NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 11 - trigonometric Functions

NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 11 - trigonometric Functions

Komal MiglaniUpdated on 24 Apr 2025, 11:51 PM IST

Have you ever noticed how the height of a flying kite, the rotation of a Ferris wheel, or the swing of a pendulum follows a smooth, repeating pattern? These real-life motions can be explained by trigonometric functions. Trigonometry is a branch of mathematics that works on the relationships between the angles and sides of triangles and has wider real-life applications. In this miscellaneous exercise, you will apply everything you have learned about sine, cosine, tangent, and other trig functions like their identities, signs in different quadrants etc.

The NCERT Solutions for Chapter 3 Miscellaneous Exercise are prepared such that you can tackle the trickiest problems in the easiest way. They offer stepwise calculations with detailed explanations. These NCERT solutions will help you reinforce your basics and sharpen your problem-solving skills for school exams and entrance tests. Follow the NCERT page to know more!

This Story also Contains

  1. Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise Solutions - Download PDF
  2. NCERT Solutions Class 11 Maths Chapter 3: Miscellaneous Exercise
  3. Topics covered in Chapter 3 Trigonometric Functions Miscellaneous Exercise
  4. NCERT Solutions of Class 11 Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise Solutions - Download PDF

Download PDF

NCERT Solutions Class 11 Maths Chapter 3: Miscellaneous Exercise

Question 1: Prove that $\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+\cos\frac{3\pi }{13}+\cos\frac{5\pi }{13}=0$

Answer:

We know that

cos A+ cos B = $2\cos(\frac{A+B}{2})\cos(\frac{A-B}{2})$

we use this in our problem

$\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{(\frac{3\pi }{13}+\frac{5\pi}{13})}{2}\cos\frac{(\frac{3\pi}{13}-\frac{5\pi }{13})}{2}$

$\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{4\pi }{13}\cos\frac{-\pi}{13}$ ( we know that cos(-x) = cos x )

$\small 2\cos\frac{\pi }{13}\cos\frac{9\pi }{13}+2\cos\frac{4\pi }{13}\cos\frac{\pi}{13}$
$\small 2\cos\frac{\pi }{13}(\cos\frac{9\pi }{13}+\cos\frac{4\pi }{13})$
again use the above identity

$\small 2\cos\frac{\pi }{13}(2\cos(\frac{\frac{9\pi }{13}+\frac{4\pi }{13}}{2})\cos(\frac{\frac{9\pi }{13}-\frac{4\pi }{13}}{2})$
$\small 2\cos\frac{\pi }{13}2\cos\frac{\pi }{2}\cos\frac{5\pi }{26}$
we know that

$\small \cos\frac{\pi }{2}$ = 0
So,
$\small 2\cos\frac{\pi }{13}2\cos\frac{\pi }{2}\cos\frac{5\pi }{26}$ = 0 = R.H.S.

Question 2: Prove that $\small (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x )\cos x = 0$

Answer:

We know that
$sin3x=3\sin x - 4\sin^{3}x$
and
$cos3x=4\cos^{3}x - 3\cos x$
We use this in our problem
$\small (\sin 3x + \sin x)\sin x + (\cos 3x - \cos x )\cos x$
= $(3\sin x - 4\sin^{3}x+ sin x) sinx$ + $(4\cos^{3}x - 3\cos x- cos x)cos x$
= (4sinx - 4 $\small \sin^{3}x$ )sinx + (4 $\small \cos^{3}x$ - 4cos x)cosx
now take the 4sinx common from 1st term and -4cosx from 2nd term
= 4 $\small \sin^{2}x$ (1 - $\small \sin^{2}x$ ) - 4 $\small \cos^{2}x$ (1 - $\small \cos^{2}x$ )
= 4 $\small \sin^{2}x$ $\small \cos^{2}x$ - 4 $\small \cos^{2}x$ $\small \sin^{2}x$ $\small \because \ \ \ \cos^{2}x = 1 - \sin^2x\\ and\\ \sin^{2}x = 1 -\cos^{2}x$
= 0 = R.H.S.

Question 3: Prove that $\small (\cos x + \cos y)^{2} + (\sin x - \sin y)^{2} = 4 \cos^{2}\left ( \frac{x+y}{2} \right )$

Answer:

We know that $(a+b)^{2} = a^{2} + 2ab + b^{2}$
and
$(a-b)^{2} = a^{2} - 2ab + b^{2}$
We use these two in our problem

$(\sin x-\sin y)^{2} = \sin^{2}x - 2\sin x\sin y + \sin^{2}y$
and
$(\cos x+\cos y)^{2} = \cos^{2}x + 2\cos x\cos y + \cos^{2}y$

$\small (\cos x + \cos y)^{2} + (\sin x - \sin y)^{2}$ = $\cos^{2}x + 2\cos x\cos y + \cos^{2}y$ + $\sin^{2}x - 2\sin x\sin y + \sin^{2}y$
= 1 + 2cosxcosy + 1 - 2sinxsiny $\left ( \because \sin^{2}x + \cos^{2}x = 1\ and \ \sin^{2}y + \cos^{2}y = 1 \right )$
= 2 + 2(cosxcosy - sinxsiny)
= 2 + 2cos(x + y)
= 2(1 + cos(x + y) )
Now we can write
$cos(x + y) =2cos^{2}\frac{(x + y)}{2} - 1$ $\left ( \because \cos2x = 2cos^{2}x - 1 \ \Rightarrow \cos x = 2\cos^{2}\frac{x}{2} - 1\right )$

= $2(1 + 2cos^{2}\frac{(x + y)}{2} - 1)$
$=4cos^{2}\frac{(x + y)}{2}$

= R.H.S.

Question 4: Prove that $\small (\cos x-\cos y)^{2} + (\sin x - \sin y)^{2} = 4\sin^{2}\left ( \frac{x-y}{2} \right )$

Answer:

We know that $(a+b)^{2} = a^{2} + 2ab + b^{2}$
and
$(a-b)^{2} = a^{2} - 2ab + b^{2}$
We use these two in our problem

$(\sin x-\sin y)^{2} = \sin^{2}x - 2\sin x\sin y + \sin^{2}y$
and
$(\cos x-\cos y)^{2} = \cos^{2}x - 2\cos x\cos y + \cos^{2}y$

$\small (\cos x - \cos y)^{2} + (\sin x - \sin y)^{2}$ = $\cos^{2}x - 2\cos x\cos y + \cos^{2}y$ + $\sin^{2}x - 2\sin x\sin y + \sin^{2}y$
= 1 - 2cosxcosy + 1 - 2sinxsiny $\left ( \because \sin^{2}x + \cos^{2}x = 1\ and \ \sin^{2}y + \cos^{2}y = 1 \right )$
= 2 - 2(cosxcosy + sinxsiny)
= 2 - 2cos(x - y) $\small (\because \cos(x-y) =\cos x \cos y + \sin x \sin y)$
= 2(1 - cos(x - y) )
Now we can write
$cos(x + y) = 1 -2sin^{2}\frac{(x + y)}{2}$ $\left ( \because \cos2x = 1 - 2\sin^{2}x \ \Rightarrow \cos x = 1 - 2\sin^{2}\frac{x}{2} \right )$

so

$2(1 - cos(x - y) ) = 2(1 - ( 1 -2sin^{2}\frac{(x + y)}{2}))$

$= 4sin^{2}\frac{(x - y)}{2}$ = R.H.S.

Question 5: Prove that $\small \sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos2x \sin4x$

Answer:
we know that
$sinA + sinB =2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
We use this identity in our problem
If we notice we need sin4x in our final result so it is better if we made a combination of sin7x and sin x , sin3x and sin5x tp get sin4x

$(sin7x + sinx) + (sin5x + sin3x) = 2\sin\frac{7x+x}{2}\cos\frac{7x-x}{2}$ $+2\sin\frac{5x+3x}{2}\cos\frac{5x-3x}{2}$
$=$ $2\sin4x\cos3x + 2\sin4x\cos x$
take 2sin4x common
= 2sin4x(cos3x + cosx)
Now,
We know that
$cosA + cosB =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
We use this
$cos3x + cosx =2\cos\frac{3x+x}{2}\cos\frac{3x-x}{2}$
= $2\cos2x\cos x$
= 2sin4x( $2\cos2x\cos x$ )
= 4cosxcos2xsin4x = R.H.S.

Question 6: Prove that $\small \frac{(\sin 7x + \sin 5x) + (\sin9x + \sin 3x)}{(\cos7x + \cos5x) + (\cos9x + \cos3x)} = \tan6x$

Answer:

We know that

$sinA + sinB = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$
and
$cosA + cosB =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$

We use these two identities in our problem

sin7x + sin5x = $2\sin\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$ = $2\sin6x\cos x$

sin 9x + sin 3x = $2\sin\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$ = $2\sin6x\cos 3x$

cos 7x + cos5x = $2\cos\frac{7x+5x}{2}\cos\frac{7x-5x}{2}$ = $2\cos6x\cos x$

cos 9x + cos3x = $2\cos\frac{9x+3x}{2}\cos\frac{9x-3x}{2}$ = $2\cos6x\cos 3x$


$\small \frac{(\sin 7x + \sin 5x) + (\sin9x + \sin 3x)}{(\cos7x + \cos5x) + (\cos9x + \cos3x)}$ = $\small \frac{(2\sin 6x\cos x) + (2\sin6x \cos3x)}{(2\cos6x cos x) + (2\cos6x cos3x)}$

= $\small \frac{2\sin6x(\cos x + \cos3x)}{2\cos6x (cos x + cos3x)} = \tan6x$ = R.H.S. $\small \left ( \because \frac{\sin x}{\cos x} = \tan x\right )$

Question 7: Prove that $\small \sin3x + \sin2x - \sin x = 4\sin x \cos\frac{x}{2}\cos\frac{3x}{2}$

Answer:

We know that
$cosA + cosB = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$
$sinA - sinB = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$

we use these identities
$sin3x - sinx = 2\cos\frac{3x+x}{2}\sin\frac{3x-x}{2}$

$= 2\cos2x\sin x$

sin2x + $2\cos2x\sin x$ = 2sinx cosx + $2\cos2x\sin x$
take 2 sinx common
$2sinx ( cosx + cos2x) = 2sinx(2\cos\frac{2x+x}{2}\cos\frac{2x-x}{2})$

$= 2sinx(2\cos\frac{3x}{2}\cos\frac{x}{2})$
$= 4sinx\cos\frac{3x}{2}\cos\frac{x}{2}$

= R.H.S.

Question 8: Find $\small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}$ in $\small \tan x = - \frac{4}{3}$ , x in quadrant II

Answer:

tan x = $-\frac{4}{3}$
We know that ,
$\sec^{2}x = 1 + \tan^{2}x$
$= 1 +\left ( -\frac{4}{3} \right )^{2}$
$= 1 + \frac{16}{9}$ = $\frac{25}{9}$
$sec x = \sqrt{\frac{25}{9}}$ = $\pm\frac{5}{3}$
x lies in II quadrant thats why sec x is -ve
So,

$sec x =-\frac{5}{3}$
Now, $cos x = \frac{1}{\sec x}$ = $-\frac{3}{5}$
We know that,
$cos x = 2\cos^{2}\frac{x}{2}- 1$ ( $\because \cos2x = 2\cos^{2}x - 1 \Rightarrow \cos x = 2\cos^{2}\frac{x}{2} - 1$ )
$-\frac{3}{5}+ 1 = 2$ $\cos^{2}\frac{x}{2}$

= $\frac{-3+5}{5}$ = $2\cos^{2}\frac{x}{2}$

$\frac{2}{5}$ = $2\cos^{2}\frac{x}{2}$
$\cos^{2}\frac{x}{2}$ = $\frac{1}{5}$
$\cos\frac{x}{2}$ = $\sqrt{\frac{1}{5}}$ = $\pm\frac{1}{\sqrt5}$
x lies in II quadrant so value of $\cos\frac{x}{2}$ is +ve

$\cos\frac{x}{2}$ = $\frac{1}{\sqrt5} = \frac{\sqrt5}{5}$
we know that
$cos x =1 - 2\sin^{2}\frac{x}{2}$

$2\sin^{2}\frac{x}{2}$ = 1 - $(-\frac{3}{5})$ = $\frac{8}{5}$

$\sin^{2}\frac{x}{2} = \frac{4}{5}\\ \\=\sin\frac{x}{2} = \sqrt{ \frac{4}{5}} = \pm \frac{2}{\sqrt{5}}$
x lies in II quadrant So value of sin x is +ve

$\sin\frac{x}{2} = \frac{2}{\sqrt{}5} = \frac{2\sqrt5}{5}$

$\tan \frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{2\sqrt5}{5}}{\left ( \frac{\sqrt5}{5} \right )} = 2$

Question 9: Find $\small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}$ in $\small \cos x = -\frac{1}{3}$ , x in quadrant III

Answer:

$\pi < x < \frac{3\pi}{2}\\ \\ \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$

We know that
cos x = $2\cos^{2}\frac{x}{2} - 1$
$2\cos^{2}\frac{x}{2} =$ cos x + 1
= $\left ( -\frac{1}{3} \right )$ + 1 = $\left ( \frac{-1+3}{3} \right )$ = $\frac{2}{3}$

$\cos\frac{x}{2} = \sqrt{ \frac{1}{3}} = \pm \frac{1}{\sqrt3}$

$\cos\frac{x}{2} = - \frac{1}{\sqrt3} = - \frac{\sqrt3}{3}$
Now,
we know that
cos x = $1 - 2\sin^{2}\frac{x}{2}$
$2\sin^{2}\frac{x}{2} = 1 - \cos x$
= 1 - $\left ( -\frac{1}{3} \right )$ = $\frac{3+1}{3}$ = $\frac{4}{3}$

$2\sin^{2}\frac{x}{2} = \frac{4}{3} \\ \\ \sin^{2}\frac{x}{2} = \frac{2}{3}\\ \sin\frac{x}{2} = \sqrt{ \frac{2}{3}} = \pm \sqrt{ \frac{2}{3}} = \frac{\sqrt6}{3}$
Because $\sin\frac{x}{2}$ is +ve in given quadrant

$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{\sqrt6}{3}}{\frac{-\sqrt3}{3}} = - \sqrt2$

Question 10: Find $\small \sin\frac{x}{2} , \cos\frac{x}{2} , and \tan\frac{x}{2}$ in $\small \sin x = \frac{1}{4}$ ,x in quadrant II

Answer:

$\frac{\pi}{2} < x < \pi\\ \\ \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$ all functions are positive in this range
We know that
$\cos^{2}x = 1 - \sin^{2}x$
= 1 - $\left ( \frac{1}{4} \right )^{2}$ = $1 - \frac{1}{16}$ = $\frac{15}{16}$

cos x = $\sqrt\frac{15}{16} = \pm \frac{\sqrt15}{4} = - \frac{\sqrt15}{4}$ (cos x is -ve in II quadrant)

We know that
cosx = $2\cos^{2}\frac{x}{2} - 1$
$2\cos^{2}\frac{x}{2} = \cos x + 1 = -\frac{\sqrt15}{4} + 1 = \frac{-\sqrt15+4}{4}$

$\cos^{2}\frac{x}{2} = \frac{-\sqrt15+4}{8}$
$\cos\frac{x}{2} = \pm \sqrt\frac{-\sqrt15+4}{8} = \frac{\sqrt{-\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8-2\sqrt15}}{4}$ (because all functions are posititve in given range)

similarly,
cos x = $1-2\sin^{2}\frac{x}{2}$
$2\sin^{2}\frac{x}{2} = 1 - \cos x\\ \\ 2\sin^{2}\frac{x}{2} = 1 -\left (\frac{-\sqrt15}{4} \right ) = \frac{4+\sqrt15}{4}$
$\sin\frac{x}{2} = \pm \sqrt\frac{\sqrt15+4}{8} = \frac{\sqrt{\sqrt15+4}}{2\sqrt2} = \frac{\sqrt{8+2\sqrt15}}{4}$ (because all functions are posititve in given range)
$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\frac{\sqrt{8+2\sqrt15}}{4}}{\frac{\sqrt{8-2\sqrt15}}{4}} = \frac{{8+2\sqrt15}}{\sqrt{64 - 15\times4}} = \frac{{8+2\sqrt15}}{\sqrt{4}} = 4 + \sqrt15$

Also read

Topics covered in Chapter 3 Trigonometric Functions Miscellaneous Exercise

1. Trigonometric ratios of any angle
These are the values of sine, cosine, tangent, etc., for all angles. They are defined using the unit circle so they work even for negative angles and angles greater than 360°.

2. Trigonometric identities

They contain the formulas that are always true for any value of the variables involved.
Some examples are-
$$
\sin ^2 \theta+\cos ^2 \theta=1 \quad \text { and } \quad 1+\tan ^2 \theta=\sec ^2 \theta
$$

3. Trigonometric equations
The equations that involve trigonometric functions of a variable (like $\sin x=\frac{1}{2}$ ) and are solved to find the angles.

4. Trigonometric functions of sum and difference of two angles
They contain the formulas that will help you calculate values like $\sin (A+B), \cos (A-B)$, and $\tan (A+B)$.

5. Graphs of trigonometric functions
It will show how sine, cosine and tangent behave visually on a graph. These functions are periodic, that is, they repeat at regular intervals.

Also read

NCERT Solutions of Class 11 Subject Wise

The NCERT solutions are available for all the subjects. Get them in just one click!

Subject-Wise NCERT Exemplar Solutions

Increase your knowledge and understanding with our NCERT exemplar solutions. These solutions are designed as per the CBSE syllabus.

Frequently Asked Questions (FAQs)

Q: How many questions are there in Miscellaneous exercise chapter 3 ?
A:

There are 10 questions total in Miscellaneous exercise chapter 3

Q: What is the application of Trigonometric Functions ?
A:

It can be used to find the height of a point if the angle is known or vice versa.

Q: Are questions from previous year papers asked for examination from this chapter ?
A:

Yes, in the final exam of class 11 the questions are present from the previous year.

Q: What is the difficulty level of problems asked from this unit ?
A:

Moderate to difficult level pronlems are asked from this unit.

Q: Can one avoid Miscellaneous exercise during preparation of the chapter?
A:

No, as it has questions that covers most of the topics of the chapter.

Q: What time it will take to complete all the problems of the miscellaneous exercise of this chapter for the first time ?
A:

It takes around 3 to 4 hours to complete for the first time.

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)