Aakash Repeater Courses
ApplyTake Aakash iACST and get instant scholarship on coaching programs.
Have you ever wondered how engineers design huge buildings, how sailors and pilots navigate their journey, or how shadows change their length throughout the day? You can find all these answers in trigonometry, a fascinating branch of mathematics. In class 11 Maths NCERT chapter 3, trigonometric functions, contains the advanced concepts of trigonometry like radian measure, relation between degree and radian, sign of trigonometric functions, graphs of trigonometric functions, domain and range of trigonometric functions, and trigonometric functions of the sum and difference of two angles. Understanding these concepts will make students more efficient in solving problems involving height, distance, and angles. NCERT solutions of class 11 of trigonometric functions will also build a strong foundation for more advanced trigonometric concepts, which have many practical, real-life applications like construction, navigation, architecture, etc.
This article on NCERT solutions for class 11 Maths Chapter 3 Trigonometric Functions offers clear and step-by-step solutions for the exercise problems in the NCERT Class 11 Maths Book. Students requiring trigonometric functions class 11 solutions will find this article useful. It covers all the important Class 11 Maths Chapter 3 question answers and concepts of trigonometric functions. According to the latest CBSE syllabus, the experienced Subject Matter Experts of Careers360 have curated these trigonometric functions class 11 NCERT solutions, ensuring that students can grasp the basic concepts effectively. For syllabus, notes, and PDF, refer to this link: NCERT
NCERT Trigonometric Functions Class 11 Solutions: Exercise: 3.1 Page Number: 48-49 Total Questions: 7 |
Question 1: Find the radian measures corresponding to the following degree measures:
(i) $25 ^\circ$
(ii) $-47 ^\circ$ $30'$
(iii) $240^\circ$
(iv) $520^\circ$
Answer:
It is solved using the relation between degree and radian
(i) $25^\circ$
We know that $180^\circ$ = $\pi$ radian
So, $1^\circ = \frac{\pi }{180}$ radian
$25^\circ = \frac{\pi }{180}\times 25$ radian $=\frac{5\pi }{36}$ radian
(ii) $-47^\circ30'$
We know that
$-47^\circ30' = -47\frac{1}{2}^\circ = -\frac{95}{2}^\circ$
Now, we know that $180^\circ = \pi \Rightarrow 1^\circ = \frac{\pi}{180}$ radian
So, $-\frac{95}{2}^\circ = \frac{\pi}{180}\times \left (-\frac{95}{2} \right )$ radian $= \frac{-19\pi}{72}$ radian
(iii) $240^\circ$
We know that
$180^\circ = \pi \Rightarrow 1^\circ = \frac{\pi}{180}$ radian
So, $240^\circ = \frac{\pi}{180}\times 240 = \frac{4\pi}{3}$ radian
(iv) $520^\circ$
We know that
$180^\circ = \pi \Rightarrow 1^\circ = \frac{\pi}{180}$ radian
So, $520^\circ = \frac{\pi}{180}\times 520$ radian $= \frac{26\pi}{9}$ radian
Answer:
(i) $\frac{11}{16}$
We know that
$\pi$ radian $= 180^\circ \Rightarrow 1\ radian = \frac{180}{\pi}^\circ$
So, $\frac{11}{16}\ radian = \frac{180}{\pi}\times \frac{11}{16}^\circ$ (we need to take $\pi = \frac{22}{7}$ )
$\frac{11}{16}\ radian = \frac{180\times 7}{22}\times \frac{11}{16}^\circ = \frac{315}{8}^\circ$
(we use $1^\circ = 60'$ and 1' = 60'')
Here 1' represents 1 minute and 60" represents 60 seconds
Now,
$\frac{315}{8}^\circ=39\frac{3}{8}^\circ =39^\circ +\frac{3\times 60}{8}' = 39^\circ +22' + \frac{1}{2}' = 39^\circ +22' +30''= \frac{315}{8}^\circ = 39^\circ22'30''$
(ii) $-4$
We know that
$\pi$ radian $= 180^\circ \Rightarrow 1\ radian = \frac{180}{\pi}^\circ$ (we need to take $\pi = \frac{22}{7}$ )
So, $-4\ radian = \frac{-4\times 180}{\pi}= \frac{-4\times 180\times 7}{22} = -\frac{2520}{11}^\circ$
(we use $1^\circ = 60'$ and 1' = 60'')
$\Rightarrow \frac{-2520}{11}^\circ= -229\frac{1}{11}^\circ =-229^\circ + \frac{1\times 60}{11}' = -229^\circ + 5' + \frac{5}{11}' = -229^\circ +5' +27''= -229^\circ5'27''$
(iii) $\frac{5\pi}{3}$
We know that
$\pi$ radian $= 180^\circ \Rightarrow 1\ radian = \frac{180}{\pi} ^\circ$ (we need to take $\pi = \frac{22}{7}$ )
So, $\frac{5\pi}{3}\ radian = \frac{180}{\pi}\times \frac{5\pi}{3}^\circ = 300^\circ$
(iv) $\frac{7\pi}{6}$
We know that
$\pi$ radian $= 180^\circ \Rightarrow 1\ radian = \frac{180}{\pi} ^\circ$ (we need to take $\pi = \frac{22}{7}$ )
So, $\frac{7\pi}{6}\ radian = \frac{180}{\pi}\times \frac{7\pi}{6} = 210^\circ$
Question 3: A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Answer:
Number of revolutions made by the wheel in 1 minute = 360
$\therefore$ Number of revolutions made by the wheel in 1 second = $\frac{360}{60} = 6$
($\because$ 1 minute = 60 seconds)
In one revolution, the wheel will cover $2\pi$ radian
So, in 6 revolutions it will cover = $6\times 2\pi = 12\pi$ radian
$\therefore$ In 1 the second wheel will turn $12\pi$ radian.
Answer:
We know that
$l = r\theta$ ( where $l$ is the length of the arc, $r$ is the radius of the circle and $\theta$ is the angle subtended)
here $r$ = 100 cm
and $l$ = 22 cm
Now,
$\theta = \frac{l}{r} = \frac{22}{100}$ radian
We know that
$\pi\ radian = 180^\circ$
So, 1 radian = $\frac{180}{\pi}^\circ$
$\therefore \frac{22}{100}\ radian = \frac{180}{\pi}\times\frac{22}{100}^\circ= \frac{180\times7}{22}\times\frac{22}{100} = \frac{63}{5}^\circ$
So, $\frac{63}{5}^\circ = 12\frac{3}{5}^\circ = 12^\circ + \frac{3\times60}{5}' = 12^\circ + 36' = 12 ^\circ36'$
Thus, the angle subtended at the centre of a circle $\theta = 12^\circ36'$.
Question 5: In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
Answer:
Given: radius ($r$) of circle = $\frac{Diameter}{2} = \frac{40}{2} = 20$ cm
length of chord = 20 cm
We know that
$\theta = \frac{l}{r}$ ($r$ = 20 cm , $l$ = ? , $\theta$ = ?)
Now,
AB is the chord of length 20 cm and OA and OB are radii of circle i.e. 20 cm each
The angle subtended by OA and OB at centre = $\theta$
$\because$ OA = OB = AB
$\therefore$ $\Delta$ OAB is equilateral triangle
So, each angle is $60^\circ$
$\therefore$ $\theta = 60^\circ$ $= \frac{\pi}{3}$ radian
Now, we have $\theta$ and $r$
So, $l = r\theta = 20\times\frac{\pi}{3}=\frac{20\pi}{3}$
$\therefore$ the length of the minor arc of the chord ($l$) = $\frac{20\pi}{3}$ cm.
