Class 11 Chemistry NCERT Chapter Equilibrium: Higher Order Thinking Skills (HOTS) Questions
HOTS questions of Chapter 7 NCERT Exemplar are designed to enhance analytical thinking and application-based understanding.
Question 1: Consider the following equilibrium,
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{g})$
0.1 mol of CO along with a catalyst is present in a $2 \mathrm{dm}^3$ flask maintained at 500 K Hydrogen is introduced into the flask until the pressure is 5 bar, and 0.04 mol of $\mathrm{CH}_3 \mathrm{OH}$ is formed. The $\mathrm{K}_{\mathrm{p}}^0$ is __________ $\times 10^{-3}$ (nearest integer).
Given : $\mathrm{R}=0.08 \mathrm{dm}^3$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
Solution: $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_3 \mathrm{OH}(\mathrm{g})$
$\begin{array}{llll}\mathrm{t}=0 & 0.1 \mathrm{~mol} & \mathrm{a} \text { mol } & - \\ \mathrm{t}_{\mathrm{eq}} & 0.1-\mathrm{x} & \mathrm{a}-2 \mathrm{x} & \mathrm{x}=0.04 \\ & =0.06 & =\mathrm{a}-0.08 & \\ & & =0.23-0.08 & \\ & & =0.15 \text { mole } & \end{array}$
$\begin{aligned} & \mathrm{V}=2 \mathrm{~L} \\ & \mathrm{~T}=500 \mathrm{~K} \\ & \mathrm{P}_{\text {total }}=5 \mathrm{bar} \\ & \mathrm{n}_{\text {Total }}=0.25=\frac{1}{4} \mathrm{~mol} . \\ & \mathrm{P}_{\text {total }}=\mathrm{n}_{\text {total }} \times \frac{\mathrm{RT}}{\mathrm{V}}\end{aligned}$
$\begin{aligned} & \Rightarrow 5=(0.06+\mathrm{a}-0.08+0.04) \times \frac{0.08 \times 500}{2} \\ & \Rightarrow 10=(0.02+\mathrm{a}) \times 0.08 \times 500\end{aligned}$
$\Rightarrow \mathrm{a}=0.25-0.02=0.23 \mathrm{~mol} .$
$\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{X}_{\mathrm{CH}_3 \mathrm{OH}}}{\mathrm{X}_{\mathrm{CO}} \times \mathrm{X}_{\mathrm{H}_2}^2} \times \frac{1}{\left(\mathrm{P}_{\mathrm{T}}\right)^2}=\frac{0.04}{0.06 \times(0.15)^2} \times\left[\frac{1 / 4}{5}\right]^2$
$\begin{aligned} & =\frac{4}{6 \times(0.15)^2 \times 16} \times \frac{1}{25} \\ & =\frac{100 \times 100}{24 \times 225 \times 25}=\frac{100 \times 100}{135000} \\ & =0.074=74 \times 10^{-3}\end{aligned}$
Hence, the answer is 74.
Question 2: $37.8 \mathrm{~g} \mathrm{~N}_2 \mathrm{O}_5$ was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K
$$
2 \mathrm{~N}_2 \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{~N}_2 \mathrm{O}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$
The total pressure at equilibrium was found to be 18.65 bar.
Then, $\mathrm{Kp}=$ ______$\qquad$ $\times 10^{-2}$ [nearest integer]
Assume $\mathrm{N}_2 \mathrm{O}_5$ to behave ideally under these conditions
Given : $\mathrm{R}=0.082$ bar $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
Solution:
$
\begin{aligned}
& \text { Initial pressure of } \mathrm{N}_2 \mathrm{O}_5 \\
& =\frac{\frac{37.8}{108} \times 0.082 \times 500}{1}=14.35 \mathrm{bar} \\
& 2 \mathrm{~N}_2 \mathrm{O}_5 \rightleftharpoons 2 \mathrm{~N}_2 \mathrm{O}_4+\mathrm{O}_2 \\
& \mathrm{t}=0 \quad 14.35 \\
& \mathrm{t}=\mathrm{eq} \quad 14.35-2 \mathrm{P} \quad 2 \mathrm{P} \quad \mathrm{P} \\
& \mathrm{P}_{\text {Total }} \text { at } \mathrm{eqb}=14.35+\mathrm{P}=18.65 \\
& \mathrm{P}=4.3 \\
& \mathrm{P}_{\mathrm{N}_2 \mathrm{O}_{\mathrm{5}}}=5.75 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{N}_2 \mathrm{O}_4}=8.6 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{O}_2}=4.3 \mathrm{bar} \\
& \mathrm{k}_{\mathrm{p}}=\frac{(8.6)^2 \times(4.3)}{(5.75)^2}=9.619=\mathrm{x} \times 10^{-2} \\
& x=961.9 \approx 962
\end{aligned}
$
Hence, the answer is (962)
Question 3. In the following system, $\mathrm{PCl}_5(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_3(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})$ at equilibrium, upon addition of xenon gas at constant $T \& p$, the concentration of
(1) $\mathrm{PCl}_5$ will increase
(2) $\mathrm{Cl}_2$ will decrease
(3) $\mathrm{PCl}_5, \mathrm{PCl}_3 \& \mathrm{Cl}_2$ remain constant
(4) $\mathrm{PCl}_3$ will increase
Solution:
Addition of xenon gas, an inert gas, to the equilibrium system $\mathrm{PCl}_5(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_3(\mathrm{~g})+\mathrm{Cl}_2(\mathrm{~g})$ at a constant temperature and pressure, it affects the equilibrium according to Le Chatelier's principle. The addition of an inert gas at constant pressure effectively increases the volume of the system, reducing the concentration of the gases involved.
Since the system is at constant pressure, adding an inert gas increases the total volume, which favors the side of the reaction with more moles of gas. In this reaction, there are two moles of gas on the right side $\left(\mathrm{PCl}_3\right.$ and $\left.\mathrm{Cl}_2\right)$ compared to one mole on the left $\left(\mathrm{PCl}_5\right)$. Thus, the equilibrium will shift toward the right to increase the number of moles and counteract the change, decreasing the concentration of $\mathrm{PCl}_5$ and increasing the concentrations of $\mathrm{PCl}_3$ and $\mathrm{Cl}_2$.
Hence, the correct answer is option (4).
Important Formulas of Chapter 7 Equilibrium
Equilibrium has a lot of numerical questions so try to memorize important formulas like
1. Equilibrium Constant
$K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}$
2. Relationship Between $K_p$ and $K_c$
$K_p=K_c(R T)^{\Delta n}$
3. Reaction Quotient
$Q=\frac{[C]^c[D]^d}{[A]^a[B]^b}$
4. pH and pOH
$\mathrm{pH}=-\log \left[H^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}+\mathrm{pOH}=14$
5. Ostwald’s Dilution Law
$K=\frac{C \alpha^2}{1-\alpha}$