Careers360 Logo
NCERT Exemplar Class 11 Maths Solutions Chapter 13 Limits and Derivatives

NCERT Exemplar Class 11 Maths Solutions Chapter 13 Limits and Derivatives

Edited By Komal Miglani | Updated on Mar 29, 2025 12:40 AM IST

Did you ever wonder how scientists determine the velocity of a car at a specific moment or how economists determine how rapidly financial patterns are changing? The concept of Limits and Derivatives is central to the understanding of such real-life applications. Limits assist us in determining what value a function is getting nearer to as we approach a particular number. Limits come in handy when we are unable to use the number in an equation directly. Derivatives indicate at what rate something is changing, for instance, the velocity of a traveling vehicle. Derivatives assist in determining the slope of a curve at any given point. In simple terms, limits indicate where a function is heading, and derivatives indicate at what rate it is changing. This chapter explains the fundamental concepts of calculus so that students can understand how things are changing extremely rapidly.

This Story also Contains
  1. NCERT Exemplar Class 11 Maths Solutions Chapter 13
  2. Important topics in Class 11 Maths NCERT Exemplar Solutions Chapter 13
  3. NCERT Exemplar Class 11 Mathematics Chapters
  4. Importance of solving NCERT Exemplar Class 11 Maths Questions
  5. NCERT solutions of class 11 - Subject-wise
  6. NCERT Notes of class 11 - Subject Wise
  7. NCERT Books and NCERT Syllabus
  8. NCERT Exemplar Class 11 Solutions

To grasp this chapter well, students must concentrate on the fundamental concepts of limits, continuity, and differentiation. Solving the problems of Limits and Derivatives from the NCERT Exemplar exercises will create a strong concept. Solving more problems from NCERT Class 11 Maths Solutions Chapter Limits and Derivatives will make students proficient in solving problems. Regular practice, solving sample papers, and previous years' questions will make them precise and confident in solving calculus problems.

NCERT Exemplar Class 11 Maths Solutions Chapter 13

Class 11 Maths Chapter 13 exemplar solutions Exercise: 13.3
Page number: 239-245
Total questions: 80

Question:1

Evaluate limx3x29x3

Answer:

Given limx3x29x3=limx3(x3)(x+3)x3=limx3x+3=6

Question:2

Evaluate limx1/24x212x1

Answer:

Given that limx1/24x212x1=limx1/2(2x1)(2x+1)2x1=limx1/22x+1=2

Question:3

Evaluate limh0x+hxh

Answer:

limh0x+hxh

=limh0x+hxh[x+h+x]×(x+h+x) 
[Rationalizing the denominator]
limh0x+hxh[x+h+x] =limh01x+h+x
Put limit
=1x+x=12x

Question:4

Evaluate: limx0(x+2)13213x

Answer:

Given limx0(x+2)13213x   
Now put x=x-2 limits change from 0 to 2
=limy2y13213y2=13(2)131=13223 [usinglimxaxnanxa=nan1]

Question:5

Evaluate : limx1(1+x)61(1+x)21

Answer:

Given that limx1(1+x)61(1+x)21=limx1((1+x)2)31(1+x)21
=limx1((1+x)21)[(1+x)4+(1+x)2+1](1+x)21

=limx1(1+x)4+(1+x)2+1=24+22+1=21

Question:6

Evaluate:
limxa(2+x)52(2+a)52xa

Answer:
Given that limxa(2+x)52(2+a)52xa

=limya+2(y)52(2+a)52y(a+2)=52(a+2)521=52(a+2)32 [usinglimxaxnanxa=nan1]

Question:7

Evaluate:
limx1x4xx1

Answer:

Given limx1x4xx1=limx1(x4x)(x+1)(x1)(x+1)

=limx1x4x+x4xxx1=limx1x(x41)+x(x31)x1

=limx1(x1)(x(x3+x2+x+1)+x(x2+x+1))x1

=limx1x(x3+x2+x+1)+x(x2+x+1)=14+13=7

Question:8

Evaluate:
limx2x243x2x+2

Answer:

Given limx2x243x2x+2=limx2x24(3x2x+2)×3x2+x+23x2+x+2

=limx2x24(3x2x2)×(3x2+x+2)

=limx2(x2)(x+2)2(x2)×(3x2+x+2)

=limx2(x+2)2×(3x2+x+2)=42×(3×22+2+2)=8

Question:9

Evaluate:
limx2x24x2+32x8

Answer:

=limx2(x22)(x2+2)x2+42x2x8=limx2(x+2)(x2)(x2+2)x(x+42)2(x+42)=limx2(x+2)(x2)(x2+2)(x+42)(x2)=limx2(x+2)(x2+2)x+42 Put limit =(2+2)(2+2)2+42=22×452=85

Question:10

Evaluate:
limx1(x72x5+1x33x2+2)

Answer:

Let us apply LH rule i.e. L.Hospita's rule to this question

  limx1(x72x5+1x33x2+2)limxa(f(x)g(x))=limxa(f(x)g(x))

limx1(x72x5+1x33x2+2)=limx1(7x610x43x26x)=71036=1

Question:11

Evaluate:
limx0(1+x31x3x2)

Answer:

Given that limx0(1+x31x3x2)
=limx0(1+x31x3x21+x3+1x31+x3+1x3)

=limx0(1+x31+x3x211+x3+1x3)=limx0(2x1+x3+1x3)=0

Question:12

Evaluate:
limx3(x3+27x5+243)

Answer:

=limx3x3+(3)3x+3x3+(3)3x+3 [Dividing the numerator and denominator by x+3]=limx3(x3+(3)3x+3)limx3(x3+(3)5x+3)[limxaf(x)g(x)=limxaf(x)limxag(x)]=limx3(x23x+9)limx3(x43x3+9x227x+81)=9+9+981+81+81+81+81=3×95×81=15×3=115

Question:13

Evaluate:
limx12(8x32x14x2+14x21)

Answer:

Given limx12(8x32x14x2+14x21)
=limx12((12x+1)×((8x3)(2x+1)4x212x1))=limx12((12x+1)×(12x2+2x42x1))


=limx12((12x+1)×(12x2+8x6x42x1))=limx12((12x+1)×((3x+2)(4x2)2x1) )

=limx12((12x+1)×2(3x+2) )=12×12+1×2×(3×12+2)=72

Question:14

Evaluate: Find ‘n’, if
limx2(xn2nx2)=80,nN

Answer:

We know that limx2(xn2nx2)=n(2)n1

n(2)n1=80

n=5×(2)51=5×16=80

Question:15

Evaluate:
limxa(sin3xsin7x)

Answer:

Given limxa(sin3xsin7x)=sin3asin7a

Question:16

Evaluate:
limx0(sin22xsin24x)

Answer:

Given limx0(sin22xsin24x)=limx0((sin2x2x2x)2(sin4x4x4x)2)=limx0(416(sin2x2x)2(sin4x4x)2)=416=14

Question:17

Evaluate:
limx0(1cos2xx2)

Answer:

Given that
limx0(1cos2xx2)=limx0(2sin2xx2)=limx0(2(sinxx)2)=2

Question:18

Evaluate:
limx0(2sinxsin2xx3)

Answer:

Given limx0(2sinxsin2xx3)=limx0(2sinx(1cosx)x3)=limx0(2sinx(2sin2x2)x3)

=limx0(2sinxx2(sinx2x2)214)=1

Question:19

Evaluate:
limx0(1cosmx1cosnx)

Answer:

Given that limx0(1cosmx1cosnx)=limx0(sin2mx2sin2nx2)=limx0(sin2mx2(mx2)2(mx2)2sin2nx2(nx2)2(nx2)2)

=limx0(sin2mx2(mx2)2m2sin2nx2(nx2)2n2)=m2n2

Question:20

Evaluate:
limxπ31cos6x2(π3x)

Answer:

limxπ31cos6x2(π3x)   Herecos6x=12sin23x


=limxπ32sin23x2(π3x)=limxπ3|sin3x|(π3x3)=limxπ3|sin(π3x)|(π3x3)=limxπ33|sin(π3x)|π3x=31=3

Question:21

Evaluate:
limxπ4sinxcosxxπ4

Answer:


Given that limxπ4sinxcosxxπ4=limxπ42(sinxcosπ4cosxsinπ4)xπ4=limxπ42sin(xπ4)xπ4=2

Question:22

Evaluate:
limxπ63sinxcosxxπ6

Answer:

Given that limxπ63sinxcosxxπ6=limxπ62(32sinx12cosx)xπ6=limxπ62(cosπ6sinxsinπ6cosx)xπ6

=limxπ62sin(xπ6)xπ6=2

Question:23

Evaluate:
limx0sin2x+3x2x+tan3x

Answer:


Given that limx0sin2x+3x2x+tan3x=limx02xsin2x2x+3x2x+3xtan3x3x=limx0x(2sin2x2x+3)x(2+3tan3x3x)


=limx0(2sin2x2x+3)(2+3tan3x3x)=2+32+3=55=1

Question:24

Evaluate:
limxasinxsinaxa

Answer:

Given that limxasinxsinaxa=limxa(sinxsina)(x+a)(xa)(x+a)=limxa(sinxsina)(x+a)(xa)
=limxa(2cos(x+a2)sin(xa2))(x+a)(xa)

=limxacos(x+a2)sin(xa2)xa2(x+a)=cos(a)1(2a)=2acosa

Question:25

Evaluate:
limxπ6cot2x3cosecx2

Answer:

Given that limxπ6cot2x3cosecx2=limxπ6cosec2x13cosecx2

=limxπ6cosec2x13cosecx2=limxπ6(cosecx2)(cosecx+2)cosecx2

=limxπ6(cosecx+2)=2+2=4

Question:26

Evaluate:
limx0(21+cosx)sin2x

Answer:

Given that limx0(21+cosx)sin2x=limx0(21+cosx)(2+1+cosx)sin2x(2+1+cosx)

=limx0(2(1+cosx))sin2x(2+1+cosx)=limx01cosxsin2x(2+1+cosx)
=limx01cosx(1cosx)(1+cosx)(2+1+cosx)

=limx01(1+cosx)(2+1+cosx)=1(1+1)(22)=142

Question:27

Evaluate:
limx0(sinx2sin3x+sin5xx)

Answer:

.Given that limx0(sinx2sin3x+sin5xx)

=limx0(sinxx2sin3x3x3+sin5x5x5)=123+5=0

Question:28

Evaluate: If
limx1(x41x1)=limxk(x3k3x2k2)

Answer:

Given that 

limx1(x41x1)=4(1)41=4limxk(x3k3x2k2)

=limxk((xk)(x2+k2+xk)(xk)(x+k))=limxk(x2+k2+xkx+k)=3k2
3k2=4k=8/3

Question:29

Differentiate each of the functions w.r.t x in
x4+x3+x2+1x

Answer:

 Let y=x4+x3+x2+1xdydx=d(x3)dx+d(x2)dx+d(x)dx+d(x1)dx

=3x2+2x+11x2=3x4+2x3+x21x2

Question:30

Differentiate each of the functions w.r. to x in
(x+1x)3

Answer:

Let y= (x+1x)3

dydx=ddx(x+1x)3=3(x+1x)2(11x2)

=3(x2+2+1x2)(11x2)

=3(x2+2+1x212x21x4)

=3x2+33x23x4

Question:31

Differentiate each of the functions w.r. to x in
(3x+5)(1+tanx)

Answer:

Given that y=(3x+5)(1+tanx) 

Applying product rule of differentiation we get

dydx=(1+tanx)ddx(3x+5)+(3x+5)ddx(1+tanx)

=3(1+tanx)+(3x+5)sec2x

Question:32

Differentiate each of the functions w.r. to x in
(secx1)(secx+1)

Answer:

y= (secx1)(secx+1)=sec2x1=tan2x 

Now applying the concept of chain rule


dydx=d(tan2x)dx=2tanxsec2x

Question:33

Differentiate each of the functions w.r. to x in
3x+45x27x+9

Answer:

Given that y=3x+45x27x+9

Applying division rule of differentiation that is

dydx=ddx(3x+45x27x+9)

=(5x27x+9)ddx(3x+4)(3x+4)ddx(5x27x+9)(5x27x+9)2

=(5x27x+9)(3)(3x+4)(10x7)(5x27x+9)2

=5(3x2+8x11)(5x27x+9)2
=5(3x+11)(1x)(5x27x+9)2

Question:34

Differentiate each of the functions w.r. to x in
x5cosxsinx

Answer:

Given that y=x5cosxsinx=x5sinxcosxsinx

Applying division rule of differentiation that is

dydx=sinxddx(x5)x5ddx(sinx)sin2xddx(cotx)=5x4sinxx5cosxsin2x+cosec2x

Question:35

Differentiate each of the functions w.r. to x in
x2cosπ4sinx

Answer:

y=x2cosπ4sinx

Applying division rule of differentiation that is

dydx=cosπ4(sinxddx(x2)x2ddx(sinx))sin2x=12(2xsinxx2cosxsin2x)

Question:36
Differentiate each of the functions w.r. to x in

(ax\textsuperscript{2} + cotx) (p + q cosx)}} \\

Answer:

Given that y=(ax2+cotx)(p+qcosx)   

Applying the division rule of differentiation that is


dydx=(p+qcosx)ddx(ax2+cotx)+(ax2+cotx)ddx(p+qcosx)
=(p+qcosx)(2axcosec2x)+(ax2+cotx)(qsinx)

Question:37

Differentiate each of the functions w.r. to x in
(a+bsinxc+dcosx)

Answer:

Given thaty=(a+bsinxc+dcosx)

Applying division rule of differentiation that is
dydt=(c+dcosx)ddx(a+bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2=bcosx(c+dcosx)(dsinx)(a+bsinx)(c+dcosx)2

=bccosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2=bd+bccosx+adsinx(c+dcosx)2

Question:38

Differentiate each of the functions w.r. to x in

(sin x + cosx)^2

Answer:

Given that
y=(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+2sinxcosx=1+sin2x 
Applying the concept of chain rule
dydx=ddx(1+sin2x)=0+2cos2x=2cos2x=2(cos2xsin2x)

Question:39

Differentiate each of the functions w.r. to x in

(2x - 7)^{2} (3x + 5)^{3}

Answer:

This question will involve the concept of both chain rule and product rule

Given that y=(2x7)2(3x+5)3 

Applying the product rule of differentiation
dydx=(3x+5)3ddx(2x7)2+(2x7)2ddx(3x+5)3

=(3x+5)32(2x7)2+(2x7)23(3x+5)23

=(2x7)(3x+5)2[4(3x+5)+9(2x7)]=(2x7)(3x+5)2(30x43)

Question:40

Differentiate each of the functions w.r. to x in
x2sinx+cos2x

Answer:

This question will involve the concept of both chain rule and product rule

Giventhaty=x2sinx+cos2x

dydx=ddx(x2sinx)+ddx(cos2x)

=sinxddx(x2)+x2ddx(sinx)+ddx(cos2x)=2xsinx+x2cosx2sin2x

Question:41

Differentiate each of the functions w.r.to x in
sin3xcos3x

Answer:

The question involves the concept of chain rule

Giventhaty=sin3xcos3xy=18(2sinxcosx)3

=18sin32xdydx=38sin22x(2cos2x)=34sin22xcos2x

Question:42

Differentiate each of the functions w.r. to x in
1ax2+bx+c

Answer:

The question involves the concept of chain rule

Giventhaty=1ax2+bx+c=(ax2+bx+c)1

dydx=1(ax2+bx+c)2(2ax+b)=2ax+bax2+bx+c

Question:43

Differentiate each of the functions with respect to ‘x’Differentiate using first principle

\cos (x^{2} + 1)

Answer:

Let f(x)=cos(x2+1)..(i)

f(x+Δx)=cos((x+Δx)2+1)(ii)

 Subtracting equation (i)fromequation(ii)

f(x+Δx)f(x)Δx=cos((x+Δx)2+1)cos(x2+1)Δx
=limΔx0cos((x+Δx)2+1)cos(x2+1)Δx

=limΔx02sin[(x+Δx)2+1x212]sin[(x+Δx)2+1+x2+12]Δx=limΔx02sin[2xΔx+(Δx)22]sin[2x2+2xΔx+22]Δx

=limΔx0(2x+Δx2)( 2sin[2xΔx+(Δx)22]sin[2x2+2xΔx+22]Δx(2x+Δx)2)
=limΔx0(2x+Δx2)(2sin[2x2+2xΔx+22])( sin[2xΔx+(Δx)22]Δx(2x+Δx)2)

=(2x+02)(2sin(x2+0+1))(1)=2xsin(x2+1)is the required answer

Question:44

Differentiate each of the functions with respect to ‘x’
Differentiate using first principle ax+bcx+d

Answer:

Let f(x)=ax+bcx+d..(i)

f(x+Δx)=a(x+Δx)+bc(x+Δx)+d(ii)

Subtracting equation (i)from equation (ii)

f(x+Δx)f(x)Δx=a(x+Δx)+bc(x+Δx)+dax+bcx+dΔx 
Taking the limitf(x)=limΔx0a(x+Δx)+bc(x+Δx)+dax+bcx+dΔx

=limΔx0(cx+d)(ax+aΔx+b)(ax+b)(cx+cΔx+d)(cx+cΔx+d)(cx+d)Δx

=limΔx0(adbc)Δx(cx+cΔx+d)(cx+d)Δx

=limΔx0(adbc)(cx+cΔx+d)(cx+d)=adbc(cx+d)2 is the required answer

Question:45

Differentiate each of the functions with respect to ‘x’
Differentiate using first principle X23

Answer:

f(x)=limΔx0(x+Δx)23x23Δx=limΔx0x23[(1+Δxx)231]Δx=limΔx0x23[(1+23Δxx+)1]Δx

Expanding by binomial theorem and rejecting the higher powers of ΔxasΔx0


=limΔx0x23(23Δxx)Δx=limΔx0(23x23x)=23x13

Question:46

Differentiate each of the functions with respect to ‘x’
Differentiate using first principle x cos x.

Answer:

Giventhaty=xcosx.(i)

y+Δy=(x+Δx)cos(x+Δx).(ii) 

 Subtracting equation (i)fromequation(ii)

y=limΔx0(((x+Δx)cos(x+Δx)xcosx)Δx)


=limΔx0(xcos(x+Δx)xcosxΔx)+limΔx0(Δxcos(x+Δx)Δx)

=limΔx0(x(2sinx+Δxx2sinx+Δx+x2)Δx)+limΔx0cos(x+Δx)

=limΔx0(2sin(x+Δx2)sin(Δx2)x)Δx+limΔx0cos(x+Δx)


=limΔx0xsin(x+Δx2)(sin(Δx2))Δx2+limΔx0cos(x+Δx)=xsinx+cosx

Question:47

Evaluate each of the following limits

limy0(x+y)sec(x+y)xsecxy

Answer:

Given that

limy0(x+y)sec(x+y)xsecxy=limy0(xsec(x+y)xsecxy+ysec(x+y)y)

=limy0(xy[cosxcos(x+y)cosxcos(x+y)]+sec(x+y))

=limy0(xy[2sin(x+y2)sin(y2)cosxcos(x+y)]+sec(x+y))
=limy0(xsin(x+y2)cosxcos(x+y)[sin(y2)y2]+sec(x+y))=xsecxtanx+secx=secx(xtanx+1)

Question:48

Evaluate each of the following limits
limx0[sin(α+β)x+sin(αβ)x+sin2αx]cos2βxcos2αxx

Answer:

limx0[sin(α+β)x+sin(αβ)x+sin2αx]cos2βxcos2αxx=limx0[2sinαxcosβx+2sinαxcosαx][2sin(α+β)x sin(αβ)x]x

=limx0[sinαx(cosβx+cosαx)][sin(α+β)x sin(αβ)x]x=limx0[sinαx(2cos(α+β)x2cos(αβ)x2)][sin(α+β)x sin(αβ)x]x


=limx0[sinαx][2sin(α+β)x2sin(αβ)x2]x

=limx0[sinαxαx]αxx[2(sin(α+β)x2(α+β)x2)(sin(αβ)x2(αβ)x2)(α+β)x2(αβ)x2]

=α2(α+β)2(αβ)2=2αα2β2

Question:49

Evaluate each of the following limits
limxπ4(tan3xtanxcos(x+π4))

Answer:

limxπ4(tan3xtanxcos(x+π4))=limxπ4(tanx)limxπ4(tan2x1cos(x+π4))

=1limxπ4((1tanx)(1+tanx)cos(x+π4))

=limxπ4(1+tanx)limxπ4((1tanx)cos(x+π4))

=2limxπ4((cosxsinx)cos(x+π4)cosx)
=2limxπ4(2(cosπ4cosxsinπ4sinx)cos(x+π4)cosx)

=2limxπ4(2(cos(x+π4))cos(x+π4)cosx)=2limxπ4(2cosx)=4

Question:50

Evaluate each of the following limits
limxπ(1sinx2cosx2(cosx4sinx4))

Answer:

limxπ(1sinx2cosx2(cosx4sinx4))=limxπ(1sinx2cosx2(cosx4sinx4))

=limxπ(cos2x4+sin2x42sinx4cosx4(cos2x4sin2x4)(cosx4sinx4))
=limxπ((cosx4sinx4)2(cos2x4sin2x4)(cosx4sinx4))=limxπ((cosx4sinx4)(cos2x4sin2x4))

=limxπ(1(cosx4+sinx4))=112+12=12

Question:51

Evaluate each of the following limits
Show that limx4|x4|x4
does not exist.

Answer:

limx4|x4|x4

LHL=limx4x+4x4=1

RHL=limx4+x4x4=1 

LHLRHL

Hence, the limit doesnot exist

Question:52

Let f(x)=kcosxπ2x when xπ2and
f(x)=3 if limxπ2f(x)=f(π2) find the value of k.

Answer:

LHL=limxπ2(kcos(π2h)π2(π2h))=limh0(kcos(π2h)2h)=limh0(ksinh2h)=k2

RHL=limxπ2+(kcos(π2+h)π2(π2+h))=limh0+(kcos(π2+h)2h)=limh0(ksinh2h)=k2

limxπ2f(x)=k2=3k=6

Question:53

Evaluate each of the following limits
Let f(x)=x+2x1cx2x>1 find ‘c’ if limx1f(x) exists.

Answer:

LHL=limx1(x+2)=1+2=1

RHL=limx1+cx2=c

LHL=RHL

c=1

Question:54

Choose the correct answer out of 4 options given against each Question
limxπsinxxπ is

A. 1
B. 2
C. –1
D. –2

Answer:

limxπsinxxπ=limxπsin(πx)(πx)=1 limx0sinxx=1   πx0   xπ

Hence, the answer is option C

Question:55

Choose the correct answer out of 4 options given against each Question
limx0x2cosx1cosx  is

A. 2
B. 32
C. 32
D. 1

Answer:

limx0x2cosx1cosx=limx0x2cosx2sin2x2=limx0x2cosx2x24sin2x2x24=limx0cosx24sin2x2x24=2
Hence, the answer is option A

Question:56

Choose the correct answer out of 4 options given against each Question
limx0(1+x)n1x  is

A. n
B. 1
C. –n
D. 0
Answer:

limx0(1+x)n1x=limx0(1+x)n1n(1+x)1=n(1)n1=n
Hence, the answer is option A

Question:57

Choose the correct answer out of 4 options given against each Question
limx1xm1xn1 is

A. 1

B. mn
C. mn
D. m2n2

Answer:

limx1xm1xn1=limx1xm1x1xn1x1=m(1)m1n(1)n1=mn
Hence, the answer is option B

Question:58

Choose the correct answer out of 4 options given against each Question

limθ0(1cos4θ1cos6θ)is


A.49
B.12
C.12
D.1
Answer:

limθ0(1cos4θ1cos6θ)=limθ0(2sin22θ2sin23θ)=limθ0(sin2θsin3θ)2=limθ0(sin2θ2θ2θ(sin3θ3θ)3θ)2=49
Hence, the answer is option A

Question:59

Choose the correct answer out of 4 options given against each Question
limx0(cosecxcotxx) is

A. 12

B. 1
C. 12
D. –1

Answer:

limx0(cosecxcotxx)=limx0(1cosxxsinx)=limx0(2sin2x/22xsinx/2cosx/2)=limx0(sinx/2xcosx/2)=12
Hence, the answer is option C

Question:60

Choose the correct answer out of 4 options given against each Question
limx0(sinxx+11x) is

A. 2
B. 0
C. 1
D. –1

Answer:

limx0(sinxx+11x)=limx0(sinx(x+1+1x)(x+11x)(x+1+1x))

=limx0(sinx(x+1+1x)(x+11+x))=limx0(sinx(x+1+1x)2x)=1
Hence, the answer is option C

Question:61

Choose the correct answer out of 4 options given against each Question

limxπ4(sec2x2tanx1) is
A. 3
B. 1
C. 0
D. 2

Answer:

limxπ4(sec2x2tanx1)=limxπ4(1+tan2x2tanx1)=limxπ4(tan2x1tanx1)=limxπ4(tanx+1)=2
Hence, the answer is option D

Question:62

Choose the correct answer out of 4 options given against each Question
limx1((x1)(2x3)2x2+x3) is

A. 110
B. 110
C. 1
D. None of these

Answer:

limx1((x1)(2x3)2x2+x3)=limx1((x1)(2x3)(2x+3)(x1))

=limx1((x1)(2x3)(2x+3)(x1)(x+1))=limx1((2x3)(2x+3)(x+1))=110
Hence, the answer is option B

Question:63

Choose the correct answer out of 4 options given against each Question
If f(x)=sin[x][x],[x]00,[x]=0 where [.] denotes the greatest integer function, then limx0f(x) is equal to

A. 1
B. 0
C. –1
D. None of these
Answer:

LHL=limx0(sin[x][x])=limh0(sin[0h][0h])=limh0(sin[h][h])=limh0(sin(1)1)=sin1
RHL=limx0+(sin[x][x])=limh0+(sin[0+h][0+h])=limh0+(sin[h][h])=limh0+(sin(0)0)
Limit doesn’t exist
Hence, the answer is option D

Question:64

Choose the correct answer out of 4 options given against each Question

limx0(|sinx|x)  is

A. 1
B. –1
C. does not exist
D. None of these

Answer:

LHL=limx0(|sinx|x)=limh0(|sin(0h)|(0h))=limh0(sin(h)h)=1

RHL=limx0+(|sinx|x)=limh0+(|sin(0+h)|(0+h))=limh0+(sin(h)h)=1
 So, limit doesnt existsHence, the answer is option C

Question:65

Choose the correct answer out of 4 options given against each Question
Let f(x)=x21,0<x<22x+3,2x<3 the quadratic equation whose roots are limx2f(x) and limx2f(x) is

A.x26x+9=0B.x27x+8=0C.x214x+49=0D.x210x+21=0

Answer:

LHL=limx2f(x)=limx2(x21)=3

RHL=limx2+f(x)

=limx2+(2x+3)=7

The quadratic equation whose roots are 3 and 7 are (x3)(x7)

=x210x+21
Hence, the answer is option D

Question:66

Choose the correct answer out of 4 options given against each Question
limx0(tan2xx)3xsinx  is

A. 2
B. 12
C. 12
D. 14

Answer:

limx0(tan2xx)3xsinx=limx0(tan2xx1)(3sinxx)=limx0(2 tan2x2x1)(3sinxx)=2131=12
Hence, the answer is option B

Question:67

Choose the correct answer out of 4 options given against each Question
Let f(x) = x – [x], R, then f12 is

A. 3/2
B. 1
C. 0
D. –1

Answer:

LHD=limh0(f(12h)f(12))h=limh0((12h)[(12h)](12)+[12])h=limh0hh=1

RHD=limh0(f(12+h)f(12))h=limh0((12+h)[(12+h)](12)+[12])h=limh0hh=1
Hence, the answer is option B

Question:68

Choose the correct answer out of 4 options given against each Question
If Ify=x+1x,thendydx at x = 1 is

A. 1
B. 12
C. 12
D. 0

Answer:

y=x+1xdydx=12x1x2

(dydx)x=1=121=12

Hence, the answer is option D

Question:69

Choose the correct answer out of 4 options given against each Question
If  f(x)=x42x then f’(1) is

A. 54
B. 45
C. 1
D. 0

Answer:

f(x)=x42x

f(x)=12[x1(x4)12xx]=12[x+42x32]

f(1)=12[1+42(1)]=54
Hence, the answer is option A

Question:70

Choose the correct answer out of 4 options given against each Question

If y=1+1x211x2 then dydx is

A.4x(x21)2
B.4xx21
C.1x24x
D.4xx21

Answer:

y=1+1x211x2=x2+1x21

dydx=(x21)(2x)(x2+1)(2x)(x21)2=(2x)(x21x21)(x21)2=4x(x21)2
Hence, the answer is option A

Question:71

Choose the correct answer out of 4 options given against each Question

If y=sinx+cosxsinxcosx then dydxatx=0 is


A. –2
B. 0
C. 12
D. does not exist
Answer:

y=sinx+cosxsinxcosxdydx=(sinxcosx)(cosxsinx)(sinx+cosx)(sinx+cosx)(sinxcosx)2

=(sin2x+cos2x2sinxcosx)(sin2x+cos2x+2sinxcosx)(sinxcosx)2=2(sinxcosx)2

(dydx)x=0=2(1)2=2
Hence, the answer is option A

Question:72

Choose the correct answer out of 4 options given against each Question

If y=sin(x+9)cosx then dydx at x=0 is

A. cos 9
B. sin 9
C. 0
D. 1

Answer:

y=sin(x+9)cosxdydx=cosxcos(x+9)sin(x+9)(sinx)cos2x

=cosxcos(x+9)+sin(x+9)sinxcos2x

=cos(x+9x)cos2x=cos9cos2x

(dydx)x=0=cos9(1)2=cos9


Hence, the answer is option A

Question:73

Choose the correct answer out of 4 options given against each Question

If f(x)=1+x+x22+x33++x100100 then f’(1) is equal to

A. 1/100
B. 100
C. does not exist
D. 0

Answer:

f(x)=1+x+x22+x33++x100100

f(x)=0+1+2x2+3x23++100x99100

f(x)=0+1+x+x2+x99

f(1)=1+1+1++1  (100 times)=100


Hence, the answer is option B

Question:74

Choose the correct answer out of 4 options given against each Question

If f(x)=xnanxa for some constant ‘a’, then f’(a) is

A. 1
B. 0
C. does not exist
D. 1/2

Answer:

f(x)=xnanxa

f(x)=(xa)(nxn1)(xnan)(1)(xa)2

f(a)=(aa)(nan1)(anan)(1)(aa)2=00
Hence, the answer is option B

Question:75

Choose the correct answer out of 4 options given against each Question
If f(x)=x100+x99+ \ldots x+1,, then f’(1) is equal to

A. 5050
B. 5049
C. 5051
D. 50051

Answer:

f(x)=x100+x99++x+1

f(x)=100x99+99x98++1+0

f(1)=100+99+98++2+1=1001012=5050


Hence, the answer is option A

Question:76

Choose the correct answer out of 4 options given against each Question
If f(x)=1x+x2x3 \ldots x99+x100, then f’(1) is equal to

A. 150
B. –50
C. –150
D. 50

Answer:

f(x)=1x+x2x3+x99+x100

f(x)=01+2x3x2+99x98+100x99

f(1)=1+23+499+100

=(21)+(43)+(65)+(10099)=1+1++1  (50 times)=50
Hence, the answer is option D

Question:77

Fill in the blanks
If f(x)=tanxxπ,limxπf(x)=

Answer:

limxπtanxxπ=limxπtan(πx)(πx)=limπx0tan(πx)(πx)=1

Question:78

Fill in the blanks
limx0sinmxcotx3=2 then m = ________

Answer:

limx0sinmxcotx3=2

limx0mx(sinmxmx)(x3tanx3)(3x)=2

limx0mx(3x)=2

3m=2m=23=233

Question:79

Fill in the blanks
If y=1+x1!+x22!+x33!+ then dydx= ........

Answer:

y=1+x1!+x22!+x33!+

dydx=0+1+2x2!+3x23!+4x34!+

dydx=1+x1!+x22!+x33!+

dydx=y

Question:80

Fill in the blanks
limx3+x[x]=...............

Answer:

limx3+x[x]=limh0+3+h[3+h]=limh0+3+h3=33=1

Important topics in Class 11 Maths NCERT Exemplar Solutions Chapter 13

  • 13.1 Introduction
  • 13.2 Intuitive Idea of Derivatives
  • 13.3 Limits
  • 13.3.1 Algebra of Limits
  • 13.3.2 Limits of polynomials and rational functions
  • 13.4 Limits of Trigonometric function
  • 13.5 Derivatives
  • 13.5.1 Algebra of Derivative of functions
  • 13.5.2 Derivatives of polynomials and trigonometric functions
  • 13.6 Miscellaneous Examples
NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

NCERT Exemplar Class 11 Mathematics Chapters

Importance of solving NCERT Exemplar Class 11 Maths Questions

NCERT Exemplar Class 11 Maths solutions chapter 13 covers the really important topic of limits and derivatives of any function which is a very important concept for mathematics as well as physics.

  • The students will learn about the limits of different functions from NCERT exemplar solutions for Class 11 Maths chapter 13

  • The students will be able to define the limits and derivatives of different trigonometric, polynomial and rational number functions.

  • The NCERT exemplar Class 11 Maths solutions chapter 13 covers various solved examples along with solutions for better understanding and learning of different concepts.

  • The students should practice the application of different formulas provided in the chapter along with solutions and solved examples, take help from Class 11 Maths NCERT exemplar solutions chapter 13.


NCERT solutions of class 11 - Subject-wise

Here are the subject-wise links for the NCERT solutions of class 11:

NCERT Notes of class 11 - Subject Wise

Given below are the subject-wise NCERT Notes of class 11 :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 11:

NCERT Exemplar Class 11 Solutions

Given below are the subject-wise exemplar solutions of class 11 NCERT:

Frequently Asked Questions (FAQs)

1. What are the important topics covered in NCERT Exemplar Class 11 Maths Chapter 13?

Chapter 13 of Class 11 Maths, titled "Limits and Derivatives," covers several important concepts that are foundational to understanding calculus. Key topics include limits of functions, which help in understanding the behavior of functions as they approach a specific point. The chapter also covers continuity and the conditions under which a function is continuous. Another critical concept is derivatives, where you learn how to find the rate of change of a function at a point, which is essential for understanding slopes of curves and real-world applications like speed and acceleration. Additionally, the chapter introduces you to derivatives from first principles, which is a fundamental method of finding derivatives. The chapter also includes problems on algebra of limitslimits involving infinity, and the chain rule for derivatives, which are useful tools in solving more complex calculus problems.

2. How to solve limit problems in NCERT Exemplar Class 11 Maths Chapter 13?

To solve limit problems in Chapter 13, begin by analyzing the function involved. The first step is to substitute the given value into the function and check if the limit exists. If substituting the value results in an indeterminate form like 0/0?, then you must simplify the expression using algebraic techniques, such as factoring or rationalizing. Another approach is to use standard limit laws and theorems, such as the limit of a sumproduct, or quotient of functions. If the expression is complex, you might need to apply trigonometric limits or limits involving infinity. In some cases, you can use L'Hopital's Rule, but this is more advanced and typically not covered in basic exercises. Remember to practice a variety of problems to understand the different strategies for solving limit problems effectively.

3. What are the basic concepts of derivatives in Class 11 Maths?

In Class 11 Maths, the derivative of a function represents the rate of change of the function with respect to its variable. The basic concept involves understanding the slope of the tangent to the curve of a function at any given point. This is important for describing motion, growth rates, or changes in various contexts. Derivatives are typically found using two methods: algebraic differentiation and first principles. The derivative of a function can also represent how a function behaves as it increases or decreases, helping to identify maxima, minima, and points of inflection on a graph. The rules of differentiation, such as the power ruleproduct rulequotient rule, and the chain rule, are essential for calculating derivatives efficiently and handling more complicated functions.

4. How to find the derivative of a function using first principles?

f'(x) = lim(h → 0) [f(x + h) - f(x)] / h
Here's the process:
1. Start by substituting f(x+h) and f(x) into the formula.
2. Simplify the expression in the numerator, which involves expanding and reducing terms.
3. The next step is to find the limit of the expression as h approaches zero. This step often requires factoring, expanding, or simplifying the terms in the numerator.
4. Finally, after taking the limit, you will obtain the derivative of the function. Using first principles is a more detailed method of finding derivatives and is especially useful for understanding the concept behind derivatives, even though more efficient rules like the power rule are often used in practice.

5. What is L'Hôpital's Rule, and is it included in NCERT Class 11 Maths?

L'Hôpital's Rule is a technique used to evaluate limits that result in indeterminate forms such as 0/0? or ∞/∞. The rule states that for functions f(x) and g(x) with limits of the form 0/0 or ∞/∞?, the limit of f(x)/g(x) as x→a can be found by differentiating the numerator and denominator separately and then evaluating the limit of the resulting quotient:

lim (x → a) [f(x) / g(x)] = lim (x → a) [f'(x) / g'(x)]

This process is repeated if necessary, until a determinate form is obtained. However, L'Hôpital's Rule is generally not included in the NCERT Class 11 Maths curriculum, as the focus is primarily on basic limit calculations and derivative concepts. The rule is more commonly introduced in higher-level calculus, typically in Class 12 or in more advanced studies of calculus.

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top