Careers360 Logo
NCERT Solutions for Exercise 3.3 Class 11 Maths Chapter 3 - Trigonometric Functions

NCERT Solutions for Exercise 3.3 Class 11 Maths Chapter 3 - Trigonometric Functions

Edited By Sumit Saini | Updated on Jul 29, 2022 03:19 PM IST

Questions based on different concepts are asked in Exercise 3.3 Class 11 Maths which includes proof related questions of trigonometric functions. NCERT Solutions for class 11 maths chapter 3 exercise 3.3 is relatively difficult as compared to previous exercises. These questions are asked only in subjective papers like School final examinations. Exercise 3.3 Class 11 Maths questions might take more time to solve but once done, one can expect a good score in the examination. NCERT Solutions for class 11 maths chapter 3 exercise 3.3 is a must to do exercise. Also for the other exercises of NCERT one can find the below.

NCERT solutions for class 11 maths chapter 3 trigonometric functions-Exercise: 3.3

Question:1 Prove that \small \sin ^{2} \left ( \frac{\pi }{6} \right ) + \cos ^{2}\left ( \frac{\pi }{3} \right ) - \tan ^{2}\left ( \frac{\pi }{4} \right ) = -\frac{1}{2}

Answer:

We know the values of sin (30 degree), cos (60 degree) and tan (45 degree). That is:


\sin \left ( \frac{\pi}{6} \right ) = \left ( \frac{1}{2} \right )\\ \\ \cos \left ( \frac{\pi}{3} \right ) = \left ( \frac{1}{2} \right )\\ \\ \tan \left ( \frac{\pi}{4} \right ) = 1
\sin^{2}\frac{\pi}{6}+\cos^{2}\frac{\pi}{3}-\tan^{2}\frac{\pi}{4}= \left ( \frac{1}{2} \right )^{2}+ \left ( \frac {1}{2} \right )^{2}-1^{2}

= \frac{1}{4}+\frac{1}{4}-1= -\frac{1}{2}
= R.H.S.

Question:2 Prove that \small 2\sin ^{2}\left ( \frac{\pi }{6} \right ) + cosec ^{2}\left ( \frac{7\pi }{6} \right )\cos ^{2}\frac{\pi }{3} = \frac{3}{2}

Answer:

The solutions for the given problem is done as follows.

\sin\frac{\pi}{6} = \frac {1}{2}\\ \\ cosec\frac{7\pi}{6} = cosec\left ( \pi + \frac{\pi}{6} \right ) = -cosec \frac{\pi}{6}=-2\\ \\ \cos \frac{\pi}{3} = \frac{1}{2}
2\sin^{2}\frac{\pi}{6} +cosec^{2}\frac{7\pi}{6}\cos^{2}\frac{\pi}{3} = 2\left ( \frac{1}{2} \right )^{2}+\left ( -2 \right )^{2}\left ( \frac{1}{2} \right )^{2}\\ \\ \Rightarrow 2\times\frac{1}{4} + 4\times\frac{1}{4} = \frac {1}{2} + 1= \frac{3}{2}
R.H.S.

Question:3 Prove that \small \cot ^{2}\left ( \frac{\pi }{6} \right ) + \csc \left ( \frac{5\pi }{6} \right ) + 3\tan ^{2}\left ( \frac{\pi }{6} \right ) = 6

Answer:

We know the values of cot(30 degree), tan (30 degree) and cosec (30 degree)

\cot \frac{\pi}{6} = \sqrt{3}\\ \\ cosec\frac{5\pi}{6} = cosec\left ( \pi - \frac{\pi}{6} \right )=cosec\frac{\pi}{6} = 2\\ \\ \tan\frac{\pi}{6}= \frac{1}{\sqrt{3}}

\cot^{2}\frac{\pi}{6} + cosec\frac{5\pi}{6} +3\tan^{2}\frac{\pi}{6} = \left ( \sqrt(3) \right )^{2} + 2 + 3\times\left ( \frac{1}{\sqrt{3}} \right )^{2}\\ \\ \Rightarrow 3+2+1 = 6
R.H.S.

Question:4 Prove that \small 2\sin ^{2}\left ( \frac{3\pi }{4} \right ) + 2\cos ^{2}\left ( \frac{\pi }{4} \right ) + 2\sec ^{2}\left ( \frac{\pi }{3} \right ) = 10

Answer:

\sin \frac{3\pi}{4} = \sin\left ( \pi-\frac{\pi}{4} \right ) = \sin \frac{\pi}{4}= \frac{1}{\sqrt{2}}\\ \\ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}\\ \\ \sec\frac{\pi}{3}= 2
Using the above values

2\sin^{2}\frac{3\pi}{4} +2\cos^{2}\frac{\pi}{4}+2\sec^{2}\frac{\pi}{3} = 2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\times\left ( \frac{1}{\sqrt{2}} \right )^{2}+2\left ( 2 \right )^{2}\\ \\ \Rightarrow 1+1+8=10
R.H.S.

Question:5(i) Find the value of \small (i) \sin 75\degree

Answer:

\sin 75\degree = \sin(45\degree + 30\degree)
We know that
(sin(x+y)=sinxcosy + cosxsiny)
Using this idendity

\sin 75\degree = \sin(45\degree + 30\degree) = \sin45\degree\cos30\degree + \cos45\degree\sin30\degree\\ \\ \Rightarrow \frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\times\frac{1}{2}\\ \\ \Rightarrow \frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}

Question:5(ii) Find the value of
\small (ii) \tan 15\degree

Answer:

\tan 15\degree = \tan (45\degree - 30\degree)
We know that,

\left [ \tan(x-y)= \frac{\tan x - \tan y}{1+\tan x\tan y} \right ]
By using this we can write

\tan (45\degree - 30\degree)= \frac{\tan 45\degree - tan30\degree}{1+\tan45\degree\tan30\degree}\\ \\ \Rightarrow \frac{1-\frac{1}{\sqrt{3}}}{1+1\left ( \frac{1}{\sqrt{3}} \right )} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{\left ( \sqrt{3}-1 \right )^{2}}{\left ( \sqrt{3}+1 \right )\left ( \sqrt{3} -1\right )}=\frac{3+1-2\sqrt{3}}{\left ( \sqrt{3} \right )^{2}-\left ( 1 \right )^{2}}\\ \\ \Rightarrow \frac {4-2\sqrt{3}}{3-1}=\frac{2\left ( 2-\sqrt{3} \right )}{2}= 2-\sqrt{3}

Question:6 Prove the following: \small \cos \left ( \frac{\pi }{4}-x \right )\cos \left ( \frac{\pi }{4}-y \right ) - \sin \left ( \frac{\pi }{4} -x\right )\sin \left ( \frac{\pi }{4}-y \right ) =\sin (x+y)

Answer:

\cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) - \sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right )

Multiply and divide by 2 both cos and sin functions
We get,

\frac{1}{2}\left [2 \cos\left ( \frac{\pi}{4}-x \right )\cos\left ( \frac{\pi}{4}-y \right ) \right ] + \frac{1}{2}\left [- 2\sin\left ( \frac{\pi}{4}-x \right )\sin\left ( \frac{\pi}{4}-y \right ) \right ]

Now, we know that

2cosAcosB = cos(A+B) + cos(A-B) -(i)
-2sinAsinB = cos(A+B) - cos(A-B) -(ii)
We use these two identities

In our question A = \left (\frac{\pi}{4}-x \right )

B = \left (\frac{\pi}{4}-y \right )
So,

\frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} + \cos \left \{ \left ( \frac{\pi}{4}-x \right) -\left ( \frac{\pi}{4}-y \right ) \right \} \right ] +\\ \\ \frac{1}{2}\left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} - \cos \left \{ \left ( \frac{\pi}{4}-x \right) +\left ( \frac{\pi}{4}-y \right ) \right \} \right ]

\Rightarrow 2 \times \frac{1}{2} \left [ \cos \left \{ \left ( \frac{\pi}{4}-x \right )+\left ( \frac{\pi}{4}-y \right ) \right \} \right ]

= \cos \left [ \frac{\pi}{2}-(x+y) \right ]

As we know that

(\cos \left ( \frac{\pi}{2} - A \right ) = \sin A)
By using this

= \cos \left [ \frac{\pi}{2}-(x+y) \right ] =\sin(x+y)

R.H.S

Question:7 Prove the following \small \frac{\tan \left ( \frac{\pi }{4}+x \right )}{\tan \left ( \frac{\pi }{4} -x\right )} = \left ( \frac{1+\tan x}{1-\tan x} \right )^{2}

Answer:

As we know that

(\tan (A +B ) = \frac {\tan A + \tan B}{1- \tan A\tan B}) and \tan (A-B) = \frac {\tan A - \tan B }{1+ \tan A \tan B}

So, by using these identities

\frac{\tan \left ( \frac{\pi}{4}+x \right )}{\tan \left ( \frac{\pi}{4}-x \right )} = \frac{\frac{\tan \frac {\pi}{4} + \tan x}{1- \tan \frac{\pi}{4}\tan x}} {\frac{\tan \frac {\pi}{4} - \tan x}{1+ \tan \frac{\pi}{4}\tan x}} =\frac{ \frac {1+\tan x }{1- \tan x}} { \frac {1-\tan x }{1+ \tan x}} = \left ( \frac{1 + \tan x}{1 - \tan x} \right )^{2}
R.H.S

Question:8 Prove the following \small \frac{\cos (\pi +x)\cos (-x)}{\sin (\pi -x)\cos \left ( \frac{\pi }{2}+x \right )} = \cot ^{2} x

Answer:

As we know that,
\cos(\pi+x) = -\cos x , \sin (\pi - x ) = \sin x , \cos \left ( \frac{\pi}{2} + x\right ) = - \sin x
and
\cos (-x) = \cos x

By using these our equation simplify to

\frac{\cos x \times -\cos x}{sin x \times - \sin x} = \frac{- \cos^{2}x}{-\sin^{2}x} = \cot ^ {2}x (\because \cot x = \frac {\cos x}{\sin x})
R.H.S.

Question:9 Prove the following \small \cos \left ( \frac{3\pi }{2} +x\right )\cos (2\pi +x)\left [ \cot \left ( \frac{3\pi }{2}-x \right ) +\cot (2\pi +x)\right ] = 1

Answer:

We know that

\cos \left ( \frac{3\pi}{2}+x \right ) = \sin x\\ \\ \cos (2\pi +x)= \cos x\\ \\ \cot\left ( \frac{3\pi}{2} -x\right ) = \tan x\\ \\ \cot (2\pi + x) = \cot x

So, by using these our equation simplifies to

\cos \left ( \frac{3\pi }{2} +x\right )\cos (2\pi +x)\left [ \cot \left ( \frac{3\pi }{2}-x \right ) +\cot (2\pi +x)\right ] \\=\sin x\cos x [\tan x + \cot x] = \sin x\cos x [\frac {\sin x}{\cos x} + \frac{\cos x}{\sin x}]\\ \\ \Rightarrow \sin x\cos x\left [ \frac{\sin^{2}x+\cos^{2}x}{\sin x\cos x } \right ] =\sin^{2}x+\cos^{2}x = 1 R.H.S.

Question:10 Prove the following \small \sin (n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x =\cos x

Answer:

Multiply and divide by 2

= \frac {2\sin(n+1)x \sin(n+2)x + 2\cos (n+1)x\cos(n+2)x}{2}

Now by using identities

-2sinAsinB = cos(A+B) - cos(A-B)
2cosAcosB = cos(A+B) + cos(A-B)

\frac{\left \{ -\left (\cos(2n+3)x - \cos (-x) \right ) + \left ( \cos(2n+3) +\cos(-x) \right )\right \}}{2}\\ \\ \left ( \because \cos(-x) = \cos x \right )\\ \\ = \frac{2\cos x}{2} = \cos x

R.H.S.

Question:11 Prove the following \small \cos \left ( \frac{3\pi }{4}+x \right ) - \cos\left ( \frac{3\pi }{4} -x\right ) = -\sqrt{2} \sin x

Answer:

We know that

[ cos(A+B) - cos (A-B) = -2sinAsinB ]

By using this identity

\cos \left ( \frac {3\pi}{4}+x \right ) - \cos \left ( \frac {3\pi}{4}-x \right ) = -2\sin\frac{3\pi}{4}\sin x = -2\times \frac{1}{\sqrt{2}}\sin x\\ \\ = -\sqrt{2}\sin x R.H.S.

Question:12 Prove the following \small \sin^{2}6x - \sin^{2}4x = \sin2x\sin10x

Answer:

We know that
a^{2} - b^{2} = (a+b)(a-b)

So,
\sin^{2}6x - \sin^{2}4x =(\sin6x + \sin4x)(\sin6x - \sin4x)

Now, we know that

\sin A + \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )\\ \\ \sin A - \sin B = 2\cos \left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )
By using these identities
sin6x + sin4x = 2sin5x cosx
sin6x - sin4x = 2cos5x sinx

\Rightarrow \sin^{2}6x - \sin^{2}4x = (2\cos5x\sin5x)(2\sin x\cos x)

Now,

2sinAcosB = sin(A+B) + sin(A-B)
2cosAsinB = sin(A+B) - sin(A-B)

by using these identities

2cos5x sin5x = sin10x - 0
2sinx cosx = sin2x + 0

hence
\sin^{2}6x-\sin^{2}4x = \sin2x\sin10x

Question:13 Prove the following \small \cos^{2}2x - \cos^{2}6x = \sin4x\sin8x

Answer:

As we know that

a^{2}-b^{2} =(a-b)(a+b)

\therefore \cos^{2}2x -\cos^{2}6x = (\cos2x-\cos6x)(\cos2x+\cos6x)
Now
\cos A - \cos B = -2\sin\left ( \frac{A+B}{2} \right )\sin\left ( \frac{A-B}{2} \right )\\ \\ \cos A + \cos B = 2\cos\left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )
By using these identities

cos2x - cos6x = -2sin(4x)sin(-2x) = 2sin4xsin2x ( \because sin(-x) = -sin x
cos(-x) = cosx)
cos2x + cos 6x = 2cos4xcos(-2x) = 2cos4xcos2x

So our equation becomes

R.H.S.

Question:14 Prove the following \small \sin2x +2\sin4x + \sin6x = 4\cos^{2}x\sin4x

Answer:

We know that
\sin A+ \sin B = 2\sin \left ( \frac{A+B}{2} \right )\cos\left ( \frac{A-B}{2} \right )
We are using this identity
sin2x + 2sin4x + sin6x = (sin2x + sin6x) + 2sin4x

sin2x + sin6x = 2sin4xcos(-2x) = 2sin4xcos(2x) ( \because cos(-x) = cos x)

So, our equation becomes
sin2x + 2sin4x + sin6x = 2sin4xcos(2x) + 2sin4x
Now, take the 2sin4x common
sin2x + 2sin4x + sin6x = 2sin4x(cos2x +1) ( \because \cos2x = 2\cos^{2}x - 1 )
=2sin4x( 2\cos^{2}x - 1 +1 )
=2sin4x( 2\cos^{2}x )
= 4\sin4x\cos^{2}x
R.H.S.

Question:15 Prove the following \small \cot4x(\sin5x + \sin3x) = \cot x(\sin5x - \sin3x)

Answer:

We know that
\sin x + \sin y = 2\sin\left ( \frac{x+y}{2} \right )\cos\left (\frac{x-y}{2} \right )
By using this , we get

sin5x + sin3x = 2sin4xcosx

\frac{\cos4x}{\sin4x}\left ( 2\sin4x\cos x \right ) = 2\cos4x\cos x\\ \\

now nultiply and divide by sin x

\\\ \\ \frac{2\cos4x\cos x \sin x}{\sin x } \ \ \ \ \ \ \ \ \ \ \\ \\ =\cot x (2\cos4x\sin x) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left ( \because \frac{\cos x}{\ sin x} = \cot x \right )\\ \\

Now we know that

\\ 2\cos x\sin y = \sin(x+y) - \sin(x-y)\\ \\

By using this our equation becomes

\\ \\=\cot x (\sin5x - sin3x)\\
R.H.S.

Question:16 Prove the following \small \frac{\cos 9x - \cos 5x}{\sin17x - \sin3x} = -\frac{\sin2x}{\cos10x}

Answer:

As we know that

\\ \cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2 }\\ \\ \cos 9x - \cos 5x = -2\sin 7x \sin2x \\ \\ \sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2 }\\ \\ \sin 17x - \sin 3x = 2\cos10x \sin7x\\ \\ \frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} =\frac{-2\sin 7x \sin2x}{2\cos10x \sin7x} = -\frac{\sin 2x}{\cos10x}
R.H.S.

Question:17 Prove the following \small \frac{\sin5x + \sin3x}{\cos5x + \cos3x} = \tan4x

Answer:

We know that

\\ \sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}\\and\\ \\ \cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} \\

We use these identities

\\ \sin5x + \sin3x = 2\sin4x\cos x\\ \cos5 x + \cos 3x = 2\cos4x\cos x \\ \\ \frac{\sin5x + \sin3x}{\cos5 x + \cos 3x} = \frac{ 2\sin4x\cos x}{2\cos4x\cos x} = \frac{\sin4x}{\cos 4x} = \tan 4x
R.H.S.

Question:18 Prove the following \small \frac{\sin x - \sin y}{\cos x+\cos y} = \tan \frac{(x-y)}{2}

Answer:

We know that
\sin x - \sin y = 2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}\\and \\ \\ \cos x +\cos y = 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}\\

We use these identities

\\ We \ use \ these \ identities\\ \\ \frac{\sin x - \sin y}{\cos x +\cos y} =\frac{2\cos\frac{x+y}{2 }\sin\frac{x-y}{2}}{ 2\cos\frac{x+y}{2 }\cos\frac{x-y}{2}} = \frac{\sin\frac{x-y}{2}}{\cos\frac{x-y}{2}} = \tan \frac{x-y}{2}

R.H.S.

Question:19 Prove the following \small \frac{\sin x + \sin 3x}{\cos x + \cos3x} = \tan2x

Answer:

We know that

\\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}\\and\\ \\ \cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\ \\ We \ use \ these \ equations \\ \\ \sin x + \sin3x = 2\sin2x\cos(-x) = 2\sin2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\ \\ \cos x + \cos3x = 2\cos2x\cos(-x) =2\cos2x\cos x \ \ \ \ \ (\because \cos(-x) = \cos x)\\ \\ \frac{\sin x + \sin3x}{\cos x + \cos3x} = \frac {2\sin2x\cos x}{2\cos2x\cos x}= \frac{\sin2x}{\cos2x} = \tan2x R.H.S.

Question:20 Prove the following \small \frac{\sin x - \sin 3x}{\sin^{2}x-\cos^{2}x} = 2\sin x

Answer:
We know that

\sin3x = 3\sin x - 4\sin^{3}x \ \ \ , \ \ \cos^{2}-\sin^{2}x = \cos2x \\and \\ \cos2x = 1 - 2\sin^{2}x \\

We use these identities

\sin x - \sin3x = \sin x - (3\sin x - 4\sin^{3}x) = 4\sin^{3}x - 2\sin x\\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2\sin x (2\sin^{2}x - 1)\\ \\ \cos^{2}x- \sin^{2} = \cos2x\\ \cos2x = 1 - 2\sin^{2}x \sin x - \sin3x = \sin x - (3\sin x - 4\sin^{3}x) = 4\sin^{3}x - 2\sin x\\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2\sin x (2\sin^{2}x - 1)\\ \\ \sin^{2}-\cos^{2}x = - \cos2x \ \ \ \ \ \ \ \ \ \ (\cos2x = 1 - 2\sin^{2}x)\\ \sin^{2}-\cos^{2}x = -( 1 - 2\sin^{2}x) = 2\sin^(2)x - 1\\ \\ \frac{\sin x - \sin3x}{\sin^{2}-\cos^{2}x } = \frac{ 2\sin x (2\sin^{2}x - 1)}{ 2\sin^(2)x - 1} = 2\sin x \sin x - \sin3x = \sin x - (3\sin x - 4\sin^{3}x) = 4\sin^{3}x - 2\sin x\\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2\sin x (2\sin^{2}x - 1)\\ \\ \sin^{2}-\cos^{2}x = - \cos2x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because \cos2x = 1 - 2\sin^{2}x)\\ \sin^{2}-\cos^{2}x = -( 1 - 2\sin^{2}x) = 2\sin^(2)x - 1\\ \\ \frac{\sin x - \sin3x}{\sin^{2}-\cos^{2}x } = \frac{ 2\sin x (2\sin^{2}x - 1)}{ 2\sin^{2}x - 1} = 2\sin x
R.H.S.

Question:21 Prove the following \small \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x

Answer:

We know that

\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}\\ and \\ \sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}
We use these identities

\frac{(\cos4x + \cos2x) + \cos3x}{(\sin4x+\sin2x)+\sin3x} = \frac{2\cos3x\cos x + \cos3x}{2\sin3x\cos x+\sin3x} = \frac{2\cos3x(1+\cos x)}{2\sin3x(1+\cos x)}\\ \ \ \\ \ \ \ \ \ \ \ = cot 3x

=RHS

Question:22 prove the following \small \cot x \cot2x - \cot2x\cot3x - \cot3x\cot x =1

Answer:

cot x cot2x - cot3x(cot2x - cotx)
Now we can write cot3x = cot(2x + x)

and we know that

cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}
So,
cotx\ cot2x-\frac{\cot 2x \cot x - 1}{\cot 2x + \cot x}(cot2x+cotx)
= cotx cot2x - (cot2xcotx -1)
= cotx cot2x - cot2xcotx +1
= 1 = R.H.S.

Question:23 Prove that \small \tan4x = \frac{4\tan x(1-\tan^{2}x)}{1-6 \tan^{2}x+\tan^{4}x}

Answer:

We know that

tan2A=\frac{2\tan A}{1 - \tan^{2}A}

and we can write tan 4x = tan 2(2x)
So, tan4x=\frac{2\tan 2x}{1 - \tan^{2}2x} = \frac{2( \frac{2\tan x}{1 - \tan^{2}x})}{1 - (\frac{2\tan x}{1 - \tan^{2}x})^{2}}


= \frac{2 (2\tan x)(1 - \tan^{2}x)}{(1-\tan x)^{2} - (4\tan^{2} x)}

= \frac{(4\tan x)(1 - \tan^{2}x)}{(1)^{2}+(\tan^{2} x)^{2} - 2 \tan^{2} x - (4\tan^{2} x)}

= \frac{(4\tan x)(1 - \tan^{2}x)}{1^{2}+\tan^{4} x - 6 \tan^{2} x } = R.H.S.

Question:24 Prove the following \small \cos4x = 1 - 8\sin^{2}x\cos^{2}x

Answer:

We know that
cos2x=1-2\sin^{2}x
We use this in our problem
cos 4x = cos 2(2x)
= 1-2\sin^{2}2x
= 1-2(2\sin x \cos x)^{2} (\because \sin2x = 2\sin x \cos x)
= 1-8\sin^{2}x\cos^{2}x = R.H.S.

Question:25 Prove the following \small \cos6x = 32\cos^{6}x -48\cos^{4}x + 18\cos^{2}x-1

Answer:

We know that
cos 3x = 4 \cos^{3}x - 3cos x
we use this in our problem
we can write cos 6x as cos 3(2x)
cos 3(2x) = 4 \cos^{3}2x - 3 cos 2x
= 4(2\cos^{2}x - 1)^{3} - 3(2\cos^{2}x - 1) (\because \cos 2x = 2\cos^{2}x - 1)
= 4[(2cos^{2}x)^{3} -(1)^{3} -3(2cos^{2}x)^{2}(1) + 3(2cos^{2}x)(1)^{2}] -6\cos^{2}x + 3 (\because (a-b)^{3} = a^{3} - b^{3} - 3a^{2}b+ 3ab^{2})
= 32 cos^{6}x - 4 - 48 cos^{4}x + 24 cos^{2}x - 6\cos^{2}x + 3
= 32 cos^{6}x - 48 cos^{4}x + 18 cos^{2}x - 1 = R.H.S.

More About NCERT Solutions For Class 11 Maths Chapter 3 Exercise 3.3

The NCERT syllabus class 11 maths chapter Trigonometric functions mainly deals with the application part as the theoretical part is discussed in the earlier classes. Exercise 3.3 Class 11 Maths has most of the questions which needs analytical approach to solve. Although basic concepts will be required but more than that, approach will matter as these require stop b step solutions in the right direction. NCERT Solutions for class 11 maths chapter 3 exercise 3.3 has some questions which are very good for the examination point of view.

Benefits of NCERT Solutions For Class 11 Maths Chapter 3 Exercise 3.3

  • The NCERT book class 11th maths chapter 3 exercise once completed properly, can help in other subjects also.

  • Exercise 3.3 Class 11 Maths needs an analytical approach which can be developed by practice only.

  • Class 11 maths chapter 3 exercise 3.3 solutions are prepared by referring various good sources. Hence students can rely on these without any doubt.

Also see-

NCERT solutions of class 11 subject wise

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Subject wise NCERT Exampler solutions

Frequently Asked Question (FAQs)

1. Is it very tough to solve some of the questions from this exercise?

Yes, in that case one can refer to the solutions provided here.

2. Can there be different methods to solve questions ?

Yes, in proof related questions, more than one method can be used.

3. Can I get some marks if I am not able to complete the solutions but have done a few steps in the CBSE exam ?

Yes, there are marks for the steps in the CBSE exams

4. In how much time can one master exercise 3.3 maths class 11 ?

This exercise can take 5 to 6 hours if done properly in step by step manner.

5. How many questions are there in exercise 3.3 class 11 maths ?

There are 25 questions in this exercise, mostly proof related questions.

6. Can I skip some of the questions from this chapter for the CBSE exam ?

Not recommended. Can do if there is paucity of time .

7. Can one score 100 percent marks in this chapter questions ?

Yes, as most of the questions are simple and Maths is a very scoring subject.

Articles

Upcoming School Exams

Application Date:05 September,2024 - 20 September,2024

Exam Date:19 September,2024 - 19 September,2024

Exam Date:20 September,2024 - 20 September,2024

View All School Exams
Get answers from students and experts

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top