{2}+x+1 \right) +x \left( x^{2}+x+1 \right) \right) }{x-1} \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 1}\sqrt {x} \left( x^{3}+x^{2}+x+1 \right) +x \left( x^{2}+x+1 \right) \\ \\ =1 ×4+1 ×3=7 \\ \\$
Question 8
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 2}\frac{x^{2}-4}{\sqrt {3x-2}-\sqrt {x+2} }$
Answer:
Given $\mathop{\lim }\limits_{x \rightarrow 2}\frac{x^{2}-4}{\sqrt {3x-2}-\sqrt {x+2}}=\mathop{\lim }\limits_{x \rightarrow 2}\frac{x^{2}-4}{ \left( \sqrt {3x-2}-\sqrt {x+2} \right) } \times\frac{\sqrt {3x-2}+\sqrt {x+2}}{\sqrt {3x-2}+\sqrt {x+2}} \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 2}\frac{x^{2}-4}{ \left( 3x-2-x-2 \right) } \times \left( \sqrt {3x-2}+\sqrt {x+2} \right) \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow 2}\frac{ \left( x-2 \right) \left( x+2 \right) }{2 \left( x-2 \right) } \times \left( \sqrt {3x-2}+\sqrt {x+2} \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 2}\frac{ \left( x+2 \right) }{2} \times \left( \sqrt {3x-2}+\sqrt {x+2} \right) $
$=\frac{4}{2} \times \left( \sqrt {3 \times2-2}+\sqrt {2+2} \right) =8 \\ \\$
Question 9
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow \sqrt {2}}\frac{x^{2}-4}{x^{2}+3\sqrt {2}x-8} \\$
Answer:
$\begin{aligned} &=\lim _{x \rightarrow \sqrt{2}} \frac{\left(x^{2}-2\right)\left(x^{2}+2\right)}{x^{2}+4 \sqrt{2} x-\sqrt{2} x-8}\\ &=\lim _{x \rightarrow \sqrt{2}} \frac{(x+\sqrt{2})(x-\sqrt{2})\left(x^{2}+2\right)}{x(x+4 \sqrt{2})-\sqrt{2}(x+4 \sqrt{2})}\\ &=\lim _{x \rightarrow \sqrt{2}} \frac{(x+\sqrt{2})(x-\sqrt{2})\left(x^{2}+2\right)}{(x+4 \sqrt{2})(x-\sqrt{2})}\\&=\lim _{x \rightarrow \sqrt{2}} \frac{(x+\sqrt{2})\left(x^{2}+2\right)}{x+4 \sqrt{2}}\\ &\text { Put limit }\\ &=\frac{(\sqrt{2}+\sqrt{2})(2+2)}{\sqrt{2}+4 \sqrt{2}}\\&=\frac{2 \sqrt{2} \times 4}{5 \sqrt{2}}=\frac{8}{5} \end{aligned}$
Question 10
Answer:
Let us apply the LH rule, i.e. L.Hospita's rule, to this question
$\\ ~~\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{x^{7}-2x^{5}+1}{x^{3}-3x^{2}+2} \right) \\ \\ \mathop{\lim }\limits_{x \rightarrow a} \left( \frac{f \left( x \right) }{g \left( x \right) } \right) =\mathop{\lim }\limits_{x \rightarrow a} \left( \frac{f^{'} \left( x \right) }{g^{'} \left( x \right) } \right) \\$
$ \\ \mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{x^{7}-2x^{5}+1}{x^{3}-3x^{2}+2} \right) =\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{7x^{6}-10x^{4}}{3x^{2}-6x} \right) =\frac{7-10}{3-6}=1 \\ \\$
Question 11
Answer:
$\text{Given that }\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sqrt {1+x^{3}}-\sqrt {1-x^{3}}}{x^{2}} \right) \\ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sqrt {1+x^{3}}-\sqrt {1-x^{3}}}{x^{2}} ×\frac{\sqrt {1+x^{3}}+\sqrt {1-x^{3}}}{\sqrt {1+x^{3}}+\sqrt {1-x^{3}}} \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1+x^{3}-1+x^{3}}{x^{2}} ×\frac{1}{\sqrt {1+x^{3}}+\sqrt {1-x^{3}}} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2x}{\sqrt {1+x^{3}}+\sqrt {1-x^{3}}} \right) =0 \\ \\$
Question 12
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow -3} \left( \frac{x^{3}+27}{x^{5}+243} \right)$
Answer:
$\begin{aligned} &=\lim _{x \rightarrow -3} \frac{\frac{x^{3}+(3)^{3}}{x+3}}{\frac{x^{3}+(3)^{3}}{x+3}} \text { [Dividing the numerator and denominator by } \left.x+3\right]\\ &=\frac{\lim _{x \rightarrow -3}\left(\frac{x^{3}+(3)^{3}}{x+3}\right)}{\lim _{x \rightarrow -3}\left(\frac{x^{3}+(3)^{5}}{x+3}\right)}\left[\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\right]\\ &=\frac{\lim _{x \rightarrow -3}\left(x^2-3x+9\right)}{\lim _{x \rightarrow -3}\left( x^4 - 3x^3 + 9x^2 - 27x + 81\right)} \\ &=\frac{9+9+9}{81+81+81+81+81}=\frac{3 \times 9}{5 \times 81 }=\frac{1}{5 \times 3}=\frac{1}{15} \end{aligned}$
Question 13
Answer:
Given $\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \frac{8x-3}{2x-1}-\frac{4x^{2}+1}{4x^{2}-1} \right) \\ \\$
$\\=\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \left( \frac{1}{2x+1} \right) \times \left( \frac{ \left( 8x-3 \right) \left( 2x+1 \right) -4x^{2}-1}{2x-1} \right) \right) $
$ =\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \left( \frac{1}{2x+1} \right) \times \left( \frac{12x^{2}+2x-4}{2x-1} \right) \right) \\ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \left( \frac{1}{2x+1} \right) \times \left( \frac{12x^{2}+8x-6x-4}{2x-1} \right) \right) $
$ =\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \left( \frac{1}{2x+1} \right) \times \left( \frac{ \left( 3x+2 \right) \left( 4x-2 \right) }{2x-1} \right) ~ \right) \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow \frac{1}{2}} \left( \left( \frac{1}{2x+1} \right) \times2 \left( 3x+2 \right) ~ \right) $
$=\frac{1}{2 \times\frac{1}{2}+1} \times2 \times \left( 3 \times\frac{1}{2}+2 \right) =\frac{7}{2} \\ \\$
Question 14
Answer:
$\\ \text{We know that }\mathop{\lim }\limits_{x \rightarrow 2} \left( \frac{x^{n}-2^{n}}{x-2} \right) =n \left( 2 \right) ^{n-1} \\ $
$\\ \\n \left( 2 \right) ^{n-1}=80 \\ $
$\\ n= 5 \times \left( 2 \right) ^{5-1}=5 \times16=80 \\ \\$
Question 15
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow a} \left( \frac{\sin 3x}{\sin 7x} \right) \\$
Answer:
Given $\mathop{\lim }\limits_{x \rightarrow a} \left( \frac{\sin 3x}{\sin 7x} \right) =\frac{\sin 3a}{\sin 7a} \\ \\$
Question 16
Answer:
Given:
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin ^{2}2x}{\sin ^{2}4x} \right) $
$ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{ \left( \frac{\sin 2x}{2x} ×2x \right) ^{2}}{ \left( \frac{\sin 4x}{4x} ×4x \right) ^{2}} \right) $
$=\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{4}{16} ×\frac{ \left( \frac{\sin 2x}{2x} \right) ^{2}}{ \left( \frac{\sin 4x}{4x} \right) ^{2}} \right)$
$ =\frac{4}{16}=\frac{1}{4} \\ \\$
Question 17
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1-\cos 2x}{x^{2}} \right)$
Answer:
Given that
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1-\cos 2x}{x^{2}} \right) =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin ^{2}x}{x^{2}} \right) =\mathop{\lim }\limits_{x \rightarrow 0} \left( 2 × \left( \frac{\sin x}{x} \right) ^{2} \right) =2 \\ \\$
