Careers360 Logo
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

Edited By Shivani Poonia | Updated on Jun 22, 2025 06:35 PM IST

Equilibrium is one of the most crucial concepts in chemistry, as it explains how chemical and physical processes reach a state of balance. Have you ever wondered why the chemical reactions in a closed container stop changing after a while, or why the temperature of a substance remains constant during phase changes? Various phenomena we see around us such as the melting of ice, and freezing of soda bottles also create a curiosity in our minds. Such phenomena are very well explained by concepts provided in the equilibrium discipline of Physical Chemistry.

JEE Main Scholarship Test Kit (Class 11): Narayana | Physics WallahAakash Unacademy

NEET Scholarship Test Kit (Class 11): Narayana | Physics Wallah Aakash | ALLEN

This Story also Contains
  1. Download PDF Of NCERT Solutions for Class 11 Chemistry Chapter 6
  2. NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
  3. Class 11 Chemistry NCERT Chapter 6: Higher Order Thinking Skills (HOTS) Questions
  4. Approach to Solve Questions of Chapter 6 Equilibrium
  5. Topics of NCERT class 11 Chemistry Equilibrium
  6. What Extra Should Students Study Beyond NCERT for JEE/NEET?
  7. Important formulas of NCERT class 11 chemistry Equilibrium
  8. NCERT Solutions for Class 11 Chemistry
  9. NCERT Solutions for Class 11- Subject-wise
  10. NCERT Books and NCERT Syllabus:
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

The chapter is essential for understanding not only basic chemistry but also advanced topics that rely on the equilibrium principle so that the students can grasp the dynamic nature of reactions in the world around us. The NCERT solutions for class 11 Chemistry chapter 6 are prepared and solved by chemistry experts. These NCERT Solutions will help you in the preparation of your class 11 final examination as well as in various competitive exams. These solutions will help you increase your accuracy and speed.

Also Read,

Download PDF Of NCERT Solutions for Class 11 Chemistry Chapter 6

Students can download the PDF by clicking on the link below

Download PDF

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

Question 6.1(a) A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

What is the initial effect of the change on vapour pressure?

Answer :

By increasing the volume of the container suddenly, initially, the vapour pressure would decrease. It is due to, the amount of vapour has remained the same but it is distributed in a larger volume.

Question 6.1(b) A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.

How do rates of evaporation and condensation change initially?

Answer :

Here the temperature is constant so that the rate of evaporation is also the same as before. On increasing the volume of the container, the density of vapour decreases due to which the rate of collision between vapour particles decreases. Hence the condensation rate also decreases initially.

Question 6.1(c) A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased .

What happens when equilibrium is restored finally and what will be the final vapour pressure?

Answer :

When equilibrium is restored, the rate of evaporation is equal to the rate of condensation. The temperature is constant and the volume is changed. The vapour pressure is temperature-dependent, not volumes. So, that final vapour pressure is equal to the initial vapour pressure.

Question 6.2 What is K c for the following equilibrium when the equilibrium concentration of each substance is: [SO2 ]= 0.60M, [O2 ] = 0.82M and [SO3 ] = 1.90M ?

2SO2(g)+O2(g)2SO3(g)

Answer :

Followings are the given information values to solve the above problems-[SO2]=0.60M[O2]

=0.82M[SO3]=1.90M
The given chemical equation is -

2SO2(g)+O2( g)2SO3(g)

The equilibrium constant for this reaction is expressed as;
Kc=[SO3]2[SO2]2[O2]
=[1.90]2[0.60]2[0.82]=12.22M1( approx )

Question 6.3 At a certain temperature and total pressure of 105 Pa, iodine vapour contains 40% by volume of I atoms

I(g)⇌2I(g)

Calculate Kp for the equilibrium.

Answer :

It is given that total pressure (P T )is 105 Pa and partial pressure of I atom = 40 % of P T
So, the partial pressure of I atom =40100×105=4×104

The partial pressure of I2 = 60% of P T

So, the partial pressure of I2=60100×105=6×104

Now, for the reaction I(g)2I(g)

Kp=(pI)2pl2=(4×104)26×104 Pa=2.67×104 Pa

Question 6.4 Write the expression for the equilibrium constant, Kc, for each of the following reactions:

(i) 2NOCl(g)2NO(g)+Cl(g)
(ii) 2Cu(NO3)2( s)2CuOS(s)+4NO2( g)+O2( g)
(iii) CH3COOC2H5(aq)+H2O(l)CH3COOH(aq)+C2H5OH(aq)
(iv) CH3COOC2H5(aq)+H2O(l)CH3COOH(aq)+C2H5OH(aq)
(v) I2(s)+5F22IF5

Answer :

The equilibrium constant for any reaction can be written as (concentration of products) / (concentration of reactants). And we considered constant values for the solids and liquids because their density per unit volume or mass per unit volume does not change.
Thus,
(i)Kc=[NO]2[Cl2][NOCl]2

(ii)
Kc=[CuO]2[NO2]4[O2][Cu(NO3)2]2
(iii)
Kc=[CH3COOH][C2H5OH][CH3COOC2H5]

(iv)KC=1[Fe3+][OH]

(v)Kc=[IF5]2[F2]5

Question 6.5 Find out the value of Kc for each of the following equilibria from the value of Kp:

(i) 2NOCl(g)2NO(g)+Cl2(g);Kp=1.8×102 at500K
(ii) CaCO3(s)CaO(s)+CO2(g);Kp=167 at 1073 K

Answer :

We know that the relation between Kp and Kc is expressed as;

Kp=Kc(RT)Δn

here Δn = (no. of moles of product) - (no. of moles of reactants)

R = 0.0831 bar L /mol/K, and

For (i)
Kp=1.8×102and Temp (T) = 500K

Δn = 3 - 2 = 1
By putting the all values in eq (i) we get

Kc=1670.0831×1073=1.87

For (ii)
Kp = 167 and temp(T) = 1073 K
Δn = 2 - 1 = 1
Now, by putting all values in eq (i) we get,

Kc=1670.0831×1073=1.87

Question 6.6 For the following equilibrium, Kc = 6.3 × 1014 at 1000 K

NO(g)+O3(g)NO2(g)+O2(g)

Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is Kc, for the reverse reaction?

Answer :

It is given that,
Kc=6.3×1014
we know that Kc′ for the reverse reaction is the inverse of the forward equilibrium constant. Thus it can be calculated as:

Kc=1Kc=16.3×1014=1.58×1015

Question 6.7 Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?

Answer :

For the pure liquids and solids, the molecular mass and the density at a particular temperature is always fixed and it is considered as a constant. Thus they can be ignored while writing the equilibrium constant expression

Question 6.8 Reaction between N2 and O2- takes place as follows:

2 N2(g)+O2(g)2 N2O(g)

If a mixture of 0.482 mol N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc=2.0×1037 , determine the composition of equilibrium mixture.

Answer :

It is given that,
Kc=2.0×1037
Let the concentration of N2O at equilibrium be x . 2 N2(g)+O2(g)2 N2O(g) initial conc 0.4820.9330 (in moles)  at equilibrium 0.482x0.933xx (in moles) 

The equilibrium constant is very small. So, we can assume 0.482x=0.482 and 0.933x=0.933

We know that,

Kc=[N2O]2[ N2]2[O2]
2×1037=(x/10)2(0.0482)2(0.0933) {dividing the moles by 10 to get concentration of ions)

x2100=2×1037×(0.0482)2×(0.0933)x2

=43.35×1040x


=43.35×1040x=6.6×1020

So, the concentration of [N2O]=x10=6.6×1020

Question 6.9 Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:

2NO(g)+Br2(g)2NOBr(g)

When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at a constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate the equilibrium amount of NO and Br2.

Answer :

The initial concentration of NO and Br2 is 0.087 mol and 0.0437 mol respectively.

The given chemical reaction is-2NO(g)+Br2(g)2NOBr(g)

Here, 2 mol of NOBr produces from 2 mol of NO . So, 0.0518 mol of NOBr is obtained from 0.518 mol of NO .

Again, From 1 mol of Br2 two mol of NOBr produced. So, to produce 0.518 mol of NOBr we need 0.5182=0.0259 mol of Br2.

Thus, the amount of NO present at equilibrium = 0.087 - 0.0518 = 0.0352 mol

and the amount of Br2 present at the equilibrium = 0.0437-0.0259 = 0.0178 mol

Question 6.10 At 450K, Kp = 2.0 × 1010 /bar for the given reaction at equilibrium.

2SO2(g)+O2(g)2SO3(g)

What is Kc at this temperature?

Answer :

We have,
Kp=2×1010/ bar
We know that the relation between Kp and Kc ;

Kp=Kc(RT)Δn
Here Δn = ( moles of product) - (moles of reactants)

2SO2(g)+O2(g)2SO3(g)

So. here Δn = 2-3 = -1

By applying the formula we get;

2×1010=Kc(0.0831Lbar/K/mol)×450 KKc=2×1010(0.0831Lbar/K/mol)×450 K

=74.79×1010Lmol1=7.48×1010Lmol1

Question 6.11 A sample of HI(g) is placed in flask at a pressure of 0.2 atm. At equilibrium the partial pressure of HI(g) is 0.04 atm. What is Kp for the given equilibrium?

2HI(g)H2(g)+I2(g)

Answer :

The initial pressure of HI is 0.2 atm . At equilibrium, it has a partial pressure of 0.04 atm. Therefore, a decrease in the pressure of HI is 0.2 - 0.04 = 0.16 .

The given reaction is:

2HI(g)H2(g)+I2(g)HI(g)1/2H2(g)+1/2I2(g)

At equilibrium,

 pHI =0.04pH2=0.162=0.08pI2=0.162=0.08

Therefore,

Kp=pH2×pI2p2HI=0.08×0.08(0.04)2=4

Question 6.12 A mixture of 1.57 mol of N2 , 1.92 mol of H2 and 8.13 mol of NH3 is introduced into a 20 L reaction vessel at 500 K. At this temperature, the equilibrium constant, Kc for the reaction N2( g)+3H2( g)⇌2NH3( g) is 1.7 × 102. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

Answer :

We have,N2(g)+3H2(g)2NH3(g)

Kc=1.7×102

The concentration of species are-[N2]=1.57/20molL1[H2]=1.92/20molL1[NH3]=8.13/20molL1

We know the formula of

Qc=[NH3]2[ N2][H2]3=(8.13/20)2(1.57/20)(1.92/20)3=2.4×103
The reaction is not in equilibrium. Since Qc>Kc, the equilibrium proceeds in reverse direction.

Question 6.13 The equilibrium constant expression for a gas reaction is, Kc=[NH3]4[O2]5[NO4[H2O]5

Write the balanced chemical equation corresponding to this expression.

Answer :

The balanced chemical equation corresponding to the given expression can be written as:

4NO+6H2O4NH3+5O2

Question 6.14 One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium 40% of water (by mass) reacts with CO according to the equation,

H2O(g)+CO(g)H2(g)+CO2(g)

Calculate the equilibrium constant for the reaction.

Answer :

The given reaction is-

H2O(g)+CO(g)H2(g)+CO2(g) initial conc 1/101/1000 At equilibrium 0.6/100.6/100.040.04

Now, the equilibrium constant for the reaction can be calculated as;

KC=[H2][CO2][H2O][CO]=.04×.04(.06)2

= 0.44 (approx)

Question 6.15 At 700 K, equilibrium constant for the reaction:

H2(g)+I2(g)2HI(g)

is 54.8. If 0.5 mol L -1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2 (g) and I2 (g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?

Answer :

We have,

The equilibrium constant of the reaction = 54.8

moles of HI = 0.5 mol/L

The given reaction is-

H2(g)+I2(g)2HI(g)

So, the reverse equilibrium constant isKc=1/Kc

Suppose the concentration of hydrogen and iodine at equilibrium be x

[I2]=[H2]=x

Therefore,

Kc=[H2][I2][HI]=x2(.5)2
So, the value ofx=0.2554.8=0.0675( approx )mol/L

Question 6.16 What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M ?

2ICl(g)I2(g)+Cl2(g);Kc=0.14

Answer :

The given reaction is:2ICl(g)I2(g)+Cl2(g) Initial conc. 0.78M00 At equilibrium (0.782x)MxMxM

The value of Kc = 0.14

Now we can write,Kc=[I2][Cl2][ICl]20.14=x2(.78x)20.374

=x(.78x)

By solving this we can get the value of x=0.167

Question 6.17 Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

C2H6(g)C2H4(g)+H2(g)

Answer :

Suppose the pressure exerted by the hydrogen and ethene gas be p at equilibrium.

the given reaction is-

C2H6( g)C2H4( g)+H2( g) initial pressure 4atm00 At equilibrium 4ppp

Now,

Kp=pC2H4×pH2/pC2H60.04=p24p

By solving the quadratic equation we can get the value of p = 0.38

Hence,at equilibrium,

pC2H6=4p=4.038

= 3.62 atm

Question 6.18(i) Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

CH3COOH(l)+C2H5OHCH3COOC2H5(l)+H2O(l)

(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)

Answer :

The given reaction is-
CH3COOH(l)+C2H5OHCH3COOC2H5(l)+H2O(l) the concentration ratio (reaction quotient) of the given chemical reaction is-

Qc=[CH3COOC2H5][H2O][CH3COOH][C2H5OH]

Question 6.18(ii) Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

CH3COOH(l)+C2H5OH(l)CH3COOC2H5(l)+H2O(l)

(ii) At 293 K, if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.

Answer :

Let the volume of the mixture will be V.

CH3COOH(l)+C2H5OH(l)CH3COOO2H5(l)+H2O(l) initial conc. 1/V0.18/V0 At equilibrium 1.171V(=0.829/V)1.171V0.1710.171

So equilibrium constant for the reaction can be calculated as;

Kc=(0.171)2(0.829)(0.009)=3.92 (approx) 

Question 6.18(iii) Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

CH3COOH(l)+C2H5OH(l)CH3COOC2H5(l)+H2O(l) initial conc. 1/V0.5/V0 At equilibrium 1.214V(=0.786/V)1.214V0.2140.214

(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K, 0.214 mol of ethyl acetate is found after sometime. Has equilibrium been reached?

Answer :

Let the volume of the mixture will be V.

CH3COOH(l)+C2H5OH(l)CH3COOO2H5(l)+H2O(l) initial conc. 1/V0.18/V0 At equilibrium 1.171V(=0.829/V)1.171V0.1710.171

Therefore the reaction quotient of the reaction-

Qc=(0.214)2(0.786)(0.286)=0.2037 (approx) 

Since Qc<Kc equilibrium has not been reached.

Question 6.19 A sample of pure PCl5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl5 was found to be 0.5 × 10-1 mol L -1 . If value of Kc is 8.3 × 10 -3 , what are the concentrations of PCl3 and Cl2 at equilibrium?

PCl5( g)PCl3( g)+Cl2( g)

Answer :

We have,

concentration ofPCl5=0.05 mol/L
and Kc=8.3×103

Suppose the concentrations of both PCl3 and Cl2 at equilibrium be x mol/L. The given reaction is:

PCl5(g)PCl3(g)+Cl2(g)

 at equilibrium 0.05xx

it is given that the value of the equilibrium constant,Kc=8.3×103

Now we can write the expression for equilibrium as:

Kc=x20.05=8.3×103x=4.15×104=0.0204 (approx) 

Hence the concentration ofPCl3 and Cl2 is 0.0204 mol/L

Question 6.20 One of the reaction that takes place in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO2 . FeO(s)+CO(g)Fe(s)+CO2(g); Kp = 0.265 atm at 1050K What are the equilibrium partial pressures of CO and CO2 at 1050 K if the initial partial pressures are: pCO = 1.4 atm and pCO2 = 0.80 atm?

Answer :

We have,

Kp=0.265
the initial pressure of CO and CO2 are 1.4 atm and 0.80atm resp.

The given reaction is-

FeO(s)+CO(g)Fe(s)+CO2(g)

initially, 1.4 atm 0.80 atm

Qp=pCO2pCO=0.801.4=0.571
Since Qp>Kc the reaction will proceed in the backward direction to attain equilibrium. The partial pressure of CO2 will increase = decrease in the partial pressure of CO2 = p

Kp=pCO2pCO

=0.80p1.4+p=0.265=0.371+.265p=0.80p

By solving the above equation we get the value of p = 0.339 atm

Question 6.21 Equilibrium constant, Kc for the reaction

N2(g)+3H2(g)2NH3(g)

At 500 K is 0.061 At a particular time, the analysis shows that composition of the reaction mixture is 3.0 mol L-1 N2 , 2.0 mol L-1 H2 and 0.5 mol L-1 NH3. Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?

Answer :

The given reaction is:

N2(g)+3H2(g)2NH3(g) 3.0molL12.0molL10.5molL1

Now, we know that,

Qc=[NH3]2/[N2][H2]3=(0.5)2/(3.0)(2.0)3=0.0104

It is given that Kc = 0.061

Since, Qc ≠ Kc, the reaction mixture is not at equilibrium.

Again, Qc<Kc , the reaction will proceed in the forward direction to attain the equilibrium.

Question 6.22 Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:

2BrCl(g)Br2(g)+Cl2(g

For which Kc = 32 at 500 K. If initially pure BrCl is present at a concentration of 3.3 × 10-3 mol L-1 , what is its molar concentration in the mixture at equilibrium?

Answer :

Suppose the x amount of bromine and chlorine formed at equilibrium. The given reaction is:

2BrCl(g)Br2(g)+Cl2(g) Initial Conc. 3.3×10300 at equilibrium 3.3×103.2xxx

Now, we can write,

Kc=[BR2][Cl2][BrCl2]232=x2(3.3×1032x)25.66=x(3.3×1032x)x+11.32x=18.678×103

By solving the above equation we get,
x=1.51×103

Hence, at equilibrium[BrCl2]=3.3×103(2×1.51×103)
=0.3×10−3 M

Question 6.23 At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO2 in equilibrium with soild carbon has 90.55% CO by mass

2BrCl(g)Br2(g)+Cl2(g

Calculate Kc for this reaction at the above temperature .

Answer :

Suppose the total mass of the gaseous mixture is 100 g.
Total pressure is 1 atm

Mass of CO = 90.55 g
And, mass of CO2 = (100 - 90.55) = 9.45 g

Now, number of moles of CO = 90.55/28 = 3.234 mol (mol. wt of CO = 28)
Number of moles of CO2 = 9.45/44 = 0.215 mol (mol. wt of CO2 = 44)

Partial pressure of CO ,

pCO=nCOnCO+nCO2pT=3.2343.234+0.215×1=0.938 atm

Similarly partial pressure of CO2,

pCO2=nCO2nCO+nCO2pT=0.062 atm

Thus, Kp=(0.938)2(0.062)14.19

By using the relation Kp=Kc(RT)Δn

Kc=14.19(0.083×1127)1=0.159( approx )

Question 6.24 Calculate a) ΔG0 for the formation of NO2 from NO and O2 at 298K

NO(g)+12O2(g)NO2(g)

where

ΔfG+[NO2]=52.0 kJ/molΔfG+[NO]=87.0 kJ/molΔfG+[O2]=0 kJ/mol

Answer :

Given data,

ΔfG+[NO2]=52.0 kJ/molΔfG+[NO]=87.0 kJ/molΔfG+[O2]=0 kJ/mol

Given chemical reaction

-NO(g)+12O2(g)NO2(g)

for the reaction,ΔG0=ΔG0 (products) ΔG0 (reactants) =(52870)=35 kJ/mol

Question 6.25 Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?

(a) PCl5(g)PCl3(g)+Cl2(g)
(b) CaO(s)+CO2(s)CaCO3(s)
(c) 3Fe(s)+4H2O(g)Fe3O4( s)+H2( g)

Answer :

According to Le Chatellier's principle, if the pressure is decreased, then the equilibrium will shift in the direction in which more number of moles of gases is present.

So,

  • (a)The number of moles of reaction products will increase.
  • (b)The number of moles of reaction products will decrease
  • (c)The number of moles of reaction products remains the same.

Question 6.26 Which of the following reactions will get affected by increasing the pressure? Also, mention whether the change will cause the reaction to go into forward or backward direction.

(i) COCl2(g)CO(g)+Cl2(g)
(ii) CH4(g)+2 S2(g)CS2(g)+2H2 S(g)
(iii) CO2( g)+C(s)2CO(g)
(iv) 2H2( g)+CO(g)CH3OH(g)

(v) CaCO3(s)CaO(s)+CO2(g)

(vi)4NH3(g)+5O2(g)4NO(g)+6H2O(g)

Answer :

According to Le Chatellier's principle, if the pressure is increased, then the equilibrium will shift in the direction in which less number of moles of gases is present. So, as per this rule following given reactions are affected by the increasing pressure-

The reaction (i), (iii), and (vi)- all proceeds in the backward direction

Reaction(iv) will shift in the forward direction because the number of moles of gaseous reactants is more than that of products.

Question 6.27 The equilibrium constant for the following reaction is 1.6 ×105 at 1024K

H2(g)+Br2(g)⇌2HBr(g)

Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024K.

Answer :

Given that,

Kp for the reaction =1.6×105Kp=1/Kp=11.6×105=6.25×106

Let the pressure of both H2 and Br2 at equilibrium be p.

2HBrH2( g)+Br2( g) initial conc. 1000 at eq 102ppp

Now,
Kp=pBr2pH2pHBr2
6.25×106=p2(102p)25×103=p(5p)
By solving the above equation we get,

p = 0.00248 bar

Hence the pressure of H2 and Br2 is 0.00248 bar and pressure of HBr is 0.00496 bar

Question 6.28(a) Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction: CH4( g)+H2O(g)CO(g)+3H2( g)

Write an expression for Kp for the above reaction.

Answer :

CH4( g)+H2O(g)CO(g)+3H2( g)
the expression of ionisation constant ( Kp) for the reaction can be defined as the ratio of the product of concentration to the product of reactants.Kp=pCOpH23pCH4pH2O

Question 6.28(b) Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:

CH4( g)+H2O(g)CO(g)+3H2( g)

How will the values of Kp and composition of equilibrium mixture be affected by

(i) increasing the pressure

(ii) increasing the temperature

(iii) using a catalyst?

Answer :

(i) According to Le Chatellier's principle, if pressure is increased, then the reaction will shift towards the less number of moles of gases. So, here the direction of equilibrium is backward and the value of Kp decreases.

(ii) According to Le Chatellier's principle, as the reaction is endothermic, the equilibrium will shift in the forward direction. The value of Kp is increases.

(iii) The equilibrium of the reaction is not affected by the presence of the catalyst. It only increases the rate of reaction.

Question 6.29(a) Describe the effect of :

(a) addition of H2

2H2( g)+CO(g)CH3OH(g)

Answer :

2H2( g)+CO(g)CH3OH(g)
(a)According to Le Chatelliers principle, on the addition of dihydrogen, the number of mole of H2 increases on the reactant side. Thus to attain the equilibrium again the reaction will move in the forward direction.

(b) According to Le Chatellier's principle, on the addition of methyl alcohol, the number of moles of methyl alcohol increases on the product sides. So, to attain the equilibrium, the reaction will proceed in a backward direction.

(c) If we remove the CO from the reactant side, the concentration on the reactant side will decrease and to attain an equilibrium, the reaction will shift backward direction

(d) On removal of CH3OH the equilibrium will shift in the forward direction.

Question 6.29(b) Describe the effect of :

addition of CH3OH

2H2( g)+CO(g)CH3OH(g)

Answer :

2H2( g)+CO(g)CH3OH(g)
According to Le Chatellier's principle, on the addition of methyl alcohol, the number of moles of methyl alcohol increases on the product sides. So, to attain the equilibrium, the reaction will proceed in a backward direction.

Question 6.29(c) Describe the effect of :

removal of CO

2H2( g)+CO(g)CH3OH(g)

Answer :

2H2( g)+CO(g)CH3OH(g)
If we remove the CO from the reactant side, the concentration on the reactant side will decrease and to attain an equilibrium, the reaction will shift backward direction

Question 6.30 At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl5 is 8.3 ×10 -3 . If decomposition is depicted as,

PCl5(g)PCl3(g)+Cl2(g),ΔrH+=124.0kJmol1

(a) write an expression for Kc for the reaction.
(b) what is the value of Kc for the reverse reaction at the same temperature ?
(c) what would be the effect on Kc if

(i) more PCl5 is added
(ii) pressure is increased
(iii) the temperature is increased ?

Answer :

We have,
PCl5(g)PCl3(g)+Cl2(g),ΔrH+=124.0kJmol1
Equilibrium constant for the above reaction = 8.3×10−3

(a) Expression of Kc for this reaction-Kc=[PCl3][Cl2]PCl5

(b) The value of the reverse equilibrium constant can be calculated as;

Kc=1Kc=18.3×103=1.20×102

(c). i Kc would remain the same because the temperature is constant in this case.

(c). ii If we increase the pressure, there is no change in Kc because the temperature is constant in this case also.

(c). iii In an endothermic reaction, the value of Kc increases with an increase in temperature.

Question 6.31 Dihydrogen gas used in Haber’s process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and H2 . In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,

CO(g)+H2O(g)CO2+H2( g)

If a reaction vessel at 400 °C is charged with an equimolar mixture of CO and steam such that pCO=pH2O=4.0bar, what will be the partial pressure of H2 at equilibrium? Kp= 10.1 at 400°C

Answer :

We have,
The partial pressure of CO and H2O is 4 bar and the Kp=10.1
Let p be the partial pressure of CO2 and H2 at equilibrium. The given reaction is-
CO( g)+H2O( g)CO2+H2( g) Initial concentration 4 bar 4 bar 00 At equilibrium 4p4ppp

Therefore, we can write,10.1=pCO2pH2pCOpH2O10.1=p2(4p)23.178=p(4p)p=(4p)×3.178
By solving the above equation we get, p = 3.04

Hence, the partial pressure of dihydrogen at equilibrium is 3.04 bar

Question 6.32 Predict which of the following reaction will have an appreciable concentration of reactants and products:

(a) Cl2(g)2Cl(g);Kc=5×1039
(b) Cl2( g)+2NO(g)2NOCl(g);Kc=3.7×108
(c) Cl2( g)+2NO2( g)2NO2Cl(g);Kc=1.8

Answer :

If the value of Kc is in the range of 10−3 to 103, then the reaction has appreciable concentrations of both reactants and products.

Therefore, the third reaction (c) (Kc=1.8) will have an appreciable concentration of reactants and products.

Question 6.33 The value of K c for the reaction 3O2(g)⇌2O3(g) is 2.0 ×10-50 at 25°C. If the equilibrium concentration of O2 in air at 25°C is 1.6 ×10-2 , what is the concentration of O2 ?

Answer :

We have,

Equilibrium constant of the reaction = 2×10−50
the concentration of dioxygen[O2]=1.6×102

The given reaction is-

3O2(g)2O3(g)
Then we have,
(equilibrium constant)
Kc=[O3(g)]2/[O2(g)]3
2×1050=[O3]2/(1.6×102)3[O3]2=2×1050×(1.6×102)3=8.192×1056[O3]=8.192×1056=2.86×1028

Thus the concentration of dioxygen is2.86×1028

Question 6.34(a) The reaction,

CO(g)+3H2( g)CH4( g)+H2O(g)

is at equilibrium at 1300 K in a 1L flask. It also contains 0.30 mol of CO, 0.10 mol of H2 and 0.02 mol of H2O, and an unknown amount of CH4 in the flask. Determine the concentration of CH4 in the mixture. The equilibrium constant Kc, for the reaction at the given temperature is 3.90.

Answer :

Given that,
Total volume = 1L
0.3 mol of CO , 0.10 mol of dihydrogen( H2 )and the 0.02 mol of water( H2O )
the equilibrium constant = 3.90

Let x be the concentration of methane at equilibrium. The given reaction is-

CO( g)+3H2( g)CH4( g)+H2O( g)


At equilibrium, 0.3 mol/L0.1 mol/Lx0.02 mol/L

Therefore,

Kc=0.02×x(0.3)(0.1)=3.90x=(3.9)(0.3)(0.1)3(0.02)=5.85×102

Thus the concentration of methane at equilibrium is=5.85×102

Question 6.35 What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:

HNO2,CN,HClO4, F,OH,CO32 and S2

Answer :

A conjugate acid-base pair means that the species are differed by only one proton. for example; HCl is an acid because it donates a proton to water. So HClCl, and H3O+H2O these pairs are called conjugate acid-base pair.

Species
Conjugate acid-base
HNO2
NO2 (Base)
CN−
HCN (Acid)
HClO4
ClO4 (base)
F
HF (acid)
OH
H2O (acid)
CO32−
HCO3 (acid)
S2−
HS (acid)

Question 6.36 Which of the followings are Lewis acids?H2O,BF3,H+and NH4+

Answer :

Lewis acid-
Those species that can accept the pair of electrons are called Lewis acids. For example Boron trifluoride ( BF3 ), ammonium ion( NH4+) and the hydrogen ion( H+). Among them water molecule is a Lewis base, it can donate pair of electrons.

Question 6.37 What will be the conjugate bases for the Brönsted acids: HF,H2SO4 and HCO3?

Answer :

When Brönsted acids lose their proton then they become a conjugate base of that corresponding acids.
Followings are the conjugate base of Brönsted acid-

HF2FH2SO4HSO4HCO3CO32

Question 6.38 Write the conjugate acids for the following Brönsted bases: NH2,NH3 and HCOO .

Answer :

When Brönsted base accepts a proton then they become a conjugate acid of that corresponding base.
Followings are the conjugate acid of Brönsted base-

  • NH2NH3
  • NH3NH4+
  • HCOOHCOOH

Question 6.39 The species: H2O,HCO3−,HSO4−andNH3 can act both as Brönsted acids and bases. For each case give the corresponding conjugate acid and base.

Answer :

When acid or base accept or lose a proton, they form conjugate acid or base of that corresponding species.

Lists of the conjugate acid and conjugate base of the given species-

Species
Conjugate acid
Conjugate base
H2O
H3O+
OH
HCO3
H2CO3
CO32−
HSO4
H2SO4
SO42−
NH3
NH4+
NH2

Question 6.40 Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH
(b) F
(c) H+ .
(d) BCl3

Answer :

Species which donate pair of an electron are called Lewis base and which accepts pair of electrons are called acid.

(a) OH is a Lewis base since it can donate its lone pair of electrons.

(b) F is a Lewis base since it can donate a pair of electrons.

(c) H+ is a Lewis acid since it can accept a pair of electrons.

(d) BCl3 is a Lewis acid since it can accept a pair of electrons.

Question 6.41 The concentration of hydrogen ion in a sample of soft drink is 3.8 × 10-3 M. what is its pH?

Answer :

We have,
the concentration of Hydrogen ion sample is 3.8×10−3 M

So, pH=log[H]+

=log(3.8×103)=3log3.8=2.42

Question 6.42 The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.

Answer :

We have,
The pH of a sample of vinegar is 3.76pH=?

Therefore,
pH=log[H+]log[H+]=pH
Taking antilog on both sides we get,

[H+]=antilog(3.76)[H+]=1.74×104

Hence the concentration of hydrogen ion[H+]=1.74×104

Question 6.43 The ionization constant of HF, HCOOH and HCN at 298K are 6.8 × 10-4 , 1.8 × 10-4 and 4.8 × 10-9 respectively. Calculate the ionization constants of the corresponding conjugate base.

Answer :

We have,
IOnization constant of hydrogen fluoride, methanoic acid and hydrogen cyanide are 6.8×104,1.8×104 and 4.8×109respectively.

It is known that,
Kb=KwKa..........................(i)

Kb of the conjugate base F

=10146.8×104=1.5×1011

Similarly,
By using the equation (i)

Kb of the conjugate base HCOO

=10141.8×104=5.6×1011

Kb of the conjugate base CN

=10144.8×109=2.8×106

Question 6.44 The ionization constant of phenol is 1.0 × 10 -10 . What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01M in sodium phenolate?

Answer :

We have,
The ionization constant of phenol is 1.0×1010 , and
the concentration of phenol is 0.05 M
degree of ionisation = ?

Ionization of phenol;
C6H5OH+H2OC6H5O+H3O+
At equilibrium,
the concentration of various species are-
[C6H5OH]=0.05x[C6H5O]=[H3O+]=x
As we see, the value of ionisation is very less. Also x will be very small. Thus we can ignore x .

Ka=[C6H5O][H3O+][C6H5OH]1010=x20.05x=1010×0.05x=2.2×106

Hence the concentration of phenolate ion is[C6H5O]=2.2×106

Let α be the degree of dissociation of phenol in the presence of 0.01 M of phenolate ion.

C6H5OHC6H5O+H+
Concentration (1 - α ) 0.05 0.05 α 0.05 α

So,[C6H5OH]=0.05(1α)=0.05[C6H5O]=0.05α+0.010.01M[H3O+]=0.05α

therefore,

Ka=(0.01)(0.05α)0.051010=0.01α

α=108
The degree of dissociation is 10−8

Question 6.45 The first ionization constant of H2S is 9.1 × 10 -8 . Calculate the concentration of HS- ion in its 0.1M solution. How will this concentration be affected if the solution is 0.1M in HCl also? If the second dissociation constant of H2S is 1.2 × 10 -13 , calculate the concentration of S2- under both conditions.

Answer :

We have,
1st ionisation constant of hydrogen sulphide is 9.1×10−8 and the 2nd dissociation constant is 1.2×10−13

Case 1st-(absence of hydrochloric acid)

To calculate the concentration of HS
Let x be the concentration of HS and the ionisation of hydrogen sulphide is;
H2 SH++HS
0.1 M

At equilibrium, the concentration of various species is,
Since the dissociation constant is very small. So, x can be neglected.
the concentration of H2S=1xM
the concentration ofHSand H+is xM
So,
Ka=x20.1=9.1×108
from here x can be calculated and we get, x=9.54×105M

Case 2nd (In presence of 0.1 M, HCl)
Suppose H2S is dissociated is x .Then at equilibrium,

[H2 S]=0.1x0.1,[H+]=0.1+x0.1 and the [HS]=xM
So,

Ka=x(0.1)0.1=9.1×108
Thus the concentration of [HS]is 9.1×108

Question 6.46 The ionization constant of acetic acid is 1.74 × 10 -5 . Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.

Answer :

It is given,
The ionisation constant of acetic acid is 1.74×10−5 and concentration is 0.05 M

The ionisation of acetic acid is;

CH3COOHCH3COO+H+
Therefore,

Ka=[CH3COO][H+][CH3COOH]=[H+]2[CH3COOH][H+]=(1.74×105)(5×102)=9.33×104=[CH3COO]

=9.33×104=[CH3COO]

=4log(9.33)=3.03
We know that,

α=KaCα=1.74×1050.05=1.86×102

Question 6.47 It has been found that the pH of a 0.01M solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its pKa .

Answer :

We have,
pH of organic acid is 4.15 and its concentration is 0.01M

Suppose the organic acid be HA. The dissociation of organic acid can be written as;

HAH++ApH=4.15log[H+]=4.15[H+]=7.08×105

Now,

Ka=[H+][A]/[HA][H+]=[A]=7.08×105

[HA] = 0.01

Then,

Ka=(7.08×105)2/0.01Ka=5.01×107

Thus

pKa=log(5.01×107)=6.30

Question 6.48 Assuming complete dissociation, calculate the pH of the following solutions:

(a) 0.003 M HCl

(b) 0.005 M NaOH

(c) 0.002 M HBr

(d) 0.002 M KOH

Answer :

Assuming the complete dissociation. So, α=1

(a) The ionisation of hydrochloric acid is
HClH++Cl
Since it is fully ionised then[H+]=[Cl]=0.003M
Therefore,pH of the solution =log(0.003)=3log(3)=2.52

(b) The ionisation of 0.005M NaOH
NaOHNa++OH[Na+]=[OH]=0.005M
Therefore,

pOH of the solution =log(0.005)=3log5=2.301

pH of the solution is equal to (14 - 2.301 =11.70)

(c) The ionisation of 0.002MHBr
HBrH++Br[Br]=[H+]=0.002M
Therefore,

pH of the solution =log(0.002)=3log2=2.69

pH of the solution is equal to (2.69)

(d) The ionisation of 0.002M KOH
KOHK++OH[OH]=[K+]=0.002M
Therefore,

pOH of the solution =log(0.002)=3log2=2.69

pH of the solution is equal to (14 - 2.69 = 11.31)

Question 6.49(a) Calculate the pH of the following solutions:

2 g of TlOH dissolved in water to give 2 litre of solution.

Answer :

Here, 2 g of TlOH dissolves in water to give 2 litres of solution
So, the concentration of TlOH =[ TlOH ( aq )]=22g/L=1221M (the molar mass of TlOH is 221)

TlOH can be dissociated as TlOH(aq)Tl++OH

OH(aq)=TlOH(aq)=1221M

Therefore, Kw=[H+][OH](since Kw=1014)
So, the concentration of [H+]=221×1014
Thus PH=log[H+]=log(221×1014)
= 11.65(approx)

Question 6.49(b) Calculate the pH of the following solutions:

0.3 g of Ca(OH)2 dissolved in water to give 500 mL of solution.

Answer :

The calcium hydroxide ion dissociates into-

Ca(OH)2Ca2++2OH


Molecular weight of Ca(OH)2=74
the concentration of [Ca(OH)2]=0.3×100074×500=0.0081M

[OH]=[Ca(OH)2]=0.0081M

We know that,

[H+]=Kw[OH]=10140.0162=61.7×1014

Thus pH=log[H+]=log(61.7×1014)

=141.79=12.21

Question 6.49(c) Calculate the pH of the following solutions:

0.3 g of NaOH dissolved in water to give 200 mL of solution.

Answer :

NaOH dissociates intoNaOHNa++OH
So, the concentration of [NaOH]=0.3×1000200×40M=0.0375M

[OH]=[NaOH]=0.0375M

We know that ,

[H+]=KW[OH]=10140.0375=2.66×1013


Now, pH=log[H+]

=log(2.66×1013)=12.57

Question 6.49(d) Calculate the pH of the following solutions:

1mL of 13.6 M HCl is diluted with water to give 1 litre of solution.

Answer :

We know that,
M1V1 (before dilution) = M2V2 (after dilution)

initially V1 = 1mL and M1 = 13.6 M
and V2 = 1L and M1 = ?

By putting all these values we get,

M2=13.6×1031=1.36×102[H+]=1.36×102
Thus pH=log[H+]=log(1.36×102)

= 1.86 (approx)

Question 6.50 The degree of ionization of a 0.1M bromoacetic acid solution is 0.132. Calculate the pH of the solution and the pKa of bromoacetic acid.

Answer :

We have,

Degree of ionization(a) = 0.132
Concentration of bromoacetic acid (C) = 0.1 M

Thus the concentration of H3O+=C.a
= 0.0132

Therefore

pH=log[H+]=log(0.0132)=1.879

Now, we know that,

Ka=C.a2 So, pKa=log(C.a2)=log(0.1×(0.0132)2)=log(0.0017)=2.76 (approx) 

Question 6.51 The pH of 0.005M codeine (C18H21NO3) solution is 9.95. Calculate its ionization constant and pK b.

Answer :

We have,

C=0.005MpH=9.95 and pOH=149.95=4.05

we know that pOH=-log[OH]4.05=log[OH]

By taking antilog on both sides we get.

concentration of[OH]=8.91×105

C.a =8.91×105

So, a=1.782×102

We know that,

Kb=C.a2=0.005×(1.782×102)2=0.0158×104


Thus

pKb=log(Kb)=log(0.0158×104)=5.80

Question 6.52 What is the pH of 0.001M aniline solution? Calculate the degree of ionization of aniline in the solution. Also, calculate the ionization constant of the conjugate acid of aniline.(Kb = 4.27×10−10 )

Answer :

We have,
C = 0.001 M
Kb = 4.27×10−10
Degree of inozation of aniline (a) = ?
Ionization constant of the conjugate acid ( Ka ) = ?

We know that

Kb=C.a24.27×1010=(0.001)a2 Thus a=4270×1010=65.34×104

 Then [Base] = C.a =(65.34×104)(0.001)=0.653×105

 Now, pOH=log(0.65×105)=6.187PH=14POH=146.187=7.813

It is known that,

Ka×Kb=Kw


So, Ka=10144.27×1010 =2.34×105 This is ionization constant.