Answer:
Given: $\theta_1 = 60^\circ, \theta_2 = 75^\circ\\$ and $l_1 = l_2$
We need to find the ratio of their radii $\frac{r_1}{r_2}$
We know that arc length $l = r \theta$
So, $l_1 = r_1 \theta_1$ and $l_2 = r_2\theta_2$
Now, $l_1 = l_2$
So, $\frac{ r_1 }{ r_2}= \frac{\theta_2}{\theta_1} = \frac {75}{60} = \frac{5}{4}$, which is the ratio of their radii.
Answer:
(i) We know that
$l = r \theta$
Now,
$r$ = 75 cm
$l$ = 10 cm
So,
$\theta = \frac{l}{r} = \frac{10}{75} = \frac{2}{15}$ radian
(ii) We know that
$l = r \theta$
Now,
$r$ = 75 cm
$l$ = 15 cm
So,
$\theta = \frac{l}{r} = \frac{15}{75} = \frac{1}{5}$ radian
(iii) We know that
$l = r \theta$
Now,
$r$ = 75 cm
$l$ = 21 cm
So,
$\theta = \frac{l}{r} = \frac{21}{75} = \frac{7}{25}$ radian
NCERT Trigonometric Functions Class 11 Solutions: Exercise: 3.2 Page Number: 57 Total Questions: 10 |
Answer:
$\cos x = -\frac {1}{2}$
$\because \sec x = \frac{1}{\cos x} = \frac{1}{-\frac {1}{2}} = -2$
$x$ lies in III quadrants. Therefore sec x is negative
$\sin ^{2}x +\cos^{2}x = 1 ⇒ \sin^{2}x = 1 - \cos^{2}x$
$⇒ \sin^{2}x = 1 -\left ( -\frac{1}{2} \right )^{2}⇒ \sin^{2}x = 1 - \frac{1}{4} = \frac{3}{4}⇒ \sin x = \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$
$x$ lies in III quadrants. Therefore sin x is negative
$\therefore \sin x= - \frac{\sqrt{3}}{2}$
$\because cosec \ x = \frac {1}{\sin x}= \frac{1}{- \frac{\sqrt{3}}{2}} =- \frac{2}{\sqrt{3}}$
$x$ lies in III quadrants. Therefore cosec x is negative
$\tan x = \frac{\sin x}{\cos x} = \frac {-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$
$x$ lies in III quadrants. Therefore tan x is positive
$\cot x = \frac{1}{\tan x} = \frac{1}{\sqrt{3}}$
$x$ lies in III quadrants. Therefore cot x is positive.
Answer:
$\sin x = \frac {3}{5}$
$cosec \ x = \frac{1}{\sin x}=\frac {1}{\frac {3}{5}} = \frac {5}{3}$
$x$ lies in the second quadrant. Therefore cosec x is positive
$\sin^{2}x + \cos ^{2}x = 1⇒ \cos ^{2}x = 1 - \sin ^{2}x$
$⇒ \cos ^{2}x = 1 - \left ( \frac{3}{5} \right )^{2}⇒ \cos ^{2}x = 1 - \frac {9}{25} = \frac {16}{25}⇒ \cos x = \sqrt{\frac {16}{25}} = \pm \frac {4}{5}$
$x$ lies in the second quadrant. Therefore cos x is negative
$\therefore \cos x = - \frac {4}{5}$
$\sec x = \frac {1}{\cos x} = \frac{1}{- \frac {4}{5}} = -\frac {5}{4}$
$x$ lies in the second quadrant. Therefore sec x is negative
$\tan x = \frac {\sin x}{\cos x} = \frac {\frac{3}{5}}{-\frac{4}{5}} = -\frac {3}{4}$
$x$ lies in the second quadrant. Therefore tan x is negative
$\cot x = \frac {1}{\tan x} = \frac {1}{-\frac {3}{4}} = -\frac{4}{3}$
$x$ lies in the second quadrant. Therefore cot x is negative.
Answer:
$\cot x= \frac {3}{4}$
$\tan x = \frac{1}{\cot x}= \frac{1}{\frac {3}{4}} = \frac {4}{3}$
$1 + \tan ^ {2}x = \sec ^{2}x⇒ 1+\frac{4^2}{3^2} = \sec ^{2}x⇒ 1 + \frac {16}{9} = \sec ^{2}x⇒ \frac {25}{9} = \sec ^{2}x$
$⇒ \sec x = \sqrt {\frac {25}{9}} = \pm \frac {5}{3}$
$x$ lies in x lies in third quadrant. therefore sec x is negative
$\sec x = -\frac{5}{3}$
$\cos x = \frac {1}{\sec x} = \frac {1}{-\frac{5}{3}} = -\frac{3}{5}$
$\sin ^{2 }x+ \cos ^{2}x = 1⇒ \sin ^{2 }x = 1 - \cos ^{2}x$
$⇒ \sin ^{2 }x = 1 -\left ( -\frac{3}{5} \right )^{2}⇒ \sin ^{2 }x = 1 - \frac {9}{25}⇒ \sin ^{2 }x = \frac{16}{25}⇒ \sin x = \sqrt {\frac{16}{25}} = \pm \frac{4}{5}$
$x$ lies in third quadrant. Therefore sin x is negative
$\sin x = -\frac {4}{5}$
$cosec \ x = \frac {1}{\csc} = \frac {1}{-\frac{4}{5}} = - \frac{5}{4}$.
Answer:
$\sec x = \frac {13}{5}$
$\cos x = \frac {1}{\sec x} = \frac{1}{\frac {13}{5}} = \frac {5}{13}$
$\sin^{2}x + \cos^{2}x = 1⇒ \sin^{2}x = 1 - \cos^{2}x$
$⇒ \sin^{2}x = 1 - (\frac {5}{13})^2⇒ \sin^{2}x = 1 - \frac {25}{169} = \frac {144}{169}⇒ \sin x = \sqrt { \frac {144}{169}} = \pm \frac {12}{13}$
$x$ lies in fourth quadrant. Therefore $\sin x$ is negative.
$\sin x =- \frac {12}{13}$
$\csc x = \frac {1}{\sin x} = \frac {1}{-\frac {12}{13}} = -\frac {13}{12}$
$\tan x = \frac {\sin x}{\cos x} = \frac {-\frac{12}{13}}{\frac{5}{13}} = -\frac {12}{5}$
$\cot x = \frac {1}{\tan x} = \frac {1}{-\frac{12}{5}} = -\frac{5}{12}$.
Question 5: Find the values of the other five trigonometric functions as $\small \tan x = -\frac{5}{12}$, $x$ lies in second quadrant.
Answer:
$\tan x = -\frac {5}{12}$
$\cot x = \frac {1}{\tan x} = \frac {1}{-\frac{5}{12}} = -\frac {12}{5}$
$1 + \tan^{2}x = \sec^{2}x⇒ 1 + \left ( -\frac{5}{12} \right )^{2} = \sec^{2}x⇒ 1 + \frac {25}{144} = \sec^{2}x⇒ \frac {169}{144} = \sec^{2}x$
$⇒ \sec x = \sqrt {\frac {169}{144}} = \pm \frac {13}{12}$
$x$ lies in second quadrant. Therefore the value of $\sec x$ is negative
$\sec x = - \frac {13}{12}$
$\cos x = \frac{1}{\sec x}= \frac{1}{-\frac{13}{12}} = -\frac {12}{13}$
$\sin^{2}x + \cos^{2}x = 1⇒ \sin^{2}x = 1 - \cos^{2}x$
$⇒ \sin^{2}x = 1 - \left ( -\frac{12}{13} \right )^{2}⇒ \sin^{2}x = 1 - \frac{144}{169}⇒\sin^{2}x = \frac {25}{169}⇒ \sin x = \sqrt {\frac{25}{169}} = \pm \frac{5}{13}$
$x$ lies in the second quadrant.
Therefore the value of $\sin x$ is positive.
$\sin x = \frac {5}{13}$
$\csc = \frac {1}{\sin x} = \frac {1}{\frac {5}{13}} = \frac {13}{5}$.
Question 6: Find the values of the trigonometric functions $\small \sin 765^\circ$
Answer:
We know that values of $\sin x$ repeat after an interval of $2\pi$ or $360^\circ$
$\sin765^\circ = \sin (2\times360^\circ + 45^\circ ) = \sin45^\circ = \frac {1}{\sqrt{2}}$.
Question 7: Find the values of the trigonometric functions $\small cosec \ (-1410^\circ)$
Answer:
We know that value of $\operatorname{cosec} x$ repeats after an interval of $2\pi$ or $360^\circ$.
$\operatorname{cosec} (-1410^\circ) = \operatorname{cosec} (360^\circ\times4+(-1410^\circ))= \operatorname{cosec}\ 30^\circ = 2$
Question 8: Find the values of the trigonometric functions $\small \tan \frac{19\pi }{3}$
Answer:
We know that $\tan x$ repeats after an interval of $\pi$ or 180$^\circ$.
$\tan (\frac{19\pi}{3}) = \tan (6\pi+\frac{\pi}{3})= \tan \frac{\pi}{3} =\tan 60^\circ = \sqrt{3}$
Question 9: Find the values of the trigonometric functions $\sin\left ( -\frac{11\pi}{3} \right )$
Answer:
We know that $\sin x$ repeats after an interval of $2\pi$ or $360^\circ$
$\sin \left ( -\frac{11\pi}{3} \right ) = \sin \left (4\pi +(-\frac{11\pi}{3}) \right ) = \sin \frac{\pi}{3} = \frac {\sqrt{3}}{2}$
Question 10: Find the values of the trigonometric functions $\small \cot \left ( -\frac{15\pi }{4} \right )$
Answer:
We know that $\cot x$ repeats after an interval of $\pi$ or 180$^\circ$.
$\cot \left ( -\frac{15\pi}{4} \right ) = \cot \left (4\pi +(-\frac {15\pi}{4}) \right ) = \cot \left ( \frac{\pi}{4} \right ) = 1$
NCERT Trigonometric Functions Class 11 Solutions: Exercise: 3.3 Page Number: 67-68 Total Questions: 25 |
Answer:
We know the values of sin 30°, cos 60°, and tan 45°.
$\sin \left ( \frac{\pi}{6} \right ) = \left ( \frac{1}{2} \right ), \\ \cos \left ( \frac{\pi}{3} \right ) = \left ( \frac{1}{2} \right ), \\ \tan \left ( \frac{\pi}{4} \right ) = 1$
L.H.S. $=\sin^{2}\frac{\pi}{6}+\cos^{2}\frac{\pi}{3}-\tan^{2}\frac{\pi}{4}=$ $\left ( \frac{1}{2} \right )^{2}+ \left ( \frac {1}{2} \right )^{2}-1^{2}$
$= \frac{1}{4}+\frac{1}{4}-1= -\frac{1}{2} =$ R.H.S.
Answer:
$\sin\frac{\pi}{6} = \frac {1}{2}, \operatorname{cosec} \frac{7\pi}{6} = \operatorname{cosec}\left ( \pi + \frac{\pi}{6} \right ) = - \operatorname{cosec} \frac{\pi}{6}=-2, \\ \cos \frac{\pi}{3} = \frac{1}{2}$
L.H.S. = $2\sin^{2}\frac{\pi}{6} + \operatorname{cosec}^{2}\frac{7\pi}{6}\cos^{2}\frac{\pi}{3} = 2\left ( \frac{1}{2} \right )^{2}+\left ( -2 \right )^{2}\left ( \frac{1}{2} \right )^{2}= 2\times\frac{1}{4} + 4\times\frac{1}{4} = \frac {1}{2} + 1= \frac{3}{2}$
= R.H.S.
Answer:
We know the values of cot 30°, tan 30°, and cosec 30°.
$\cot \frac{\pi}{6} = \sqrt{3}, \operatorname{cosec}\frac{5\pi}{6} = \operatorname{cosec}\left ( \pi - \frac{\pi}{6} \right )=\operatorname{cosec}\frac{\pi}{6} = 2, \tan\frac{\pi}{6}= \frac{1}{\sqrt{3}}$
L.H.S. $=\cot^{2}\frac{\pi}{6} + \operatorname{cosec}\frac{5\pi}{6} +3\tan^{2}\frac{\pi}{6} = \left ( \sqrt{3} \right )^{2} + 2 + 3\times\left ( \frac{1}{\sqrt{3}} \right )^{2}= 3+2+1 = 6=$ R.H.S.
Answer:
$\sin \frac{3\pi}{4} = \sin\left ( \pi-\frac{\pi}{4} \right ) = \sin \frac{\pi}{4}= \frac{1}{\sqrt{2}},\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \sec\frac{\pi}{3}= 2$
Using the above values
L.H.S. $=2\sin^{2}\frac{3\pi}{4} +2\cos^{2}\frac{\pi}{4}+2\sec^{2}\frac{\pi}{3} = 2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\left ( 2 \right )^{2}\\ \\ \Rightarrow 1+1+8=10=$ R.H.S.
Question 5(i): Find the value of $\small (i) \sin 75^\circ$
Answer:
$\sin 75^\circ = \sin(45^\circ + 30^\circ)$
We know that
$\sin(x+y)=\sin x\cos y + \cos x\sin y$
Using this idendity
$\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin45^\circ\cos30^\circ + \cos45^\circ\sin30^\circ$
$= \frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\times\frac{1}{2}\\ \\ \Rightarrow \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}$
Question 5 (ii): Find the value of
$\small (ii) \tan 15^\circ$
Answer:
$\tan 15^\circ = \tan (45^\circ - 30^\circ)$
We know that,
$\left [ \tan(x-y)= \frac{\tan x - \tan y}{1+\tan x\tan y} \right ]$
By using this we can write,
$\tan (45^\circ - 30^\circ)= \frac{\tan 45^\circ - tan30^\circ}{1+\tan45^\circ\tan30^\circ}= \frac{1-\frac{1}{\sqrt{3}}}{1+1\left ( \frac{1}{\sqrt{3}} \right )} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}$
$=\frac{\left ( \sqrt{3}-1 \right )^{2}}{\left ( \sqrt{3}+1 \right )\left ( \sqrt{3} -1\right )}=\frac{3+1-2\sqrt{3}}{\left ( \sqrt{3} \right )^{2}-\left ( 1 \right )^{2}}\\ \\ \Rightarrow \frac {4-2\sqrt{3}}{3-1}=\frac{2\left ( 2-\sqrt{3} \right )}{2}= 2-\sqrt{3}$
Answer:
$\cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) - \sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right )$
Multiply and divide by 2 both cos and sin functions
We get,
$\frac{1}{2}\left [2 \cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) \right ] + \frac{1}{2}\left [- 2\sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right ) \right ]$
Now, we know that
2cosAcosB = cos(A+B) + cos(A-B) --------(i)
-2sinAsinB = cos(A+B) - cos(A-B) ----------(ii)
We use these two identities
In our question A = $\left (\frac{\pi}{4}-x \right )$
B = $\left (\frac{\pi}{4}-y \right )$
So,
$\frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} + \cos \left \{ \left ( \frac{\pi}{4}-x \right) -\left ( \frac{\pi}{4}-y \right ) \right \} \right ] +\\ \\ \frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} - \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} \right ]$
$= 2 \times \frac{1}{2} \left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right )+\left ( \frac{\pi}{4}-y \right ) \right \} \right ]$
$= \cos \left [ \frac{\pi}{2}-(x+y) \right ]$
As we know that
$(\cos \left ( \frac{\pi}{2} - A \right ) = \sin A)$
By using this
$= \cos \left [ \frac{\pi}{2}-(x+y) \right ]$ $=\sin(x+y)=$ R.H.S.
Answer:
As we know that
$(\tan (A +B ) = \frac {\tan A + \tan B}{1- \tan A\tan B})$ and $\tan (A-B) = \frac {\tan A - \tan B }{1+ \tan A \tan B}$
So, by using these identities
L.H.S. $=\frac{\tan \left ( \frac{\pi}{4}+x \right )}{\tan \left ( \frac{\pi}{4}-x \right )} = \frac{\frac{\tan \frac {\pi}{4} + \tan x}{1- \tan \frac{\pi}{4}\tan x}} {\frac{\tan \frac {\pi}{4} - \tan x}{1+ \tan \frac{\pi}{4}\tan x}} =\frac{ \frac {1+\tan x }{1- \tan x}} { \frac {1-\tan x }{1+ \tan x}} = \left ( \frac{1 + \tan x}{1 - \tan x} \right )^{2}=$ R.H.S.
Answer:
As we know,
$\cos(\pi+x) = -\cos x$ , $\sin (\pi - x ) = \sin x$ , $\cos \left ( \frac{\pi}{2} + x\right ) = - \sin x$ and $\cos (-x) = \cos x$
By using these our equation simplify to
$\frac{\cos x \times -\cos x}{\sin x \times - \sin x} = \frac{- \cos^{2}x}{-\sin^{2}x} = \cot ^ {2}x$ $(\because \cot x = \frac {\cos x}{\sin x})=$ R.H.S.
Answer:
We know that
$\cos \left ( \frac{3\pi}{2}+x \right ) = \sin x, \cos (2\pi +x)= \cos x, \cot\left ( \frac{3\pi}{2} -x\right ) = \tan x, \cot (2\pi + x) = \cot x$
So, by using these our equation simplifies to
$\cos \left ( \frac{3\pi }{2} +x\right )\cos (2\pi +x)\left [ \cot \left ( \frac{3\pi }{2}-x \right ) +\cot (2\pi +x)\right ]$
$=\sin x\cos x [\tan x + \cot x] = \sin x\cos x [\frac {\sin x}{\cos x} + \frac{\cos x}{\sin x}]$
$= \sin x\cos x\left [ \frac{\sin^{2}x+\cos^{2}x}{\sin x\cos x } \right ] =\sin^{2}x+\cos^{2}x = 1=$ R.H.S.
Question 10: Prove the following $\small \sin (n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x =\cos x$
Answer:
Multiply and divide by 2
$= \frac {2\sin(n+1)x \sin(n+2)x + 2\cos (n+1)x\cos(n+2)x}{2}$
Now by using identities
–2sinAsinB = cos(A+B) – cos(A–B)
2cosAcosB = cos(A+B) + cos(A–B)
Now, $\frac{\left \{ -\left (\cos(2n+3)x - \cos (-x) \right ) + \left ( \cos(2n+3) +\cos(-x) \right )\right \}}{2}\\ \\ \left ( \because \cos(-x) = \cos x \right )$
$= \frac{2\cos x}{2} = \cos x=$ R.H.S.
Answer:
We know that
[ cos(A+B) - cos (A-B) = -2sinAsinB ]
By using this identity
$\cos \left ( \frac {3\pi}{4}+x \right ) - \cos \left ( \frac {3\pi}{4}-x \right ) = -2\sin\frac{3\pi}{4}\sin x = -2\times \frac{1}{\sqrt{2}}\sin x\\ \\ = -\sqrt{2}\sin x=$ R.H.S.
Question 12: Prove the following $\small \sin^{2}6x - \sin^{2}4x = \sin2x\sin10x$
Answer:
We know that
$a^{2} - b^{2} = (a+b)(a-b)$
So, $\sin^{2}6x - \sin^{2}4x =(\sin6x + \sin4x)(\sin6x - \sin4x)$
Now, we know that
$\sin A + \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right ), \sin A - \sin B = 2\cos \left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )$
By using these identities
sin6x + sin4x = 2sin5x cosx
sin6x - sin4x = 2cos5x sinx
$\Rightarrow \sin^{2}6x - \sin^{2}4x = (2\cos5x\sin5x)(2\sin x\cos x)$
Now,
2sinAcosB = sin(A+B) + sin(A-B)
2cosAsinB = sin(A+B) - sin(A-B)
by using these identities
2cos5x sin5x = sin10x - 0
2sinx cosx = sin2x + 0
So, $\sin^{2}6x-\sin^{2}4x = \sin2x\sin10x$
Question 13: Prove the following $\small \cos^{2}2x - \cos^{2}6x = \sin4x\sin8x$
Answer:
As we know that
$a^{2}-b^{2} =(a-b)(a+b)$
$\therefore \cos^{2}2x -\cos^{2}6x = (\cos2x-\cos6x)(\cos2x+\cos6x)$
Now, $\cos A - \cos B = -2\sin\left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )\\ \\ \cos A + \cos B = 2\cos\left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )$
By using these identities
cos2x - cos6x = -2sin(4x)sin(-2x) = 2sin4xsin2x ( $\because$ sin(-x) = -sin x and cos(-x) = cosx)
cos2x + cos 6x = 2cos4xcos(-2x) = 2cos4xcos2x
So our equation becomes
$(\cos2x-\cos6x)(\cos2x+\cos6x)=(2\sin4x\sin2x)(2\cos4x\cos2x)=(2\sin2x\cos2x)(2\sin4x\cos4x)$
$=\sin4x\sin8x=$ R.H.S.
Question 14: Prove the following $\small \sin2x +2\sin4x + \sin6x = 4\cos^{2}x\sin4x$
Answer:
We know that
$\sin A+ \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )$
We are using this identity
sin2x + 2sin4x + sin6x = (sin2x + sin6x) + 2sin4x
sin2x + sin6x = 2sin4xcos(-2x) = 2sin4xcos(2x) ( $\because$ cos(-x) = cos x)
So, our equation becomes
sin2x + 2sin4x + sin6x = 2sin4xcos(2x) + 2sin4x
Now, take the 2sin4x common
sin2x + 2sin4x + sin6x = 2sin4x(cos2x +1) ( $\because \cos2x = 2\cos^{2}x - 1$ )
= $2\sin4x( 2\cos^{2}x - 1$ +1 )
= $2\sin4x( 2\cos^{2}x$ )
= $4\sin4x\cos^{2}x=$ R.H.S.
Question 15: Prove the following $\small \cot4x(\sin5x + \sin3x) = \cot x(\sin5x - \sin3x)$
Answer:
We know that
$\sin x + \sin y = 2\sin\left ( \frac{x+y}{2} \right )\cos\left (\frac{x-y}{2} \right )$
By using this , we get
sin5x + sin3x = 2sin4xcosx
$\frac{\cos4x}{\sin4x}\left ( 2\sin4x\cos x \right ) = 2\cos4x\cos x\\ \\$
Now multiply and divide by sin x
$\\\ \\ \frac{2\cos4x\cos x \sin x}{\sin x} =\cot x (2\cos4x\sin x) \left ( \because \frac{\cos x}{\ sin x} = \cot x \right )\\ \\$
Now we know that
$\\ 2\cos x\sin y = \sin(x+y) - \sin(x-y)\\ \\$
By using this our equation becomes
$=\cot x (\sin5x - \sin3x)=$ R.H.S.
Question 16: Prove the following $\small \frac{\cos 9x - \cos 5x}{\sin17x - \sin3x} = -\frac{\sin2x}{\cos10x}$
Answer:
As we know that
$\\ \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2 }, \cos 9x - \cos 5x = -2\sin 7x \sin2x$
$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2 }, \sin 17x - \sin 3x = 2\cos10x \sin7x$
Now, $\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} =\frac{-2\sin 7x \sin2x}{2\cos10x \sin7x} = -\frac{\sin 2x}{\cos10x}=$ R.H.S.
Question 17: Prove the following $\small \frac{\sin5x + \sin3x}{\cos5x + \cos3x} = \tan4x$
Answer:
We know that
$\\ \sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$ and $\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \\$
We use these identities
$\\ \sin5x + \sin3x = 2\sin4x\cos x, \cos5 x + \cos 3x = 2\cos4x\cos x$
Now, $\frac{\sin5x + \sin3x}{\cos5 x + \cos 3x} = \frac{ 2\sin4x\cos x}{2\cos4x\cos x} = \frac{\sin4x}{\cos 4x} = \tan 4x=$ R.H.S.
Question 18: Prove the following $\small \frac{\sin x - \sin y}{\cos x+\cos y} = \tan \frac{(x-y)}{2}$
Answer:
We know that
$\sin x - \sin y = 2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}$ and $\cos x +\cos y = 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}\\$
We use these identities
$\frac{\sin x - \sin y}{\cos x +\cos y} =\frac{2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}}{ 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}} = \frac{\sin\frac{x-y}{2}}{\cos\frac{x-y}{2}} = \tan \frac{x-y}{2}=$ R.H.S.
Question 19: Prove the following $\small \frac{\sin x + \sin 3x}{\cos x + \cos3x} = \tan2x$
Answer:
We know that
$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$
$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$
We use these equations,
$\sin x + \sin3x = 2\sin2x\cos(-x) = 2\sin2x\cos x (\because \cos(-x) = \cos x)$
$\cos x + \cos3x = 2\cos2x\cos(-x) =2\cos2x\cos x (\because \cos(-x) = \cos x)$
Now, $\frac{\sin x + \sin3x}{\cos x + \cos3x} = \frac {2\sin2x\cos x}{2\cos2x\cos x}= \frac{\sin2x}{\cos2x} = \tan2x=$ R.H.S.
Question 20: Prove the following $\small \frac{\sin x - \sin 3x}{\sin^{2}x-\cos^{2}x} = 2\sin x$
Answer:
We know that
$\sin3x = 3\sin x - 4\sin^{3}x, \cos^{2}x-\sin^{2}x = \cos2x$ and $\cos2x = 1 - 2\sin^{2}x$
We use these identities
$\sin x - \sin3x = \sin x - (3\sin x - 4\sin^{3}x) = 4\sin^{3}x - 2\sin x = 2\sin x (2\sin^{2}x - 1)$
$\sin^{2}x-\cos^2x = \sin^{2}x-(1-\sin^2x) =2\sin^{2}x-1$
Now, $\frac{\sin x - \sin3x}{\sin^{2}-\cos^{2}x } = \frac{ 2\sin x (2\sin^{2}x - 1)}{ 2\sin^{2}x - 1} = 2\sin x=$ R.H.S.
Question 21: Prove the following $\small \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$
Answer:
We know that
$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$ and $\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$
We use these identities
$\frac{(\cos4x + \cos2x) + \cos3x}{(\sin4x+\sin2x)+\sin3x} = \frac{2\cos3x\cos x + \cos3x}{2\sin3x\cos x+\sin3x} = \frac{2\cos3x(\cos x+1)}{2\sin3x(\cos x+1)}=\cot 3x=$ R.H.S.
Question 22: prove the following $\small \cot x \cot2x - \cot2x\cot3x - \cot3x\cot x =1$
Answer:
L.H.S.
= $\cot x \cot2x - \cot3x(\cot2x - \cot x)$
Now we can write $\cot3x = \cot(2x + x)$
⇒ $\cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}$
So, $\cot x \cot2x-\frac{\cot 2x \cot x - 1}{\cot 2x + \cot x}(\cot2x+\cot x)$
= $\cot x \cot2x - (\cot2x\cot x -1)$
= $\cot x \cot2x - \cot2x\cot x +1= 1 =$ R.H.S.
Question 23: Prove that $\small \tan4x = \frac{4\tan x(1-\tan^{2}x)}{1-6 \tan^{2}x+\tan^{4}x}$
Answer:
We know that
$\tan2A=\frac{2\tan A}{1 - \tan^{2}A}$
and we can write tan 4x = tan 2(2x)
So, $\tan4x=\frac{2\tan 2x}{1 - \tan^{2}2x}$ = $\frac{2( \frac{2\tan x}{1 - \tan^{2}x})}{1 - (\frac{2\tan x}{1 - \tan^{2}x})^{2}}$
= $\frac{2 (2\tan x)(1 - \tan^{2}x)}{(1-\tan x)^{2} - (4\tan^{2} x)}$
= $\frac{(4\tan x)(1 - \tan^{2}x)}{(1)^{2}+(\tan^{2} x)^{2} - 2 \tan^{2} x - (4\tan^{2} x)}$
= $\frac{(4\tan x)(1 - \tan^{2}x)}{1^{2}+\tan^{4} x - 6 \tan^{2} x }$ = R.H.S.
Question 24: Prove the following $\small \cos4x = 1 - 8\sin^{2}x\cos^{2}x$
Answer:
We know that
$\cos2x=1-2\sin^{2}x$
We use this in our problem
$\cos 4x = \cos 2(2x)$
= $1-2\sin^{2}2x$
= $1-2(2\sin x \cos x)^{2}$ $(\because \sin2x = 2\sin x \cos x)$
= $1-8\sin^{2}x\cos^{2}x=$ R.H.S.
Question 25: Prove the following $\small \cos6x = 32\cos^{6}x -48\cos^{4}x + 18\cos^{2}x-1$
Answer:
We know that
$\cos 3x = 4 \cos^{3}x - 3\cos x$
We use this in our problem
we can write $\cos 6x$ as $\cos 3(2x)$
$\cos 3(2x) = 4 \cos^{3}2x - 3\cos 2x$
= $4(2\cos^{2}x - 1)^{3} - 3(2\cos^{2}x - 1) (\because \cos 2x = 2\cos^{2}x - 1)$
= $4[(2\cos^{2}x)^{3} -(1)^{3}-3(2\cos^{2}x)^{2}(1) + 3(2\cos^{2}x)(1)^{2}]-6\cos^{2}x + 3[(a-b)^{3} = a^{3} - b^{3} - 3a^{2}b+ 3ab^{2}]$
= $32\cos^{6}x - 4 - 48 \cos^{4}x + 24 \cos^{2}x - 6\cos^{2}x + 3$
= $32\cos^{6}x - 48 \cos^{4}x + 18\cos^{2}x - 1 =$ R.H.S.
NCERT Trigonometric Functions Class 11 Solutions: Miscellaneous Exercise Page Number: 71-72 Total Questions: 10 |
Question 1: Prove that $\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+\cos\frac{3\pi }{13}+\cos\frac{5\pi }{13}=0$
Answer:
We know that
cos A+ cos B = $2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$
we use this in our problem
$\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{(\frac{3\pi }{13}+\frac{5\pi}{13})}{2}\cos\frac{(\frac{3\pi}{13}-\frac{5\pi }{13})}{2}$
= $\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{4\pi }{13}\cos\frac{-\pi}{13}$ ( we know that cos(-x) = cos x )
= $\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{4\pi }{13}\cos\frac{\pi}{13}$
= $\small 2\cos\frac{\pi }{13}(\cos\frac{9\pi }{13}+\cos\frac{4\pi }{13})$
again use the above identity
= $\small 2\cos\frac{\pi }{13}(2\cos(\frac{\frac{9\pi }{13}+\frac{4\pi }{13}}{2})\cos(\frac{\frac{9\pi }{13}-\frac{4\pi }{13}}{2})$
= $\small 2\cos\frac{\pi }{13}2\cos\frac{\pi }{2}\cos\frac{5\pi }{26}$
we know that $\small \cos\frac{\pi }{2}$ = 0
So, $\small 2\cos\frac{\pi }{13}2\cos\frac{\pi }{2}\cos\frac{5\pi }{26}$ = 0 = R.H.S.
Question 2: Prove that $\small (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x )\cos x = 0$
Answer:
We know that
$\sin3x=3\sin x - 4\sin^{3}x$ and $\cos3x=4\cos^{3}x - 3\cos x$
We use this in our problem
$\small (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x )\cos x$
= $(3\sin x - 4\sin^{3}x+ \sin x) \sin x$ + $(4\cos^{3}x - 3\cos x- \cos x)\cos x$
= (4sinx - 4 $\small \sin^{3}x$ )sin x + (4 $\small \cos^{3}x$ - 4cos x)cos x
Now take the 4sinx common from 1st term and -4cosx from 2nd term
= 4 $\small \sin^{2}x$ (1 - $\small \sin^{2}x$ ) - 4 $\small \cos^{2}x$ (1 - $\small \cos^{2}x$ )
= 4 $\small \sin^{2}x$ $\small \cos^{2}x$ - 4 $\small \cos^{2}x$ $\small \sin^{2}x$ ($\small \because \cos^{2}x = 1 - \sin^2x$ and $\sin^{2}x = 1 -\cos^{2}x$)
= 0 = R.H.S.
Question 3: Prove that $\small (\cos x + \cos y)^{2} + (\sin x - \sin y)^{2} = 4 \cos^{2}\left ( \frac{x+y}{2} \right )$
Answer:
We know that $(a+b)^{2} = a^{2} + 2ab + b^{2}$ and $(a-b)^{2} = a^{2} - 2ab + b^{2}$
We use these two in our problem
$(\sin x-\sin y)^{2} = \sin^{2}x - 2\sin x\sin y + \sin^{2}y$ and $(\cos x+\cos y)^{2} = \cos^{2}x + 2\cos x\cos y + \cos^{2}y$
$\small (\cos x + \cos y)^{2} + (\sin x - \sin y)^{2}$ = $\cos^{2}x + 2\cos x\cos y + \cos^{2}y$ + $\sin^{2}x - 2\sin x\sin y + \sin^{2}y$
= 1 + 2 cos x cos y + 1 - 2 sin x sin y $\left ( \because \sin^{2}x + \cos^{2}x = 1\ and \ \sin^{2}y + \cos^{2}y = 1 \right )$
= 2 + 2(cos x cos y - sin x sin y)
= 2 + 2cos(x + y)
= 2(1 + cos(x + y) )
Now we can write
$\cos(x + y) =2\cos^{2}\frac{(x + y)}{2} - 1$ $\left ( \because \cos2x = 2\cos^{2}x - 1 \ \Rightarrow \cos x = 2\cos^{2}\frac{x}{2} - 1\right )$
= $2(1 + 2\cos^{2}\frac{(x + y)}{2} - 1)$
= $4\cos^{2}\frac{(x + y)}{2}$
= R.H.S.
Question 4: Prove that $\small (\cos x-\cos y)^{2} + (\sin x - \sin y)^{2} = 4\sin^{2}\left ( \frac{x-y}{2} \right )$
Answer:
We know that $(a+b)^{2} = a^{2} + 2ab + b^{2}$ and $(a-b)^{2} = a^{2} - 2ab + b^{2}$
We use these two in our problem
$(\sin x-\sin y)^{2} = \sin^{2}x - 2\sin x\sin y + \sin^{2}y$ and $(\cos x-\cos y)^{2} = \cos^{2}x - 2\cos x\cos y + \cos^{2}y$
$\small (\cos x - \cos y)^{2} + (\sin x - \sin y)^{2}$ = $\cos^{2}x - 2\cos x\cos y + \cos^{2}y$ + $\sin^{2}x - 2\sin x\sin y + \sin^{2}y$
= 1 - 2cos x cos y + 1 - 2sin x sin y $\left ( \because \sin^{2}x + \cos^{2}x = 1\ and \ \sin^{2}y + \cos^{2}y = 1 \right )$
= 2 - 2(cos x cos y + sin x sin y)
= 2 - 2cos(x - y) $\small (\because \cos(x-y) =\cos x \cos y + \sin x \sin y)$
= 2(1 - cos(x - y) )
Now we can write
$\cos(x - y) = 1 -2\sin^{2}\frac{(x - y)}{2}$ $\left ( \because \cos2x = 1 - 2\sin^{2}x \ \Rightarrow \cos x = 1 - 2\sin^{2}\frac{x}{2} \right )$
So, $2(1 - \cos(x - y) ) = 2(1 - ( 1 -2\sin^{2}\frac{(x - y)}{2}))$
= $4\sin^{2}\frac{(x - y)}{2}$ = R.H.S.
Question 5: Prove that $\small \sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos2x \sin4x$
Answer:
we know that $\sin A + \sin B =2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
We use this identity in our problem
If we notice we need sin4x in our final result so it is better if we need a combination of sin7x and sin x , sin3x and sin5x to get sin4x.
$(\sin7x + \sin x) + (\sin5x + \sin3x) = 2\sin\frac{7x+x}{2}\cos\frac{7x-x}{2}$ $+2\sin\frac{5x+3x}{2}\cos\frac{5x-3x}{2}$
$=$ $2\sin4x\cos3x + 2\sin4x\cos x$
take 2sin4x common
= 2sin4x(cos3x + cosx)
We know that
$\cos A + \cos B =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
We use this
$\cos3x + \cos x =2\cos\frac{3x+x}{2}\cos\frac{3x-x}{2}$
= $2\cos2x\cos x$
Now 2sin4x(cos3x + cosx) = 2sin4x( $2\cos2x\cos x$)
= $4\cos x \cos2x\sin4x$ = R.H.S.
Answer:
We know that
$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
$\cos A + \cos B =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
We use these two identities in our problem
sin7x + sin5x = $2\sin\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$ = $2\sin6x\cos x$
sin 9x + sin 3x = $2\sin\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$ = $2\sin6x\cos 3x$
cos 7x + cos5x = $2\cos\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$ = $2\cos6x\cos x$
cos 9x + cos3x = $2\cos\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$ = $2\cos6x\cos 3x$
$\small \frac{(\sin 7x + \sin 5x) + (\sin9x + \sin 3x)}{(\cos7x + \cos5x) + (\cos9x + \cos3x)}$ = $\small \frac{(2\sin 6x\cos x) + (2\sin6x \cos3x)}{(2\cos6x cos x) + (2\cos6x \cos3x)}$
= $\small \frac{2\sin6x(\cos x + \cos3x)}{2\cos6x (\cos x + \cos3x)} = \tan6x$ = R.H.S. $\small \left ( \because \frac{\sin x}{\cos x} = \tan x\right )$
Question:7: Prove that $\small \sin3x + \sin2x - \sin x = 4\sin x \cos\frac{x}{2}\cos\frac{3x}{2}$
Answer:
We know that
$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$
We use these identities
$\sin3x - \sin x = 2\cos\frac{3x+x}{2}\sin\frac{3x-x}{2}$
$= 2\cos2x\sin x$
sin2x + $2\cos2x\sin x$ = 2sinx cosx + $2\cos2x\sin x$
take 2 sinx common
$2\sin x ( \cos x + \cos2x) = 2\sin x(2\cos\frac{2x+x}{2}\cos\frac{2x-x}{2})$
$= 2\sin x(2\cos\frac{3x}{2}\cos\frac{x}{2})$
$= 4\sin x\cos\frac{3x}{2}\cos\frac{x}{2} =$ R.H.S.
Question 8: Find $\small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}$ in $\small \tan x = - \frac{4}{3}$ , x in quadrant II.
Answer:
tan x = $-\frac{4}{3}$
We know that ,
$\sec^{2}x = 1 + \tan^{2}x$
$= 1 +\left ( -\frac{4}{3} \right )^{2}$
$= 1 + \frac{16}{9}$ = $\frac{25}{9}$
$\sec x = \sqrt{\frac{25}{9}}$ = $\pm\frac{5}{3}$
x lies in II quadrant thats why sec x is -ve
So, $\sec x =-\frac{5}{3}$
Now, $\cos x = \frac{1}{\sec x}$ = $-\frac{3}{5}$
We know that,
$\cos x = 2\cos^{2}\frac{x}{2}- 1$ ( $\because \cos2x = 2\cos^{2}x - 1 \Rightarrow \cos x = 2\cos^{2}\frac{x}{2} - 1$ )
⇒ $-\frac{3}{5}+ 1 = 2$ $\cos^{2}\frac{x}{2}$
⇒ $\frac{-3+5}{5}$ = $2\cos^{2}\frac{x}{2}$
⇒ $\frac{2}{5}$ = $2\cos^{2}\frac{x}{2}$
⇒ $\cos^{2}\frac{x}{2}$ = $\frac{1}{5}$
⇒ $\cos\frac{x}{2}$ = $\sqrt{\frac{1}{5}}$ = $\pm\frac{1}{\sqrt5}$
x lies in II quadrant so value of $\cos\frac{x}{2}$ is +ve
$\cos\frac{x}{2}$ = $\frac{1}{\sqrt5} = \frac{\sqrt5}{5}$
we know that
$\cos x =1 - 2\sin^{2}\frac{x}{2}$
⇒ $2\sin^{2}\frac{x}{2}$ = 1 - $(-\frac{3}{5})$ = $\frac{8}{5}$
⇒ $\sin^{2}\frac{x}{2} = \frac{4}{5}\\ \\=\sin\frac{x}{2} = \sqrt{ \frac{4}{5}} = \pm \frac{2}{\sqrt{5}}$
x lies in II quadrant So value of sin x is +ve
$\sin\frac{x}{2} = \frac{2}{\sqrt{}5} = \frac{2\sqrt5}{5}$
$\tan \frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{2\sqrt5}{5}}{\left ( \frac{\sqrt5}{5} \right )} = 2$
Answer:
$\pi < x < \frac{3\pi}{2}⇒ \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$
We know that
cos x = $2\cos^{2}\frac{x}{2} - 1$
$2\cos^{2}\frac{x}{2} =$ cos x + 1 = $\left ( -\frac{1}{3} \right )$ + 1 = $\left ( \frac{-1+3}{3} \right )$ = $\frac{2}{3}$
⇒ $\cos\frac{x}{2} = \sqrt{ \frac{1}{3}} = \pm \frac{1}{\sqrt3}$
⇒ $\cos\frac{x}{2} = - \frac{1}{\sqrt3} = - \frac{\sqrt3}{3}$ (As x lies in 3rd quadrant)
we know that
cos x = $1 - 2\sin^{2}\frac{x}{2}$
⇒ $2\sin^{2}\frac{x}{2} = 1 - \cos x$ = 1 - $\left ( -\frac{1}{3} \right )$ = $\frac{3+1}{3}$ = $\frac{4}{3}$
⇒ $2\sin^{2}\frac{x}{2} = \frac{4}{3}⇒ \sin^{2}\frac{x}{2} = \frac{2}{3}⇒ \sin\frac{x}{2} = \pm \sqrt{ \frac{2}{3}} = \frac{\sqrt6}{3}$
Because $\sin\frac{x}{2}$ is +ve in given quadrant
$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{\sqrt6}{3}}{\frac{-\sqrt3}{3}} = - \sqrt2$
Question 10: Find $\small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}$ in $\small \sin x = \frac{1}{4}$ ,x in quadrant II
Answer:
$\frac{\pi}{2} < x < \pi⇒ \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$ all functions are positive in this range
We know that
$\cos^{2}x = 1 - \sin^{2}x$ = 1 - $\left ( \frac{1}{4} \right )^{2}$ = $1 - \frac{1}{16}$ = $\frac{15}{16}$
cos x = $\sqrt\frac{15}{16} = \pm \frac{\sqrt15}{4} = - \frac{\sqrt15}{4}$ (cos x is -ve in II quadrant)
We know that
cosx = $2\cos^{2}\frac{x}{2} - 1$
$2\cos^{2}\frac{x}{2} = \cos x + 1 = -\frac{\sqrt15}{4} + 1 = \frac{-\sqrt15+4}{4}$
$\cos^{2}\frac{x}{2} = \frac{-\sqrt15+4}{8}$
$\cos\frac{x}{2} = \pm \sqrt\frac{-\sqrt15+4}{8} = \frac{\sqrt{-\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8-2\sqrt15}}{4}$ (because all functions are posititve in given range)
Similarly,
cos x = $1-2\sin^{2}\frac{x}{2}$
$2\sin^{2}\frac{x}{2} = 1 - \cos x⇒ 2\sin^{2}\frac{x}{2} = 1 -\left (\frac{-\sqrt15}{4} \right ) = \frac{4+\sqrt15}{4}$
$\sin\frac{x}{2} = \pm \sqrt\frac{\sqrt15+4}{8} = \frac{\sqrt{\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8+2\sqrt15}}{4}$ (because all functions are posititve in given range)
$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{\sqrt{8+2\sqrt15}}{4}}{\frac{\sqrt{8-2\sqrt15}}{4}} = \frac{{8+2\sqrt15}}{\sqrt{64 - 15\times4}} = \frac{{8+2\sqrt15}}{\sqrt{4}} = 4 + \sqrt15$
Also, read,
Question:
The solution of $\frac{\sqrt{3}+1}{\sin x}+\frac{\sqrt{3}-1}{\cos x}=4 \sqrt{2}$ in the interval $\left(0, \frac{\pi}{2}\right)$ is:
Solution:
$\begin{aligned} & \frac{\sqrt{3}+1}{\sin x}+\frac{\sqrt{3}-1}{\cos x}=4 \sqrt{2} \\ \Rightarrow & \left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) \frac{1}{\sin x}+\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right) \frac{1}{\cos x}=2 \\ \Rightarrow & \frac{\cos \frac{\pi}{12}}{\sin x}+\frac{\sin \frac{\pi}{12}}{\cos x}=2 \\ \Rightarrow & \cos \left(x-\frac{\pi}{12}\right)=\sin 2 x \\ & \Rightarrow \sin \left(\frac{\pi}{2}-\left(x-\frac{\pi}{12}\right)\right)=\sin 2 x \\ \Rightarrow & \frac{\pi}{2}-\left(x-\frac{\pi}{12}\right)=n \pi+(-1)^{\mathrm{n}} 2 x \\ &⇒ x=\frac{7 \pi}{36}, \frac{5 \pi}{12}\end{aligned}$
Hence, the correct answer is $\frac{7 \pi}{36}, \frac{5 \pi}{12}$.
The topics discussed in the NCERT Solutions for class 11, chapter 3, Trigonometric Functions are:
Radian Measure = $\frac{π}{180}$ × Degree Measure
Degree Measure = $\frac{180}{π}$ × Radian Measure
sin θ = P / H
cos θ = B / H
tan θ = P / B
cosec θ = H / P
sec θ = H / B
cot θ = B / P
sin θ = 1 / cosec θ
cosec θ = 1 / sin θ
cos θ = 1 / sec θ
sec θ = 1 / cos θ
tan θ = 1 / cot θ
cot θ = 1 / tan θ
sin (90° – θ) = cos θ
cos (90° – θ) = sin θ
tan (90° – θ) = cot θ
cot (90° – θ) = tan θ
sec (90° – θ) = cosec θ
cosec (90° – θ) = sec θ
sin(π/2-θ) = cos θ
cos(π/2-θ) = sin θ
sin(π-θ) = sin θ
cos(π-θ) = -cos θ
sin(π+θ) = -sin θ
cos(π+θ) = -cos θ
sin(2π-θ) = -sin θ
cos(2π-θ) = cos θ
sin² θ + cos² θ = 1
cosec² θ – cot² θ = 1
sec² θ – tan² θ = 1
sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
cos x cos y = 1/2[cos(x–y) + cos(x+y)]
sin x cos y = 1/2[sin(x+y) + sin(x−y)]
cos x sin y = 1/2[sin(x+y) – sin(x−y)]
sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]
sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]
cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]
cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]
sin (x+y) = sin x × cos y + cos x × sin y
cos(x+y) = cosx × cosy − sinx × siny
cos(x–y) = cosx × cosy + sinx × siny
sin(x–y) = sinx × cosy − cosx × siny
tan (x+y) = (tan x + tan y) / (1 − tan x tan y)
tan (x−y) = (tan x − tan y) / (1 + tan x tan y)
tan 2θ = (2 tan θ) / (1 - tan²θ)
sin 3θ = 3sin θ – 4sin³θ
cos 3θ = 4cos³θ – 3cos θ
tan 3θ = [3tan θ – tan³θ] / [1 − 3tan²θ]
Here are some approaches that students can use to approach the questions related to trigonometric functions.
Here is a comparison list of the concepts in Trigonometric Functions that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:
Concept Name |
JEE |
NCERT |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
❌ | |
Trigonometric Equation using Minimum and Maximum value of Function |
✅ |
❌ |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
❌ | |
✅ |
❌ |
Given below is the chapter-wise list of the NCERT Class 11 Maths solutions with their respective links:
Also, read,
Here are the subject-wise links for the NCERT solutions of class 11:
Here are some useful links for NCERT books and the NCERT syllabus for class 11:
To solve trigonometric equations in Class 11 Maths Chapter 3, express the given terms in basic trigonometric functions like sin, cos, and tan, then try to apply proper trigonometric identities and use simplification.
The key formulas of Trigonometric Functions in NCERT Class 11 are:
$1) \cos^2x+\sin^2x=1$
$2) 1+\tan^2x =\sec^2x$
$3)1+\cot^2x =\operatorname{cosec}^2x$
$4)\cos (2n\pi + x)= \cos x$
$5)\sin (2n\pi + x) = \sin x$
$6) \sin (-x) = -\sin x$
$7) \cos (-x)= \cos x$
$8)\cos (x + y) = \cos x \cos y - \sin x \sin y$
$9)\cos (x - y) = \cos x \cos y + \sin x \sin y$
$10)\sin (x + y) = \sin x \cos y + \cos x \sin y$
$11)\sin (x - y) = \sin x \cos y - \cos x \sin y$
$12) \tan(x+y)=\frac{\tan x+\tan y}{1-\tan x\tan y}$
$13) \tan(x-y)=\frac{\tan x-\tan y}{1+\tan x\tan y}$
$14) \cot(x+y)=\frac{\cot x\cot y-1}{\cot x+\cot y}$
$15) \cot(x-y)=\frac{1+\cot x\cot y}{\cot y-\cot x}$
To find the general solution of a trigonometric equation, use the following standard equations:
$\sin \theta=\sin \alpha \Rightarrow \theta=n \pi+(-1)^n \alpha, n \in \mathbb{Z}$
$\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha, n \in \mathbb{Z}$
$\tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha, n \in \mathbb{Z}$
In class 11 chapter 3 trigonometric functions, a domain basically denotes the input values and range denotes the output values.
For example: The domain of $\sin\theta$ and $\cos\theta$ is $(-\infty,\infty)$ and range is (–1, 1).
To derive the sine and cosine function graphs, plot $y=\sin\theta$ and $y=\cos\theta$ for the values of $\theta$ like 0°, 30°, 60°, 90°, 180°, etc..
The sine graph starts at (0, 0) and goes up to 1 at 90°, drops to –1 at 270°, and comes to 0 again at 360° then repeats.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE