Careers360 Logo
NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 11 - trigonometric Functions

NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 11 - trigonometric Functions

Edited By Komal Miglani | Updated on Apr 24, 2025 11:51 PM IST

Have you ever noticed how the height of a flying kite, the rotation of a Ferris wheel, or the swing of a pendulum follows a smooth, repeating pattern? These real-life motions can be explained by trigonometric functions. Trigonometry is a branch of mathematics that works on the relationships between the angles and sides of triangles and has wider real-life applications. In this miscellaneous exercise, you will apply everything you have learned about sine, cosine, tangent, and other trig functions like their identities, signs in different quadrants etc.

The NCERT Solutions for Chapter 3 Miscellaneous Exercise are prepared such that you can tackle the trickiest problems in the easiest way. They offer stepwise calculations with detailed explanations. These NCERT solutions will help you reinforce your basics and sharpen your problem-solving skills for school exams and entrance tests. Follow the NCERT page to know more!

This Story also Contains
  1. Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise Solutions - Download PDF
  2. NCERT Solutions Class 11 Maths Chapter 3: Miscellaneous Exercise
  3. Topics covered in Chapter 3 Trigonometric Functions Miscellaneous Exercise
  4. NCERT Solutions of Class 11 Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

Class 11 Maths Chapter 3 Trigonometric Functions Miscellaneous Exercise Solutions - Download PDF

Download PDF

NCERT Solutions Class 11 Maths Chapter 3: Miscellaneous Exercise

Question 1: Prove that 2cosπ13cos9π13+cos3π13+cos5π13=0

Answer:

We know that

cos A+ cos B = 2cos(A+B2)cos(AB2)

we use this in our problem

2cosπ13cos9π13+2cos(3π13+5π13)2cos(3π135π13)2

2cosπ13cos9π13+2cos4π13cosπ13 ( we know that cos(-x) = cos x )

2cosπ13cos9π13+2cos4π13cosπ13
2cosπ13(cos9π13+cos4π13)
again use the above identity

2cosπ13(2cos(9π13+4π132)cos(9π134π132)
2cosπ132cosπ2cos5π26
we know that

cosπ2 = 0
So,
2cosπ132cosπ2cos5π26 = 0 = R.H.S.

Question 2: Prove that (sin3x+sinx)sinx+(cos3xcosx)cosx=0

Answer:

We know that
sin3x=3sinx4sin3x
and
cos3x=4cos3x3cosx
We use this in our problem
(sin3x+sinx)sinx+(cos3xcosx)cosx
= (3sinx4sin3x+sinx)sinx + (4cos3x3cosxcosx)cosx
= (4sinx - 4 sin3x )sinx + (4 cos3x - 4cos x)cosx
now take the 4sinx common from 1st term and -4cosx from 2nd term
= 4 sin2x (1 - sin2x ) - 4 cos2x (1 - cos2x )
= 4 sin2x cos2x - 4 cos2x sin2x    cos2x=1sin2xandsin2x=1cos2x
= 0 = R.H.S.

Question 3: Prove that (cosx+cosy)2+(sinxsiny)2=4cos2(x+y2)

Answer:

We know that (a+b)2=a2+2ab+b2
and
(ab)2=a22ab+b2
We use these two in our problem

(sinxsiny)2=sin2x2sinxsiny+sin2y
and
(cosx+cosy)2=cos2x+2cosxcosy+cos2y

(cosx+cosy)2+(sinxsiny)2 = cos2x+2cosxcosy+cos2y + sin2x2sinxsiny+sin2y
= 1 + 2cosxcosy + 1 - 2sinxsiny (sin2x+cos2x=1 and sin2y+cos2y=1)
= 2 + 2(cosxcosy - sinxsiny)
= 2 + 2cos(x + y)
= 2(1 + cos(x + y) )
Now we can write
cos(x+y)=2cos2(x+y)21 (cos2x=2cos2x1 cosx=2cos2x21)

= 2(1+2cos2(x+y)21)
=4cos2(x+y)2

= R.H.S.

Question 4: Prove that (cosxcosy)2+(sinxsiny)2=4sin2(xy2)

Answer:

We know that (a+b)2=a2+2ab+b2
and
(ab)2=a22ab+b2
We use these two in our problem

(sinxsiny)2=sin2x2sinxsiny+sin2y
and
(cosxcosy)2=cos2x2cosxcosy+cos2y

(cosxcosy)2+(sinxsiny)2 = cos2x2cosxcosy+cos2y + sin2x2sinxsiny+sin2y
= 1 - 2cosxcosy + 1 - 2sinxsiny (sin2x+cos2x=1 and sin2y+cos2y=1)
= 2 - 2(cosxcosy + sinxsiny)
= 2 - 2cos(x - y) (cos(xy)=cosxcosy+sinxsiny)
= 2(1 - cos(x - y) )
Now we can write
cos(x+y)=12sin2(x+y)2 (cos2x=12sin2x cosx=12sin2x2)

so

2(1cos(xy))=2(1(12sin2(x+y)2))

=4sin2(xy)2 = R.H.S.

Question 5: Prove that sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x

Answer:
we know that
sinA+sinB=2sinA+B2cosAB2
We use this identity in our problem
If we notice we need sin4x in our final result so it is better if we made a combination of sin7x and sin x , sin3x and sin5x tp get sin4x

(sin7x+sinx)+(sin5x+sin3x)=2sin7x+x2cos7xx2 +2sin5x+3x2cos5x3x2
= 2sin4xcos3x+2sin4xcosx
take 2sin4x common
= 2sin4x(cos3x + cosx)
Now,
We know that
cosA+cosB=2cosA+B2cosAB2
We use this
cos3x+cosx=2cos3x+x2cos3xx2
= 2cos2xcosx
= 2sin4x( 2cos2xcosx )
= 4cosxcos2xsin4x = R.H.S.

Question 6: Prove that (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x

Answer:

We know that

sinA+sinB=2sinA+B2cosAB2
and
cosA+cosB=2cosA+B2cosAB2

We use these two identities in our problem

sin7x + sin5x = 2sin7x+5x2cos7x5x2 = 2sin6xcosx

sin 9x + sin 3x = 2sin9x+3x2cos9x3x2 = 2sin6xcos3x

cos 7x + cos5x = 2cos7x+5x2cos7x5x2 = 2cos6xcosx

cos 9x + cos3x = 2cos9x+3x2cos9x3x2 = 2cos6xcos3x


(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x) = (2sin6xcosx)+(2sin6xcos3x)(2cos6xcosx)+(2cos6xcos3x)

= 2sin6x(cosx+cos3x)2cos6x(cosx+cos3x)=tan6x = R.H.S. (sinxcosx=tanx)

Question 7: Prove that sin3x+sin2xsinx=4sinxcosx2cos3x2

Answer:

We know that
cosA+cosB=2cosA+B2cosAB2
sinAsinB=2cosA+B2sinAB2

we use these identities
sin3xsinx=2cos3x+x2sin3xx2

=2cos2xsinx

sin2x + 2cos2xsinx = 2sinx cosx + 2cos2xsinx
take 2 sinx common
2sinx(cosx+cos2x)=2sinx(2cos2x+x2cos2xx2)

=2sinx(2cos3x2cosx2)
=4sinxcos3x2cosx2

= R.H.S.

Question 8: Find sinx2,cosx2,andtanx2 in tanx=43 , x in quadrant II

Answer:

tan x = 43
We know that ,
sec2x=1+tan2x
=1+(43)2
=1+169 = 259
secx=259 = ±53
x lies in II quadrant thats why sec x is -ve
So,

secx=53
Now, cosx=1secx = 35
We know that,
cosx=2cos2x21 ( cos2x=2cos2x1cosx=2cos2x21 )
35+1=2 cos2x2

= 3+55 = 2cos2x2

25 = 2cos2x2
cos2x2 = 15
cosx2 = 15 = ±15
x lies in II quadrant so value of cosx2 is +ve

cosx2 = 15=55
we know that
cosx=12sin2x2

2sin2x2 = 1 - (35) = 85

sin2x2=45=sinx2=45=±25
x lies in II quadrant So value of sin x is +ve

sinx2=25=255

tanx2=sinx2cosx2=255(55)=2

Question 9: Find sinx2,cosx2,andtanx2 in cosx=13 , x in quadrant III

Answer:

π<x<3π2π2<x2<3π4

We know that
cos x = 2cos2x21
2cos2x2= cos x + 1
= (13) + 1 = (1+33) = 23

cosx2=13=±13

cosx2=13=33
Now,
we know that
cos x = 12sin2x2
2sin2x2=1cosx
= 1 - (13) = 3+13 = 43

2sin2x2=43sin2x2=23sinx2=23=±23=63
Because sinx2 is +ve in given quadrant

tanx2=sinx2cosx2=6333=2

Question 10: Find sinx2,cosx2,andtanx2 in sinx=14 ,x in quadrant II

Answer:

π2<x<ππ4<x2<π2 all functions are positive in this range
We know that
cos2x=1sin2x
= 1 - (14)2 = 1116 = 1516

cos x = 1516=±154=154 (cos x is -ve in II quadrant)

We know that
cosx = 2cos2x21
2cos2x2=cosx+1=154+1=15+44

cos2x2=15+48
cosx2=±15+48=15+422=82154 (because all functions are posititve in given range)

similarly,
cos x = 12sin2x2
2sin2x2=1cosx2sin2x2=1(154)=4+154
sinx2=±15+48=15+422=8+2154 (because all functions are posititve in given range)
tanx2=sinx2cosx2=8+215482154=8+2156415×4=8+2154=4+15

Also read

Topics covered in Chapter 3 Trigonometric Functions Miscellaneous Exercise

1. Trigonometric ratios of any angle
These are the values of sine, cosine, tangent, etc., for all angles. They are defined using the unit circle so they work even for negative angles and angles greater than 360°.

2. Trigonometric identities

They contain the formulas that are always true for any value of the variables involved.
Some examples are-
sin2θ+cos2θ=1 and 1+tan2θ=sec2θ

3. Trigonometric equations
The equations that involve trigonometric functions of a variable (like sinx=12 ) and are solved to find the angles.

4. Trigonometric functions of sum and difference of two angles
They contain the formulas that will help you calculate values like sin(A+B),cos(AB), and tan(A+B).

5. Graphs of trigonometric functions
It will show how sine, cosine and tangent behave visually on a graph. These functions are periodic, that is, they repeat at regular intervals.

Also read

NCERT Solutions of Class 11 Subject Wise

The NCERT solutions are available for all the subjects. Get them in just one click!

NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

Subject-Wise NCERT Exemplar Solutions

Increase your knowledge and understanding with our NCERT exemplar solutions. These solutions are designed as per the CBSE syllabus.

Frequently Asked Questions (FAQs)

1. How many questions are there in Miscellaneous exercise chapter 3 ?

There are 10 questions total in Miscellaneous exercise chapter 3

2. What is the application of Trigonometric Functions ?

It can be used to find the height of a point if the angle is known or vice versa.

3. Are questions from previous year papers asked for examination from this chapter ?

Yes, in the final exam of class 11 the questions are present from the previous year.

4. What is the difficulty level of problems asked from this unit ?

Moderate to difficult level pronlems are asked from this unit.

5. Can one avoid Miscellaneous exercise during preparation of the chapter?

No, as it has questions that covers most of the topics of the chapter.

6. What time it will take to complete all the problems of the miscellaneous exercise of this chapter for the first time ?

It takes around 3 to 4 hours to complete for the first time.

Articles

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top