Question 18
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin x-\sin 2x}{x^{3}} \right) \\$
Answer:
Given:
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin x-\sin 2x}{x^{3}} \right) $
$=\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin x \left( 1-\cos x \right) }{x^{3}} \right)$
$ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin x \left( 2\sin ^{2}\frac{x}{2} \right) }{x^{3}} \right) \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( 2 ×\frac{\sin x}{x} ×2 × \left( \frac{\sin \frac{x}{2}}{\frac{x}{2}} \right) ^{2} ×\frac{1}{4} \right) =1 \\ \\$
Question 19
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1-\cos mx}{1-\cos nx} \right) \\$
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1-\cos mx}{1-\cos nx} \right) =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin ^{2}\frac{mx}{2}}{\sin ^{2}\frac{nx}{2}} \right) $
$ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\frac{\sin ^{2}\frac{mx}{2}}{ \left( \frac{mx}{2} \right) ^{2}} × \left( \frac{mx}{2} \right) ^{2}}{\frac{\sin ^{2}\frac{nx}{2}}{ \left( \frac{nx}{2} \right) ^{2}} × \left( \frac{nx}{2} \right) ^{2}} \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\frac{\sin ^{2}\frac{mx}{2}}{ \left( \frac{mx}{2} \right) ^{2}} ×m^{2}}{\frac{\sin ^{2}\frac{nx}{2}}{ \left( \frac{nx}{2} \right) ^{2}} ×n^{2}} \right) $
$=\frac{m^{2}}{n^{2}} \\ \\$
Question 20
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{3}}\frac{\sqrt {1-\cos 6x}}{\sqrt {2} \left( \frac{ \pi }{3}-x \right) }$
Here
$\cos 6x= 1-2\sin ^{2}3x \\ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{3}}\frac{\sqrt {2\sin ^{2}3x}}{\sqrt {2} \left( \frac{ \pi }{3}-x \right) }$
$=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{3}}\frac{ \vert \sin 3x \vert }{ \left( \frac{ \pi -3x}{3} \right) }=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{3}}\frac{ \vert \sin \left( \pi -3x \right) \vert }{ \left( \frac{ \pi -3x}{3} \right) } $
$=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{3}}3 ×\frac{ \vert \sin \left( \pi -3x \right) \vert }{ \pi -3x}=3 ×1=3 \\$
Question 21
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}}\frac{\sin x-\cos x}{x-\frac{ \pi }{4}}$
$=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}}\frac{\sqrt {2} \left( \sin x\cos \frac{ \pi }{4}-\cos x\sin \frac{ \pi }{4} \right) }{x-\frac{ \pi }{4}}$
$=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}}\frac{\sqrt {2}\sin \left( x-\frac{ \pi }{4} \right) }{x-\frac{ \pi }{4}}$
$= \sqrt {2} \\ \\$
Question 22
Answer:
$\\\text{Given that }\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{\sqrt {3}\sin x-\cos x}{x-\frac{ \pi }{6}}$
$=\\\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{2 \left( \frac{\sqrt {3}}{2}\sin x-\frac{1}{2}\cos x \right) }{x-\frac{ \pi }{6}}$
$=\\ \mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{2 \left( \cos \frac{ \pi }{6}\sin x-\sin \frac{ \pi }{6}\cos x \right) }{x-\frac{ \pi }{6}} \\ \\$
$=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{2\sin \left( x-\frac{ \pi }{6} \right) }{x-\frac{ \pi }{6}}=2 \\ \\$
Question 23
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow 0}\frac{\sin 2x+3x}{2x+\tan 3x} \\$
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow 0}\frac{\sin 2x+3x}{2x+\tan 3x} $
$=\mathop{\lim }\limits_{x \rightarrow 0}\frac{2x ×\frac{\sin 2x}{2x}+3x}{2x+3x ×\frac{\tan 3x}{3x}} $
$ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{x \left( 2 ×\frac{\sin 2x}{2x}+3 \right) }{x \left( 2+3 ×\frac{\tan 3x}{3x} \right) } \\ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( 2 ×\frac{\sin 2x}{2x}+3 \right) }{ \left( 2+3 ×\frac{\tan 3x}{3x} \right) } $
$ =\frac{2+3}{2+3}=\frac{5}{5}=1 \\ \\$
Question 24
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow a}\frac{\sin x-\sin a}{\sqrt {x}-\sqrt {a}} \\$
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow a}\frac{\sin x-\sin a}{\sqrt {x}-\sqrt {a}} $
$ =\mathop{\lim }\limits_{x \rightarrow a}\frac{ \left( \sin x-\sin a \right) \left( \sqrt {x}+\sqrt {a} \right) }{ \left( \sqrt {x}-\sqrt {a} \right) \left( \sqrt {x}+\sqrt {a} \right) } $
$=\mathop{\lim }\limits_{x \rightarrow a}\frac{ \left( \sin x-\sin a \right) \left( \sqrt {x}+\sqrt {a} \right) }{ \left( x-a \right) } \\ \\$
$\\=\mathop{\lim }\limits_{x \rightarrow a}\frac{ \left( 2\cos \left( \frac{x+a}{2} \right) \sin \left( \frac{x-a}{2} \right) \right) \left( \sqrt {x}+\sqrt {a} \right) }{ \left( x-a \right) } \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow a}\cos \left( \frac{x+a}{2} \right) \frac{\sin \left( \frac{x-a}{2} \right) }{\frac{x-a}{2}} \left( \sqrt {x}+\sqrt {a} \right) $
$ =\cos \left( a \right) ×1 × \left( 2\sqrt {a} \right) $
$=2\sqrt {a}\cos a \\ \\$
Question 25
Evaluate:
$\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{\cot ^{2}x-3}{cosec x-2} \\$
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{\cot ^{2}x-3}{cosec x-2} \\ \\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{cosec^{2}x-1-3}{cosec x-2} \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{cosec^{2}x-1-3}{cosec x-2} \\ \\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}}\frac{ \left( cosecx-2 \right) \left( cosecx+2 \right) }{cosec x-2}$
$\\ \\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{6}} \left( cosecx+2 \right) =2+2=4 \\ \\$
Question 26
Answer:
$\\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \sqrt {2}-\sqrt {1+\cos x} \right) }{\sin ^{2}x} \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \sqrt {2}-\sqrt {1+\cos x} \right) \left( \sqrt {2}+\sqrt {1+\cos x} \right) }{\sin ^{2}x \left( \sqrt {2}+\sqrt {1+\cos x} \right) } \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( 2- \left( 1+\cos x \right) \right) }{\sin ^{2}x \left( \sqrt {2}+\sqrt {1+\cos x} \right) } \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{1-\cos x}{\sin ^{2}x \left( \sqrt {2}+\sqrt {1+\cos x} \right) } \\ \\$
$\\=\mathop{\lim }\limits_{x \rightarrow 0}\frac{1-\cos x}{ \left( 1-\cos x \right) \left( 1+\cos x \right) \left( \sqrt {2}+\sqrt {1+\cos x} \right) } \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{1}{ \left( 1+\cos x \right) \left( \sqrt {2}+\sqrt {1+\cos x} \right) } \\ \\ =\frac{1}{ \left( 1+1 \right) × \left( 2\sqrt {2} \right) }=\frac{1}{4\sqrt {2}} \\ \\$
Question 27
Answer:
$. \\ \text{Given that }\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x-2\sin 3x+\sin 5x}{x} \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x}{x}-\frac{2\sin 3x}{3x} ×3+\frac{\sin 5x}{5x} ×5 \right) =1-2 ×3+5=0 \\ \\$
Question 28
Answer:
$\\ \text{Given that }$
$\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{x^{4}-1}{x-1} \right) =4 \left( 1 \right) ^{4-1}=4 \\ \\ \mathop{\lim }\limits_{x \rightarrow k} \left( \frac{x^{3}-k^{3}}{x^{2}-k^{2}} \right)$
$ =\mathop{\lim }\limits_{x \rightarrow k} \left( \frac{ \left( x-k \right) \left( x^{2}+k^{2}+xk \right) }{ \left( x-k \right) \left( x+k \right) } \right) =\mathop{\lim }\limits_{x \rightarrow k} \left( \frac{x^{2}+k^{2}+xk}{x+k} \right) \\=\frac{3k}{2} \\ \\$
$\frac{3k}{2}=4 \\ \\ k=8/3 \\ \\$
Question 29
Differentiate each of the functions w.r.t x in
$\frac{x^{4}+x^{3}+x^{2}+1}{x}$
Answer:
$\\\text{ Let y}=\frac{x^{4}+x^{3}+x^{2}+1}{x} \\ \\ \frac{dy}{dx}=\frac{d \left( x^{3} \right) }{dx}+\frac{d \left( x^{2} \right) }{dx}+\frac{d \left( x \right) }{dx}+\frac{d \left( x^{-1} \right) }{dx} \\$
$ \\ =3x^{2}+2x+1-\frac{1}{x^{2}} \\ \\ =\frac{3x^{4}+2x^{3}+x^{2}-1}{x^{2}} \\ \\$
Question 30
Differentiate each of the functions w.r. to x in
$\left(x+\frac{1}{x}\right)^{3}$
Answer:
Let y= $\left( x+\frac{1}{x} \right) ^{3} \\ \\$
$\\ \frac{dy}{dx}=\frac{d}{dx} \left( x+\frac{1}{x} \right) ^{3}=3 \left( x+\frac{1}{x} \right) ^{2} \left( 1-\frac{1}{x^{2}} \right) \\ $
$\\ =3 \left( x^{2}+2+\frac{1}{x^{2}} \right) \left( 1-\frac{1}{x^{2}} \right) \\$
$ \\ =3 \left( x^{2}+2+\frac{1}{x^{2}}-1-\frac{2}{x^{2}}-\frac{1}{x^{4}} \right) \\$
$ \\ =3x^{2}+3-\frac{3}{x^{2}}-\frac{3}{x^{4}} \\ \\$
Question 31
Differentiate each of the functions w.r. to x in
$(3x + 5) (1 + \tan x)$
Answer:
Given that $y= \left( 3x+5 \right) \left( 1+\tan x \right) ~ \\ \\$
Applying product rule of differentiation we get
$\\ \frac{dy}{dx}= \left( 1+\tan x \right) \frac{d}{dx} \left( 3x+5 \right) + \left( 3x+5 \right) \frac{d}{dx} \left( 1+\tan x \right) \\ $
$\\ =3 \left( 1+\tan x \right) + \left( 3x+5 \right) \sec ^{2}x \\ \\$
Question 32
Differentiate each of the functions w.r. to x in
$(\sec x - 1) (\sec x + 1)$
Answer:
y= $\left( \sec x-1 \right) \left( \sec x+1 \right) =\sec ^{2}x-1=\tan ^{2}x~ \\ \\$
Now applying the concept of chain rule
$\frac{dy}{dx}=\frac{d \left( \tan ^{2}x \right) }{dx}=2\tan x\sec ^{2}x \\ \\$
Question 33
Differentiate each of the functions w.r. to x in
$\frac{3x+4}{5x^{2}-7x+9 }\\$
Answer:
Given that $y=\frac{3x+4}{5x^{2}-7x+9} \\ \\$
Applying division rule of differentiation that is
$\\ \frac{dy}{dx}=\frac{d}{dx} \left( \frac{3x+4}{5x^{2}-7x+9} \right) \\$
$ \\ =\frac{ \left( 5x^{2}-7x+9 \right) \frac{d}{dx} \left( 3x+4 \right) - \left( 3x+4 \right) \frac{d}{dx} \left( 5x^{2}-7x+9 \right) }{ \left( 5x^{2}-7x+9 \right) ^{2}} \\ $
$\\ =\frac{ \left( 5x^{2}-7x+9 \right) \left( 3 \right) - \left( 3x+4 \right) \left( 10x-7 \right) }{ \left( 5x^{2}-7x+9 \right) ^{2}} \\$
$ \\ =-\frac{5 \left( 3x^{2}+8x-11 \right) }{ \left( 5x^{2}-7x+9 \right) ^{2}} \\$
$\\ =\frac{5 \left( 3x+11 \right) \left( 1-x \right) }{ \left( 5x^{2}-7x+9 \right) ^{2}} \\ \\$
Question 34
Differentiate each of the functions w.r. to x in
$\frac{x^{5}-\cos x}{\sin x} \\$
Answer:
Given that $y=\frac{x^{5}-\cos x}{\sin x}=\frac{x^{5}}{\sin x}-\frac{\cos x}{\sin x} \\ \\$
Applying division rule of differentiation that is
$\\ \frac{dy}{dx}=\frac{\sin x\frac{d}{dx} \left( x^{5} \right) -x^{5}\frac{d}{dx} \left( sinx \right) }{\sin ^{2}x}-\frac{d}{dx} \left( \cot x \right) \\ \\ =\frac{5x^{4}\sin x-x^{5}\cos x}{\sin ^{2}x}+\mathrm{cosec} ^{2}x \\ \\$
Question 35
Differentiate each of the functions w.r. to x in
$\frac{x^{2}\cos \frac{ \pi }{4}}{\sin x }$
Answer:
$y=\frac{x^{2}\cos \frac{ \pi }{4}}{\sin x} \\ \\$
Applying division rule of differentiation that is
$\\ \frac{dy}{dx}=\frac{\cos \frac{ \pi }{4} \left( \sin x\frac{d}{dx} \left( x^{2} \right) -x^{2}\frac{d}{dx} \left( \sin x \right) \right) }{\sin ^{2}x} \\ \\ =\frac{1}{\sqrt {2}} \left( \frac{2x\sin x-x^{2}\cos x}{\sin ^{2}x} \right) \\ \\$
Question 36
Differentiate each of the functions w.r. to x in

Answer:
Given that $y= \left( ax^{2}+\cot x \right) \left( p+q\cos x \right) ~~~ \\ \\$
Applying the division rule of differentiation that is
$\frac{dy}{dx}= \left( p+q\cos x \right) \frac{d}{dx} \left( ax^{2}+\cot x \right) + \left( ax^{2}+\cot x \right) \frac{d}{dx} \left( p+q\cos x \right) \\ \\$
$= \left( p+q\cos x \right) \left( 2ax-cosec^{2}x \right) + \left( ax^{2}+\cot x \right) \left( -q\sin x \right) \\ \\$
Question 37
Differentiate each of the functions w.r. to x in
$\left( \frac{a+b\sin x}{c+d\cos x} \right)$
Answer:
Given that$y= \left( \frac{a+b\sin x}{c+d\cos x} \right) \\ \\$
Applying division rule of differentiation that is
$\\ \frac{dy}{dt}=\frac{ \left( c+d\cos x \right) \frac{d}{dx} \left( a+b\sin x \right) - \left( a+b\sin x \right) \frac{d}{dx} \left( c+d\cos x \right) }{ \left( c+d\cos x \right) ^{2}} \\ \\ =\frac{b\cos x \left( c+d\cos x \right) - \left( -d\sin x \right) \left( a+b\sin x \right) }{ \left( c+d\cos x \right) ^{2}} \\ \\$
$=\frac{bc\cos x+bd\cos ^{2}x+ad\sin x+bd\sin ^{2}x}{ \left( c+d\cos x \right) ^{2}}=\frac{bd+bc\cos x+ad\sin x}{ \left( c+d\cos x \right) ^{2}} \\ \\$
Question 38
Differentiate each of the functions w.r. to x in
$(\sin x+\cos x)^2$
Answer:
Given that
$\\y= \left( \sin x+\cos x \right) ^{2}=\sin ^{2}x+\cos ^{2}x+2\sin x\cos x=1+2\sin x\cos x\\=1+\sin 2x~ \\ \\$
Applying the concept of chain rule
$\frac{dy}{dx}=\frac{d}{dx} \left( 1+\sin 2x \right) =0+2 ×\cos 2x=2\cos 2x=2 \left( \cos ^{2}x-\sin ^{2}x \right) \\ \\$
Question 39
Differentiate each of the functions w.r. to x in
$(2 x-7)^2(3 x+5)^3$
Answer:
This question will involve the concept of both the chain rule and the product rule
