Careers360 Logo
NCERT Exemplar Class 11 Maths Solutions Chapter 3 Trigonometric Functions

NCERT Exemplar Class 11 Maths Solutions Chapter 3 Trigonometric Functions

Edited By Komal Miglani | Updated on Mar 30, 2025 05:50 PM IST

While playing cricket, have you ever wondered how we calculate the trajectory or range of the ball or has your curious mind ever thought of constructing a building or a monument? The answer to all these is Trigonometry! Trigonometric functions is a fundamental and important chapter of NCERT. This chapter helps students gain ideas about angles and their measurements in terms of degree or radians, the domain and range of trigonometric functions and their related graphs. It also helps students learn necessary trigonometric identities and formulas and allows students to dive deep into more advanced concepts like periodicity and transformations and properties of sine, cosine and other trigonometric ratios. The students preparing for their competitive exams are advised to practice their worksheets and exercises on a regular basis as the questions asked are of the same pattern as provided in the NCERT Solutions.

This Story also Contains
  1. NCERT Exemplar Class 11 Maths Solutions Chapter 3
  2. Importance of Solving NCERT Exemplar Class 11 Maths Solutions Chapter 3 Trigonometric Functions
  3. Main Subtopics of NCERT Exemplar Class 11 Maths Solutions Chapter 3
  4. NCERT Solutions for Class 11 Mathematics Chapters
  5. NCERT Exemplar Class 11 Mathematics Chapters
  6. NCERT solutions of class 11 - Subject-wise
  7. NCERT Notes of class 11 - Subject Wise
  8. NCERT Books and NCERT Syllabus

NCERT Exemplar Class 11 Maths Solutions Chapter 3

Class 11 Maths Chapter 3 Exemplar Solutions Exercise: 3.3
Page number: 52-60
Total questions: 76

Question:1

Prove that
tanA+secA1tanAsecA+1=1+sinAcosA

Answer:

L.H.S=tanA+secA1tanAsecA+1=tanA+secA(sec2Atan2A)tanAsecA+1=tanA+secA[(secA+tanA)(secAtanA)]tanAsecA+1=(secA+tanA)[1(secAtanA)]tanAsecA+1


=(secA+tanA)[1secA+tanA]tanAsecA+1=secA+tanA=1cosA+sinAcosA=1+sinAcosA=R.H.S

Question:2

If [2sinα/(1+cosα+sinα)]=y, then prove that (1cosα+sinα)/(1+sinα) is also equal to y.

[ Hint: Express 1cosα+sinα1+sinα=1cosα+sinα1+sinα1+cosα+sinα1+cosα+sinα]

Answer:

y=2sinα1+cosα+sinα=2sinα1+cosα+sinα1+sinαcosα1+sinαcosα=2sinα(1cosα+sinα)(1+sinα)2cos2α=2sinα(1cosα+sinα)1+sin2α+2sinαcos2α
=2sinα(1cosα+sinα)(1cos2α)+sin2α+2sinα=2sinα(1cosα+sinα)2sin2α+2sinα=2sinα(1cosα+sinα)2sinα(1+sinα)=(1cosα+sinα)(1+sinα)=y

Question:3

If msinθ=nsin(θ+2α), then prove that
tan(θ+α)cotα=(m+n)/(mn)
[Hints: Express sin(θ+2α)/sinθ=m/n and apply componendo and dividendo]

Answer:

Given that  msinθ=nsin(θ+2α)   sin(θ+2α)sinθ=mn    sin(θ+2α)+sinθsin(θ+2α)sinθ=m+nmn   

2sin(θ+2α+θ2)cos(θ+2αθ2)2cos(θ+2α+θ2)sin(θ+2αθ2)=m+nmn

tan(θ+α).cotα=m+nmn

Question:4

If cos(α+β)=45 and sin(αβ)=513 where α lie between 0 and π/4, find value of tan 2α
[Hint: Express tan2αastan(α+β+αβ]

Answer:

cos(α+β)=45~ so,tan(α+β)=34     ~~~~ Andsin(αβ)=513  tan(αβ)=512 tan2α=tan[α+β+αβ]  
=tan[(α+β)+(αβ)] =tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)

= 34+512134512=5633 

Question:5

If tanx=b/a then find the value of a+bab+aba+b

Answer:

tanx=ba     a+bab+aba+b=a+b+ab(ab)(a+b)=2aa2b2=2aa1b2a2

=21tan2x=21(sin2x)/(cos2x)=2cosx/(cos2x)

Question:6

Prove that cosθcosθ2cos3θcos9θ2=sin7θsin4θ
[Hint:Express L.H.S. =12[2cosθcosθ/22cos3θcos9θ/2]

Answer:

L.H.S=cosθcos(θ2)cos3θcos(9θ2)

=12[2cosθcos(θ2)]12[2cos3θcos(9θ2)]

=12[cos(θ+θ2)+cos(θθ2)]12[cos(3θ+9θ2)+cos(3θ9θ2)]

=12[cos3θ2+cosθ2cos15θ2cos(3θ2)]

=12[cos3θ2+cosθ2cos15θ2cos3θ2] 

=12[cosθ2cos15θ2] =12[2sin(θ2+15θ22)sin(θ215θ22)]

=12[2sin4θsin(7θ2)]
=sin(4θ)sin(7θ2)=sin(4θ)sin(7θ2)

