Imagine standing at the center of a giant clock and walking around its edge; every step you take changes the angle and direction you are facing. This is what we are going to deal with in this chapter Trigonometric functions. Trigonometry is a branch of mathematics that examines the relationships between the angles and sides of triangles. It helps us understand how angles and lengths are connected and are used in many fields like engineering, architecture, navigation, etc.
This Story also Contains
The NCERT Solutions for Exercise 3.3 will ease your preparation by offering detailed calculations that will simplify complex problems. These NCERT solutions are designed to improve your speed, accuracy and confidence to tackle all kind of questions. In this exercise of NCERT, you will go beyond the basic angles and explore how trigonometric functions behave for all types of angles including those greater than 360° or even negative!
Answer:
We know the values of sin (30 degree), cos (60 degree) and tan (45 degree). That is:
$\sin \left ( \frac{\pi}{6} \right ) = \left ( \frac{1}{2} \right )\\ \\ \cos \left ( \frac{\pi}{3} \right ) = \left ( \frac{1}{2} \right )\\ \\ \tan \left ( \frac{\pi}{4} \right ) = 1$
$\sin^{2}\frac{\pi}{6}+\cos^{2}\frac{\pi}{3}-\tan^{2}\frac{\pi}{4}=$ $\left ( \frac{1}{2} \right )^{2}+ \left ( \frac {1}{2} \right )^{2}-1^{2}$
$= \frac{1}{4}+\frac{1}{4}-1= -\frac{1}{2}$
= R.H.S.
Answer:
The solutions for the given problem is done as follows.
$\sin\frac{\pi}{6} = \frac {1}{2}\\ \\ cosec\frac{7\pi}{6} = cosec\left ( \pi + \frac{\pi}{6} \right ) = -cosec \frac{\pi}{6}=-2\\ \\ \cos \frac{\pi}{3} = \frac{1}{2}$
$2\sin^{2}\frac{\pi}{6} +cosec^{2}\frac{7\pi}{6}\cos^{2}\frac{\pi}{3} = 2\left ( \frac{1}{2} \right )^{2}+\left ( -2 \right )^{2}\left ( \frac{1}{2} \right )^{2}\\$ $\\ \Rightarrow 2\times\frac{1}{4} + 4\times\frac{1}{4} = \frac {1}{2} + 1= \frac{3}{2}$
R.H.S.
Answer:
We know the values of cot(30 degree), tan (30 degree) and cosec (30 degree)
$\cot \frac{\pi}{6} = \sqrt{3}\\ \\ cosec\frac{5\pi}{6} = cosec\left ( \pi - \frac{\pi}{6} \right )=cosec\frac{\pi}{6} = 2\\ \\ \tan\frac{\pi}{6}= \frac{1}{\sqrt{3}}$
$\cot^{2}\frac{\pi}{6} + cosec\frac{5\pi}{6} +3\tan^{2}\frac{\pi}{6} = \left ( \sqrt(3) \right )^{2} + 2 + 3\times\left ( \frac{1}{\sqrt{3}} \right )^{2}\\$ $\\ \Rightarrow 3+2+1 = 6$
R.H.S.
Answer:
$\sin \frac{3\pi}{4} = \sin\left ( \pi-\frac{\pi}{4} \right ) = \sin \frac{\pi}{4}= \frac{1}{\sqrt{2}}\\ \\ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}\\ \\ \sec\frac{\pi}{3}= 2$
Using the above values
$2\sin^{2}\frac{3\pi}{4} +2\cos^{2}\frac{\pi}{4}+2\sec^{2}\frac{\pi}{3} = 2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\left ( 2 \right )^{2}\\$ $\\ \Rightarrow 1+1+8=10$
R.H.S.