Given that $y= \left( 2x-7 \right) ^{2} \left( 3x+5 \right) ^{3}~ \\ \\$
Applying the product rule of differentiation
$\\ \frac{dy}{dx}= \left( 3x+5 \right) ^{3}\frac{d}{dx} \left( 2x-7 \right) ^{2}+ \left( 2x-7 \right) ^{2}\frac{d}{dx} \left( 3x+5 \right) ^{3} \\ $
$\\ = \left( 3x+5 \right) ^{3} ×2 × \left( 2x-7 \right) ×2+ \left( 2x-7 \right) ^{2} ×3 × \left( 3x+5 \right) ^{2} ×3 \\$
$ \\ = \left( 2x-7 \right) \left( 3x+5 \right) ^{2} \left[ 4 \left( 3x+5 \right) +9 \left( 2x-7 \right) \right] $
$ = \left( 2x-7 \right) \left( 3x+5 \right) ^{2} \left( 30x-43 \right) \\ \\$
Question 40
Differentiate each of the functions w.r. to x in
$x^{2} sinx + cos2x$
Answer:
This question will involve the concept of both chain rule and product rule
$\\Given \: \: that\: \: y=x^{2}\sin x+\cos 2x \\$
$ \\ \frac{dy}{dx}=\frac{d}{dx} \left( x^{2}\sin x \right) +\frac{d}{dx} \left( \cos 2x \right) \\ $
$\\ =\sin x\frac{d}{dx} \left( x^{2} \right) +x^{2}\frac{d}{dx} \left( \sin x \right) +\frac{d}{dx} \left( \cos 2x \right) \\ \\ =2x\sin x+x^{2}\cos x-2\sin 2x \\ \\$
Question 41
Differentiate each of the functions w.r.to x in
$sin ^{3}x cos ^{3}x $
Answer:
The question involves the concept of chain rule
$\\Given\: \: that \: \: y=\sin ^{3}x\cos ^{3}x \\ \\ y=\frac{1}{8} \left( 2\sin x\cos x \right) ^{3}$
$=\frac{1}{8}\sin ^{3}2x \\ \\ \frac{dy}{dx}=\frac{3}{8}\sin ^{2}2x \left( 2\cos 2x \right) =\frac{3}{4}\sin ^{2}2x\cos 2x \\ \\$
Question 42
Differentiate each of the functions w.r. to x in
$\frac{1}{ax^{2}+bx+c}$
Answer:
The question involves the concept of chain rule
$\\ Given\: \: that\: \: y=\frac{1}{ax^{2}+bx+c}= \left( ax^{2}+bx+c \right) ^{-1} \\ $
$\\ \frac{dy}{dx}=-1 \left( ax^{2}+bx+c \right) ^{-2} \left( 2ax+b \right) =-\frac{2ax+b}{ax^{2}+bx+c} \\ \\$
Question 43
Differentiate each of the functions with respect to ‘x’Differentiate using first principle
$\cos \left(x^2+1\right)$
Answer:
$\\ \text{Let f} \left( x \right) =\cos \left( x^{2}+1 \right) \ldots \ldots .. \left( i \right) \\$
$ \\ f \left( x+ \Delta x \right) =\cos \left( \left( x+ \Delta x \right) ^{2}+1 \right) \ldots \ldots \left( ii \right) \\$
$ \\ \text{ Subtracting equation } \left( i \right) from \: \: equation \left( ii \right) \\$
$ \\ \frac{f \left( x+ \Delta x \right) -f \left( x \right) }{ \Delta x}=\frac{\cos \left( \left( x+ \Delta x \right) ^{2}+1 \right) -\cos \left( x^{2}+1 \right) }{ \Delta x} \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{\cos \left( \left( x+ \Delta x \right) ^{2}+1 \right) -\cos \left( x^{2}+1 \right) }{ \Delta x} \\ $
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{-2\sin \left[ \frac{ \left( x+ \Delta x \right) ^{2}+1-x^{2}-1}{2} \right] \sin \left[ \frac{ \left( x+ \Delta x \right) ^{2}+1+x^{2}+1}{2} \right] }{ \Delta x} \\ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{-2\sin \left[ \frac{2x \Delta x+ \left( \Delta x \right) ^{2}}{2} \right] \sin \left[ \frac{2x^{2}+2x \Delta x+2}{2} \right] }{ \Delta x} \\$
$ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{2x+ \Delta x}{2} \right) \left( ~\frac{-2\sin \left[ \frac{2x \Delta x+ \left( \Delta x \right) ^{2}}{2} \right] \sin \left[ \frac{2x^{2}+2x \Delta x+2}{2} \right] }{\frac{ \Delta x \left( 2x+ \Delta x \right) }{2}} \right) \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{2x+ \Delta x}{2} \right) \left( -2\sin \left[ \frac{2x^{2}+2x \Delta x+2}{2} \right] \right) \left( ~\frac{\sin \left[ \frac{2x \Delta x+ \left( \Delta x \right) ^{2}}{2} \right] }{\frac{ \Delta x \left( 2x+ \Delta x \right) }{2}} \right) \\$
$ \\ =- \left( \frac{2x+0}{2} \right) \left( 2\sin \left( x^{2}+0+1 \right) \right) \left( 1 \right) =-2x\sin \left( x^{2}+1 \right) \text{is the required answer} \\ \\$
Question 44
Answer:
$\\ \text{Let f} \left( x \right) =\frac{ax+b}{cx+d} \ldots .. \left( i \right) \\$
$ \\ f \left( x+ \Delta x \right) =\frac{a \left( x+ \Delta x \right) +b}{c \left( x+ \Delta x \right) +d} \ldots \ldots \left( ii \right) \\$
$ \\ \text{Subtracting equation } \left( i \right) \text{from equation } \left( ii \right) \\ $
$\\ \frac{f \left( x+ \Delta x \right) -f \left( x \right) }{ \Delta x}=\frac{\frac{a \left( x+ \Delta x \right) +b}{c \left( x+ \Delta x \right) +d}-\frac{ax+b}{cx+d}}{ \Delta x}~ \\ \\$
$\\ \text{Taking the limit} \\ \\ f^{'} \left( x \right) =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{\frac{a \left( x+ \Delta x \right) +b}{c \left( x+ \Delta x \right) +d}-\frac{ax+b}{cx+d}}{ \Delta x} \\ $
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{\frac{ \left( cx+d \right) \left( ax+a \Delta x+b \right) - \left( ax+b \right) \left( cx+c \Delta x+d \right) }{ \left( cx+c \Delta x+d \right) \left( cx+d \right) }}{ \Delta x} \\$
$ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{ \left( ad-bc \right) \Delta x}{ \left( cx+c \Delta x+d \right) \left( cx+d \right) \Delta x} \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{ \left( ad-bc \right) }{ \left( cx+c \Delta x+d \right) \left( cx+d \right) }= \frac{ad-bc}{ \left( cx+d \right) ^{2}}\text{ is the required answer} \\ \\$
Question 45
Answer:
$\\ f^{'} \left( x \right) =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{ \left( x+ \Delta x \right) ^{\frac{2}{3}}-x^{\frac{2}{3}}}{ \Delta x} \\ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{x^{\frac{2}{3}} \left[ \left( 1+\frac{ \Delta x}{x} \right) ^{\frac{2}{3}}-1 \right] }{ \Delta x} \\ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{x^{\frac{2}{3}} \left[ \left( 1+\frac{2}{3}\frac{ \Delta x}{x}+ \ldots \right) -1 \right] }{ \Delta x} \\ \\$
Expanding by binomial theorem and rejecting the higher powers of $\Delta x \: \: as\: \: \Delta x \rightarrow 0 \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{x^{\frac{2}{3}} \left( \frac{2}{3}\frac{ \Delta x}{x} \right) }{ \Delta x}=\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{2}{3}\frac{x^{\frac{2}{3}}}{x} \right) =\frac{2}{3}x^{-\frac{1}{3}}$
Question 46
Differentiate each of the functions with respect to ‘x’
Differentiate using first principle x cos x.
Answer:
$\\ Given\: \: that\: \: y=x\cos x \ldots . \left( i \right) \\$
$ \\ y+ \Delta y= \left( x+ \Delta x \right) \cos \left( x+ \Delta x \right) \ldots . \left( ii \right) ~ \\ $
$\\ \text{ Subtracting equation } \left( i \right) from equation \left( ii \right) \\ $
$\\ y^{'}=\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{ \left( \left( x+ \Delta x \right) \cos \left( x+ \Delta x \right) -x\cos x \right) }{ \Delta x} \right) \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{x\cos \left( x+ \Delta x \right) -x\cos x}{ \Delta x} \right) +\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{ \Delta x\cos \left( x+ \Delta x \right) }{ \Delta x} \right) \\$
$ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0} \left( \frac{x \left( -2\sin \frac{x+ \Delta x-x}{2}\sin \frac{x+ \Delta x+x}{2} \right) }{ \Delta x} \right) +\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\cos \left( x+ \Delta x \right) \\$
$ \\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\frac{- \left( 2\sin \left( x+\frac{ \Delta x}{2} \right) \sin \left( \frac{ \Delta x}{2} \right) x \right) }{ \Delta x}+\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\cos \left( x+ \Delta x \right) \\ \\$
$\\ =\mathop{\lim }\limits_{ \Delta x \rightarrow 0}-x\sin \left( x+\frac{ \Delta x}{2} \right) \frac{ \left( \sin \left( \frac{ \Delta x}{2} \right) \right) }{\frac{ \Delta x}{2}}+\mathop{\lim }\limits_{ \Delta x \rightarrow 0}\cos \left( x+ \Delta x \right) \\ \\ =-x\sin x+\cos x \\ \\$
Question 47
Answer:
$\\ \text{Given that}$
$\mathop{\lim }\limits_{y \rightarrow 0}\frac{ \left( x+y \right) \sec \left( x+y \right) -x\sec x}{y}=\mathop{\lim }\limits_{y \rightarrow 0} \left( \frac{x\sec \left( x+y \right) -x\sec x}{y}+\frac{y\sec \left( x+y \right) }{y} \right) \\$
$ \\ =\mathop{\lim }\limits_{y \rightarrow 0} \left( \frac{x}{y} \left[ \frac{\cos x-\cos \left( x+y \right) }{\cos x\cos \left( x+y \right) } \right] +\sec \left( x+y \right) \right) \\ $
$\\ =\mathop{\lim }\limits_{y \rightarrow 0} \left( \frac{x}{y} \left[ \frac{-2\sin \left( x+\frac{y}{2} \right) \sin \left( \frac{-y}{2} \right) }{\cos x\cos \left( x+y \right) } \right] +\sec \left( x+y \right) \right) \\ \\$
$\\ =\mathop{\lim }\limits_{y \rightarrow 0} \left( \frac{x\sin \left( x+\frac{y}{2} \right) }{\cos x\cos \left( x+y \right) } \left[ \frac{\sin \left( \frac{y}{2} \right) }{\frac{y}{2}} \right] +\sec \left( x+y \right) \right) \\ \\ =x\sec x\tan x+\sec x \\ \\ =\sec x \left( x\tan x+1 \right) \\ \\$
Question 48
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ \sin \left( \alpha + \beta \right) x+\sin \left( \alpha - \beta \right) x+\sin 2 \alpha x \right] }{\cos 2 \beta x-\cos 2 \alpha x}x \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ 2\sin \alpha x\cos \beta x+2\sin \alpha x\cos \alpha x \right] }{ \left[ 2\sin \left( \alpha + \beta \right) x~\sin \left( \alpha - \beta \right) x \right] }x \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ \sin \alpha x \left( \cos \beta x+\cos \alpha x \right) \right] }{ \left[ \sin \left( \alpha + \beta \right) x~\sin \left( \alpha - \beta \right) x \right] }x \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ \sin \alpha x \left( 2\cos \frac{ \left( \alpha + \beta \right) x}{2}\cos \frac{ \left( \alpha - \beta \right) x}{2} \right) \right] }{ \left[ \sin \left( \alpha + \beta \right) x~\sin \left( \alpha - \beta \right) x \right] }x \\$
$ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ \sin \alpha x \right] }{ \left[ 2\sin \frac{ \left( \alpha + \beta \right) x}{2}\sin \frac{ \left( \alpha - \beta \right) x}{2} \right] }x \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left[ \frac{\sin \alpha x}{ \alpha x} \right] × \alpha x ×x}{ \left[ 2 \left( \frac{\sin \frac{ \left( \alpha + \beta \right) x}{2}}{\frac{ \left( \alpha + \beta \right) x}{2}} \right) \left( \frac{\sin \frac{ \left( \alpha - \beta \right) x}{2}}{\frac{ \left( \alpha - \beta \right) x}{2}} \right) ×\frac{ \left( \alpha + \beta \right) x}{2} ×\frac{ \left( \alpha - \beta \right) x}{2} \right] } \\$
$ \\ =\frac{ \alpha }{2 ×\frac{ \left( \alpha + \beta \right) }{2} ×\frac{ \left( \alpha - \beta \right) }{2}}=\frac{2 \alpha }{ \alpha ^{2}- \beta ^{2}} \\ \\$
Question 49
$\\ \mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\tan ^{3}x-\tan x}{\cos \left( x+\frac{ \pi }{4} \right) } \right) =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \tan x \right) ×\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\tan ^{2}x-1}{\cos \left( x+\frac{ \pi }{4} \right) } \right) \\$
$ \\ =1 ×\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{- \left( 1-\tan x \right) \left( 1+\tan x \right) }{\cos \left( x+\frac{ \pi }{4} \right) } \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}}- \left( 1+\tan x \right) ×\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{ \left( 1-\tan x \right) }{\cos \left( x+\frac{ \pi }{4} \right) } \right) \\$
$ \\ =-2\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{ \left( \cos x-\sin x \right) }{\cos \left( x+\frac{ \pi }{4} \right) \cos x} \right) \\ \\$
$\\ =-2\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\sqrt {2} \left( \cos \frac{ \pi }{4}\cos x-\sin \frac{ \pi }{4}\sin x \right) }{\cos \left( x+\frac{ \pi }{4} \right) \cos x} \right) \\ $
$\\ =-2\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\sqrt {2} \left( \cos \left( x+\frac{ \pi }{4} \right) \right) }{\cos \left( x+\frac{ \pi }{4} \right) \cos x} \right) =-2\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\sqrt {2}}{\cos x} \right) =-4 \\ \\$
Question 50
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{1-\sin \frac{x}{2}}{\cos \frac{x}{2} \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) } \right) =\mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{1-\sin \frac{x}{2}}{\cos \frac{x}{2} \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) } \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{\cos ^{2}\frac{x}{4}+\sin ^{2}\frac{x}{4}-2\sin \frac{x}{4}\cos \frac{x}{4}}{ \left( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right) \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) } \right) \\ \\$
$\\ =\mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{ \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) ^{2}}{ \left( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right) \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) } \right) =\mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{ \left( \cos \frac{x}{4}-\sin \frac{x}{4} \right) }{ \left( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right) } \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow \pi } \left( \frac{1}{ \left( \cos \frac{x}{4}+\sin \frac{x}{4} \right) } \right) =\frac{1}{\frac{1}{\sqrt {2}}+\frac{1}{\sqrt {2}}}=\frac{1}{\sqrt {2}} \\ \\$
Question 51
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 4}\frac{ \vert x-4 \vert }{x-4} \\$
$ \\ LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{4}^{-}}\frac{-x+4}{x-4}=-1 \\$
$ \\ RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{4}^{+}}\frac{x-4}{x-4}=1~ \\$
$ \\ LHL \neq RHL \\ \\$
Hence, the limit does not exist
Question 52
Answer:
$\\ LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{\frac{ \pi }{2}}^{-}} \left( \frac{k\cos \left( \frac{ \pi }{2}-h \right) }{ \pi -2 \left( \frac{ \pi }{2}-h \right) } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{k\cos \left( \frac{ \pi }{2}-h \right) }{2h} \right) \\ \\ =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{k\sin h}{2h} \right) =\frac{k}{2} \\ $
$\\ RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{\frac{ \pi }{2}}^{+}} \left( \frac{k\cos \left( \frac{ \pi }{2}+h \right) }{ \pi -2 \left( \frac{ \pi }{2}+h \right) } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{k\cos \left( \frac{ \pi }{2}+h \right) }{-2h} \right) \\ \\$$\\=\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{-k\sin h}{-2h} \right) =\frac{k}{2} \\$
$ \\ \mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{2}}f \left( x \right) =\frac{k}{2}=3 \\ \\ k=6 \\ \\$
Question 53
Answer:
$\\ LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{-1}^{-}} \left( x+2 \right) =-1+2=1 \\ $
$\\ RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{-1}^{+}}cx^{2}=c \\$
$ \\ LHL=RHL \\$
$ \\ c=1 \\ \\$
Question 54
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow \pi }\frac{\sin x}{x- \pi }$ is
A. 1
B. 2
C. –1
D. –2
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow \pi }\frac{\sin x}{x- \pi }=\mathop{\lim }\limits_{x \rightarrow \pi }\frac{\sin \left( \pi -x \right) }{- \left( \pi -x \right) }=-1~ \\ \\ \mathop{\lim }\limits_{x \rightarrow 0}\frac{\sin x}{x}=1~~~ \\ \\ \pi -x \rightarrow 0~~~x \rightarrow \pi \\ \\$
Hence, the answer is option C
Question 55
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0}\frac{x^{2}\cos x}{1-\cos x}~$ is
A. 2
B. $\frac{3}{2}$
C. $\frac{-3}{2}$
D. 1
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0}\frac{x^{2}\cos x}{1-\cos x}=\mathop{\lim }\limits_{x \rightarrow 0}\frac{x^{2}\cos x}{2\sin ^{2}\frac{x}{2}} \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0}\frac{x^{2}\cos x}{\frac{2x^{2}}{4}\frac{\sin ^{2}\frac{x}{2}}{\frac{x^{2}}{4}}}=\mathop{\lim }\limits_{x \rightarrow 0}\frac{\cos x}{\frac{2}{4}\frac{\sin ^{2}\frac{x}{2}}{\frac{x^{2}}{4}}}=2 \\ \\$
Hence, the answer is option A
Question 56
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( 1+x \right) ^{n}-1}{x}~$ is
A. n
B. 1
C. –n
D. 0
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( 1+x \right) ^{n}-1}{x}=\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( 1+x \right) ^{n}-1^{n}}{ \left( 1+x \right) -1}=n \left( 1 \right) ^{n-1}=n \\ \\$
Hence, the answer is option A
Question 57
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 1}\frac{x^{m}-1}{x^{n}-1}$ is
A. 1
B. $\frac{m}{n}$
C. $-\frac{m}{n}$
D. $\frac{m^2}{n^2}$
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 1}\frac{x^{m}-1}{x^{n}-1} \\ \\ =\mathop{\lim }\limits_{x \rightarrow 1}\frac{\frac{x^{m}-1}{x-1}}{\frac{x^{n}-1}{x-1}}=\frac{m \left( 1 \right) ^{m-1}}{n \left( 1 \right) ^{n-1}}=\frac{m}{n} \\ \\$
Hence, the answer is option B
Question 58
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{ \theta \rightarrow 0} \left( \frac{1-\cos 4 \theta }{1-\cos 6 \theta } \right)$is
A.$\frac{4}{9}$
B.$\frac{1}{2}$
C.$-\frac{1}{2}$
D.$-1$
Answer:
$\\ \mathop{\lim }\limits_{ \theta \rightarrow 0} \left( \frac{1-\cos 4 \theta }{1-\cos 6 \theta } \right) \\ \\ =\mathop{\lim }\limits_{ \theta \rightarrow 0} \left( \frac{2\sin ^{2}2 \theta }{2\sin ^{2}3 \theta } \right) \\ \\ =\mathop{\lim }\limits_{ \theta \rightarrow 0} \left( \frac{\sin 2 \theta }{\sin 3 \theta } \right) ^{2}=\mathop{\lim }\limits_{ \theta \rightarrow 0} \left( \frac{\frac{\sin 2 \theta }{2 \theta } ×2 \theta }{ \left( \frac{\sin 3 \theta }{3 \theta } \right) ×3 \theta } \right) ^{2}=\frac{4}{9} \\ \\$
Hence, the answer is option A
Question 59
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{cosec x-\cot x}{x} \right)$ is
A. $-\frac{1}{2}$
B. 1
C. $\frac{1}{2}$
D. –1
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{cosec x-\cot x}{x} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{1-\cos x}{x\sin x} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{2\sin ^{2}x/2}{2x\sin x/2\cos x/2} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x/2}{x\cos x/2} \right) =\frac{1}{2} \\ \\$
Hence, the answer is option C
Question 60
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x}{\sqrt {x+1}-\sqrt {1-x}} \right)$ is
A. 2
B. 0
C. 1
D. –1
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x}{\sqrt {x+1}-\sqrt {1-x}} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x \left( \sqrt {x+1}+\sqrt {1-x} \right) }{ \left( \sqrt {x+1}-\sqrt {1-x} \right) \left( \sqrt {x+1}+\sqrt {1-x} \right) } \right) \\ $
$\\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x \left( \sqrt {x+1}+\sqrt {1-x} \right) }{ \left( x+1-1+x \right) } \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{\sin x \left( \sqrt {x+1}+\sqrt {1-x} \right) }{2x} \right) \\ \\ =1 \\ \\$
Hence, the answer is option C
Question 61
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\sec ^{2}x-2}{\tan x-1} \right)$ is
A. 3
B. 1
C. 0
D. $\sqrt{2}$
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\sec ^{2}x-2}{\tan x-1} \right)\\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{1+\tan ^{2}x-2}{\tan x-1} \right) \\=\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \frac{\tan ^{2}x-1}{\tan x-1} \right)\\ =\mathop{\lim }\limits_{x \rightarrow \frac{ \pi }{4}} \left( \tan x+1 \right)\\ =2 \\ \\$
Hence, the answer is option D
Question 62
A. $\frac{1}{10}$
B. $\frac{-1}{10}$
C. 1
D. None of these
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{ \left( \sqrt {x}-1 \right) \left( 2x-3 \right) }{2x^{2}+x-3} \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{ \left( \sqrt {x}-1 \right) \left( 2x-3 \right) }{ \left( 2x+3 \right) \left( x-1 \right) } \right) \\$
$ \\ =\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{ \left( \sqrt {x}-1 \right) \left( 2x-3 \right) }{ \left( 2x+3 \right) \left( \sqrt {x}-1 \right) \left( \sqrt {x}+1 \right) } \right) \\ \\ =\mathop{\lim }\limits_{x \rightarrow 1} \left( \frac{ \left( 2x-3 \right) }{ \left( 2x+3 \right) \left( \sqrt {x}+1 \right) } \right) =-\frac{1}{10} \\ \\$
Hence, the answer is option B
Question 63
Choose the correct answer out of 4 options given against each Question
If $\begin{aligned} f(x)=\frac{\sin [x]}{[x]}, &[x] \neq 0 \\ 0, &[x]=0 \end{aligned}$ where [.] denotes the greatest integer function, then $\lim_{x\rightarrow 0}f(x)$ is equal to
A. 1
B. 0
C. –1
D. None of these
Answer:
$LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{0}^{-}} \left( \frac{\sin \left[ x \right] }{ \left[ x \right] } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{\sin \left[ 0-h \right] }{ \left[ 0-h \right] } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{\sin \left[ -h \right] }{ \left[ -h \right] } \right) \\=\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{\sin \left( -1 \right) }{-1} \right) =\sin 1 \\ \\$
$RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{0}^{+}} \left( \frac{\sin \left[ x \right] }{ \left[ x \right] } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{\sin \left[ 0+h \right] }{ \left[ 0+h \right] } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{\sin \left[ h \right] }{ \left[ h \right] } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{\sin \left( 0 \right) }{0} \right) \\ \\$
Limit doesn’t exist
Hence, the answer is option D
Question 64
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0} \left( \frac{ \vert \sin x \vert }{x} \right) ~$ is
A. 1
B. –1
C. does not exist
D. None of these
Answer:
$\\ LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{0}^{-}} \left( \frac{ \vert \sin x \vert }{x} \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{ \vert \sin \left( 0-h \right) \vert }{ \left( 0-h \right) } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{-}} \left( \frac{-\sin \left( -h \right) }{-h} \right) \\=-1 \\ $
$RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{0}^{+}} \left( \frac{ \vert \sin x \vert }{x} \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{ \vert \sin \left( 0+h \right) \vert }{ \left( 0+h \right) } \right) =\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}} \left( \frac{\sin \left( h \right) }{h} \right) =1 \\ \\$
$\text{ So, limit does}n^{'}\text{t exists} \\ \\ \text{Hence, the answer is option C} \\ \\$
Question 65
Choose the correct answer out of 4 options given against each Question
Let $f(x)=\begin{array}{l} x^{2}-1,0<x<2 \\ 2 x+3,2 \leq x<3 \end{array}$ the quadratic equation whose roots are $\lim _{x \rightarrow 2} f(x) \text { and } \lim _{x \rightarrow 2} f(x)$ is
$\\A. x^{2} - 6x + 9 = 0\\ B. x^{2} -7x + 8 = 0\\ C. x^{2} - 14x + 49 = 0\\ D. x^{2} - 10x + 21 = 0 \\$
Answer:
$\\ LHL=\mathop{\lim }\limits_{x \rightarrow \mathop{2}^{-}}f \left( x \right) =\mathop{\lim }\limits_{x \rightarrow \mathop{2}^{-}} \left( x^{2}-1 \right) =3 \\ $
$\\ RHL=\mathop{\lim }\limits_{x \rightarrow \mathop{2}^{+}}f \left( x \right)$
$ =\mathop{\lim }\limits_{x \rightarrow \mathop{2}^{+}} \left( 2x+3 \right) =7 \\$
$ \\ \text{The quadratic equation whose roots are 3 and 7 are } \left( x-3 \right) \left( x-7 \right)\\ $
$=x^{2}-10x+21 \\ \\$
Hence, the answer is option D
Question 66
Choose the correct answer out of 4 options given against each Question
$\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \tan 2x-x \right) }{3x-\sin x}~$ is
A. 2
B. $\frac{1}{2}$
C. $\frac{-1}{2}$
D. $\frac{1}{4}$
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \tan 2x-x \right) }{3x-\sin x}=\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \frac{\tan 2x}{x}-1 \right) }{ \left( 3-\frac{\sin x}{x} \right) }=\mathop{\lim }\limits_{x \rightarrow 0}\frac{ \left( \frac{\text{2 tan}2x}{2x}-1 \right) }{ \left( 3-\frac{\sin x}{x} \right) }=\frac{2-1}{3-1}=\frac{1}{2} \\ \\$
Hence, the answer is option B
Question 67
Choose the correct answer out of 4 options given against each Question
Let f(x) = x – [x], $\in \mathrm{R}, \text { then } \mathrm{f}^{\prime} \frac{1}{2}$ is
A. 3/2
B. 1
C. 0
D. –1
Answer:
$\\ LHD=\mathop{\lim }\limits_{h \rightarrow 0}\frac{ \left( f \left( \frac{1}{2}-h \right) -f \left( \frac{1}{2} \right) \right) }{-h} \\ \\ =\mathop{\lim }\limits_{h \rightarrow 0}\frac{ \left( \left( \frac{1}{2}-h \right) - \left[ \left( \frac{1}{2}-h \right) \right] - \left( \frac{1}{2} \right) + \left[ \frac{1}{2} \right] \right) }{-h}=\mathop{\lim }\limits_{h \rightarrow 0}\frac{-h}{-h}=1 \\ $
$\\ RHD=\mathop{\lim }\limits_{h \rightarrow 0}\frac{ \left( f \left( \frac{1}{2}+h \right) -f \left( \frac{1}{2} \right) \right) }{h} \\ \\ =\mathop{\lim }\limits_{h \rightarrow 0}\frac{ \left( \left( \frac{1}{2}+h \right) - \left[ \left( \frac{1}{2}+h \right) \right] - \left( \frac{1}{2} \right) + \left[ \frac{1}{2} \right] \right) }{h}=\mathop{\lim }\limits_{h \rightarrow 0}\frac{h}{h}=1 \\ \\$
Hence, the answer is option B
Question 68
Choose the correct answer out of 4 options given against each Question
If $If\: \: y=\sqrt {x}+\frac{1}{x}, then \frac{dy}{dx}$ at x = 1 is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. 0
Answer:
$\\ y=\sqrt {x}+\frac{1}{x} \\ \\ \frac{dy}{dx}=\frac{1}{2\sqrt {x}}-\frac{1}{x^{2}} \\ $
$\\ \left( \frac{dy}{dx} \right) _{x=1}=\frac{1}{2}-1=-\frac{1}{2} \\ \\$
Hence, the answer is option D
Question 69
Choose the correct answer out of 4 options given against each Question
If $~f \left( x \right) =\frac{x-4}{2\sqrt {x}}$ then f’(1) is
A. $\frac{5}{4}$
B. $\frac{4}{5}$
C. 1
D. 0
Answer:
$\\ f \left( x \right) =\frac{x-4}{2\sqrt {x}} \\$
$ \\ f^{'} \left( x \right) =\frac{1}{2} \left[ \frac{\sqrt {x} ×1- \left( x-4 \right) ×\frac{1}{2\sqrt {x}}}{x} \right] =\frac{1}{2} \left[ \frac{x+4}{2x^{\frac{3}{2}}} \right] \\$
$ \\ f^{'} \left( 1 \right) =\frac{1}{2} \left[ \frac{1+4}{2 \left( 1 \right) } \right] =\frac{5}{4} \\ \\$
Hence, the answer is option A
Question 70
Choose the correct answer out of 4 options given against each Question
If $y=\frac{1+\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}$ then $\frac{dy}{dx}$ is
A.$\frac{-4x}{\left(x^{2}-1\right)^{2}}$
B.$\frac {-4 x}{x^{2}-1}$
C.$\frac{1-x^{2}}{4 x}$
D.$\frac{4 x}{x^{2}-1}$
Answer:
$\\y=\frac{1+\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}=\frac{x^{2}+1}{x^{2}-1} \\$
$ \\ \frac{dy}{dx}=\frac{ \left( x^{2}-1 \right) \left( 2x \right) - \left( x^{2}+1 \right) \left( 2x \right) }{ \left( x^{2}-1 \right) ^{2}}=\frac{ \left( 2x \right) \left( x^{2}-1-x^{2}-1 \right) }{ \left( x^{2}-1 \right) ^{2}}=-\frac{4x}{ \left( x^{2}-1 \right) ^{2}} \\ \\$
Hence, the answer is option A
Question 71
Choose the correct answer out of 4 options given against each Question
If $y=\frac{\sin x+\cos x}{\sin x-\cos x}$ then $\frac{dy}{dx}_{at\: \: x=0}$ is
A. –2
B. 0
C. $\frac{1}{2}$
D. does not exist
Answer:
$\\ y=\frac{\sin x+\cos x}{\sin x-\cos x} \\ \\ \frac{dy}{dx}=\frac{ \left( \sin x-\cos x \right) \left( \cos x-\sin x \right) - \left( \sin x+\cos x \right) \left( \sin x+\cos x \right) }{ \left( \sin x-\cos x \right) ^{2}} \\ $
$\\ =\frac{- \left( \sin ^{2}x+\cos ^{2}x-2\sin x\cos x \right) - \left( \sin ^{2}x+\cos ^{2}x+2\sin x\cos x \right) }{ \left( \sin x-\cos x \right) ^{2}}=-\frac{2}{ \left( \sin x-\cos x \right) ^{2}} \\ $
$\\ \left( \frac{dy}{dx} \right) _{x=0}=-\frac{2}{ \left( -1 \right) ^{2}}=-2 \\ \\$
Hence, the answer is option A
Question 72
Choose the correct answer out of 4 options given against each Question
If $y=\frac{\sin \left( x+9 \right) }{\cos x}$ then $\frac{d y}{d x} \text { at } x=0$ is
A. cos 9
B. sin 9
C. 0
D. 1
Answer:
$\\ y=\frac{\sin \left( x+9 \right) }{\cos x} \\ \\ \frac{dy}{dx}=\frac{\cos x\cos \left( x+9 \right) -\sin \left( x+9 \right) \left( -\sin x \right) }{\cos ^{2}x} \\$
$ \\ =\frac{\cos x\cos \left( x+9 \right) +\sin \left( x+9 \right) \sin x}{\cos ^{2}x} \\$
$ \\ =\frac{\cos \left( x+9-x \right) }{\cos ^{2}x}=\frac{\cos 9}{\cos ^{2}x} \\$
$ \\ \left( \frac{dy}{dx} \right) _{x=0}=\frac{\cos 9}{ \left( 1 \right) ^{2}}=\cos 9 \\ \\$
Hence, the answer is option A
Question 73
Choose the correct answer out of 4 options given against each Question
If $f \left( x \right) =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+ \ldots +\frac{x^{100}}{100}$ then f’(1) is equal to
A. 1/100
B. 100
C. does not exist
D. 0
Answer:
$\\ f \left( x \right) =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+ \ldots +\frac{x^{100}}{100} \\$
$ \\ f^{'} \left( x \right) =0+1+\frac{2x}{2}+\frac{3x^{2}}{3}+ \ldots +\frac{100x^{99}}{100} \\$
$ \\ f^{'} \left( x \right) =0+1+x+x^{2}+ \ldots x^{99} \\$
$ \\ f^{'} \left( 1 \right) =1+1+1+ \ldots +1~~ \left( \text{100 times} \right) =100 \\ \\$
Hence, the answer is option B
Question 74
Choose the correct answer out of 4 options given against each Question
If $f \left( x \right) =\frac{x^{n}-a^{n}}{x-a}$ for some constant ‘a’, then f’(a) is
A. 1
B. 0
C. does not exist
D. \frac 12
Answer:
$\\f \left( x \right) =\frac{x^{n}-a^{n}}{x-a} \\ $
$\\ f^{'} \left( x \right) =\frac{ \left( x-a \right) \left( nx^{n-1} \right) - \left( x^{n}-a^{n} \right) \left( 1 \right) }{ \left( x-a \right) ^{2}} \\$
$ \\ f^{'} \left( a \right) =\frac{ \left( a-a \right) \left( na^{n-1} \right) - \left( a^{n}-a^{n} \right) \left( 1 \right) }{ \left( a-a \right) ^{2}}=\frac{0}{0} \\ \\$
Hence, the answer is option B
Question 75
Choose the correct answer out of 4 options given against each Question
If $f(x) = x^{100} + x^{99} + $ \ldots $ x + 1,$, then f’(1) is equal to
A. 5050
B. 5049
C. 5051
D. 50051
Answer:
$\\ f \left( x \right) =x^{100}+x^{99}+ \ldots +x+1 \\ $
$\\ f^{'} \left( x \right) =100x^{99}+99x^{98}+ \ldots +1+0 \\ $
$\\ f^{'} \left( 1 \right) =100+99+98+ \ldots +2+1=\frac{100 ×101}{2}=5050 \\ \\$
Hence, the answer is option A
Question 76
Choose the correct answer out of 4 options given against each Question
If $f(x) = 1 - x + x^{2} - x^{3} $ \ldots $ -x^{99} + x^{100}$, then f’(1) is equal to
A. 150
B. –50
C. –150
D. 50
Answer:
$\\ f \left( x \right) =1-x+x^{2}-x^{3}+ \ldots -x^{99}+x^{100} \\ $
$\\ f^{'} \left( x \right) =0-1+2x-3x^{2}+ \ldots -99x^{98}+100x^{99} \\ $
$\\ f^{'} \left( 1 \right) $$=-1+2-3+4- \ldots -99+100 \\ $
$\\ = \left( 2-1 \right) + \left( 4-3 \right) + \left( 6-5 \right) + \ldots \left( 100-99 \right) =1+1+ \ldots +1~~ \left( \text{50 times} \right) =50 \\ \\$
Hence, the answer is option D
Question 77
Fill in the blanks
If $f(x)=\frac{\tan x}{x-\pi}, \lim _{x \rightarrow \pi} f(x)=$
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow \pi }\frac{\tan x}{x- \pi }=\mathop{\lim }\limits_{x \rightarrow \pi }\frac{-\tan \left( \pi -x \right) }{- \left( \pi -x \right) }=\mathop{\lim }\limits_{ \pi -x \rightarrow 0}\frac{\tan \left( \pi -x \right) }{ \left( \pi -x \right) }=1 \\$
Question 78
Answer:
$\\ \mathop{\lim }\limits_{x \rightarrow 0}\sin mx\cot \frac{x}{\sqrt {3}}=2 \\$
$ \\ \mathop{\lim }\limits_{x \rightarrow 0}mx × \left( \frac{\sin mx}{mx} \right) × \left( \frac{\frac{x}{\sqrt {3}}}{\tan \frac{x}{\sqrt {3}}} \right) × \left( \frac{\sqrt{3}}{x} \right) =2 \\ $
$\\ \mathop{\lim }\limits_{x \rightarrow 0}mx × \left( \frac{\sqrt {3}}{x} \right) =2 \\$
$ \\ \sqrt {3}m=2 \\ \\ m=\frac{2}{\sqrt {3}}=\frac{2\sqrt {3}}{3} \\ \\$
Question 79
Answer:
$\\ y=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+ \ldots \\$
$ \\ \frac{dy}{dx}=0+1+\frac{2x}{2!}+\frac{3x^{2}}{3!}+\frac{4x^{3}}{4!}+ \ldots \\ $
$\\ \frac{dy}{dx}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+ \ldots \\ $
$\\ \frac{dy}{dx}=y \\$
Question 80
Answer:
$\mathop{\lim }\limits_{x \rightarrow \mathop{3}^{+}}\frac{x}{ \left[ x \right] }=\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}}\frac{3+h}{ \left[ 3+h \right] }=\mathop{\lim }\limits_{h \rightarrow \mathop{0}^{+}}\frac{3+h}{3}=\frac{3}{3}=1 \\$
All NCERT Class 11 Maths Exemplar Solutions are available in one spot on Careers360 for easy access. Click the links below to view them.
NCERT Exemplar Class 11 Maths Solutions chapter 13 covers the really important topic of limits and derivatives of any function, which is a very important concept for mathematics as well as physics.
The students will learn about the limits of different functions fromthe NCERT Exemplar Solutions for Class 11 Maths chapter 13
The students will be able to define the limits and derivatives of different trigonometric, polynomial and rational number functions.
The NCERT Exemplar Class 11 Maths Solutions chapter 13 covers various solved examples along with Solutions for better understanding and learning of different concepts.
The students should practice the application of different formulas provided in the chapter, along with Solutions and solved examples, take help from Class 11 Maths NCERT Exemplar Solutions chapter 13.
For quick and easy access, Careers360 provides all NCERT Class 11 Maths Solutions together on one page. You can use the links below to open them.
Here are the subject-wise links for the NCERT Solutions of Class 11:
Given below are the subject-wise NCERT Notes of Class 11 :
Students are advised to go through the current syllabus at the start of the academic year to understand the topics to be covered. The updated syllabus links and recommended books are provided below.
Given below are the subject-wise Exemplar solutions of Class 11 NCERT:
Frequently Asked Questions (FAQs)
Chapter 13 of Class 11 Maths, titled "Limits and Derivatives," covers several important concepts that are foundational to understanding calculus. Key topics include limits of functions, which help in understanding the behavior of functions as they approach a specific point. The chapter also covers continuity and the conditions under which a function is continuous. Another critical concept is derivatives, where you learn how to find the rate of change of a function at a point, which is essential for understanding slopes of curves and real-world applications like speed and acceleration. Additionally, the chapter introduces you to derivatives from first principles, which is a fundamental method of finding derivatives. The chapter also includes problems on algebra of limits, limits involving infinity, and the chain rule for derivatives, which are useful tools in solving more complex calculus problems.
To solve limit problems in Chapter 13, begin by analyzing the function involved. The first step is to substitute the given value into the function and check if the limit exists. If substituting the value results in an indeterminate form like 0/0?, then you must simplify the expression using algebraic techniques, such as factoring or rationalizing. Another approach is to use standard limit laws and theorems, such as the limit of a sum, product, or quotient of functions. If the expression is complex, you might need to apply trigonometric limits or limits involving infinity. In some cases, you can use L'Hopital's Rule, but this is more advanced and typically not covered in basic exercises. Remember to practice a variety of problems to understand the different strategies for solving limit problems effectively.
In Class 11 Maths, the derivative of a function represents the rate of change of the function with respect to its variable. The basic concept involves understanding the slope of the tangent to the curve of a function at any given point. This is important for describing motion, growth rates, or changes in various contexts. Derivatives are typically found using two methods: algebraic differentiation and first principles. The derivative of a function can also represent how a function behaves as it increases or decreases, helping to identify maxima, minima, and points of inflection on a graph. The rules of differentiation, such as the power rule, product rule, quotient rule, and the chain rule, are essential for calculating derivatives efficiently and handling more complicated functions.
f'(x) = lim(h → 0) [f(x + h) - f(x)] / h
Here's the process:
1. Start by substituting f(x+h) and f(x) into the formula.
2. Simplify the expression in the numerator, which involves expanding and reducing terms.
3. The next step is to find the limit of the expression as h approaches zero. This step often requires factoring, expanding, or simplifying the terms in the numerator.
4. Finally, after taking the limit, you will obtain the derivative of the function. Using first principles is a more detailed method of finding derivatives and is especially useful for understanding the concept behind derivatives, even though more efficient rules like the power rule are often used in practice.
L'Hôpital's Rule is a technique used to evaluate limits that result in indeterminate forms such as 0/0? or ∞/∞. The rule states that for functions f(x) and g(x) with limits of the form 0/0 or ∞/∞?, the limit of f(x)/g(x) as x→a can be found by differentiating the numerator and denominator separately and then evaluating the limit of the resulting quotient:
lim (x → a) [f(x) / g(x)] = lim (x → a) [f'(x) / g'(x)]
This process is repeated if necessary, until a determinate form is obtained. However, L'Hôpital's Rule is generally not included in the NCERT Class 11 Maths curriculum, as the focus is primarily on basic limit calculations and derivative concepts. The rule is more commonly introduced in higher-level calculus, typically in Class 12 or in more advanced studies of calculus.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters