Careers360 Logo
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

Edited By Komal Miglani | Updated on Mar 29, 2025 03:42 PM IST

Have you ever wondered how engineers design huge buildings, how sailors and pilots navigate through their journey, or how shadows change their length throughout the day? All of these answers can be found in Trigonometry, a fascinating branch of mathematics. From the latest NCERT syllabus for class 11, the chapter trigonometric functions contains the advanced concepts of trigonometry like radian measure, relation between degree and radian, sign of trigonometric functions, graphs of trigonometric functions, domain and range of trigonometric functions, and trigonometric functions of the sum and difference of two angles. Understanding these concepts will make students more efficient in solving problems involving height, distance, and angles. This chapter will also build a strong foundation for more advanced trigonometric concepts, which have many practical real-life applications like construction, navigation, architecture, etc.

This Story also Contains
  1. Trigonometric Functions Class 11 Questions And Answers PDF Free Download
  2. Trigonometric Functions Class 11 Solutions - Important Formulae
  3. Trigonometric Functions Class 11 NCERT Solutions (Exercises)
  4. Trigonometry Class 11 Solutions - Exercise Wise
  5. NCERT Solutions for Class 11 Mathematics - Chapter Wise
  6. Importance of Solving NCERT Questions of Class 11 Maths Chapter 8
  7. NCERT Solutions for Class 11 - Subject Wise
  8. NCERT Books and NCERT Syllabus
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions

This article on NCERT solutions for class 11 Maths Chapter 3 Trigonometric Functions offers clear and step-by-step solutions for the exercise problems in the NCERT Class 11 Maths Book. Students who are in need of trigonometric functions class 11 solutions will find this article very useful. It covers all the important class 11 maths chapter 3 question answers of trigonometric functions. These trigonometric functions class 11 ncert solutions are made by the Subject Matter Experts according to the latest CBSE syllabus, ensuring that students can grasp the basic concepts effectively. NCERT solutions for class 11 maths and NCERT solutions for other subjects and classes can be downloaded from the NCERT Solutions.

Trigonometric Functions Class 11 Questions And Answers PDF Free Download

Download PDF


Trigonometric Functions Class 11 Solutions - Important Formulae

Angle Conversion:

Radian Measure = π180 × Degree Measure

Degree Measure = 180π × Radian Measure

Trigonometric Ratios:

  • sin θ = P / H

  • cos θ = B / H

  • tan θ = P / B

  • cosec θ = H / P

  • sec θ = H / B

  • cot θ = B / P

Reciprocal Trigonometric Ratios:

  • sin θ = 1 / cosec θ

  • cosec θ = 1 / sin θ

  • cos θ = 1 / sec θ

  • sec θ = 1 / cos θ

  • tan θ = 1 / cot θ

  • cot θ = 1 / tan θ

NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

Trigonometric Ratios of Complementary Angles:

  • sin (90° – θ) = cos θ

  • cos (90° – θ) = sin θ

  • tan (90° – θ) = cot θ

  • cot (90° – θ) = tan θ

  • sec (90° – θ) = cosec θ

  • cosec (90° – θ) = sec θ

Periodic Trigonometric Ratios:

  • sin(π/2-θ) = cos θ

  • cos(π/2-θ) = sin θ

  • sin(π-θ) = sin θ

  • cos(π-θ) = -cos θ

  • sin(π+θ) = -sin θ

  • cos(π+θ) = -cos θ

  • sin(2π-θ) = -sin θ

  • cos(2π-θ) = cos θ

Trigonometric Identities:

  • sin² θ + cos² θ = 1

  • cosec² θ – cot² θ = 1

  • sec² θ – tan² θ = 1

Product to Sum Formulas:

  • sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

  • cos x cos y = 1/2[cos(x–y) + cos(x+y)]

  • sin x cos y = 1/2[sin(x+y) + sin(x−y)]

  • cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas:

  • sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

  • sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

  • cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

  • cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

General Trigonometric Formulas:

  • sin (x+y) = sin x × cos y + cos x × sin y

  • cos(x+y) = cosx × cosy − sinx × siny

  • cos(x–y) = cosx × cosy + sinx × siny

  • sin(x–y) = sinx × cosy − cosx × siny

Sum and Difference Formulas for tan:

  • tan (x+y) = (tan x + tan y) / (1 − tan x tan y)

  • tan (x−y) = (tan x − tan y) / (1 + tan x tan y)

Double Angle Formulas for tan:

  • tan 2θ = (2 tan θ) / (1 - tan²θ)

Triple Angle Formulas for sin, cos, and tan:

  • sin 3θ = 3sin θ – 4sin³θ

  • cos 3θ = 4cos³θ – 3cos θ

  • tan 3θ = [3tan θ – tan³θ] / [1 − 3tan²θ]

Trigonometric Functions Class 11 NCERT Solutions (Exercises)

NCERT Trigonometric Functions Class 11 Questions and Answers
Exercise: 3.1, Page Number: 48-49, Total Questions: 7

Question:1 Find the radian measures corresponding to the following degree measures:

(i) 25
(ii) 47 30
(iii) 240
(iv) 520

Answer:

It is solved using the relation between degree and radian
(i) 25
We know that 180 = π radian
So, 1=π180 radian
25=π180×25 radian =5π36 radian

(ii) 4730
We know that
4730=4712=952
Now, we know that 180=π1=π180 radian
So, 952=π180×(952) radian =19π72 radian

(iii) 240
We know that
180=π1=π180 radian
So, 240=π180×240=4π3 radian

(iv) 520
We know that
180=π1=π180 radian
So, 520=π180×520 radian =26π9 radian

Question:2 Find the degree measures corresponding to the following radian measures. (Use π=227)

(i)1116
(ii)4
(iii)5π3
(iv)7π6

Answer:

(i) 1116
We know that
π radian =1801 radian=180π
So, 1116 radian=180π×1116 (we need to take π=227 )
1116 radian=180×722×1116=3158
(we use 1=60 and 1' = 60'')
Here 1' represents 1 minute and 60" represents 60 seconds
Now,
3158=3938=39+3×608=39+22+12=39+22+30=3158=392230

(ii) 4
We know that
π radian =1801 radian=180π (we need to take π=227 )
So, 4 radian=4×180π=4×180×722=252011
(we use 1=60 and 1' = 60'')
252011=229111=229+1×6011=229+5+511=229+5+27=229527

(iii) 5π3
We know that
π radian =1801 radian=180π (we need to take π=227 )
So, 5π3 radian=180π×5π3=300

(iv) 7π6
We know that
π radian =1801 radian=180π (we need to take π=227 )
So, 7π6 radian=180π×7π6=210

Question: 3 A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Answer:
Number of revolutions made by the wheel in 1 minute = 360
Number of revolutions made by the wheel in 1 second = 36060=6
( 1 minute = 60 seconds)
In one revolution, the wheel will cover 2π radian
So, in 6 revolutions it will cover = 6×2π=12π radian
In 1 the second wheel will turn 12π radian.

Question: 4 Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (use π=227 )

Answer:
We know that
l=rθ ( where l is the length of the arc, r is the radius of the circle and θ is the angle subtended)
here r = 100 cm
and l = 22 cm
Now,
θ=lr=22100 radian
We know that
π radian=180
So, 1 radian = 180π
22100 radian=180π×22100=180×722×22100=635
So, 635=1235=12+3×605=12+36=1236
Thus, the angle subtended at the centre of a circle θ=1236.

Question:5 In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Answer:
Given: radius (r) of circle = Diameter2=402=20 cm
length of chord = 20 cm
We know that
θ=lr (r = 20 cm , l = ? , θ = ?)
Now,
1654678632225
AB is the chord of length 20 cm and OA and OB are radii of circle i.e. 20 cm each
The angle subtended by OA and OB at centre = θ
OA = OB = AB
Δ OAB is equilateral triangle
So, each angle is 60
θ=60 =π3 radian
Now, we have θ and r
So, l=rθ=20×π3=20π3
the length of the minor arc of the chord (l) = 20π3 cm.

Question: 6 If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Answer:
Given: θ1=60,θ2=75 and l1=l2
We need to find the ratio of their radii r1r2
We know that arc length l=rθ
So, l1=r1θ1 and l2=r2θ2
Now, l1=l2
So, r1r2=θ2θ1=7560=54, which is the ratio of their radii.

Question:7 Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm
(ii) 15 cm
(iii) 21 cm

Answer:
(i) We know that
l=rθ
Now,
r = 75 cm
l = 10 cm
So,
θ=lr=1075=215 radian

(ii) We know that
l=rθ
Now,
r = 75 cm
l = 15 cm
So,
θ=lr=1575=15 radian

(iii) We know that
l=rθ
Now,
r = 75 cm
l = 21 cm
So,
θ=lr=2175=725 radian


NCERT Trigonometric Functions Class 11 Questions and Answers
Exercise: 3.2, Page Number: 57, Total Questions: 10

Question:1 Find the values of other five trigonometric functions as cosx=12 , x lies in third quadrant.

Answer:
cosx=12
secx=1cosx=112=2
x lies in III quadrants. Therefore sec x is negative
sin2x+cos2x=1sin2x=1cos2x
sin2x=1(12)2sin2x=114=34sinx=34=±32
x lies in III quadrants. Therefore sin x is negative
sinx=32
cosec x=1sinx=132=23
x lies in III quadrants. Therefore cosec x is negative
tanx=sinxcosx=3212=3
x lies in III quadrants. Therefore tan x is positive
cotx=1tanx=13
x lies in III quadrants. Therefore cot x is positive.

Question:2 Find the values of other five trigonometric functions as sinx=35, x lies in second quadrant.

Answer:
sinx=35
cosec x=1sinx=135=53
x lies in the second quadrant. Therefore cosec x is positive
sin2x+cos2x=1cos2x=1sin2x
cos2x=1(35)2cos2x=1925=1625cosx=1625=±45
x lies in the second quadrant. Therefore cos x is negative
cosx=45
secx=1cosx=145=54
x lies in the second quadrant. Therefore sec x is negative
tanx=sinxcosx=3545=34
x lies in the second quadrant. Therefore tan x is negative
cotx=1tanx=134=43
x lies in the second quadrant. Therefore cot x is negative.

Question:3 Find the values of other five trigonometric functions as cotx=34, x lies in third quadrant.

Answer:
cotx=34
tanx=1cotx=134=43
1+tan2x=sec2x1+4232=sec2x1+169=sec2x259=sec2x
secx=259=±53
x lies in x lies in third quadrant. therefore sec x is negative
secx=53
cosx=1secx=153=35
sin2x+cos2x=1sin2x=1cos2x
sin2x=1(35)2sin2x=1925sin2x=1625sinx=1625=±45
x lies in third quadrant. Therefore sin x is negative
sinx=45
cosec x=1csc=145=54.

Question:4 Find the values of other five trigonometric functions as secx=135, x lies in fourth quadrant.

Answer:
secx=135
cosx=1secx=1135=513
sin2x+cos2x=1sin2x=1cos2x
sin2x=1(513)2sin2x=125169=144169sinx=144169=±1213
x lies in fourth quadrant. Therefore sinx is negative.
sinx=1213
cscx=1sinx=11213=1312
tanx=sinxcosx=1213513=125
cotx=1tanx=1125=512.

Question:5 Find the values of the other five trigonometric functions as tanx=512, x lies in second quadrant.

Answer:
tanx=512
cotx=1tanx=1512=125
1+tan2x=sec2x1+(512)2=sec2x1+25144=sec2x169144=sec2x
secx=169144=±1312
x lies in second quadrant. Therefore the value of secx is negative
secx=1312
cosx=1secx=11312=1213
sin2x+cos2x=1sin2x=1cos2x
sin2x=1(1213)2sin2x=1144169sin2x=25169sinx=25169=±513
x lies in the second quadrant.
Therefore the value of sinx is positive.
sinx=513
csc=1sinx=1513=135.

Question:6 Find the values of the trigonometric functions sin765

Answer:
We know that values of sinx repeat after an interval of 2π or 360
sin765=sin(2×360+45)=sin45=12.

Question:7 Find the values of the trigonometric functions cosec (1410)

Answer:
We know that value of cosecx repeats after an interval of 2π or 360.
cosec(1410)=cosec(360×4+(1410))=cosec 30=2

Question:8 Find the values of the trigonometric functions tan19π3

Answer:
We know that tanx repeats after an interval of π or 180.
tan(19π3)=tan(6π+π3)=tanπ3=tan60=3

Question:9 Find the values of the trigonometric functions sin(11π3)

Answer:
We know that sinx repeats after an interval of 2π or 360
sin(11π3)=sin(4π+(11π3))=sinπ3=32

Question:10 Find the values of the trigonometric functions cot(15π4)

Answer:
We know that cotx repeats after an interval of π or 180.
cot(15π4)=cot(4π+(15π4))=cot(π4)=1

NCERT Trigonometric Functions Class 11 Questions and Answers
Exercise: 3.3, Page Number: 67-68, Total Questions: 25

Question:1 Prove that sin2(π6)+cos2(π3)tan2(π4)=12

Answer:
We know the values of sin 30°, cos 60°, and tan 45°.
sin(π6)=(12),cos(π3)=(12),tan(π4)=1
L.H.S. =sin2π6+cos2π3tan2π4= (12)2+(12)212
=14+141=12= R.H.S.

Question:2 Prove that 2sin2(π6)+cosec2(7π6)cos2π3=32

Answer:
sinπ6=12,cosec7π6=cosec(π+π6)=cosecπ6=2,cosπ3=12
L.H.S. = 2sin2π6+cosec27π6cos2π3=2(12)2+(2)2(12)2=2×14+4×14=12+1=32
= R.H.S.

Question:3 Prove that cot2(π6)+csc(5π6)+3tan2(π6)=6

Answer:
We know the values of cot 30°, tan 30°, and cosec 30°.
cotπ6=3,cosec5π6=cosec(ππ6)=cosecπ6=2,tanπ6=13
L.H.S. =cot2π6+cosec5π6+3tan2π6=(3)2+2+3×(13)2=3+2+1=6= R.H.S.

Question:4 Prove that 2sin2(3π4)+2cos2(π4)+2sec2(π3)=10

Answer:
sin3π4=sin(ππ4)=sinπ4=12,cosπ4=12,secπ3=2
Using the above values
L.H.S. =2sin23π4+2cos2π4+2sec2π3=2×(12)2+2×(12)2+2(2)21+1+8=10= R.H.S.

Question:5(i) Find the value of (i)sin75

Answer:
sin75=sin(45+30)
We know that
sin(x+y)=sinxcosy+cosxsiny
Using this idendity
sin75=sin(45+30)=sin45cos30+cos45sin30
=12×32+12×12322+122=3+122

Question:5(ii) Find the value of
(ii)tan15

Answer:
tan15=tan(4530)
We know that,
[tan(xy)=tanxtany1+tanxtany]
By using this we can write,
tan(4530)=tan45tan301+tan45tan30=1131+1(13)=3133+13=313+1
=(31)2(3+1)(31)=3+123(3)2(1)242331=2(23)2=23

Question:6 Prove the following: cos(π4x)cos(π4y)sin(π4x)sin(π4y)=sin(x+y)

Answer:
cos(π4x)cos(π4y)sin(π4x)sin(π4y)
Multiply and divide by 2 both cos and sin functions
We get,
12[2cos(π4x)cos(π4y)]+12[2sin(π4x)sin(π4y)]
Now, we know that
2cosAcosB = cos(A+B) + cos(A-B) --------(i)
-2sinAsinB = cos(A+B) - cos(A-B) ----------(ii)
We use these two identities
In our question A = (π4x)
B = (π4y)
So,
12[cos{(π4x)+(π4y)}+cos{(π4x)(π4y)}]+12[cos{(π4x)+(π4y)}cos{(π4x)+(π4y)}]
=2×12[cos{(π4x)+(π4y)}]
=cos[π2(x+y)]
As we know that
(cos(π2A)=sinA)
By using this
=cos[π2(x+y)] =sin(x+y)= R.H.S.

Question:7 Prove the following tan(π4+x)tan(π4x)=(1+tanx1tanx)2

Answer:
As we know that
(tan(A+B)=tanA+tanB1tanAtanB) and tan(AB)=tanAtanB1+tanAtanB
So, by using these identities
L.H.S. =tan(π4+x)tan(π4x)=tanπ4+tanx1tanπ4tanxtanπ4tanx1+tanπ4tanx=1+tanx1tanx1tanx1+tanx=(1+tanx1tanx)2= R.H.S.

Question:8 Prove the following cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x

Answer:
As we know,
cos(π+x)=cosx , sin(πx)=sinx , cos(π2+x)=sinx and cos(x)=cosx
By using these our equation simplify to
cosx×cosxsinx×sinx=cos2xsin2x=cot2x (cotx=cosxsinx)= R.H.S.

Question:9 Prove the following cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]=1

Answer:
We know that
cos(3π2+x)=sinx,cos(2π+x)=cosx,cot(3π2x)=tanx,cot(2π+x)=cotx
So, by using these our equation simplifies to
cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]
=sinxcosx[tanx+cotx]=sinxcosx[sinxcosx+cosxsinx]
=sinxcosx[sin2x+cos2xsinxcosx]=sin2x+cos2x=1= R.H.S.

Question:10 Prove the following sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Answer:
Multiply and divide by 2
=2sin(n+1)xsin(n+2)x+2cos(n+1)xcos(n+2)x2
Now by using identities
–2sinAsinB = cos(A+B) – cos(A–B)
2cosAcosB = cos(A+B) + cos(A–B)
Now, {(cos(2n+3)xcos(x))+(cos(2n+3)+cos(x))}2(cos(x)=cosx)
=2cosx2=cosx= R.H.S.

Question:11 Prove the following cos(3π4+x)cos(3π4x)=2sinx

Answer:
We know that
[ cos(A+B) - cos (A-B) = -2sinAsinB ]
By using this identity
cos(3π4+x)cos(3π4x)=2sin3π4sinx=2×12sinx=2sinx= R.H.S.

Question:12 Prove the following sin26xsin24x=sin2xsin10x

Answer:
We know that
a2b2=(a+b)(ab)
So, sin26xsin24x=(sin6x+sin4x)(sin6xsin4x)
Now, we know that
sinA+sinB=2sin(A+B2)cos(AB2),sinAsinB=2cos(A+B2)sin(AB2)
By using these identities
sin6x + sin4x = 2sin5x cosx
sin6x - sin4x = 2cos5x sinx
sin26xsin24x=(2cos5xsin5x)(2sinxcosx)
Now,
2sinAcosB = sin(A+B) + sin(A-B)
2cosAsinB = sin(A+B) - sin(A-B)
by using these identities
2cos5x sin5x = sin10x - 0
2sinx cosx = sin2x + 0
So, sin26xsin24x=sin2xsin10x

Question:13 Prove the following cos22xcos26x=sin4xsin8x

Answer:
As we know that
a2b2=(ab)(a+b)
cos22xcos26x=(cos2xcos6x)(cos2x+cos6x)
Now, cosAcosB=2sin(A+B2)sin(AB2)cosA+cosB=2cos(A+B2)cos(AB2)
By using these identities
cos2x - cos6x = -2sin(4x)sin(-2x) = 2sin4xsin2x ( sin(-x) = -sin x and cos(-x) = cosx)
cos2x + cos 6x = 2cos4xcos(-2x) = 2cos4xcos2x
So our equation becomes
(cos2xcos6x)(cos2x+cos6x)=(2sin4xsin2x)(2cos4xcos2x)=(2sin2xcos2x)(2sin4xcos4x)
=sin4xsin8x= R.H.S.

Question:14 Prove the following sin2x+2sin4x+sin6x=4cos2xsin4x

Answer:
We know that
sinA+sinB=2sin(A+B2)cos(AB2)
We are using this identity
sin2x + 2sin4x + sin6x = (sin2x + sin6x) + 2sin4x
sin2x + sin6x = 2sin4xcos(-2x) = 2sin4xcos(2x) ( cos(-x) = cos x)
So, our equation becomes
sin2x + 2sin4x + sin6x = 2sin4xcos(2x) + 2sin4x
Now, take the 2sin4x common
sin2x + 2sin4x + sin6x = 2sin4x(cos2x +1) ( cos2x=2cos2x1 )
= 2sin4x(2cos2x1 +1 )
= 2sin4x(2cos2x )
= 4sin4xcos2x= R.H.S.

Question:15 Prove the following cot4x(sin5x+sin3x)=cotx(sin5xsin3x)

Answer:
We know that
sinx+siny=2sin(x+y2)cos(xy2)
By using this , we get
sin5x + sin3x = 2sin4xcosx
cos4xsin4x(2sin4xcosx)=2cos4xcosx
Now nultiply and divide by sin x
 2cos4xcosxsinxsinx=cotx(2cos4xsinx)(cosx sinx=cotx)
Now we know that
2cosxsiny=sin(x+y)sin(xy)
By using this our equation becomes
=cotx(sin5xsin3x)= R.H.S.

Question:16 Prove the following cos9xcos5xsin17xsin3x=sin2xcos10x

Answer:
As we know that
cosxcosy=2sinx+y2sinxy2,cos9xcos5x=2sin7xsin2x
sinxsiny=2cosx+y2sinxy2,sin17xsin3x=2cos10xsin7x
Now, cos9xcos5xsin17xsin3x=2sin7xsin2x2cos10xsin7x=sin2xcos10x= R.H.S.

Question:17 Prove the following sin5x+sin3xcos5x+cos3x=tan4x

Answer:
We know that
sinA+sinB=2sinA+B2cosAB2 and cosA+cosB=2cosA+B2cosAB2
We use these identities
sin5x+sin3x=2sin4xcosx,cos5x+cos3x=2cos4xcosx
Now, sin5x+sin3xcos5x+cos3x=2sin4xcosx2cos4xcosx=sin4xcos4x=tan4x= R.H.S.

Question:18 Prove the following sinxsinycosx+cosy=tan(xy)2

Answer:
We know that
sinxsiny=2cosx+y2sinxy2 and cosx+cosy=2cosx+y2cosxy2
We use these identities
sinxsinycosx+cosy=2cosx+y2sinxy22cosx+y2cosxy2=sinxy2cosxy2=tanxy2= R.H.S.

Question:19 Prove the following sinx+sin3xcosx+cos3x=tan2x

Answer:
We know that
sinx+siny=2sinx+y2cosxy2
cosx+cosy=2cosx+y2cosxy2
We use these equations,
sinx+sin3x=2sin2xcos(x)=2sin2xcosx(cos(x)=cosx)
cosx+cos3x=2cos2xcos(x)=2cos2xcosx(cos(x)=cosx)
Now, sinx+sin3xcosx+cos3x=2sin2xcosx2cos2xcosx=sin2xcos2x=tan2x= R.H.S.

Question:20 Prove the following sinxsin3xsin2xcos2x=2sinx

Answer:
We know that
sin3x=3sinx4sin3x,cos2xsin2x=cos2x and cos2x=12sin2x
We use these identities
sinxsin3x=sinx(3sinx4sin3x)=4sin3x2sinx=2sinx(2sin2x1)
sin2xcos2x=sin2x(1sin2x)=2sin2x1
Now, sinxsin3xsin2cos2x=2sinx(2sin2x1)2sin2x1=2sinx= R.H.S.

Question:21 Prove the following cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x

Answer:
We know that
cosx+cosy=2cosx+y2cosxy2 and sinx+siny=2sinx+y2cosxy2
We use these identities
(cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x=2cos3xcosx+cos3x2sin3xcosx+sin3x=2cos3x(cosx+1)2sin3x(cosx+1)=cot3x= R.H.S.

Question:22 prove the following cotxcot2xcot2xcot3xcot3xcotx=1

Answer:
L.H.S.
= cotxcot2xcot3x(cot2xcotx)
Now we can write cot3x=cot(2x+x)
cot(a+b)=cotacotb1cota+cotb
So, cotxcot2xcot2xcotx1cot2x+cotx(cot2x+cotx)
= cotxcot2x(cot2xcotx1)
= cotxcot2xcot2xcotx+1=1= R.H.S.

Question:23 Prove that tan4x=4tanx(1tan2x)16tan2x+tan4x

Answer:
We know that
tan2A=2tanA1tan2A
and we can write tan 4x = tan 2(2x)
So, tan4x=2tan2x1tan22x = 2(2tanx1tan2x)1(2tanx1tan2x)2
= 2(2tanx)(1tan2x)(1tanx)2(4tan2x)
= (4tanx)(1tan2x)(1)2+(tan2x)22tan2x(4tan2x)
= (4tanx)(1tan2x)12+tan4x6tan2x = R.H.S.

Question:24 Prove the following cos4x=18sin2xcos2x

Answer:
We know that
cos2x=12sin2x
We use this in our problem
cos4x=cos2(2x)
= 12sin22x
= 12(2sinxcosx)2 (sin2x=2sinxcosx)
= 18sin2xcos2x= R.H.S.

Question:25 Prove the following cos6x=32cos6x48cos4x+18cos2x1

Answer:
We know that
cos3x=4cos3x3cosx
We use this in our problem
we can write cos6x as cos3(2x)
cos3(2x)=4cos32x3cos2x
= 4(2cos2x1)33(2cos2x1)(cos2x=2cos2x1)
= 4[(2cos2x)3(1)33(2cos2x)2(1)+3(2cos2x)(1)2]6cos2x+3[(ab)3=a3b33a2b+3ab2]
= 32cos6x448cos4x+24cos2x6cos2x+3
= 32cos6x48cos4x+18cos2x1= R.H.S.

NCERT Trigonometric Functions Class 11 Questions and Answers -
Exercise: Miscellaneous, Page Number: 71-72, Total Questions: 10

Question:1 Prove that 2cosπ13cos9π13+cos3π13+cos5π13=0

Answer:
We know that
cos A+ cos B = 2cos(A+B2)cos(AB2)
we use this in our problem
2cosπ13cos9π13+2cos(3π13+5π13)2cos(3π135π13)2
= 2cosπ13cos9π13+2cos4π13cosπ13 ( we know that cos(-x) = cos x )
= 2cosπ13cos9π13+2cos4π13cosπ13
= 2cosπ13(cos9π13+cos4π13)
again use the above identity
= 2cosπ13(2cos(9π13+4π132)cos(9π134π132)
= 2cosπ132cosπ2cos5π26
we know that cosπ2 = 0
So, 2cosπ132cosπ2cos5π26 = 0 = R.H.S.

Question:2 Prove that (sin3x+sinx)sinx+(cos3xcosx)cosx=0

Answer:
We know that
sin3x=3sinx4sin3x and cos3x=4cos3x3cosx
We use this in our problem
(sin3x+sinx)sinx+(cos3xcosx)cosx
= (3sinx4sin3x+sinx)sinx + (4cos3x3cosxcosx)cosx
= (4sinx - 4 sin3x )sin x + (4 cos3x - 4cos x)cos x
Now take the 4sinx common from 1st term and -4cosx from 2nd term
= 4 sin2x (1 - sin2x ) - 4 cos2x (1 - cos2x )
= 4 sin2x cos2x - 4 cos2x sin2x (cos2x=1sin2x and sin2x=1cos2x)
= 0 = R.H.S.

Question:3 Prove that (cosx+cosy)2+(sinxsiny)2=4cos2(x+y2)

Answer:
We know that (a+b)2=a2+2ab+b2 and (ab)2=a22ab+b2
We use these two in our problem
(sinxsiny)2=sin2x2sinxsiny+sin2y and (cosx+cosy)2=cos2x+2cosxcosy+cos2y
(cosx+cosy)2+(sinxsiny)2 = cos2x+2cosxcosy+cos2y + sin2x2sinxsiny+sin2y
= 1 + 2 cos x cos y + 1 - 2 sin x sin y (sin2x+cos2x=1 and sin2y+cos2y=1)
= 2 + 2(cos x cos y - sin x sin y)
= 2 + 2cos(x + y)
= 2(1 + cos(x + y) )
Now we can write
cos(x+y)=2cos2(x+y)21 (cos2x=2cos2x1 cosx=2cos2x21)
= 2(1+2cos2(x+y)21)
= 4cos2(x+y)2
= R.H.S.

Question:4 Prove that (cosxcosy)2+(sinxsiny)2=4sin2(xy2)

Answer:
We know that (a+b)2=a2+2ab+b2 and (ab)2=a22ab+b2
We use these two in our problem
(sinxsiny)2=sin2x2sinxsiny+sin2y and (cosxcosy)2=cos2x2cosxcosy+cos2y
(cosxcosy)2+(sinxsiny)2 = cos2x2cosxcosy+cos2y + sin2x2sinxsiny+sin2y
= 1 - 2cos x cos y + 1 - 2sin x sin y (sin2x+cos2x=1 and sin2y+cos2y=1)
= 2 - 2(cos x cos y + sin x sin y)
= 2 - 2cos(x - y) (cos(xy)=cosxcosy+sinxsiny)
= 2(1 - cos(x - y) )
Now we can write
cos(xy)=12sin2(xy)2 (cos2x=12sin2x cosx=12sin2x2)
So, 2(1cos(xy))=2(1(12sin2(xy)2))
= 4sin2(xy)2 = R.H.S.

Question:5 Prove that sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x

Answer:
we know that sinA+sinB=2sinA+B2cosAB2
We use this identity in our problem
If we notice we need sin4x in our final result so it is better if we need a combination of sin7x and sin x , sin3x and sin5x to get sin4x.
(sin7x+sinx)+(sin5x+sin3x)=2sin7x+x2cos7xx2 +2sin5x+3x2cos5x3x2
= 2sin4xcos3x+2sin4xcosx
take 2sin4x common
= 2sin4x(cos3x + cosx)
We know that
cosA+cosB=2cosA+B2cosAB2
We use this
cos3x+cosx=2cos3x+x2cos3xx2
= 2cos2xcosx
Now 2sin4x(cos3x + cosx) = 2sin4x( 2cos2xcosx)
= 4cosxcos2xsin4x = R.H.S.

Question:6 Prove that (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x

Answer:
We know that
sinA+sinB=2sinA+B2cosAB2
cosA+cosB=2cosA+B2cosAB2
We use these two identities in our problem
sin7x + sin5x = 2sin7x+5x2cos7x5x2 = 2sin6xcosx
sin 9x + sin 3x = 2sin9x+3x2cos9x3x2 = 2sin6xcos3x
cos 7x + cos5x = 2cos7x+5x2cos7x5x2 = 2cos6xcosx
cos 9x + cos3x = 2cos9x+3x2cos9x3x2 = 2cos6xcos3x
(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x) = (2sin6xcosx)+(2sin6xcos3x)(2cos6xcosx)+(2cos6xcos3x)
= 2sin6x(cosx+cos3x)2cos6x(cosx+cos3x)=tan6x = R.H.S. (sinxcosx=tanx)

Question:7 Prove that sin3x+sin2xsinx=4sinxcosx2cos3x2

Answer:
We know that
cosA+cosB=2cosA+B2cosAB2
sinAsinB=2cosA+B2sinAB2
We use these identities
sin3xsinx=2cos3x+x2sin3xx2
=2cos2xsinx
sin2x + 2cos2xsinx = 2sinx cosx + 2cos2xsinx
take 2 sinx common
2sinx(cosx+cos2x)=2sinx(2cos2x+x2cos2xx2)
=2sinx(2cos3x2cosx2)
=4sinxcos3x2cosx2= R.H.S.

Question:8 Find sinx2,cosx2,andtanx2 in tanx=43 , x in quadrant II.

Answer:
tan x = 43
We know that ,
sec2x=1+tan2x
=1+(43)2
=1+169 = 259
secx=259 = ±53
x lies in II quadrant thats why sec x is -ve
So, secx=53
Now, cosx=1secx = 35
We know that,
cosx=2cos2x21 ( cos2x=2cos2x1cosx=2cos2x21 )
35+1=2 cos2x2
3+55 = 2cos2x2
25 = 2cos2x2
cos2x2 = 15
cosx2 = 15 = ±15
x lies in II quadrant so value of cosx2 is +ve
cosx2 = 15=55
we know that
cosx=12sin2x2
2sin2x2 = 1 - (35) = 85
sin2x2=45=sinx2=45=±25
x lies in II quadrant So value of sin x is +ve
sinx2=25=255
tanx2=sinx2cosx2=255(55)=2

Question:9 Find sinx2,cosx2,andtanx2 in cosx=13 , x in quadrant III

Answer:
π<x<3π2π2<x2<3π4
We know that
cos x = 2cos2x21
2cos2x2= cos x + 1 = (13) + 1 = (1+33) = 23
cosx2=13=±13
cosx2=13=33 (As x lies in 3rd quadrant)
we know that
cos x = 12sin2x2
2sin2x2=1cosx = 1 - (13) = 3+13 = 43
2sin2x2=43sin2x2=23sinx2=±23=63
Because sinx2 is +ve in given quadrant
tanx2=sinx2cosx2=6333=2

Question:10 Find sinx2,cosx2,andtanx2 in sinx=14 ,x in quadrant II

Answer:
π2<x<ππ4<x2<π2 all functions are positive in this range
We know that
cos2x=1sin2x = 1 - (14)2 = 1116 = 1516
cos x = 1516=±154=154 (cos x is -ve in II quadrant)
We know that
cosx = 2cos2x21
2cos2x2=cosx+1=154+1=15+44
cos2x2=15+48
cosx2=±15+48=15+422=82154 (because all functions are posititve in given range)
Similarly,
cos x = 12sin2x2
2sin2x2=1cosx2sin2x2=1(154)=4+154
sinx2=±15+48=15+422=8+2154 (because all functions are posititve in given range)
tanx2=sinx2cosx2=8+215482154=8+2156415×4=8+2154=4+15

Trigonometry Class 11 Solutions - Exercise Wise

Interested students can study Trigonometric Functions Exercise using following links-

NCERT Solutions for Class 11 Mathematics - Chapter Wise

Importance of Solving NCERT Questions of Class 11 Maths Chapter 8

  • Solving these NCERT questions will help students understand the basic concepts of trigonometry easily.
  • Students can practice various types of questions which will improve their problem-solving skills.
  • These NCERT exercises cover all the important topics and concepts so that students can be well-prepared for various exams.
  • By solving these NCERT trigonometry problems students will get to know about all the real-life applications of trigonometry.

NCERT Solutions for Class 11 - Subject Wise

Here are the subject-wise links for the NCERT solutions of class 11

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and NCERT syllabus for class 11

Frequently Asked Questions (FAQs)

1. How to solve trigonometric equations in Class 11 Maths Chapter 3?

To solve trigonometric equations in Class 11 Maths Chapter 3, express the given terms in basic trigonometric functions like sin, cos, and tan, then try to apply proper trigonometric identities and use simplification.

2. What are the key formulas of Trigonometric Functions in NCERT Class 11?

The key formulas of Trigonometric Functions in NCERT Class 11 are:

1)cos2x+sin2x=1

2)1+tan2x=sec2x

3)1+cot2x=cosec2x

4)cos(2nπ+x)=cosx

5)sin(2nπ+x)=sinx

6)sin(x)=sinx

7)cos(x)=cosx 

8)cos(x+y)=cosxcosysinxsiny

9)cos(xy)=cosxcosy+sinxsiny

10)sin(x+y)=sinxcosy+cosxsiny

11)sin(xy)=sinxcosycosxsiny  

12)tan(x+y)=tanx+tany1tanxtany

13)tan(xy)=tanxtany1+tanxtany

14)cot(x+y)=cotxcoty1cotx+coty

15)cot(xy)=1+cotxcotycotycotx  

3. How to find the general solution of a trigonometric equation?

To find the general solution of a trigonometric equation, use the following standard equations:

sinθ=sinαθ=nπ+(1)nα,nZ

cosθ=cosαθ=2nπ±α,nZ

tanθ=tanαθ=nπ+α,nZ

4. What are the domain and range of trigonometric functions in Class 11?

In class 11 chapter 3 trigonometric functions, a domain basically denotes the input values and range denotes the output values.

For example: The domain of sinθ and cosθ is (,) and range is (–1, 1).

5. How to derive the sine and cosine function graphs?

To derive the sine and cosine function graphs, plot y=sinθ and y=cosθ for the values of θ like 0°, 30°, 60°, 90°, 180°, etc..

The sine graph starts at (0, 0) and goes up to 1 at 90°, drops to –1 at 270°, and comes to 0 again at 360° then repeats.

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top