Question 6.53(a) Calculate the degree of ionization of 0.05M acetic acid if its pK a value is 4.74. How is the degree of dissociation affected when its solution also contains

0.01M

Answer :

We have,
C = 0.05 M
pKa=4.74=log(Ka)
By taking antilog on both sides we get,

(Ka)=1.82×105=C(α)2

from here we get the value of α=1.82×1055×102 =1.908×102

After adding hydrochloric acid, the concentration of H+ ions increases and due to that the equilibrium shifts towards the backward direction. It means dissociation will decrease.

(i) when 0.01 HCl is taken

CH3COOHCH3COO+H+Initial conc. 0.0500 after dissociation 0.05x0.001+xx

As the dissociation is very small.
So we can write 0.001+x0.001 and 0.05x0.05

 Now, Ka=[CH3COO][H+][CH3COOH]=(0.001)(x)(0.05)=x50

So, the value of x=(1.82×105)(0.05)0.01
Now degree of dissociation =( amount dissociated )/( amount taken )

=1.82×103(0.05)0.05=1.82×103

Question 6.53(b) Calculate the degree of ionization of 0.05M acetic acid if its pKa value is 4.74. How is the degree of dissociation affected when its solution also contains

0.1M in HCl?

Answer :

Let the x amount of acetic acid is dissociated in this case

CH3COOHCH3COO+H+Initial conc. 0.0500 after dissociation 0.05x0.001+xx

As the dissociation is very small.
So we can write 0.1+x0.1 and 0.05x0.05

Ka=[CH3COO][H+][CH3COOH]=(0.1)(x)(0.05)=2x

So, the value ofx=(1.82×104)(0.05)0.1

Now the degree of dissociation = (amount dissociated) / (amount is taken)

=1.82×104(0.05)0.05=1.82×104

Question 6.54 The ionization constant of dimethylamine is 5.4 × 10-4 . Calculate its degree of ionization in its 0.02M solution. What percentage of dimethylamine is ionized if the solution is also 0.1M in NaOH?

Answer :

We have,

(Degree of ionization) Kb=5.4×104
Concentration of dimethylamine = 0.02 M

α=KbC=5.4×1040.02α=0.1643

If we add 0.1 M of sodium hydroxide. It is a strong base so, it goes complete ionization

NaOHNa++OH
(0.1 M) (0.1 M)

and also,

(CH3)2NH+H2O(CH3)2NH2++OH
0.02- x x x

[OH]=x+0.10.1 (since the dissociation is very small)

Therefore,

Kb=x(0.1)0.02x=5.4×104(0.020.1)=0.0054

Hence in the presece of 0.1 M of sodium hydroxide , 0.54% of dimethylamine get dissociated.

Question 6.55(a) Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:

Human muscle-fluid, 6.83

Answer :

We have pH 6.83

It is known that pH=log[H+]

Therefore,
6.83=log[H+]
By taking antilog on both sides we get,

[H+]=1.48×107M

Question 6.55(b) Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:

Human stomach fluid, 1.2

Answer :

We havepH=1.2

It is known thatpH=log[H+]

Therefore,
1.2=log[H+]
By taking antilog on both sides we get,

[H+]=0.063M

Question 6.55(c) Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:

Human blood, 7.38

Answer :

we have pH=7.38

It is known that pH=−log⁡[H+]

Therefore,
7.38=log[H+]
By taking antilog on both sides we get,

[H+]=4.17×108M

Question 6.55(d) Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:

Human saliva, 6.4.

Answer :

we have pH=6.4

It is known that pH=−log⁡[H+]

Therefore,
6.4=log[H+]
By taking antilog on both sides we get,

[H+]=3.98×107M

Question 6.56 The pH of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each

Answer :

We already know that pH can be calculated as- log[H+]
to calculate the concentration of [H+]=antilog(pH)

Thus, the hydrogen ion concentration of followings pH values are-

(i) pH of milk = 6.8
Since, pH=log[H+]
6.8 = −log⁡[H+]
log[H+] = -6.8

[H+] = anitlog(-6.8)

=1.5×107M

(ii) pH of black coffee = 5.0

Since,pH=log[H+]

5.0 = log[H+]

log[H+]= -5.0

[H+] = anitlog(-5.0)

=105M

(iii) pH of tomato juice = 4.2

Since, pH=log[H+]

4.2 = log[H+]

log[H+]=4.2[H+]=anitlog(4.2)=6.31×105M

(iv) pH of lemon juice = 2.2

Since, pH=log[H+]

2.2 = log[H+]

2.2=log[H+]log[H+]=2.2[H+]=anitlog(2.2)=6.31×103M

(v) pH of egg white = 7.8

Since, pH=log[H+]

7.8 = log[H+]

log[H+]=7.8[H+]=anitlog(7.8)=1.58×108M

Question 6.57 If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K. Calculate the concentrations of potassium, hydrogen and hydroxyl ions.What is its pH?

Answer :

We have 0.562 g of potassium hydroxide ( KOH ). On dissolving in water gives 200 mL of solution.
Therefore, concentration of

[KOH(aq)]=0.561×1000200g/L

= 2.805 g/L

=2.805×156.11M=0.05M
KOH(aq)K+(aq)+OH(aq)
It is a strong base. So, that it goes complete dissociation.

[OH]=0.05M=[K+]

It is known that,
Kw=[H+][OH][H+]=Kw[OH]=10140.05=2×1013M

Therefore,pH=log(2×1013)=12.69

Question 6.58 The solubility of Sr(OH)2 at 298 K is 19.23 g/L of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.

Answer :

By given abova data, we know the solubility of Sr(OH)2 at 298 K = 19.23 g/L

So, concentration of [Sr(OH)2]

= 19.23/121.63M (Molecular weight of Sr(OH)2 = 121.63 u)

= 0.1581 M

Sr(OH)2(aq)Sr2+(aq)+2(OH)(aq)

Sr2+=0.1581M
and the concentration of [OH] =2×0.1581M=0.3162M
Now

It is known that,

Kw=[OH][H+][H+]=10140.3162=3.16×1014


Therefore pH=log(3.16×1014)=13.5

Question 6.59 The ionization constant of propanoic acid is 1.32×10−5 . Calculate the degree of ionization of the acid in its 0.05M solution and also its pH. What will be its degree of ionization if the solution is 0.01M in HCl also?

Answer :

Let the degree of ionization of propanoic acid be α . Then Let suppose we can write propanoic acid to be HA,

It is known that,

We have
ionization constant of propanoic acid (Ka)=1.32×105 and the concentration is 0.005 M

α=KaC
By putting the values in above formula we get,

α=1.32×1050.05=1.62×102

[Acid]=[H3O]+=C. α
=8.15×104


Therefore, pH=log[H3O+]

=log[8.15×104]=3.08


If we add 0.01M hydrochloric acid then,

AH+H2OH3O++Ainitial con C0 at equi. CxC0.01+x

Now, by using the formula of Ka=(x)(0.01)cx=(x)(0.01)C

The value of x is calculated as ;
1.32×105×0.010.01=1.32×105 (Degree of ionisation)

Question 6.60 The pH of 0.1M solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionization in the solution.

Answer :

We have,
Concentration of cyanic acid = 0.1 M
pH=log[H+]=2.34

Therefore, the concentration of [H+] = antilog (-2.34)

=4.5×103

It is known that,

[H+]=C.α=4.5×103α=4.5×1030.1=4.5×102

Then Ionization constant

(Ka)=Cα2=(0.1)(4.5×102)2=2.02×104

Question 6.61 The ionization constant of nitrous acid is 4.5 × 10 -4 . Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

Answer :

We have,
Ionization constant of nitrous acid =4.5×10−5
Concentration of sodium nitrite ( NaNO2 ) = 0.04 M
Degree of hydrolysis can be calculated as;
Kh=KwKa=10144.5×104=0.22×1010
Sodium nitrite is a salt of sodium hydroxide (strong base) and the weak acid ( HNO2 )
NO2+H2OHNO2+OH
Suppose x moles of salt undergoes hydrolysis, then the concentration of-

[NO2]=0.04x0.04

[HNO2]=x, and

[OH]=x

Therefore
kh=x20.04=0.22×1010
from here we can calculate the value of x ;

x=0.0088×1010=0.093×105=[OH][H3O+]=Kw[OH]=10140.093×105=10.75×109M

Therefore the degree of hydrolysis

Question 6.62 A 0.02M solution of pyridinium hydrochloride has pH = 3.44. Calculate the ionization constant of pyridine.

Answer :

Given,
pH = 3.44

We know that

pH=log[H+]
By taking antilog on both sides we get,
[H+] = antilog (- 3.44)

[H+]=3.63×104

pyridinium hydrochloride completely ionised.

Then Kh = (conc. of products)/ (conc, of reactants)
=(3.63×102)20.02 (? Concentration is 0.02M)

Kh=6.58×106

Now,Kh=Kw/KaKa=Kw/Kh

=1014/6.58×106=1.51×109 (approx) 

Question 6.63 Predict if the solutions of the following salts are neutral, acidic or basic: NaCl,KBr,NaCN,NH4NO3,NaNO2 and KF

Answer :

Salts of strong acid and strong base are neutral in nature for example-

  • NaCl(NaOH+HCl)
  • KBr(KOH+HBr)

Salts of a strong base and weak acid are basic in nature for example-

  • NaCN(HCN+NaOH)
  • NaNO2(HNO2+NaOH)
  • KF(KOH+HF)

Salts of strong acid and a weak base are acidic in nature for example-

  • NH4NO3(NH4OH+HNO2)

Question 6.64 The ionization constant of chloroacetic acid is 1.35 × 10-3 . What will be the pH of 0.1M acid and its 0.1M sodium salt solution?

Answer :

We have,
Ionisation constant of chloroacetic acid( Ka ) is 1.35×10−3
The concentration of acid = 0.1 M
Ionisation if acid, =ClCH2COOHClCH2COO+H+

We know that,
Ka=[ClCH2COO][H+][ClCH2COOH]....................(i)
As it completely ionised[ClCH2COO]=[H+]

Putting the values in eq (i)
1.35×103=[H+]20.02[H+]=1.35×103×0.02=1.16×102
Therefore, pH of the solution=log(1.16×102)
= 2−log⁡(1.16)
= 1.94

Now,

0.1MClCH2COONa (sod. chloroacetate) is basic due to hydrolysis-

ClCH2COO+H2OCH2ClCOOH+OH

For a salt of strong base+strong acid

$\begin{aligned} & p H=7+\frac{p K_a+\log C}{2} \ & =7+\frac{2.87+\log 0.1}{2}

p H=7.94\end{aligned}$

Question 6.65 Ionic product of water at 310 K is 2.7 × 10 -14 . What is the pH of neutral water at this temperature?

Answer :

We have the ionic product of water at 310 K is 2.7×1014
It is known that,
ionic product Kw=[H+][OH]

Since [H+]=[OH], therefore Kw=[H+]2

Kw at 310 K is 2.7×1014Kw=2.7×1014=[H+]2
here we can calculate the value of [H+] concentration.

[H+]=2.7×1014=1.64×107


Thus, pH=log[H+]

=log(1.64×107)=6.78

Hence the pH of neutral water is 6.78

Question 6.66(a) Calculate the pH of the resultant mixtures:

10 mL of 0.2M Ca(OH)2 + 25 mL of 0.1M HCl

Answer :

Given that,
Vol. of 0.2 M Ca(OH)2 = 10 mL
Vol. of 0.1 M HCl = 25 mL

therefore, by using the formula,

M(OH)=M1V1( base )M2V2( acid )V1+V2
By substituting the value in these equations, we get;

(0.2×2)(0.1×2)10+25=1.525=0.06

Now, pOH=log[OH]

=log(0.06)=1.221

since pH+pOH=14
pH=14−pOH
= 14-1.221
= 12.78

Question 6.66(b) Calculate the pH of the resultant mixtures:

10 mL of 0.01M H2SO4 + 10 mL of 0.01M Ca(OH)2

Answer :

In this case, both the solutions have the same number of moles of H+ and OH , therefore they both can get completely neutralised. Hence the pH = 7.0

Question 6.66(c) Calculate the pH of the resultant mixtures:

c) 10 mL of 0.1M H2SO4 + 10 mL of 0.1M KOH

Answer :

Given that,

Volume of 0.1 M KOH = 10 mL, and

Volume of 0.1 M H2SO4 = 10 mL

So, by using the formula of,

M(H+)=M1V1( acid )M2V2( base )V1+V2
By putting the values we get,

2(0.1×10)0.1×1010+10=120=5×102

Hence, pH=log[H+]=log(5×102)=1.30

Question 6.67 Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298K from their solubility product constants given in Table. Determine also the molarities of individual ions.

Answer :

Solubility product is the product of ionic concentrations in a saturated solution.
Ksp=[A+][B]
(i) silver chromate ( Ag2CrO4 )
Ionization of silver chromate

Ag2CrO42Ag++CrO42
Let " s " be the solubility of Ag2CrO4
[Ag+]=2s[CrO42]=s
According to the table Ksp of Ag2CrO4=1.1×1012

1.1×1012=(2s)2.s=1.1×1012=2s3s=1.1×101243=0.65×104

(ii) Barium chromate ( BaCrO4 )
Ionization of silver chromate

BaCrO4Ba2++CrO42
Let " s " be the solubility of BaCrO4
[Ba2+]=s[CrO42]=s
According to the table Ksp of BaCrO4=1.2×1012

1.2×1010=s.s=1.1×1010=s2s=1.2×10101=1.09×105

(iii) Ferric hydroxide Fe(OH)3)
Ionization of Ferric hydroxide

Fe(OH)3Fe3++3OH
Let " s " be the solubility of Fe(OH)3
[Fe3+]=s[OH]=3s
According to the table Ksp of Fe(OH)3 = 1.0×10−38

1.0×1038=s.(3s)3=1.0×1038=27s4s=1.0×1038274=1.39×1010

(iv)

Lead chloride ( PbCl2 )
Ionization of Lead chloride

PbCl2 Pb2++2Cl


Let " s " be the solubility of PbCl2

[Pb2+]=s[Cl]=2s

According to the table Ksp of PbCl2=1.6×105

1.6×105=s(2s)2=1.6×105=4s3s=1.6×10543=1.58×102

So molarity of Pb2+=1.58×102M and molarity of Cl=3.16×102M

Question 6.68 The solubility product constant of Ag2CrO4 and AgBr is 1.1 × 10 -12 and 5.0 × 10 -13 respectively. Calculate the ratio of the molarities of their saturated solutions.

Answer :

silver chromate (Ag2CrO4)
Ionization of silver chromate

Ag2CrO42Ag++CrO42
Let " s " be the solubility of Ag2CrO4

[Ag+]=2s[CrO42]=sKsp of Ag2CrO4=1.1×10121.1×1012=(2s)2s=1.1×1012=2s3s=1.1×101243=0.65×104

Ionization of Silver bromide ( AgBr )

AgBrAg++BrKsp of AgBr=5×1013[Ag+]=s[Br]=s5×1013=s.s=5×1013=s2s=5×10131=0.5×1012=7.07×107

Now, the ratio of solubilities

ss=6.5×1051.1×1012=9.91

Question 6.69 Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate? (For cupric iodate Ksp = 7.4 × 10-8 ).

Answer :

We have,
solubility product (Ksp) of cupric iodate =7.4×108

When equal volumes of sodium iodate and cupric chlorate are mixed together the molar concentration of both the solution becomes half (= 0.001)

Ionization of cupric iodate is;

Cu(IO3)20.001MCu2++2IO30.001M

So, Ksp can be calculated as;

Ksp=[Cu2+][IO3]2=(0.001)3=109

Sinc eionic product is less than the Ksp so no precipitation occurs.

Question 6.70 The ionization constant of benzoic acid is 6.46 × 10-5 and Ksp for silver benzoate is 2.5 × 10-13 . How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

Answer :

Suppose S is the molar solubility of silver benzoate in water, then

C6H5COOAgsC6H5COOaq+Agaq+

so S

=2.5×1013=5.0×107M


If the solubility of salt of weak acid of ionization constant Ka is S , then Ksp,Ka and S′ are related to each other at pH=3.19.

So[H+]=6.46×104M(pH=3.19)

Ksp=S2[KaKa+[H+]]

S={2.5×1013[6.46×1056.46×105+6.46×104]}12

S={2.5×1013×7.106×1046.46×105}12

=(2.75×1012)12

=1.658×106M


So the ratio of

SIS=1.658×1065.0×107=3.32
Silver benzoate is 3.32 times more soluble in buffer of pH=3.19 than in pure water.

Question 6.71 What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, Ksp = 6.3 × 10-18 ).

Answer :

We have,
The solubility product of the FeS=6.3×1018

Equals number of moles of ferrous sulphate and sodium sulphide are mixed in an equal volume.

Let s be the concentration of ferrous sulphate and sodium sulphide. On mixing the equimolar solution, the volume of the concentration becomes half.
So, [FeSO4]=[Na2 S]=s2M

The ionisation of ferrous sulphide;
FeSFe2++S2
Therefore, for no precipitation, ionic product = solubility product
Ksp=(s2)(s2)6.3×1018=s24
By solving the above equation, we get
s=5.02×109

The maximum concentration of both the solution iss=5.02×109M

Question 6.72 What is the minimum volume of water required to dissolve 1g of calcium sulphate at 298 K? (For calcium sulphate, K sp is 9.1 × 10 -6 )

Answer :

We have,
The solubility product of calcium sulphate is 9.1×10−6 .
given mass of calcium sulphate = 1g

Ionization of calcium sulphate;

CaSO4Ca2++SO42
Therefore,Ksp=[Ca2+][SO42]

Let the solubility of calcium sulphate be s .
Then,Ksp=s29.1×106=s2s=9.1×106=3.02×103 mol/L

Thus,
mass/ (mol. wt) × volume =3.02×10−3 Molarity
mass=3.02×136×103=0.41 g

So, that to dissolve 1 g of calcium sulphate we need =1/0.41L=2.44Lof water.

Question 6.73 The concentration of sulphide ion in 0.1M HCl solution saturated with hydrogen sulphide is 1.0 × 10 -19 M. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: FeSO4, MnCl2, ZnCl2 and CdCl2. in which of these solutions precipitation will take place?

Answer :

We have,
the concentration of [S2−]=1×10−19 and the volume of the solution containing sulphur ion = 10 mL.
Volume of metal salts solution added = 5mL
Before mixing,

[S2]=1×1019M[M2+]=0.04M

After mixing,

Volume = 15 mL

So, the concentration of[S2]=1×1019

=6.67×1020M

 concentration of [M2+]=0.04M×515=1.33×102

 So, the ionic product =[M2+][S2]=(6.67×1020)(1.33×102)=8.87×1022

For the precipitation of the solution, the ionic product should be greater than the corresponding Ksp values.

Ksp of FeS, MnS, ZnS, CdS are 6.3×1018,2.5×1013,1.6×1024 and 8×1027 respectively.

Hence precipitation will take place in CdCl2 and ZnCl2 metal salts.

Class 11 Chemistry NCERT Chapter 6: Higher Order Thinking Skills (HOTS) Questions

Question: Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows.NH2COONH4( s)2NH3( g)+CO2( g) At equilibrium, ammonia is added such that partial pressures of NH3 now equals the original total pressure. Calculate the ratio of the total pressure now to the original total pressure.

1)3127

2) 6040

3) 319

4) 6227

Solution:

The reaction:-

NH2COONH4( s)2NH3( g)2P+CO2( g)2P

Kp=(PNH3)2(PCO2)Kp=(2P)2(P)PT( initial )=3P

NH2COONH4( s)2NH3( g)3P+CO2( g)P

KP=(3P)2(P)

From eq (I) and (ii)

(2P)2(P)=(3P)2(P)P=4P9

PT( new )PT( old )=3P+P3P=3P+4P93P=3127

Hence, the correct answer is option (1).

Question: Consider the following chemical equilibrium of the gas phase reaction at a constant temperature : A(g)B(g)+C(g)

If p being the total pressure, Kp is the pressure equilibrium constant and α is the degree of dissociation, then which of the following is true at equilibrium?

1) If p value is extremely high compared to Kp,α≈1

2) When p increases α decreases

3) If kp value is extremely high compared to p,α becomes much less than unity

4) When p increases α increases

Answer:

A(g)B(g)+C(g)t=0a00t=ta(1α)aαaα

a moles of A(g) taken initially and at time Now moles fraction of A(g),B(g) and C(g) are

XA=aaαa+aα=1α1+αXB=aαa+aα=α1+αXC=aαa+aα=α1+α

Now if P is total pressure then partial pressure of A(g),B(g) and C(g) are

PA=(1α1+α)PPB=(α1+α)PPC=(α1+α)PKP=(α1+α)P(α1+α)P(1α1+α)P
As KP is only function of temperature.
So as Pα

Hence, the correct answer is option (2).

Approach to Solve Questions of Chapter 6 Equilibrium

Approach is crucial while solving the questions effectively. The following are the points that will help you build a good approach.

1. The first step is to understand the key concepts

Try to focus on the basics of equilibrium - dynamic nature, reversible reactions, equilibrium constant (Kc \& Kp), Le Chatelier's Principle, etc.
Learning the concepts will help you attempting the questions with ease.

2. Learn formulas thoroughly

This chapter has a lot of numerical questions so try to memorize important formulas like
Kc=[ Products ][ Reactants ]Kp=Kc(RT)Δn
Degree of dissociation (α),pH,Ka,Kb,Kw, etc.

3. Use ICE Tables (Initial, Change, Equilibrium)

For equilibrium problems, you can create an ICE table to track concentrations and simplify calculations. This is required while solving the questions relating the change in equilibrium.

4. Logarithms and pH calculations

It is important to learn to calculate pH and pOH using log[H+]and using Ka or Kb values for weak acids/bases.

5. Solve conceptual and numerical questions

Start with theory-based questions, then move to numerical ones. You can follow the NCERT exemplar to solve a variety of questions that will help you understand the concepts better.

Topics of NCERT class 11 Chemistry Equilibrium

6.1 Equilibrium in physical processes

6.2 Equilibrium in chemical processes

6.3 Law of chemical equilibrium and equilibrium constant

6.4 Homogeneous equilibrium

6.5 Heterogeneous equilibrium

6.6 Applications of equilibrium constants

6.7 Relationship between equilibrium constant K reaction quotient and Q and Gibbs energy G

6.8 Factors affecting equilibria

6.9 Ionic equilibrium in solutions

6.10 Acids, bases and salts

6.11 Ionisation of acids and bases

6.12 Buffer solutions

6.13 Solubility equilibria of sparingly soluble salts

What Extra Should Students Study Beyond NCERT for JEE/NEET?

The table below will help you distinguish the topics based on the board and competitive exams.

Important formulas of NCERT class 11 chemistry Equilibrium

1.Equilibrium constant, K

K=KfKb

2. Concentration quotient, Q

Q=[C]c[D]d[A]a[B]b

3. ΔGo=2.303RTlogK

4. Kw=[H+][OH]

5. pH=log[H+]

NCERT Solutions for Class 11 Chemistry

NCERT Solutions for Class 11- Subject-wise

You can also access the NCERT solutions for other subjects as well. Click on the link below

NCERT Books and NCERT Syllabus:

Follow the links below to get the syllabus and the recommended books.

Frequently Asked Questions (FAQs)

1. How does temperature affect chemical equilibrium?

Temperature affects equilibrium and it depends on the reaction type. In exothermic reactions if we increase the temperature, the equilibrium shifts to the left (reactants) whereas in endothermic reactions it shifts to the right, that is, towards the products.

2. What is Le Chatelier’s Principle and its applications?

According to Le Chatelier's Principle, when a system at equilibrium is disturbed, it adjusts to minimize the disturbance by opposing the change. It is applied in industrial processes like ammonia synthesis, lab reactions as well as biological systems.

3. How to calculate pH in acid-base equilibrium problems?

For strong acids/bases, we use the formula pH=−log⁡[H+]; for weak acids, we use pH=−log⁡Ka⋅C. is calculated based on the type of acid and base.

4. What is the Equilibrium Constant (K)?

The equilibrium constant (K) is a numerical value that expresses the ratio of products to reactants at equilibrium, with each concentration raised to the power of its stoichiometric coefficient in the balanced chemical equation. It indicates the extent to which a reaction will proceed to completion.

5. What is a reversible reaction? How does it relate to equilibrium?

A reversible reaction is a reaction that can proceed in both the forward (reactants to products) and reverse (products to reactants) directions. Reversible reactions are essential for establishing equilibrium. If a reaction is not reversible, it will proceed to completion, and there will be no equilibrium.

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top