Question:7

If acosθ+bsinθ=mandasinθbcosθ=n, then show that m2+n2=a2+b2

Answer:

a cosθ+b sinθ=m  asinθbcosθ=n

 R.H.S=m2+n2=(acosθ+bsinθ)2+(asinθbcosθ)2

=a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ2absinθcosθ

=a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)=a2+b2 

Question:8

Find the value of tan2230.
 [Hint: Let θ=45 , use tanθ2=sinθ2cosθ2=2sinθ2cosθ22cos2θ2=sinθ1+cosθ]

Answer:

Let 22030=θ2   tan22030=tanθ2 

=sinθ2cosθ2=2sinθ2cosθ22cos2θ2

=sinθ1+cosθ     

Puttingθ=45sinθ1+cosθ=121+12=12+1=(2 1)[Onrationalising]

Question:9

Prove that sin4A=4sinAcos3A4cosAsin3A.

Answer:

L.H.Ssin4A=sin(A+3A) =sinAcos3A+cosAsin3A 

=sinA(4cos3A3cosA)+cosA(3sinA4sin3A)

=4sinAcos3A3sinAcosA+3sinAcosA4cosAsin3A

=4sinAcos3A4cosAsin3A=R.H.S

Question:10

If tanθ+sinθ=m and tanθsinθ=n, then prove that

m2n2=4sinθtanθ

[ Hint: m+n=2tanθ,mn=2sinθ, then use [m2n2]=(m+n)(mn)]

Answer:

tanθ+sinθ=m andtanθsinθ=nL.H.S=m2n2=(m+n)(mn)=[(tanθ+sinθ)+(tanθsinθ)]. [(tanθ+sinθ)(tanθsinθ)]=(tanθ+sinθ+tanθsinθ).(tanθ+sinθtanθ+sinθ)=2tanθ.2sinθ=4sinθtanθ=R.H.S

Question:11

If tan(A+B)=p,tan(AB)=q, then show that tan2A=(p+q)/(1pq).
[Hint: Use 2A=(A+B)+(AB)]

Answer:

tan(A+B)=p,tan(AB)=q    tan2A=tan(A+B+AB)=tan[(A+B)+(AB)]=tan(A+B)+tan(AB)1tan(A+B).tan(AB)=p+q1pq

Question:12

If cosα+cosβ=0=sinα+sinβ, then prove that cos2α+cos2β=2cos(α+β). [Hint: (cosα+cosβ)2(sinα+sinβ)2=0]

Answer:

Given that: cosα+cosβ=0  andsinα+sinβ=0

 So,(cosα+cosβ)2(sinα+sinβ)2=0

(cos2α+cos2β+2cosαcosβ)(sin2α+sin2β+2sinαsinβ)=0

(cos2αsin2α)+(cos2βsin2β)+2(cosαcosβsinαsinβ)=0

cos2α+cos2β+2cos(α+β)=0

cos2α+cos2β=2cos(α+β)

Question:13

If sin(x+y)sin(xy)=a+bab , then show that tanxtany=ab [Hint: Use componendo and Dividendo]

Answer:

sin(x+y)sin(xy)=a+bab      sin(x+y)+sin(xy)sin(xy)sin(xy)=a+b+aba+ba+b

2sinx+y+xy2cosx+yx+y22cosx+y+xy2sinx+yx+y2=2a2b

sinxcosycosxsiny=ab

tanxtany=ab

Question:14

If tanθ=sinαcosαsinα+cosα then show that sinα+cosα=2cosθ
[Hint: Express tanθ=tan(απ/4), θ=απ/4]

Answer:

tanθ=sinαcosαsinα+cosαtanθ=sinαcosαcosαsinα+cosαcosα=tanα1tanα+1=(tanαtanπ4)/(1+tanπ4tanα)    tanθ=tan(απ4)   

θ=απ4

cosθ=cos(απ4)

cosθ=cosαcosπ4+sinαsinπ4  cosθ=cosα.12+sinα.12  

 2cosθ=cosα+sinα

Hence, proved.

Question:15

If sinθ+cosθ=1 , then find the general value of θ

Answer:

Given that sinθ+cosθ=1Dividing both sides by12+12=2

  12sinθ+12 cosθ=12  cos(θπ4)=cosπ4    θπ4=2nπ±π4 , nϵZ

θ=2nπ±π4+π4   θ=2nπ+π4+π4   orθ=2nππ4+π4    θ=2nπ+π2 orθ=2nπ,nϵZ

Question:16

Find the most general value of θ satisfying the equation tanθ=1andcosθ=1/2

Answer:

Given that

tanθ=1andcosθ=12  cosθ is positive and tanθis negative in fourth quadranttanθ=1  tanθ=tan(π4)  tanθ=tan(2ππ4)

 tanθ=tan7π4 θ=7π4  cosθ=12  cosθ=cosπ4     

   cosθ=cos(2ππ4) cosθ=cos7π4      θ=7π4    So, general solution is θ=2nπ+7π4

Question:17

If cotθ+tanθ=2cosecθ, then find the general value of θ.

Answer:

Given thatcotθ+tanθ=2cosecθ   

  cosθsinθ+sinθcosθ=2sinθ      sin2θ+cos2θsinθcosθ=2sinθ           1sinθcosθ=2sinθ        2sinθcosθ=sinθ
 sinθ(2cosθ1)=0 sinθ=0 or2cosθ1=0orcosθ=12        Now, sinθ=0θ=nπ,nϵZ cosθ=12cosθ=cosπ3   θ=2nπ±π3 
Hence, general values of θ is 2nπ±π3 andnπ,nϵZ

Question:18

If 2sin2θ=3cosθ, where 0θ2π, then find the value of θ.

Answer:

Given that 2sin2θ=3cosθ  2(1cos2θ)=3 cosθ22cos2θ3 cosθ=0 2cos2θ+3cosθ2=0 

(cosθ+2)(2cosθ1)=0   [On factorising]   

cosθ+2=0or2cosθ1=0

cosθ2 

So,2cosθ1=0,cosθ=12 
orθ=π3or 2ππ3θ=π3or  5π3

Question:19

If secxcos5x+1=0,where0<xπ/2, then find the value of x.

Answer:

Given that  secxcos5x+1=0 1cosx .cos5x+1=0cos5x+cosx=0~ 2cos(5x+x2)cos(5xx2)=0
 cos3x.cos2x=0  cos3x=0 orcos2x=0 3x=π2 or2x=π2    x=π6orx=π4   

Question:20

If sin(θ+α)=a and sin(θ+β)=b, then prove that cos2(αβ)4abcos(αβ)=12a22b2

Answer:

Given that sin(θ+α)=a andsin(θ+β)=b (i)cos(αβ)=cos[θ+αθβ]=cos[(θ+α)(θ+β)]

=cos(θ+α)cos(θ+β)+sin(θ+α)sin(θ+β)=1sin2(θ+α).1sin2(θ+β)+sin(θ+α)sin(θ+β) =(1a2)(1b2)+abcos(αβ)=ab+1a2b2+a2b2 

 Now,cos2(αβ)4abcos(αβ)=2cos2(αβ)14abcos(αβ)=2[ab+1a2b2+a2b2]214ab[ab+1a2b2+a2b2] 

=2[a2b2+1a2b2+a2b2+2ab1a2b2+a2b2]14a2b24ab1a2b2+a2b2  =12a22b2

Question:21

If cos(θ+ϕ)=mcos(θϕ), then prove that tanθ=((1m)/(1+m))cotϕ
[Hint: Express cos(θ+ϕ)/cos(θϕ)=m/1 and apply Componendo and Dividendo]

Answer:

Given thatcos(θ+ϕ)=mcos(θϕ)     cos(ϕ+θ)cos(θϕ)=m1

~~Using~componendo~and dividend rule, cos(ϕ+θ)+cos(θϕ)cos(ϕ+θ)cos(θϕ)=m+1m1 
  cosθcosϕsinθsinϕ=m+1m1  cotθcotϕ=m+1m1  cotϕtanθ=m+1m1  tanθ(1+m)=(1m)cotϕ 

 tanθ=1m1+mcotϕ

Question:22

Find the value of the expression
=3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)]

Answer:

=3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)]=3[cos4α+sin4(π+α)]2[cos6α+sin6(πα)] =3[cos4α+sin4α]2[cos6α+sin6α]=3[cos4α+sin4α+2sin2αcos2α2sin2αcos2α]2[(cos2α+sin2α)33cos2αsin2α(cos2α+sin2α)]

=3[(cos2α+sin2α)22sin2αcos2α]2[13cos2αsin2α]=3[12sin2αcos2α]2[13cos2αsin2α]=36sin2αcos2α2+6cos2αsin2α=32=1

Question:23

If acos2θ+bsin2θ=c has α and β as its roots, then prove that tanα+tanβ=2b/(a+c) [Hint: Use the identities cos2θ=((1tan2θ)/(1+tan2θ) and sin2θ=2tanθ/(1+tan2θ)]

Answer:

Given that acos2θ+bsin2θ=c(i)   

aatan2θ+2btanθ=c(1+tan2θ) 

aatan2θ+2btanθ=c+ctan2θ

(a+c)tan2θ2btanθ+(ca)=0..(ii) 
Since αandβ are the roots of the equation i)we have tanα and tanβ are the roots of ii)
tanα+tanβ=(2b)a+c    [Sum of roots of a quadratic equation]  tanα+tanβ=2b/(a+c)

Question:24

If x=secϕtanϕandy=cosecϕ+cotϕ , then show that xy + x – y + 1 = 0. [Hint: Find xy+1 and then show tan xy=(xy+1)]

Answer:

x=secϕtanϕ

y=cosecϕ+cotϕ

L.H.S=xy+xy+1=(secϕtanϕ)(cosecϕ+cotϕ)+(secϕtanϕ)(cosecϕ+cotϕ)+1

=(1cosecϕsinϕcosϕ)(1sinϕ+cosϕsinϕ)+(1cosϕsinϕcosϕ)(1sinϕ+cosϕsinϕ)+1

=(1sinϕcosϕ)(1+cosϕsinϕ)+1sinϕcosϕ1+cosϕsinϕ+1  

=1sinϕ+cosϕsinϕcosϕcosϕsinϕ+sinϕsin2ϕcosϕcos2ϕcosϕsinϕ+1

=1sinϕ+cosϕsinϕcosϕ+sinϕsin2ϕcosϕcos2ϕ+cosϕsinϕcosϕsinϕ=11cosϕsinϕ=0L.H.S=R.H.S

Question:25

If θ lies in the first quadrant and cos θ = 8/17, then find the value of cos(30+θ)+cos(45θ)+cos(120θ)

Answer:

Given that cosθ=817   sinθ=1(817)2=164289=28964289=±1517 

Butθ lies in I quadrant and sosinθ is positive.sinθ=1517  Nowcos(300+θ)+cos(450θ)+cos(1200θ)

=cos300cosθsin300sinθ+cos450cosθ+sin450sinθ+cos1200cosθ+sin1200sinθ

=32cosθ12sinθ+12cosθ+12sinθ12cosθ+32sinθ=32(cosθ+sinθ)12(sinθ+cosθ)+12(cosθ+sinθ)=(3212+12)(cosθ+sinθ)=(312+12)(817+1517)

=31+2 22317=2334(31+2)

Question:26

Find the value of the expression

cos4(π/8)+cos4(3π/8)+cos4(5π/8)+cos4(7π/8)

[Hint: Simplify the expression to

2(cos4π8+cos43π8)=2[(cos2π8+cos23π8)22cos2π8cos23π8]

Answer:

cos4π8+cos43π8+cos45π8+cos47π8 =cos4π8+cos43π8+cos4(π3π8)+cos4(ππ8)

=cos4π8+cos43π8+cos43π8+cos4π8
=2cos4π8+2cos43π8=2[cos4π8+cos43π8]=2[cos4π8+cos4(π2π4)]=2[cos4π8+sin4π8]

=2[(cos2π8+sin2π8)22sin2π8cos2π8]=2[12sin2π8cos2π8]=2(sinπ4)2  =2(12)2=212=32

Question:27

Find the general solution of the equation

5cos2θ+7sin2θ6=0
Answer:

5cos2θ+7sin2θ6=0 5cos2θ+7(1cos2θ)6=05cos2θ+77cos2θ6=0    2cos2θ+1=0

 2cos2θ=1cos2θ=12  cos2θ=cos2π4   1+cos2θ2=1+cosπ22 

cos2θ=cosπ2    2θ=2nπ±π2  θ=nπ±π4 

Question:28

Find the general solution of the equation sinx3sin2x+sin3x=cosx3cos2x+cos3x

Answer:

sinx3sin2x+sin3x=cosx3cos2x+cos3x  

(sin3x+sinx)3sin2x=(cos3x+cosx)3cos2x

2sin(3x+x2).cos(3xx2)3sin2x=2cos(3x+x2).cos(3xx2)3cos2x

2sin2xcosx3sin2x=2cos2x.cosx3cos2x  

2sin2xcosx2cos2xcosx=3sin2x3cos2x  2cosx(sin2xcos2x)=3(sin2xcos2x)  (sin2xcos2x)(2cosx3)=0 sin2xcos2x=0
 2cosx30sin2xcos2x1=0tan2x=1tan2x=tan(π/4) 2x=nπ+π4    x=nπ/2+π/8

Question:29

Find the general solution of the equation (31)cosθ+(3+1)sinθ=2
[Hint: Put Put31=rsinα,3+1=rcosα which gives tanα=tan((π/4)(π/6))α=π/12]
.

Answer:

(31)cosθ+(3+1)sinθ=2~ put 31=rsinα, 3+1=rcosα~squaring~and adding we get r2=3+123+3+1+23    r2=8,  r=22  

  rsinαcosθ+rcosαsinθ=2~ r(sinαcosθ+cosαsinθ)=2 22sin(α+θ)=2 sin(α+θ)=222 sin(θ+α)=sinπ4  

α+θ=nπ+(1)nπ4.(i) ~ Now, rsinθrcosα=313+1  tanα=tanπ3tanπ41+tanπ4tanπ3  tanα=tan(π3π4)  tanα=tanπ12

α=π12  Putting the value of αinequation(i)~we get π12+θ=nπ+(1)n.π4         θ=nπ+(1)n.π4π12 

Question:30

If sinθ+cosecθ=2, then sin2θ+cosec2θ is equal to
A. 1
B. 4
C. 2
D. None of these

Answer:

sinθ+cosecθ=2 (sinθ+cosecθ)2=22   sin2θ+cosec2θ+2sinθcosecθ=4  sin2θ+cosec2θ+2sinθcosecθ=4  

   sin2θ+cosec2 θ+2=4   sin2θ+cosec2θ=2

The answer is the option (c).

Question:31

If f(x)=cos2x+sec2x, then

A. f(x)<1

B. f(x)=1

C. 2<f(x)<1

D. f(x)2

[Hint: A.MG.M.]

Answer:

f(x)=cos2x+sec2x  We know thatAMGM(cos2x+sec2x)2cos2xsec2 x      (cos2x+sec2x)21   cos2x+sec2x2 ~ f(x)2

The answer is the option (d)

Question:32

If tanθ=1/2and tanϕ=1/3, then the value of θ+ϕ is

A. π/6

B. π

C.0

D. π/4

Answer:

The answer is the option (d)
tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ=12+1311213 =5656=1tan(ϕ+θ)=tanπ4   (θ+ϕ)=π4 

Question:33

Which of the following is not correct?
A. sinθ=1/5
B.cosθ=1
C. secθ=1/2
D. tanθ=20

Answer:

The answer is the option (c)
sinθ=15 is correct since 1sinθ1
cosθ=1is true forθ=1 secθ=12    cosθ=2is not correct as 1cosθ1

Question:34

The value of tan1tan2tan3tan89is
A. 0
B. 1
C. 1/2
D. Not defined

Answer:

The answer is the option (b).
Given that tan10 tan20.tan890

=tan10 tan20tan450tan(90440)tan(90430).tan(9010)

=tan10cot10tan20cot20.tan890cot890

=1.111.1=1

Question:35

The value of (1tan215)/(1+tan215) is
A. 1
B. 3
C. 3/2
D. 2

Answer:

The answer is the option (c).
Given that  1tan21501+tan2150    Letθ=150 2θ=300   cos2θ=1tan2θ1+tan2θ   cos300=1tan21501+tan2150=32

Question:36

The value of cos1cos2cos3cos179is
A. 1/2
B. 0
C. 1
D. -1

Answer:

The answer is the option (b).
cos10 cos20.cos1790

=cos10 cos20.cos900.cos1790=0(as  cos900=0)

Question:37

If tanθ=3 and θ lies in third quadrant, then the value of sinθ is

A. 1/10B.1/10C.3/10D.3/10

Answer:

The answer is the option (c).

tanθ=3, θ lies in third quadrant, it is positive 

 tanθ=PB=31 

 Then,hypotenuse=32+12=9+1=10 

  sinθ=310 whereθ lies in third quadrant

Question:38

The value of tan75cot75 is equal to
A. 23
B. 2+3
C. 23
D. 1

Answer:

The answer is the option (a).

tan75cot75=tan75cot(9015)=tan75tan15

=sin75cos75sin15cos15

=(sin75cos15sin15cos75)cos75cos15=sin(7515)12×2cos75cos15

=2sin60cos(75+15)+cos(7515)=2sin60cos90+cos60

=2×320+12=23

Question:39

Which of the following is correct?

A. sin1>sin1

B. sin1<sin1

C. sin1=sin1

D.sin1=π18sin1

[Hint: 1radian =180π=5730approx.]

Answer:
If  θ increases then the value of sinθ also increases.
So, sin1<sin1
Hence, (b)is correct.

Question:40

If tanα=mm+1,tanβ=12 m+1 then α+βis equal to 
A.π2B.π3C.πcD.π4

Answer:

The answer is the option (d).tanα=mm+1tanβ=m2m+1tan(α+β)=tanα+tanβ1tanαtanβ=mm+1+12m+11mm+1×12m+1=2m2+m+m+1(m+1)(2m+1)(m+1)(2m+1)m(m+1)(2m+1)=2m2+2m+12m2+2m+m+1m=2m2+2m+12m2+2m+1=1tan(α+β)=tanπ4α+β=π4

Question:41

The minimum value of 3cosx+4sinx+8 is
A. 5
B. 9
C. 7
D. 3

Answer:
Let y=3cosx+4sinx+8y8=3cosx+4sinxMinimum value of y8=(3)2+(4)2=5y=85=3
Hence, (d) is the correct option.

Question:42

The value of tan3Atan2AtanA is equal to
A. tan3Atan2AtanA
B. tan3Atan2AtanA
C. tanAtan2Atan2Atan3Atan3AtanA
D. None of these

Answer:

The answer is the option (a).

tan3A=tan(2A+A)=tan2A+tanA1tan2AtanA

tan3A(1tan2AtanA)=tan2A+tanA

tan3Atan3Atan2AtanA=tan2A+tanA

tan3Atan2AtanA=tan3Atan2AtanA
Hence, a is correct.

Question:43

The value of sin(45+θ)cos(45θ) is
A. 2cosθ
B. 2sinθ
C. 1
D. 0

Answer:

The answer is the option (d).
sin(45+θ)cos(45θ)

sin(45+θ)=sin45cosθ+cos45sinθ=12cosθ+12sinθ

cos(45θ)=cos45cosθ+sin45sinθ=12cosθ+12sinθ

sin(45+θ)cos(45θ)=12cosθ+12sinθ12cosθ12sinθ

=0

Question:44

The value of cot(π4+θ)cot(π4θ) is
A. –1
B. 0
C. 1
D. Not defined

Answer:

The answer is the option (c).
cot(π4+θ)cot(π4θ)=cotπ4cotθ1cotθ+cotπ4×cotπ4cotθ+1cotθcotπ4=cotθ1cotθ+1×cotθ+1cotθ1=1

Question:45

cos2θcos2ϕ+sin2(θϕ)sin2(θ+ϕ) is equal to
A.sin2(θ+ϕ)
B.cos2(θ+ϕ)
C.sin2(θϕ)
D.cos2(θϕ)
[Hint: Use sin2Asin2B=sin(A+B)sin(AB)]

Answer:

The answer is the option (b).
cos2θcos2+sin2(θ)+sin2(θ+)since, sin2Asin2B=sin(A+B)sin(AB)=cos2θcos2+sin(θ+θ+)sin(θθ)=cos2θcos2sin2θsin2since, cosxcosysinxsiny=cos(x+y)=cos(2θ+2)=cos2(θ+)
Hence, the correct option is (b).

Question:46

The value of cos12+cos84+cos156+cos132 is

A. 12
B. 1
C. 12
D. 18

Answer:

The answer is the option (c)

cos12+cos84+cos156+cos132=(cos132+cos12)+(cos156+cos84)

=2cos132+122cos132122+2cos156+842cos156842

=2cos72cos60+2cos120cos36

=2cos72×12+2×(12)cos36=cos72cos36

=5145+14=24=12

Question:47

If tanA=12,tanB=13 then tan(2A+B) is equal to
A. 1
B. 2
C. 3
D. 4

Answer:

The answer is the option (c).
tanA=12tanB=13tan2A=2tanA1tan2A=43tan(2A+B)=tan2A+tanB1tan2AtanB=43+13143×13=(53)×(95)=3

Question:48

The value of sinπ10sin13π10 is
A.12
B.12
C.14
D.1

Answer:

The answer is the option (c).
sinπ10sin13π10=sinπ10sin(π+3π10)=sinπ10(sin3π10)=sin18sin54=(514)(5+14)=5116=416=14
Hence, (c) is correct option.

Question:49

The value of sin50sin70+sin10 is equal to
A. 1
B. 0
C.1/2
D. 2

Answer:

The answer is the option (b).

sin50sin70+sin10=2cos50+702sin50702+sin10=2cos60sin(10)+sin10=2×12×sin10+sin10=0

Question:50

If sinθ+cosθ=1, then the value of sin2θ is equal to
A. 1
B. 1/2
C. 0
D. –1

Answer:

The answer is the option (c).
sinθ+cosθ=1(sinθ+cosθ)2=1sin2θ+cos2θ+2sinθcosθ=1   1+2sinθcosθ=12sinθcosθ=0sin2θ=0

Question:51

If α+β=π4 then the value of (1+tanα)(1+tanβ) is
A. 1
B. 2
C. –2
D. Not defined

Answer:

tan(α+β)=tanπ4=1

tan(α+β)=tanα+tanβ1tanαtanβ=1

tanα+tanβ=1tanαtanβ

tanα+tanβ+tanαtanβ=1

1+tanα+tanβ+tanαtanβ=1+1

(1+tanα)(1+tanβ)=2
Hence, correct option is (b).

Question:52

If sinθ=45 and θ lies in third quadrant then the value of cosθ2 is
A.15
B.110
C.15
D.110

Answer:
sinθ=45,θlies in third quadrant
cosθ=1(45)2=35cosθ=2cos2θ2135=2cos2θ21cos2θ2=15cosθ2=15 
[As, π2<θ2<3π4]
Hence, correct option is (c).

Question:53

Number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2π] is
A. 0
B. 1
C. 2
D. 3

Answer:
tanx+secx=2cosxsinx+1cosx=2cosx1+sinx2cos2x=01+sinx2+2sin2x=02sin2x+sinx1=0
Since the equation is a quadratic equation in sinx. So, there will be two solutions.
Hence, correct option is (c).

Question:54

The value of sinπ18+sinπ9+sin2π9+sin5π18 is given by

A. sin7π18+sin4π9
B. 1

Ccosπ6+cos3π7Dcosπ9+sinπ9

Answer:


sinπ18+sinπ9+sin2π9+sin5π18=(sinπ18+sin5π18)+(sinπ9+sin2π9)=2sin5π18+π182cos5π18π182+2sinπ9+2π92cos2π9π92=2sinπ6cosπ9+2sinπ6cosπ18=2×12cosπ9+2×12cosπ18=cosπ9+cosπ18=sin(π2π9)+sin(π2π18)=sin4π9+sin7π18
Hence, correct option is (a).

Question:55

If A lies in the second quadrant and 3tanA+4=0, then the value of 2cotA5cosA+sinA is equal to

A. 5310
B. 2310
C. 3710
D. 710

Answer:

3tanA+4=0 [A lies in second quadrant]

tanA=43

cosA=35 [A lies in second quadrant]

sinA=45cotA=342cotA5cosA+sinA=2(34)5(35)+45=32+3+45=2310

Hence, the correct option is (b).

Question:56

The value of cos248sin212 is

A.5+18B.518C.5+15D.5+122
[Hint:Usecos2Asin2B=cos(A+B)cos(AB)]

Answer:

cos248sin212=cos(48+12)cos(4812)=cos60cos36=12×5+14=5+18
Hence, the correct option is (a).

Question:57

If tanα=17,tanβ=13then cos2α is equal to
A. sin2β
B. sin4β
C. sin2β
D. cos2β

Answer:

tanα=17tanβ=13cos2α=1tan2α1+tan2α=11491+149=2425tan2β=2tanβ1tan2β=2×13119=34
sin4β=2tan2β1+tan22β=2×341+(34)2=2425cos2α=sin4β=2425
Hence, the correct option is (b).

Question:58

If tanθ=ab then bcos2θ+asin2θ is equal to

A.aB.bC.abD.None

Answer:
tanθ=abbcos2θ+asin2θ=b[1tan2θ1+tan2θ]+a[2tanθ1+tan2θ]=b[1a2b21+a2b2]+a[2ab1+a2b2]=b[b2a2b2+a2]+[2a2bb2+a2b2]
=b3a2bb2+a2+2a2bb2+a2=b(b2+a2)b2+a2=b
Hence, the correct option is (b).

Question:59

If for real values of x, cosθ=x+1x then
A. θ is an acute angle
B. θ is right angle
C. θ is an obtuse angle
D. No value of θ is possible

Answer:

The answer is the option (d).
cosθ=x+1x=x2+1xx2xcosθ+1=0For real value of x, (b)24×a×c0
(cosθ)24×1×10cos2θ4cosθ±2
Hence, correct option is (d).

Question:60

The value of sin50sin130 is _______.

Answer:

sin50sin130=sin50sin(18050)=sin50sin50=1

Question:61

Fill in the blanks
If k=sin(π18)sin(5π18)sin(7π18)then the numerical value of k is

Answer:

k=sin(π18)sin(5π18)sin(7π18)k=sin10sin50sin70k=sin10cos40cos20

k=sin1012×[2cos40cos20]=sin1012[cos60+cos20]

k=12sin10[12+cos20]k=14sin10+12sin10cos20

k=14sin10+14[sin30sin10]

k=14sin30=14×12=18

Question:62

Fill in the blanks
If tanA=1cosBsinB then tan2A=......

Answer:

tanA=1cosBsinB

tan2A=2tanA1+tan2A=2(1cosB)sinB1+(1cosB)2sin2B=2(2sin2B22sinB2cosB2)1(2sin2B22sinB2cosB2 )2=2(sinB2cosB2)1(sinB2cosB2)2=2tanB21tan2B2=tanB

Question:63

Fill in the blanks
If sinx+cosx=a, then
(i) sin6x+cos6x=_______
(ii) |sinxcosx|=______.

Answer:

Giventhatsinx+cosx=a

On squaring both sides,(sinx+cosx)2=a21+2sinxcosx=a2sinxcosx=a212

sin6x+cos6x=(sin2x)3+(cos2x)3

=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)

=13(a212)2=13(a21)24=14[43(a21)2]

|sinxcosx|2=sin2x+cos2x2sinxcosx

=12(a212)=1a2+1=2a2

|sinxcosx|=2a2

Question:64

Fill in the blanks

In a triangle ABC with C=90 the equation whose roots are tan A and tan B is ________.
[Hint: A+B=90tanAtanB=1andtanA+tanB=2sin2A]

Answer:

x2(tanA+tanB)x+tanAtanB=0tan(A+B)=tan90tanA+tanB1tanAtanB=101tanAtanB=0tanAtanB=1tanA+tanB=sinAcosA+sinBcosB=sinAcosB+cosAsinBcosAcosB=sin(A+B)cosAcosB=1cosAsinAtanA+tanB=22sinAcosA=2sin2A x2(2sin2A)x+1=0

Question:65

Fill in the blanks
3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)=

Answer:

3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)=3(sin2x+cos2x2sinxcosx)2+6(sin2x+cos2x+2sinxcosx)+4[(sin2x)3+(cos2x)3]=3(12sinxcosx)2+6+12sinxcosx+4[(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)]=3(1+4sin2xcos2x4sinxcosx)+6+12sinxcosx+412sin2xcos2x=3+12sin2xcos2x12sinxcosx+6+12sinxcosx+412sin2xcos2x=3+6+4=13

Question:66

Fill in the blanks
Given x > 0, the values of f(x)=3cos3+x+x2 lie in the interval _______.

Answer:

Giventhatf(x)=3cos3+x+x2

Putting,y=3+x+x2

f(x)=3cosy

1cosy1

33cos3+x+x23

Hence the value is in [3,3]

Question:67

Fill in the blanks
The maximum distance of a point on the graph of the function y=3sinx+cosx from the x-axis is _____.

Answer:

y=3sinx+cosx.(i)
The maximum distance from a point on the graph of equation (i) from x-axis
(3)2+(1)2=3+1=2

Question:68

True and False

If tanA=1cosBsinB then tan2A=tanB

Answer:

tanA=1cosBsinB=2sin2B22sinB2cosB2=tanB2tan2A=tanB
Hence, the statement is true.

Question:69

True and False
The equality sinA+sin2A+sin3A=3 holds for some real value of A.

Answer:

Given that sinA+sin2A+sin3A=3
Since the maximum value of sin A is 1 but for sin 2A and sin 3A it is not equal to 1. So, it is not possible.
Hence, the statement is ’false’.

Question:70

True and False
sin10 is greater than cos10

Answer:

If sin10>cos10Then,sin10>cos(9080)sin10>sin80
which is not possible because the value of sine is in increasing order
Hence, the statement is ‘false’

Question:71

True and False
cos2π15cos4π15cos8π15cos16π15=116

Answer:

cos2π15cos4π15cos8π15cos16π15=cos24cos48cos96cos192=116sin24(2sin24cos24)(2cos48)(2cos96)(2cos192)=116sin24(2sin48cos48)(2cos96)(2cos192)=116sin24(2cos96sin96)(2cos192)=2sin192cos19216sin24=sin38416sin24=sin(360+24)16sin24=sin2416sin24=116
Hence, the statement is ‘true’.

Question:72

True and False
One value of θ which satisfies the equation sin4θ2sin2θ1 lies between 0 and 2π

Answer:

Given equation is sin4θ2sin2θ1=0
sin2θ=(2)±(2)24×1×(1)2×1=2±4+42=2±82=2±222=1±2
1sinθ1 andsin2θ1 butsin2θ=1±2
which is not possible
Hence, the given statement is ‘false’

Question:73

True and False
If cosecx=1+cotx then x=2nπ,2nπ+π2

Answer:
cosecx=1+cotx x=2nπ,2nπ+π21sinx=1+cosxsinxsinx+cosx=1
12sinx+12cosx=12cos(xπ4)=cosπ4x=2nπ+π4+π4=2nπ+π2Or,x=2nπ+π4π4=2nπ
Hence, the given statement is ‘true’

Question:74

True and False
tanθ+tan2θ+3tanθtan2θ=3 then θ=nπ3+π9

Answer:

tanθ+tan2θ=3tanθtan2θ+3

tanθ+tan2θ=3(1tanθtan2θ)

tanθ+tan2θ1tanθtan2θ=3

tan3θ=3tan3θ=tanπ3

3θ=nπ+π3θ=nπ3+π9
Hence, the given statement is ‘true’ .

Question:75

True and False
If tan(πcosθ)=cot(πsinθ), then cos(θπ/4)=±122

Answer:

tan(πcosθ)=cot(πsinθ)

tan(πcosθ)=tan(π2πsinθ)

πcosθ=π2πsinθ

cosθ+sinθ=12

 cosπ4cosθ+sinπ4sinθ=12

cos(θπ/4)=±122


Hence, the given statement is ‘true’

Question:76

In the following match each item is given under the column C1 to its correct answer given under the column C2:

Answer:

sin(x+y)sin(xy)=sin2xsin2y

cos(x+y)cos(xy)=cos2xcos2y

cot(π4+θ)=cotπ4cotθ1cotθ+cotπ4=cotθ1cotθ+1=1tanθ1+tanθ

tan(π4+θ)=tanπ4tanθ1tanθ+tanπ4=1+tanθ1tanθ


Thus, (a) - (iv) , (b) - (i), (c) -(ii), (d) - (iii)

Importance of Solving NCERT Exemplar Class 11 Maths Solutions Chapter 3 Trigonometric Functions

  • NCERT exemplar for class 11 maths chapter 3 Trigonometric Functions is designed to give the students step-by-step solutions for a particular question.
  • Students can study strategically at their own pace after accessing Class 11 Maths NCERT exemplar chapter 3. This will boost their confidence to attempt other questions from this chapter.
  • These NCERT exemplar cover all the important topics and concepts so that students can be well-prepared for various exams.
  • By solving these NCERT trigonometry problems students will get to know about all the real-life applications of trigonometry.

Main Subtopics of NCERT Exemplar Class 11 Maths Solutions Chapter 3

The topics covered in the chapter are as follows:

  • 3.1 Introduction
  • 3.2 Angles
  • 3.2.1 Degree measure
  • 3.2.2 Radian measure
  • 3.2.3 Relation between radian and real numbers
  • 3.2.4 Relation between degree and radian
  • 3.3 Trigonometric Functions
  • 3.3.1 Sign of trigonometric functions
  • 3.3.2 Domain and range of trigonometric functions
  • 3.4 Trigonometric Functions of Sum and Difference of Two Angles
  • 3.5 Trigonometric Equations

NCERT Solutions for Class 11 Mathematics Chapters

NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

NCERT Exemplar Class 11 Mathematics Chapters

Students can use following links to study NCERT exemplar solutions chapter wise.

NCERT solutions of class 11 - Subject-wise

Here are the subject-wise links for the NCERT solutions of class 11:

NCERT Notes of class 11 - Subject Wise

Given below are the subject-wise NCERT Notes of class 11 :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 11:

NCERT Exemplar Class 11 Solutions

Given below are the subject-wise exemplar solutions of class 11 NCERT:



Frequently Asked Questions (FAQs)

1. What are the important topics in the NCERT Exemplar Class 11 Maths Chapter 3?

Trigonometric Functions deal with the angles in degrees and radians, trigonometric functions (sine, cosine, tangent, etc.), graph, domain, and range. It deals with the periodicity of functions and their transformations. Students also learn symmetry and if functions are even or odd. The chapter also deals with concepts like symmetry and even/odd functions. Solving NCERT exemplar problems helps in better comprehension of such concepts and preparation for the board exams.

2. How to solve NCERT Exemplar Class 11 Maths Chapter 3 problems easily?

Trigonometric functions should be handled confidently, beginning from small things such as their range, domain, and their graphs. Begin with simple problems so that you are right in your basics. Then, go and try tough problems. Attempt simple graph-based questions by representing functions in terms of graphs. Try to solve the examples first and then try to attempt the exercises. Practice regularly for speed and accuracy. Regular revision and practice will help you gain a good concept and try the NCERT Exemplar questions easily.

3. What are the real-life applications of trigonometric functions in Class 11?

Architecture and Building Construction – Used to compute heights, angles, and distances when designing buildings, monuments, and bridges.
Navigation and GPS – Supports determination of positions, distance measurement, and direction-finding on maps and GPS.
Astronomy – Used to find the distance of stars, planets, and where the Earth is in the universe.
Physics and engineering – Critical in the case of topics such as mechanics, wave motion, and electrical engineering, to teach one about vibration and forces.
Aviation and Marine Science Helps in calculating flight paths, shipping paths, and altitudes.
Sound and Music – Applied in the study of sound waves, frequency, and resonance of musical instruments.
Medical Imaging – Applied in CT scans, MRI, and ultrasound to generate high-resolution images of the human body.

4. Why is Chapter 3 Trigonometric Functions important in Class 11 Maths?

Foundation for Advanced Mathematics – Trigonometric functions are very significant in advanced-level calculus, coordinate geometry, and algebra.
Applications in Real Life – Applied in physics, engineering, astronomy, architecture, and navigation to find angles, distances, and heights.
Extremely Useful for Competitive Exams – Useful for JEE, NEET, and other entrance exams, as the majority of the questions are trigonometry-based.
Graphical Conceptualization – Enhances comprehension of periodic functions, transformations, and their applications in real life.
Key Identities and Formulas – Provides key formulas such as sin²θ + cos²θ = 1, which are frequently applied in equation solving

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top