Question 5:(i) Find the value of $\small (i) \sin 75^\circ$
Answer:
$\sin 75^\circ = \sin(45^\circ + 30^\circ)$
We know that
(sin(x+y)=sinxcosy + cosxsiny)
Using this idendity
$\sin 75^\circ = \sin(45^\circ + 30^\circ) = \sin45^\circ\cos30^\circ + \cos45^\circ\sin30^\circ\\$ $\\ \Rightarrow \frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\times\frac{1}{2}\\$
$ \\ \Rightarrow \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}$
Question:5(ii) Find the value of
$\small (ii) \tan 15^\circ$
Answer:
$\tan 15^\circ = \tan (45^\circ - 30^\circ)$
We know that,
$\left [ \tan(x-y)= \frac{\tan x - \tan y}{1+\tan x\tan y} \right ]$
By using this we can write
$\tan (45^\circ - 30^\circ)= \frac{\tan 45^\circ - tan30^\circ}{1+\tan45^\circ\tan30^\circ}\\$
$\\ \Rightarrow \frac{1-\frac{1}{\sqrt{3}}}{1+1\left ( \frac{1}{\sqrt{3}} \right )} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left ( \sqrt{3}-1 \right )^{2}}{\left ( \sqrt{3}+1 \right )\left ( \sqrt{3} -1\right )}=\frac{3+1-2\sqrt{3}}{\left ( \sqrt{3} \right )^{2}-\left ( 1 \right )^{2}}\\ $
$\\ \Rightarrow \frac {4-2\sqrt{3}}{3-1}=\frac{2\left ( 2-\sqrt{3} \right )}{2}= 2-\sqrt{3}$
Answer:
$\cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) - \sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right )$
Multiply and divide by 2 both cos and sin functions
We get,
$\frac{1}{2}\left [2 \cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) \right ] + \frac{1}{2}\left [- 2\sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right ) \right ]$
Now, we know that
2cosAcosB = cos(A+B) + cos(A-B) -(i)
-2sinAsinB = cos(A+B) - cos(A-B) -(ii)
We use these two identities
In our question A = $\left (\frac{\pi}{4}-x \right )$
B = $\left (\frac{\pi}{4}-y \right )$
So,
$\frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} + \cos \left \{ \left ( \frac{\pi}{4}-x \right) -\left ( \frac{\pi}{4}-y \right ) \right \} \right ] +\\$ $\\ \frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} - \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} \right ]$
$\Rightarrow 2 \times \frac{1}{2} \left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right )+\left ( \frac{\pi}{4}-y \right ) \right \} \right ]$
$= \cos \left [ \frac{\pi}{2}-(x+y) \right ]$
As we know that
$(\cos \left ( \frac{\pi}{2} - A \right ) = \sin A)$
By using this
$= \cos \left [ \frac{\pi}{2}-(x+y) \right ]$ $=\sin(x+y)$
R.H.S
Answer:
As we know that
$(\tan (A +B ) = \frac {\tan A + \tan B}{1- \tan A\tan B})$ and $\tan (A-B) = \frac {\tan A - \tan B }{1+ \tan A \tan B}$
So, by using these identities
$\frac{\tan \left ( \frac{\pi}{4}+x \right )}{\tan \left ( \frac{\pi}{4}-x \right )} = \frac{\frac{\tan \frac {\pi}{4} + \tan x}{1- \tan \frac{\pi}{4}\tan x}} {\frac{\tan \frac {\pi}{4} - \tan x}{1+ \tan \frac{\pi}{4}\tan x}} =\frac{ \frac {1+\tan x }{1- \tan x}} { \frac {1-\tan x }{1+ \tan x}} = \left ( \frac{1 + \tan x}{1 - \tan x} \right )^{2}$
R.H.S
Answer:
As we know that,
$\cos(\pi+x) = -\cos x$ , $\sin (\pi - x ) = \sin x$ , $\cos \left ( \frac{\pi}{2} + x\right ) = - \sin x$
and
$\cos (-x) = \cos x$
By using these our equation simplify to
$\frac{\cos x \times -\cos x}{sin x \times - \sin x} = \frac{- \cos^{2}x}{-\sin^{2}x} = \cot ^ {2}x$ $(\because \cot x = \frac {\cos x}{\sin x})$
R.H.S.
Answer:
We know that
$\cos \left ( \frac{3\pi}{2}+x \right ) = \sin x\\ \\ \cos (2\pi +x)= \cos x\\ \\ \cot\left ( \frac{3\pi}{2} -x\right ) = \tan x\\ \\ \cot (2\pi + x) = \cot x$
So, by using these our equation simplifies to
$\cos \left ( \frac{3\pi }{2} +x\right )\cos (2\pi +x)\left [ \cot \left ( \frac{3\pi }{2}-x \right ) +\cot (2\pi +x)\right ] \\=\sin x\cos x [\tan x + \cot x] = \sin x\cos x [\frac {\sin x}{\cos x} + \frac{\cos x}{\sin x}]\\$ $\\ \Rightarrow \sin x\cos x\left [ \frac{\sin^{2}x+\cos^{2}x}{\sin x\cos x } \right ] =\sin^{2}x+\cos^{2}x = 1$ R.H.S.
Question 10: Prove the following $\small \sin (n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x =\cos x$
Answer:
Multiply and divide by 2
$= \frac {2\sin(n+1)x \sin(n+2)x + 2\cos (n+1)x\cos(n+2)x}{2}$
Now by using identities
-2sinAsinB = cos(A+B) - cos(A-B)
2cosAcosB = cos(A+B) + cos(A-B)
$\frac{\left \{ -\left (\cos(2n+3)x - \cos (-x) \right ) + \left ( \cos(2n+3) +\cos(-x) \right )\right \}}{2}\\$ $\\ \left ( \because \cos(-x) = \cos x \right )\\ \\ = \frac{2\cos x}{2} = \cos x$
R.H.S.
Answer:
We know that
[ cos(A+B) - cos (A-B) = -2sinAsinB ]
By using this identity
$\cos \left ( \frac {3\pi}{4}+x \right ) - \cos \left ( \frac {3\pi}{4}-x \right ) = -2\sin\frac{3\pi}{4}\sin x = -2\times \frac{1}{\sqrt{2}}\sin x\\$ $\\ = -\sqrt{2}\sin x$ R.H.S.
Question 12: Prove the following $\small \sin^{2}6x - \sin^{2}4x = \sin2x\sin10x$
Answer:
We know that
$a^{2} - b^{2} = (a+b)(a-b)$
So,
$\sin^{2}6x - \sin^{2}4x =(\sin6x + \sin4x)(\sin6x - \sin4x)$
Now, we know that
$\sin A + \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )\\$ $\\ \sin A - \sin B = 2\cos \left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )$
By using these identities
sin6x + sin4x = 2sin5x cosx
sin6x - sin4x = 2cos5x sinx
$\Rightarrow \sin^{2}6x - \sin^{2}4x = (2\cos5x\sin5x)(2\sin x\cos x)$
Now,
2sinAcosB = sin(A+B) + sin(A-B)
2cosAsinB = sin(A+B) - sin(A-B)
by using these identities
2cos5x sin5x = sin10x - 0
2sinx cosx = sin2x + 0
hence
$\sin^{2}6x-\sin^{2}4x = \sin2x\sin10x$
Question 13: Prove the following $\small \cos^{2}2x - \cos^{2}6x = \sin4x\sin8x$
Answer:
As we know that
$a^{2}-b^{2} =(a-b)(a+b)$
$\therefore \cos^{2}2x -\cos^{2}6x = (\cos2x-\cos6x)(\cos2x+\cos6x)$
Now
$\cos A - \cos B = -2\sin\left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )\\$ $\\ \cos A + \cos B = 2\cos\left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )$
By using these identities
cos2x - cos6x = -2sin(4x)sin(-2x) = 2sin4xsin2x ( $\because$ sin(-x) = -sin x
cos(-x) = cosx)
cos2x + cos 6x = 2cos4xcos(-2x) = 2cos4xcos2x
So our equation becomes
R.H.S.
Question 14: Prove the following $\small \sin2x +2\sin4x + \sin6x = 4\cos^{2}x\sin4x$
Answer:
We know that
$\sin A+ \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )$
We are using this identity
sin2x + 2sin4x + sin6x = (sin2x + sin6x) + 2sin4x
sin2x + sin6x = 2sin4xcos(-2x) = 2sin4xcos(2x) ( $\because$ cos(-x) = cos x)
So, our equation becomes
sin2x + 2sin4x + sin6x = 2sin4xcos(2x) + 2sin4x
Now, take the 2sin4x common
sin2x + 2sin4x + sin6x = 2sin4x(cos2x +1) ( $\because \cos2x = 2\cos^{2}x - 1$ )
=2sin4x( $2\cos^{2}x - 1$ +1 )
=2sin4x( $2\cos^{2}x$ )
= $4\sin4x\cos^{2}x$
R.H.S.
Question 15: Prove the following $\small \cot4x(\sin5x + \sin3x) = \cot x(\sin5x - \sin3x)$
Answer:
We know that
$\sin x + \sin y = 2\sin\left ( \frac{x+y}{2} \right )\cos\left (\frac{x-y}{2} \right )$
By using this , we get
sin5x + sin3x = 2sin4xcosx
$\frac{\cos4x}{\sin4x}\left ( 2\sin4x\cos x \right ) = 2\cos4x\cos x\\ \\$
now multiply and divide by sin x
$\\\ \\ \frac{2\cos4x\cos x \sin x}{\sin x } \ \ \ \ \ \ \ \ \ \ \\$ $\\ =\cot x (2\cos4x\sin x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left ( \because \frac{\cos x}{\ sin x} = \cot x \right )\\ \\$
Now we know that
$\\ 2\cos x\sin y = \sin(x+y) - \sin(x-y)\\ \\$
By using this our equation becomes
$\\ \\=\cot x (\sin5x - sin3x)\\$
R.H.S.
Question 16: Prove the following $\small \frac{\cos 9x - \cos 5x}{\sin17x - \sin3x} = -\frac{\sin2x}{\cos10x}$
Answer:
As we know that
$\\ \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2 }\\ \\ \cos 9x - \cos 5x = -2\sin 7x \sin2x \\$ $\\ \sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2 }\\ \\ \sin 17x - \sin 3x = 2\cos10x \sin7x\\$ $\\ \frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} =\frac{-2\sin 7x \sin2x}{2\cos10x \sin7x} = -\frac{\sin 2x}{\cos10x}$
R.H.S.
Question 17: Prove the following $\small \frac{\sin5x + \sin3x}{\cos5x + \cos3x} = \tan4x$
Answer:
We know that
$\\ \sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\\and\\$ $\\ \cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \\$
We use these identities
$\\ \sin5x + \sin3x = 2\sin4x\cos x\\ \cos5 x + \cos 3x = 2\cos4x\cos x \\$ $\\ \frac{\sin5x + \sin3x}{\cos5 x + \cos 3x} = \frac{ 2\sin4x\cos x}{2\cos4x\cos x} = \frac{\sin4x}{\cos 4x} = \tan 4x$
R.H.S.
Question 18: Prove the following $\small \frac{\sin x - \sin y}{\cos x+\cos y} = \tan \frac{(x-y)}{2}$
Answer:
We know that
$\sin x - \sin y = 2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}\\and \\$ $\\ \cos x +\cos y = 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}\\$
We use these identities
$\\ We \ use \ these \ identities\\$ $\\ \frac{\sin x - \sin y}{\cos x +\cos y} =\frac{2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}}{ 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}} = \frac{\sin\frac{x-y}{2}}{\cos\frac{x-y}{2}} = \tan \frac{x-y}{2}$
R.H.S.
Question 19: Prove the following $\small \frac{\sin x + \sin 3x}{\cos x + \cos3x} = \tan2x$
Answer:
We know that
$\\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}\\and\\ \\ \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\$ $\\ We \ use \ these \ equations \\ \\ \sin x + \sin3x = 2\sin2x\cos(-x) = 2\sin2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\$ $\\ \cos x + \cos3x = 2\cos2x\cos(-x) =2\cos2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\$ $\\ \frac{\sin x + \sin3x}{\cos x + \cos3x} = \frac {2\sin2x\cos x}{2\cos2x\cos x}= \frac{\sin2x}{\cos2x} = \tan2x$ R.H.S.
Question 20: Prove the following $\small \frac{\sin x - \sin 3x}{\sin^{2}x-\cos^{2}x} = 2\sin x$
Answer:
We know that
$\sin3x = 3\sin x - 4\sin^{3}x \ \ \ , \ \ \cos^{2}-\sin^{2}x = \cos2x \\and \\ \cos2x = 1 - 2\sin^{2}x \\$
We use these identities
$\sin x-\sin 3 x=\sin x-\left(3 \sin x-4 \sin ^3 x\right)=4 \sin ^3 x-2 \sin x$
$=2 \sin x\left(2 \sin ^2 x-1\right) \cos ^2 x-\sin ^2=\cos 2 x \cos 2 x=1-2 \sin ^2 x$
$\sin x-\sin 3 x=\sin x-\left(3 \sin x-4 \sin ^3 x\right)=4 \sin ^2 x-2 \sin x$
$=2 \sin x\left(2 \sin ^2 x-1\right) \sin ^2-\cos ^2 x=-\cos 2 x$
$\left.\left(\cos 2 x=1-2 \sin ^2 x\right) \sin ^2-\cos ^2 x=-\left(1-2 \sin ^2 x\right)=2 \sin ^4 2\right) x-1 \frac{\sin x-\sin ^2 x}{\sin ^2-\cos ^2 x}=\frac{2 \sin x\left(2 \sin ^3 x-1\right)}{\left.2 \sin ^4 2\right) \varepsilon-1}=2 \sin x$
$\sin x-\sin 3 x=\sin x-\left(3 \sin x-4 \sin ^3 x\right)-4 \sin ^3 x-2 \sin x$.
$=2 \sin \pm\left(2 \sin ^2 x-1\right) \sin ^2-\cos ^2 x--\cos 2 \pi$
$\left.\left(\because \cos 2 x-1-2 \sin ^2 x\right) \sin ^2-\cos ^2 x-\left(1-2 \sin ^2 x\right)=2 \sin ^{\prime} 2\right) x-1 \frac{\sin x-\sin 3 x}{\sin ^2-\cos ^2 x}-\frac{2 \sin x\left(2 \operatorname{nin}^2 \sigma-1\right)}{2 \operatorname{cin}^2 x-1}=2 \sin x$
R.H.S.
Question 21: Prove the following $\small \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$
Answer:
We know that
$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\$ and $\\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$
We use these identities
$\frac{(\cos4x + \cos2x) + \cos3x}{(\sin4x+\sin2x)+\sin3x} = \frac{2\cos3x\cos x + \cos3x}{2\sin3x\cos x+\sin3x} = \frac{2\cos3x(1+\cos x)}{2\sin3x(1+\cos x)}\\$ $\\ \ \ \ \ \ \ \ = cot 3x$
=RHS
Question 22: prove the following $\small \cot x \cot2x - \cot2x\cot3x - \cot3x\cot x =1$
Answer:
cot x cot2x - cot3x(cot2x - cotx)
Now we can write cot3x = cot(2x + x)
and we know that
$cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}$
So,
$cotx\ cot2x-\frac{\cot 2x \cot x - 1}{\cot 2x + \cot x}(cot2x+cotx)$
= cotx cot2x - (cot2xcotx -1)
= cotx cot2x - cot2xcotx +1
= 1 = R.H.S.
Question 23: Prove that $\small \tan4x = \frac{4\tan x(1-\tan^{2}x)}{1-6 \tan^{2}x+\tan^{4}x}$
Answer:
We know that
$tan2A=\frac{2\tan A}{1 - \tan^{2}A}$
and we can write tan 4x = tan 2(2x)
So, $tan4x=\frac{2\tan 2x}{1 - \tan^{2}2x}$ = $\frac{2( \frac{2\tan x}{1 - \tan^{2}x})}{1 - (\frac{2\tan x}{1 - \tan^{2}x})^{2}}$
= $\frac{2 (2\tan x)(1 - \tan^{2}x)}{(1-\tan x)^{2} - (4\tan^{2} x)}$
= $\frac{(4\tan x)(1 - \tan^{2}x)}{(1)^{2}+(\tan^{2} x)^{2} - 2 \tan^{2} x - (4\tan^{2} x)}$
= $\frac{(4\tan x)(1 - \tan^{2}x)}{1^{2}+\tan^{4} x - 6 \tan^{2} x }$ = R.H.S.
Question 24: Prove the following $\small \cos4x = 1 - 8\sin^{2}x\cos^{2}x$
Answer:
We know that
$cos2x=1-2\sin^{2}x$
We use this in our problem
cos 4x = cos 2(2x)
= $1-2\sin^{2}2x$
= $1-2(2\sin x \cos x)^{2}$ $(\because \sin2x = 2\sin x \cos x)$
= $1-8\sin^{2}x\cos^{2}x$ = R.H.S.
Question 25: Prove the following $\small \cos6x = 32\cos^{6}x -48\cos^{4}x + 18\cos^{2}x-1$
Answer:
We know that
cos 3x = 4 $\cos^{3}x$ - 3cos x
we use this in our problem
we can write cos 6x as cos 3(2x)
cos 3(2x) = 4 $\cos^{3}2x$ - 3 cos 2x
= $4(2\cos^{2}x - 1)^{3}$ - $3(2\cos^{2}x - 1)$ $(\because \cos 2x = 2\cos^{2}x - 1)$
= $4[(2cos^{2}x)^{3} -(1)^{3} -3(2cos^{2}x)^{2}(1) + 3(2cos^{2}x)(1)^{2}]$ $-6\cos^{2}x + 3$ $(\because (a-b)^{3} = a^{3} - b^{3} - 3a^{2}b+ 3ab^{2})$
= 32 $cos^{6}x$ - 4 - 48 $cos^{4}x$ + 24 $cos^{2}x$ - $6\cos^{2}x + 3$
= 32 $cos^{6}x$ - 48 $cos^{4}x$ + 18 $cos^{2}x$ - 1 = R.H.S.
Also read,
1. Trigonometric Functions of Any Angle
It will allow you to find trigonometric values for angles greater than 360°, negative angles and angles in radians.
2. Trigonometric Identities involving general angles
These identities will help you relate the trigonometry values of an angle to its related angles like $\theta+360^{\circ}$, $\theta$ or $\pi+\theta$. It will help you in simplifying expressions and solve problems where the angles are not in the standard $0^{\circ}$ to $90^{\circ}$ range. We can find equivalent values and can determine signs accurately.
3. Trigonometric Functions of Sum and Difference of Two Angles
These formulas will help you find the sine, cosine or tangent of the sum or difference of two angles like $\sin (A+$ $B)$ or $\cos (A-B)$.
These identities are widely used in simplification, proving identities and to solve equations. It will also form the basis for more advanced formulas in trigonometry and calculus.
E.g.- $\sin (A+B)=\sin A \cos B+\cos A \sin B$.
Also read
NCERT solutions and exemplar solutions are very helpful for exams. So, follow the links and get subject-wise solutions in one click.
NCERT Solutions for Class 11 Maths |
NCERT Solutions for Class 11 Physics |
NCERT Solutions for Class 11 Chemistry |
NCERT Solutions for Class 11 Biology |
Frequently Asked Questions (FAQs)
Not recommended. Can do if there is paucity of time .
Yes, as most of the questions are simple and Maths is a very scoring subject.
Yes, in that case one can refer to the solutions provided here.
Yes, in proof related questions, more than one method can be used.
Yes, there are marks for the steps in the CBSE exams
This exercise can take 5 to 6 hours if done properly in step by step manner.
There are 25 questions in this exercise, mostly proof related questions.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters