NEET Most scoring concepts
ApplyThis ebook serves as a valuable study guide for NEET 2025 exam.
NCERT Exemplar Class 11 Maths solutions chapter 5 covers Complex numbers and its applications. Complex numbers are something which we have been studying over the years with any ‘real number’ being said to be a complex number, which can be denoted as a variable or alphabet in simpler terms. The other number, along with the real number, is a part of the complex number, is called the ‘imaginary number.’ Both of them appear together in a problem. Terms such as integer, conjugate, square root, polar, etc. will be studied in NCERT Exemplar Class 11 Maths solutions chapter 5, that will be utilised to find results for these complex number problems.
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
Question:1
For a positive integer n, find the value of $(1 - i)^n$ $(1-1/i)^n$
Answer:
$(1-i)^n (1-1/i)^n$
$=(1-i)^n (1+i )^n$
$=(1-i^2 )^n$
$=2^n$
Question:2
Evaluate $\sum_{i=1}^{13}$$(i^n+i^{n+1} )$ where n $\epsilon$N.
Answer:
= $\sum_{i=1}^{13}$$(i^n+i^{n+1} )$
$=$ $\sum_{i=1}^{13}$$(1+i) i^n$
$=(1+i)(1+i^2+i^3+i^4....+i^{12}+i^{13} )$
$=(1+i) \frac{i(i^{13}-1)}{(i-1)}$
$=(1+i) i\frac{(i-1)}{(i-1)}$
$=(1+i)i$
$=i+i^2$
$=i-1$
Question:3
If $\frac{(1+i)}{(1-i)}^3-\frac{(1-i)}{(1+i)}^3= x+iy$then find (x, y).
Answer:
Given $\left(\frac{1+i}{1-i}\right)^3-\left(\frac{1-i}{1+i}\right)^3= x+iy$
$=\left(\frac{1+i}{1-i}\right)^3-\left(\frac{1-i}{1+i}\right)^3$
$=\left (\frac{1+2i+i^2}{1-i^2} \right )^{3}-\left (\frac{1-2i+i^2}{1-i^2} \right )^{3}$
$=(\frac{2i}{2})^3-(\frac{-2i}{2})^3$
$=i^3-(-i^3 )$
$=2i^3=0-2i$
$Thus,(x,y)=(0,-2)$
Question:4
If $(1+i)^2/(2-i)= x+iy$ then find the value of x + y.
Answer:
$x+iy=\frac{(1+i)^2}{(2-i)}=\frac{ (1+2i+i^2)}{(2-i)}= \frac{2i}{(2-i)}$
$On\: \: rationalising\: \: 2i(2+i)/(2-i)(2+i)$,
$=\frac{(4i+2i^2)}{(4-i^2 )}=\left (\frac{(4i-2)}{(4+1)} \right )$
$=\frac{-2}{5}+\frac{4i}{5}$
$x=\frac{-2}{5} \: \: and\: \: y=\frac{4}{5}$
$So, x+y= -\frac{2}{5}+\frac{4}{5}=\frac{2}{5}$
Question:5
If $\left(\frac{1-i}{1+i}\right)^{100}=a+ib$ then find (a, b).
Answer:
$a+ib=\left(\frac{1-i}{1+i}\right)^{100}=\left [\frac{1-i}{1+i}*\frac{1-i}{1-i} \right ]^{100}$
$=\left [\frac{(1-i)^2}{1-i^2} \right ]^{100}$
$=\left (\frac{(1-2i+i^2)}{(1+1)} \right )^{100}$
$=\left (\frac {-2i}{2 }\right )^{100}$
$=(i^4 )^{25}=1$
$Hence,(a,b)=(1,0)$
Question:6
If $a=\cos \theta+i \sin\theta$, find the value of$\frac{(1+a)}{(1-a)}$ .
Answer:
$a=\cos \theta+i \sin\theta$
$\frac{(1+a)}{(1-a)}$$=\frac{(1+cos\theta)+i \sin \theta}{(1-cos\theta)-isin\theta}$
$=\frac{\left ( 2\cos ^{2}\frac{\theta }{2} +i2\sin\frac{\theta }{2}\cos\frac{\theta }{2} \right )}{\left ( 2\sin ^{2}\frac{\theta }{2} -i2\sin\frac{\theta }{2}\cos\frac{\theta }{2} \right )}$
$=\frac{2\cos\frac{\theta }{2}\left ( \cos\frac{\theta }{2}+i\sin\frac{\theta }{2} \right )}{2\sin\frac{\theta }{2}\left ( \sin\frac{\theta }{2}-i\cos\frac{\theta }{2} \right )}$
$=\frac{i\cos\frac{\theta }{2}\left ( \cos\frac{\theta }{2}+i\sin\frac{\theta }{2} \right )}{\sin\frac{\theta }{2}\left ( i\sin\frac{\theta }{2}-i^2\cos\frac{\theta }{2} \right )}$
$=\frac{i\cos\frac{\theta }{2}\left ( \cos\frac{\theta }{2}+i\sin\frac{\theta }{2} \right )}{\sin\frac{\theta }{2}\left ( i\sin\frac{\theta }{2}+\cos\frac{\theta }{2} \right )}$
$=i\cot \frac{\theta }{2}$
Question:7
If $(1 + i)z = (1 - i) \bar{z},$ then show that $z= -i\bar{z}$
Answer:
$(1 + i)z = (1 - i) \bar{z},$
$z=\frac{1-i}{1+i}\bar{z}$
Rationalising the denominator,
$\frac{\left (1-i \right )\left (1-i \right )}{\left (1+i \right )\left (1-i \right )}\bar{z}$
$=\frac{\left ( 1-i \right )^{2}}{1-i^2}\bar{z}$
$=\frac{\left ( 1-2i+i^2 \right )}{1+1}\bar{z}$
$=\frac{\left ( 1-2i-1 \right )}{2}\bar{z}$
$=-i\bar{z}$
Hence,Proved.
Question:8
Answer:
$z=x+iy$
$\bar{z}=x-iy$
$Now,we\: \: also\: \: have\: \: ,z\bar{z }+2(z+\bar{z})+b=0$
$(x+iy)(x-iy)+2(x+iy+x-iy)+b=0$
This equation is a equation of circle
Question:9
Answer:
$Let \: \: z=x+iy \: \:$
$\frac{\bar{z}+2}{\bar{z}-1}= \frac{x-iy+2}{x-iy-1}$
$=\frac{\left [ \left ( x+2 \right )-iy \right ]\left [ \left ( x-1 \right )+iy \right ]}{\left [ \left ( x-1 \right )-iy \right ]\left [ \left ( x-1 \right )+iy \right ]}$
$=\frac{(x-1)(x+2)+y^2+i[(x+2)y-(x-1)y]}{(x-1)^2+y^2}$
$real \: \: part=4 \Rightarrow \frac{(x-1)(x+2)+y^2}{(x-1)^2+y^2}=4$
$x^2+x-2+y^2=4(x^2-2x+1+y^2 )$
$3x^2+3y^2-9x+6=0$
The equation obtained is that of a circle. Hence, locus of z is a circle.
Question:10
Answer:
Let z=x+iy
$arg\left ( \frac{z-1}{z+1} \right )=\frac{\pi}{4}$
$arg\left ( z-1 \right )-arg\left ( z+1 \right )=$$\frac{\pi}{4}$
$arg\left ( x+iy-1 \right )-arg\left ( x+iy+1 \right )=$$\frac{\pi}{4}$
$arg\left ( x-1+iy \right )-arg\left ( x+1+iy \right )=$$\frac{\pi}{4}$
$\tan^{-1}\frac{y}{x-1}-\tan^{-1}\frac{y}{x+1}=$$\frac{\pi}{4}$
$\tan^{-1}\frac{\frac{y}{x-1}-\frac{y}{x+1}}{1+\left (\frac{y}{x-1} \right )\left (\frac{y}{x+1} \right )}=$$\frac{\pi}{4}$
$\tan^{-1}\left(\frac{y\left ( x+1+-x+1 \right )}{x^2-1+y^2}\right) = \frac{\pi}{4}$
$\tan\frac{\pi}{4} = \frac{2y}{x^2+y^2-1}$
$x^2+y^2-1=2y$
$x^2+y^2-1-2y=0$
The equation obtained represents the equation of a circle
Question:11
Solve that equation $|z| = z + 1 + 2i$.
Answer:
$|z| = z + 1 + 2i$
$Substituting \: \: z=x+iy \: \: we \: \: get \: \: |x+iy|=x+iy+1+2i$
$|z|= \sqrt{(x^2+y^2 )} =(x+1)+i(y+2)$
Comparing real and imaginary parts $\sqrt{(x^2+y^2 )} =(x+1)$
And$0=y+2 , y=-2$
Substituting the value of y in$\sqrt{(x^2+y^2 )} =(x+1)$
$x^2+(-2)^2=(x+1)^2$
$x^2+4=x^2+2x+1$
Hence, $x=\frac{3}{2}$
Hence,$z=x+iy$
$=\frac{3}{2} -2i$
Question:12
If $|z + 1| = z + 2 (1 + i)$, then find z
Answer:
We have $|z + 1| = z + 2 (1 + i)$
Substituting $z=x+iy$ we get $x+iy+1=x+iy+2i+1$
$|z|= \sqrt{(x^2+y^2 ) }=\sqrt{(x+1)^2+y^2 } = (x+2)+i(y+2)$
Comparing real and imaginary parts, $\sqrt{(x+1)^2+y^2 } = (x+2)$
$and 0=y+2 ;y=-2$
Substituting the value of y in $\sqrt{(x+1)^2+y^2 } = (x+2)$
$(x+1)^2+(-2)^2=(x+2)^2$
$x^2+2x+1+4=x^2+4x+4$
$2x=1$
Hence, $x=\frac{1}{2}$
Thus, $z=x+iy=\frac{1}{2}-2i$
Question:13
If $arg (z - 1) = arg (z + 3i)$, then find x – 1 : y. where $z = x + iy$
Answer:
Given that $arg (z - 1) = arg (z + 3i)$
$arg (x+iy-1)=arg(x+iy+3i)$
$arg(x-1+iy)=arg(x+i(y+3))$
$\tan^{-1}\frac{y}{x-1}=\tan^{-1}\frac{y+3}{x}$
$\frac{y}{x-1}=\frac{y+3}{x}$
$xy=xy-y+3x-3$
$3x-3=y$
$\frac{x-1}{y}=\frac{1}{3}$
Question:14
Show that $\left | \frac{z-2}{z-3} \right |=2$ represents a circle. Find its centre and radius.
Answer:
$\left | \frac{z-2}{z-3} \right |=2$ Substituting $z=x+iy$, we get $\left | \frac{x+iy-2}{x+iy-3} \right |=2$
$|x-2+iy|=2|x-3+iy|$
$\sqrt{(x-2)^2+y^2 }=2\sqrt{((x-3)^2+y^2}$
$x^2-4x+4+y^2=4(x^2-6x+9+y^2 )$
$3x^2+3y^2-20x+32=0$
$x^2+y^2-\frac{20}{3} x+\frac{32}{}3=0$
$(x-\frac{10}{3})^2+y^2+\frac{32}{3}-\frac{100}{9}=0$
Thus, the centre of circle is $(\frac{10}{3},0)$ and radius is $2/3$
Question:15
If $\frac{z-1}{z+1}$ is a purely imaginary number$(z \neq -1)$, then find the value of $|z|$.
Answer:
Let $z=x+iy$
$\frac{z-1}{z+1}=\frac{x+iy-1}{x+iy+1}$
$\frac{\left [ \left ( x-1 \right ) +iy\right ]\left [ \left ( x+1 \right )-iy \right ]}{\left [ \left ( x+1 \right ) +iy\right ]\left [ \left ( x+1 \right )-iy \right ]}$
$=\frac{(x-1)(x+1)+y^2+i[(x+1)y-(x-1)y]}{(x+1)^2+y^2 }$
$\frac{z-1}{z-1}$ is purely imaginary
$\frac{(x-1)(x+1)+y^2}{(x+1)^2+y^2 }=0$
$x^2-1+y^2=0$
$x^2+y^2=1$ Hence, $|z|=1$
Question:16
Answer:
Let $z_1=\left |z_1 \right |\left (cos\theta _1+i\ sin\theta_1 \right )$ and $z_2=\left |z_2 \right |\left (cos\theta _2+i\ sin\theta_2 \right )$
Given that $|z_1| = |z_2|$
And $arg\left (z_1 \right )+arg\left (z_2 \right )= \pi$
$\theta_1+\theta_2=\pi$
$\theta_1=\pi-\theta_2$
$z_2=\left |z_2 \right |\left (cos\theta _2+i\ sin\theta_2 \right )$
$z_1=|z_2 |\left ( -\cos \theta_2+isin\theta_2 \right )$
$z_1=-|z_2 |\left ( \cos \theta_2-isin\theta_2 \right )$
$z_1=-|z_2 |\left ( \cos \theta_2-isin\theta_2 \right )$, $|z_1| = -|z_2|$
Question:17
If |z1| = 1 (z1 ≠ –1) and $z_2= \frac{z_1-1}{z_1+1}$ then show that the real part of z2 is zero
Answer:
Let $z_1=x+iy$ $|z_1 |= \sqrt{x^2+y^2} =1$
$z_2= \frac{z_1-1}{z_1+1}=\frac{x+iy-1}{x+iy+1}$
$=\frac{[(x-1)+iy][(x+1)-iy]}{[(x+1)+iy][(x+1)-iy] }$
$= \frac{(x-1)(x+1)+y^2+i[(x+1)y-(x-1)y]}{(x+1)^2+y^2}$
$\frac{x^2+y^2-1+2iy}{(x+1)^2+y^2 }=0$
Since, $x^2+y^2=1$
$\frac{1-1+2iy}{(x+1)^2+y^2}=\frac{0+2iy}{(x+1)^2+y^2}$
Therefore, the real part of $z_2$ is zero
Question:18
Answer:
$z_1$ and $z_2$ are conjugate complex numbers.
The negative side of the real axis $= r_1 (cos\theta-isin \theta)$
$=r_1\left ( \cos\left ( -\theta_1 \right )+i\sin\left (- \theta_1 \right ) \right )$
Similarly, $z_3=r_2\left ( \cos\left ( \theta_2 \right )-i\sin\left ( \theta_2 \right ) \right )$
$z_4=r_2\left ( \cos\left ( -\theta_2 \right )+i\sin\left (- \theta_2 \right ) \right )$
$arg \left ( \frac{z_1}{z_4} \right )+arg \left ( \frac{z_2}{z_3} \right )$$=arg(z_1)-arg(z_4)+ arg(z_2)- arg(z_3)??$
$=\theta_1-(-\theta_2)+(-\theta_1)-\theta_2=0$
Question:19
Answer:
$|z_1| = |z_2| =... = |z_n| = 1$
$|z_1|^2 = |z_2|^2 =... = |z_n|^2 = 1$
$z_1 \bar{z_1 } =z_2 \bar{z_2 }=...=z_n \bar{z_n }$
$z_1=\frac{1}{\bar{z_1}},z_2=\frac{1}{\bar{z_2}},...z_n=\frac{1}{\bar{z_n}}$
Now, $|z_1+z_2+z_3+...z_n |$ $=\left | \frac{z_1\bar{z_1}}{\bar{z_1}}+\frac{z_2\bar{z_2}}{\bar{z_2}}+...+\frac{z_n\bar{z_n}}{\bar{z_n}} \right |$
=$\left | \frac{1}{\bar{z_1}}+\frac{1}{\bar{z_2}}+...+\frac{1}{\bar{z_n}} \right |$
$=\left | {\frac{1}{z_1}+\frac{1}{z_2}+...+\frac{1}{z_n}} \right |$
Question:20
Answer:
Let $z_1=\left | z_1 \right |\left ( \cos\theta_1 +i\sin \theta_1 \right )$ and $z_2=\left | z_2 \right |\left ( \cos\theta_2 +i\sin \theta_2 \right )$
$arg(z_1 )- arg(z_1 )=0$
$\theta _1-\theta _2=0$
$\theta _1=\theta _2$
$z_1-z_2= (z_1 |cos\theta_1-| z_2|cos\theta_1 )+i(z_1 |sin\theta_1-| z_2|sin\theta_1 )$
$z_1-z_2= \sqrt{(z_1 |cos\theta_1-| z_2|cos\theta_1 )^{2}+(z_1 |sin\theta_1-| z_2|sin\theta_1 )^{2}}$
$=\sqrt{|z_1|^2+|z_2|^2-2|z_1||z_2|\cos^2\theta_1-2|z_1||z_2|\sin^2\theta_1}$
$=\sqrt{|z_1|^2+|z_2|^2-2|z_1||z_2|}$
$=\sqrt{\left (|z_1|-|z_2| \right )^2}= |z_1|-|z_2|$
Question:21
Solve the system of equations $Re (z^2) = 0, |z| = 2.$
Answer:
$Re (z^2) = 0, |z| = 2.$
$Let\: \: z=x+iy$
$|z|= \sqrt{x^2+y^2 } =2$
${x^2+y^2 } =4$
$z^2=x^2+2ixy-y^2$
$=(x^2-y^2 )+2ixy$
$Now,Re (z^2 )=0$
$x^2-y^2=0$
$x^2=y^2=2$
$x=y=\pm \sqrt{2}$
Hence, $z=x+iy=\pm\sqrt{2}\pm i\sqrt{2}$
$=\sqrt{2}+i\sqrt{2},\sqrt{2}-i\sqrt{2},-\sqrt{2}+i\sqrt{2} \: \: and\: \: -\sqrt{2}-i\sqrt{2}$
Question:22
Find the complex number satisfying the equation $z+\sqrt{2} |(z+1)|+i=0$ .
Answer:
$z+\sqrt{2} |(z+1)|+i=0\: \: \: \: ...(i)$
Substituting $z=x+iy$ we get $x+iy+\sqrt2 |x+iy+1|+i=0$
$x+i(1+y)+\sqrt2 \left [ \sqrt{(x+1)^2+y^2 } \right ]=0$
$x+i(1+y)+\sqrt2 \left [ \sqrt{(x^2+2x+1+y^2 ) } \right ]=0$
1+y = 0
y = -1
$x+\sqrt2 \sqrt{x^2+2x+2}=0$
$\sqrt2 \sqrt{x^2+2x+2}=-x$
$2x^2+4x+4=x^2$
$x^2+4x+4=0$
$(x+2)^2=0$
$x=-2$
Hence,$z=x+iy=-2-i$
Question:23
Write the complex number $z=\frac{1-i}{\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}}$ in polar form
Answer:
$z=\frac{1-i}{\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}}$
$=\frac{\sqrt{2}\left [ \frac{1}{\sqrt{2}}-i1/\sqrt{2} \right ]}{\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}}$
$=\frac{\sqrt{2}\left [\cos\frac{\pi}{4}-isin\frac{\pi}{4} \right ]}{\cos \frac{\pi}{3}+i\sin \frac{\pi}{3}}$
$=\sqrt2\left [ \cos \left ( -\frac{\pi}{4}-\frac{\pi}{3}\right )+i\sin\left (-\frac{\pi}{4}-\frac{\pi}{3} \right ) \right ]$
$=\sqrt2\left [ \cos \left ( -\frac{7\pi}{12}\right )+i\sin\left (-\frac{7\pi}{12} \right ) \right ]$
$=-\sqrt2\left [ \cos \left ( \frac{5\pi}{12}\right )+i\sin\left (\frac{5\pi}{12} \right ) \right ]$
Question:24
Answer:
Let $z=\left | z \right |(\cos\theta_1 + i sin\theta_1 )$ and $w=\left | w \right |(\cos\theta_2 + i sin\theta_2 )$
$|zw|=|z||w|=1$
Also $arg(z)-arg(w)= \frac{\pi}{2}$
$\theta_1-\theta_2=\frac{\pi}{2}$
$\bar{z} w=|z|\left (\cos \theta _{1}-i\sin\theta _{1} \right )w$
$w=|w|\left (\cos \theta _{2}+i\sin\theta _{2} \right )=1$
$\bar{z}w$$=|z||w|(\cos (-\theta_1)+i sin(-\theta_1 ))(cos\theta_2+i \sin\theta_2 )$
$\bar{z}w$$=\cos [(\theta _2 - \theta _1 )+isin( \theta _2- \theta _1 )]$
$=\left [ \cos \left ( -\frac{\pi}{2} \right ) +i\sin\left ( -\frac{\pi}{2} \right )\right ]$
$=1[0-i]=-i$
Question:25
ii) The value of $\sqrt{-25} * \sqrt{-9}$ is
iii) The number $\frac{(1-i)^3}{1-i^3}$ is equal to .......
iv) The sum of the series $i+i^2+i^3+...+i^{1000}$ upto 1000 terms is ...
v) Multiplicative inverse of 1 + i is ................
vi) If $z_1 \ and \ z_2$ are complex numbers such that $z_1 + z_2$ is a real number, then $z_2$ =
vii) $arg (z)+arg (\bar{z} )$ $(\bar{z}\neq0)$ is ....
viii) If $|z+4|\leq 3$then the greatest and least values of |z+1| are ..... and .....
ix) if $\frac{z-2}{z+2}=\frac{\pi}{6}$then the locus of z is .......
x) If $|z|=4$ and $arg (z) = \frac{5\pi}{6}$ then z=
Answer:
i) $|az_1 - bz_2|^2 + |bz_1 + az_2|^2$
$=|az_1 |^2+|bz_2 |^2-2Re(az_1.b(\bar{z_2} ) +|bz_1 |^2+|az_2 |^2+2Re(az_1.b\bar{z_2} ) ?)$
$=|az_1 |^2+|bz_2 |^2+|bz_1 |^2+|az_2 |^2=(a^2+b^2 )(|z_1 |^2+|z_2 |^2 )$
ii)$\sqrt{-25}*\sqrt{-9}=5i*3i=15i^2=-15$
iii) $\frac{(1-i)^3}{1-i^3}=\frac{(1-i)^3}{(1-i)(1+i+i^2 )}$
$=\frac{(1-i)^3}{(1+i-1) }= \frac{1+i^2-2i}{}i$
$=\frac{1-1-2i}{i}=-\frac{2i}{i}=-2$
iv) $i+i^2+i^3+...+i^{1000}=0 \left [ \sum_{n=1}^{1000}i^n=0 \right ]$
v) $\frac{1}{1+i}=1*\frac{1-i}{(1+i)(1-i)} =\frac{1}{2} (1-i)$
vi) Let $z_1=x_1+iy_1 \: \: and \: \: z_2=x_2+iy_2$
$z_1+z_2=(x_1+x_2 )+i(y_1+y_2 )$
If $z_1+z_2$ is real then $y_1+y_2=0$
$y_1=-y_2$
$z_2=x_2-iy_1$
$z_2=x_1-iy_1 (\: \: when\: \: x_1=x_2 )$
So, $z_2=\bar{z_1}$
vii) $arg (z)+arg (\bar{z} )$
$If\: \: arg (z)= \theta , then \arg (\bar{z})=-\theta$
$\theta+(-\theta)=0$
viii) $|z+4|\leq 3$
$=|z+4-3|\leq|z+4|+|-3|$
$=|z+4-3|\leq3+3$
$=|z+4-3|\leq6$
The gratest value is 6 and the least value of $|z+1|$ is 0
ix)$\frac{z-2}{z+2}=\frac{\pi}{6}$
Let $z=x+iy$
$\left |\frac{x+iy-2}{x+iy+2} \right |=\left |\frac{(x-2)+iy}{(x+2)+iy} \right |= \frac{\pi}{6}$
$6|(x-2)+iy|=\pi|(x+2)+iy|$
$6\sqrt{(x-2)^2+y^2 }=\pi\sqrt{(x+2)^2+y^2 }$
$36[x^2+4-4x+y^2 ]=\pi ^2[x^2+4+4x+y^2 ]$
$36x^2+144-144x+36y^2=\pi^2 x^2+4\pi^2+4\pi^2 x+\pi^2 y^2$
$(36-\pi^2 ) x^2+(36-\pi^2 )-(144+4\pi^2 )x+144-4\pi^2=0$
which represents an equation of a circle
x) $|z|=4$ and $arg (z) = \frac{5\pi}{6}$
Let $z=x+iy$
$|z|= \sqrt{x^2+y^2} =4$
$x^2+y^2=16$
$arg(z)=\tan^{-1}\frac{y}{x}=\frac{5\pi}{6}$
$\frac{y}{x}=\tan\left ( \pi-\frac{\pi}{6} \right )$
$=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
$x=-\sqrt3 y$
$(-\sqrt3 y)^2+y^2=16$
$3y^2+y^2=16$
$4y^2=16$
$y^2=4$
$y=\pm2$
$x=-2\sqrt3$
$z=-2\sqrt3+2i$
Question:26
Answer:
(i) Comparison of two purely imaginary complex numbers is not possible. However, the two purely real complex number can be compared. So, it is false.
(ii) Let $z= x+iy$
$z.i = (x+iy)i =xi= -y$ which rotates at angle of 180. So, it is ‘false’.
(iii) Let $z= x+iy$
$|z|+|z-1|= \sqrt{x^2+y^2} +\sqrt{(x-1)^2+y^2}$
The value of $|z|+|z-1|$ is minimum when $x=0,y=0 \, \: \: i.e.,1$
Hence, it is true.
iv) Let $z= x+iy$
Given that $\left | z-1 \right |=\left |z-i \right |$
$|x+iy-1|=|x+iy-i|$
$|(x-1)+iy|=|x-(1-y)i|$
$\sqrt{(x-1)^2+y^2}=\sqrt{x^2+(1-y)}^2$
$(x-1)^2+y^2=x^2+(1-y)^2$
$x^2-2x+1+y^2=x^2+1+y^2-2y$
$-2x+2y=0 x-y=0$ which is a straight line slope=1
Now, equation of line through the point 1,0and 0,1
$y-0=\frac{1-0}{0-1} (x-1)$
$y=-x+1$ whose slope=-1
Multiplication of the slopes of two lines =-1*1=-1
So, they are perpendicular. Hence, it is true.
v)Let $z= x+iy$ $z\neq0 \: \: and \: \: Re(z)=0$
Since, real part is 0 $x=0, z=0+iy=iy$
$1m(z^2 )=y^2 i^2=-y^2$which is real Hence, it is False.
vi) $(z-4)<|z-2|$
Let $z= x+iy$
$|x+iy-4|<|x+iy-2|$
$|(x-4)+iy|<|(x-2)+iy|$
$\sqrt{(x-4)^2+y^2 }<\sqrt{(x-2)^2+y^2}$
$(x-4)^2+y^2<(x-2)^2+y^2$
$(x-4)^2<(x-2)$
$x^2+16-8x<x^2+4-4x$
$8x+4x<-16+4$
$-4x<-12$
$x>3$ Hence, it is true.
vii) Let $z_1=x_1+iy_1$ and $z_2=x_2+iy_2$
$|z_1+z_2 |=|z_1 |+|z_2 |$
$|x_1+iy_1+x_2+iy_2 |=|(x_1+iy_1 )+(x_2+y_2 i)|$
$= \sqrt{(x_1+x_2 )^2+(y_1+y_2 )^2 }$
$=\sqrt{x_1^2+y_1^2} +\sqrt{x_2^2+y_2^2 }$
Squaring both sides, we get $(x_1^2+x_2^2+2x_1 x_2+y_1^2+y_2^2+2y_1 y_2$)
$=x_1^2+y_1^2+x_2^2+y_2^2+2\sqrt{x_1^2 x_2^2+x_1^2 y_2^2+x_2^2 y_1^2+y_1^2 y_2^2 }$
$=2x_1 x_2+2y_1 y_2=\sqrt{x_1^2 x_2^2+x_1^2 y_2^2+x_2^2 y_1^2+y_1^2 y_2^2 }$
$=x_1 x_2+y_1 y_2=\sqrt{x_1^2 x_2^2+x_1^2 y_2^2+x_2^2 y_1^2+y_1^2 y_2^2 }$
Again squaring on both sides we get $x_1^2 x_2^2+x_1^2 y_2^2+2x_1 y_1 x_2 y_2=x_1^2 x_2^2+x_1^2 y_2^2+x_2^2 y_1^2+y_1^2 y_2^2 2x_1 y_1 x_2 y_2=x_1^2 y_2^2+x_2^2 y_1^2$
$x_1^2 y_1^2+x_2^2 y_1^2-2x_1 y_1 x_2 y_2=0$
$(x_1 y_2-x_2 y_1 )^2=0$
$x_1 y_2-x_2 y_1=0$
$x_1 y_2=x_2 y_1$
$\frac{x_1}{y_1}=\frac{x_2}{y_2}$
$\frac{y_1}{x_1}=\frac{y_2}{x_2}$
$arg(z_1)=arg(z_2)=0$ Hence, it is false.
(viii) Since, every real number is a complex number. So, 2 is a complex number. Hence, it is false.
Question:27
a) The polar form of $i+\sqrt3$ is | i) Perpendicular bisector of segment joining (-2,0) and (2,0) |
b)The amplitude of $-1+\sqrt{-3}$ is | ii) On or outside the circle having centre at (0,-4) and radius 3. |
c) If $\left | z+2 \right |=\left | z-2 \right |$ then locus of z is | iii) $2\pi/3$ |
d)If $\left | z+2i \right |=\left | z-2i \right |$ then locus of z is | iv)Perpendicular bisector of segment joining (0,-2) and (0,2) |
e) Region represented by $\left | z+4i \right |\geq 3$ is | v)$2\left ( \cos\frac{\pi}{6}+i\sin\frac{\pi}{6} \right )$ |
f) Region represented by $\left | z+4 \right |\geq 3$ is | vi) On or outside the circle having centre at (-4,0) and radius 3units. |
g)Conjugate of $\frac{1+2i}{1-i}$ lies in | vii) First Quadrant |
h) Reciprocal of 1-i lies in | viii) Third Quadrant |
Answer:
a)Given $z=i+\sqrt3$
Polar form of z $=r[cos\theta+isin\theta]=i+\sqrt3$.
$r=\sqrt{3+1} =2$
And $\tan \alpha = \frac{1}{\sqrt3}$
$\alpha = \frac{\pi}{6}$
Since $x>0,y>0$
Polar form of z $=2[cos\frac{\pi}{6}+isin\frac{\pi}{6}]$
b) Given that $z=-1+\sqrt3=-1+\sqrt3 i$
Here argument z $=\tan^{-1}\left | \frac{\sqrt3}{-1} \right |= \tan^{-1}\sqrt{3}= \frac{\pi}{3}$
So, $\alpha = \frac{\pi}{3}$
Since, x<0 and y>0 $\theta=\pi-\alpha=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$
c) $|z+2|=|z-2|$
$|x+iy+2|=|x+iy-2|$
$|(x-2)+iy|=|(x-2)+iy|$
$\sqrt{(x+2)^2+y^2} =\sqrt{(x-2)^2+y^2}$
$(x+2)^2+y^2=(x-2)^2+y^2$
$(x+2)^2=(x-2)^2$
$x^2+4+4x=x^2+4-4x$
$8x=0 , x=0$
which represents equation of-y axis and is perpendicular to the line joining the points (-2,0) and (2,0)
d) $|z+2i|=|z-2i|$
$(x+iy+2i)=|x+iy-2i|$
$|x+(y+2)i|=|x+(y-2)i|$
$\sqrt{x^2+(y+2)^2} =\sqrt{x^2+(y-2)^2 }$
$x^2+(y+2)^2=x^2+(y-2)^2$
$(y+2)^2=(y-2)^2$
$y^2+4+4y=y^2+4-4y$
$8y=0 ,y=0$
which is the equation of x-axis and is perpendicular to the line segment joining (0,-2)and (0,2)
e) $|z+4i|\geq3$
$|x+iy+4|\geq3$
$|x+(y+4)i|\geq3$
$\sqrt{x^2+(y+4)^2} \geq3$
$x^2+(y+4)^2\geq9$
$x^2+y^2+8y+16 \geq9$
$x^2+y^2+8y+7 \geq0$ $r=\sqrt{(4)^2-7}=3$
which represents a circle on or outside having centre (0,-4)
f) $|z+4|\leq3$
Let $z=x+iy$ Then, $|x+iy+4|\leq3$
$|(x+4)+iy|\leq3$
$\sqrt{(x+4)^2+y^2 } \leq3$
$x^2+8x+16+y^2\leq9$
$x^2+y^2+8x+7 \leq0$ which is a circle having centre (-4,0) and $r=\sqrt{(4)^2-7}=\sqrt9=3$ and is on the circle.
g) Let $z=\frac{1+2i}{1-i}$
$\frac{1+2i}{1-i}* \frac{1+i}{1+i}=\frac{1+i+2i+2i^2}{1-i^2}$
$=\frac{1+i+2i-2}{1+1}= \frac{-1+3i}{2}$
$=\frac{1+i+2i-2}{1+1}= \frac{-1+3i}{2}$
$=-\frac{1}{2}+\frac{3}{2}i$ which lies in third quadrant..
h) Given that z=1-i
Reciprocal of $z=\frac{1}{z}=\frac{1}{1-i}*\frac{1+i}{1+i}$
$=\frac{1+i}{1+i^2}$ which lies in first quadrant.
$So,(a)-(v),(b)-(iii),(c)-(i),(d)-(iv),(e)-(ii),(f)-(vi),(g)-(viii),(h)-(vii)$
Question:28
What is the conjugate of $\frac{2-i}{\left (1-2i \right )^2}$?
Answer:
$\frac{2-i}{\left (1-2i \right )^2}$$= \frac{2-i}{1+4i^2-4i}$
$= \frac{2-i}{-3-4i}= \frac{2-i}{-3-4i}*\frac{-3+4i}{-3+4i}$
$=\frac{-6+8i+3i-4i^2}{9-16i^2}$
$\frac{-6+11i+4}{9-16i^2}=\frac{-2+11i}{9+16}$
$\frac{-2+11i}{25}=\frac{-2}{25}+\frac{11}{25}i$
Hence, $\bar{z}=-\frac{2}{25}-\frac{11}{25}i$
Question:29
If $|z_1| = |z_2|$, is it necessary that $z_1 = z_2$?
Answer:
Let $z_1=x_1+iy_1 \: \: and\: \: z_2=x_2+iy_2$
$|x_1+iy_1 |=|x_2+iy_2 |$
$= \sqrt{x_1^2+y_1^2} = \sqrt{x_2^2+y_2^2}$
$x_1^2+y_1^2=x_2^2+y_2^2$
$\\$Consider $ z_1 = 3 + 4i \\ z_2 = 4 + 3i$
$z_1\neq z_2$ Hence, it is not necessary that $z_1= z_2$
Question:31
Find z if $|z| = 4$ and $arg (z) = 5\pi/6$..
Answer:
Polar form of $z=r[cos \theta+i\sin \theta]$
$=4\left [ \cos \frac{5\pi}{6}+i\sin \frac{5\pi}{6} \right ]$
$=4\left [ \cos\left ( \pi-\frac{\pi}{6} \right )+i\sin \left ( \pi-\frac{\pi}{6} \right ) \right ]$
$=4\left [ -\cos\left (\frac{\pi}{6} \right )+i\sin \left (\frac{\pi}{6} \right ) \right ]$
$=4\left [-\frac{\sqrt3}{2}+i\frac{1}{2} \right ]$
$=-2\sqrt3+2i$
Question:32
Find $(1+i)\frac{(2+i)}{(3+i)}$.
Answer:
$\left | (1+i)\frac{(2+i)}{(3+i)}*\frac{3-i}{3-i} \right |=\left | (1+i).\frac{6-2i+3i-i^2}{9-i^2} \right |$
$=\left | \frac{(1+i)(7+i)}{9+1} \right |$
$=\left | \frac{7+i+7i+i^2}{9+1} \right |$
$=\left | \frac{7+i+7i+i^2}{10} \right |$
$=\left | \frac{7+8i-1}{10} \right |$
$=\left | \frac{6+8i}{10} \right |$
$=\left |\frac{3}{5}+\frac{4}{5}i \right |$
$=\sqrt{\left (\frac{3}{5} \right )^2+\left (\frac{4}{5} \right )^2}=1$
Question:33
Find principal argument of $(1+i\sqrt3)^2$.
Answer:
$\begin{array}{c} (1+i \sqrt{3})^{2}=1+i^{2} \cdot 3+2 \sqrt{3} i \\ =1-3+2 \sqrt{3} i=-2+2 \sqrt{3} i \\ \tan \alpha=\left|\frac{2 \sqrt{3}}{-2}\right| \\ \tan \alpha=|-\sqrt{3}|=\sqrt{3} \\ \tan \alpha=\tan \frac{\pi}{3} \\ \alpha=\frac{\pi}{3} \end{array}$
Now Re(z)<0 and image(z)>0 $arg(z)=\pi-\alpha=\pi-\frac{\pi}{3}=\frac{2\pi}{3}$
$\text {Hence, the principal arg}=\frac{2 \pi}{3}$
Question:34
Where does z lie, if $|\frac{z-5i}{z+5i}|=1$.
Answer:
$\begin{array}{c} \text { Let } z=x+i y \quad\left|\frac{x+y i-5 i}{x+i y+5 i}\right|=1 \\ |x+(y-5) i|=|x+(y+5) i| \\ x^{2}+(y-5)^{2}=x^{2}+(y+5)^{2} \\ (y-5)^{2}=(y+5)^{2} \\ \qquad \begin{array}{r} y^{2}+25-10 y=y^{2}+25+10 y \\ 20 y=0 \quad y=0 \end{array} \end{array}$
Hence, z lies on x-axis i.e., real axis.
Question:35
$\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for:
A. $x = n\pi$
B. $x = \left ( n+\frac{1}{2} \right )\frac{\pi}{2}$
C. $x = 0$
D. No value of x
Answer:
The answer is the option (c).
Comparing the real and imaginary part, we get
$\tan \mathrm{x}=1 \text { and } \tan 2 \mathrm{x}=1$
$\tan 2 \mathrm{x}= \frac{2\tan x }{1-\tan^2 x}=1$
The above value is not satisfied by tan x = 1. Hence no value of x is possible.
Question:36
The real value of α for which the expression $\frac{\left ( 1-i\sin\alpha \right )}{1+2i\sin\alpha}$ is purely real is:
A.$\left ( n+1 \right )\frac{\pi}{2}$
B.$\left ( 2n+1 \right )\frac{\pi}{2}$
C.$n\pi$
D. None of these
Answer:
The answer is the option (c).
Let $z=\frac{\left ( 1-i\sin\alpha \right )}{1+2i\sin\alpha}$
$\begin{aligned} &\begin{array}{c} =\frac{(1-i\sin \alpha)(1-2 i \sin \alpha)}{(1+2 i \sin \alpha)(1-2 i \sin \alpha)} \\\\ =\frac{1-2 i \sin \alpha-i \sin \alpha+2 i^{2} \sin ^{2} \alpha}{(1)^{2}-(2 i \sin \alpha)^{2}} \\\\ =\frac{1-3 i \sin \alpha-2 \sin ^{2} \alpha}{1-4 i^{2} \sin ^{2} \alpha}=\frac{\left(1-2 \sin ^{2} \alpha\right)-3 i \sin \alpha}{1+4 \sin ^{2} \alpha} \\\\ \frac{-3 i \sin \alpha}{1+4 \sin ^{2} \alpha}=0 \\\\ \sin \alpha=0 \quad \operatorname{} \alpha=n \pi \end{array}\\ &\text { Hence, c is correct. } \end{aligned}$
Question:37
If z = x + iy lies in the third quadrant, the $\frac{\bar{z}}{z}$also lies in the third quadrant if
A. x > y > 0
B. x < y < 0
C. y < x < 0
D. y > x > 0
Answer:
The answer is the option (b).
If z lies in the third quadrant,So,$x<0 \: \: and\: \: y<0\: \: , z=x+iy$
$\begin{aligned} \frac{\bar{z}}{z} &=\frac{x-i y}{x+i y}=\frac{x-i y}{x+i y} * \frac{x-i y}{x-i y} \\ &=\frac{x^{2}+i^{2} y^{2}-2 x y i}{x^{2}-i^{2} y^{2}} \\ &=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}-\frac{2 x y}{x^{2}+y^{2}} i \end{aligned}$
When z lies in third quadrant then $\frac{\bar{z}}{z}$ will also be in third quadrant.
$\begin{array}{c} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}<0 \text { and } \frac{2 x y}{x^{2}+y^{2}}>0 \\\\ x^{2}-y^{2}<0 \text { and } 2 x y>0 \\\\ x^{2}<y^{2} \text { and } x y>0 \\\\ \text { So, } x<y<0 \end{array}$
Hence, b is correct..
Question:38
The value of $(z + 3) (\bar{z}+3)$ is equivalent to
A.$|z + 3|^2$
B. |z – 3|
C.$z^2 + 3$
D. None of these
Answer:
The answer is the option (a).
$Let\: \: z=x+iy \: \: So,\: \: (z+3)(\bar{z} +3)=(x+iy+3)(x-iy+3)$
$=\left [ \left ( x+3 \right ) +iy\right ]\left [ \left ( x+3 \right ) -iy\right ]$
$=(x+3)^2-y^2 i^2=(x+3)^2+y^2$
$=|x+3+iy|^2=|z+3|^2$
Question:39
If $\left ( \frac{1+i}{1-i} \right )^{x}=1$ , then
A. $x = 2n + 1$
B. $x = 4n$
C. $x = 2n$
D.$x = 4n + 1$
Answer:
The answer is the option(b).
$\begin{array}{c} \left(\frac{1+i}{1-i}\right)^{x}=1 \\\\ \left(\frac{(1+i)(1+i)}{(1-i)(1+i)}\right)^{x}=1 \\\\ \left(\frac{1-1+2 i}{1+1}\right)^{x}=1 \\\\ \left(\frac{2 i}{2}\right)^{x}=1(i)^{x}=1 \end{array}$
$x = 4 n, n \epsilon N$
Hence, the correct option is
A real value of x satisfies the equation $\frac{3-4 i x}{3+4 i x}=\alpha-i \beta$ ($\alpha, \beta \in R$) , if $\alpha ^2 +\beta ^2 =$
A. 1
B. –1
C. 2
D. –2
Answer:
The answer is the option (a).
$\begin{aligned} &\text {Given that} \frac{3-4 i x}{3+4 i x}=\alpha-i \beta\\ &=\frac{3-4 i x}{3+4 i x} * \frac{3-4 i x}{3-4 i x}=\alpha-i \beta\\ &\frac{9-12 i x-12 i x+16 i^{2} x^{2}}{9-16 i^{2} x^{2}}=\alpha-i \beta\\ &=\frac{9-16 x^{2}}{9+16 x^{2}}-\frac{24 x}{9+16 x^{2}}=\alpha-i \beta \ldots \ldots .(i)\\ &\frac{9-16 x^{2}}{9+16 x^{2}}+\frac{24 x}{9+16 x^{2}}=\alpha+i \beta \ldots \ldots \ldots(ii)\\\end{aligned}$
Multiplying eqn (i )and (ii )we get
$\left (\frac{9-16 x^{2}}{9+16 x^{2}} \right )^{2}+\left (\frac{24 x}{9+16 x^{2}} \right )^{2}=\alpha^{2}+ \beta^{2}$
$\frac{81+256 x^{4}-288 x^{2}+576x^2}{\left(9+16 x^{2}\right)^{2}}=\alpha^{2}+\beta^{2}$
$\begin{aligned}\frac{81+256 x^{4}+288 x^{2}}{\left(9+16 x^{2}\right)^{2}}=\alpha^{2}+\beta^{2}\\ \frac{\left(9+16 x^{2}\right)^{2}}{\left(9+16 x^{2}\right)^{2}}=\alpha^{2}+\beta^{2}=1 \end{aligned}$
Question:41
Which of the following is correct for any two complex numbers $z_1\: \: and\: \: \: \: z_2$ ?
A. $|z_1 z_2| = |z_1||z_2|$
B. $arg (z_1z_2) = arg (z_1). Arg (z_2)$
C. $|z_1 + z_2| = |z_1|+ |z_2|$
D. $|z_1 + z_2| \geq |z_1| - |z_2|$
Answer:
The answer is the option (a).
$\begin{array}{c} z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{2}\right) \\ \left|z_{1}\right|=r_{1} \\ z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\ \left|z_{2}\right|=r_{2} \\\\ z_1z_2=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\ =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\ \end{array}$
$\begin{array}{c} =r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] \\ =r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]\left|z_{1} z_{2}\right|=\left|z_{1} \| z_{2}\right| \end{array}$
Hence, option a is correct.
Question:42
The point represented by the complex number $2 -i$ is rotated about origin through an angle $\pi/2$ in the clockwise direction, the new position of point is:
A. $1 + 2i$
B. $-1-2i$
C. $2 + i$
D. $-1 + 2i$
Answer:
The answer is the option (b).
If z rotated through an angle of $\pi/2$about the origin in clockwise direction .
Then the new position $=z.e^{-\left ( \frac{\pi}{2} \right )}$
$=\left (2-i \right ).e^{-\left ( \frac{\pi}{2} \right )}$
$=\left (2-i \right ).\left [ \cos\left (- \frac{\pi}{2} \right )+isin\left (- \frac{\pi}{2} \right ) \right ]$
$=\left (2-i \right ).\left (0-i \right )$
$=-1-2i$
Hence, the correct option is (b)
Question:43
Let $x, y \in R$, then $x + iy$ is a non-real complex number if:
A. $x = 0$
B.$y = 0$
C. $x \neq 0$
D. $y \neq 0$
Answer:
The answer is the option (d).
$x+iy$ is a non real complex number if $y\neq0$,
Hence, d is correct
Question:44
If $a + ib = c + id$, then
A. $a^2 + c^2 = 0$
B. $b^2 + c^2 = 0$
C. $b^2 + d^2 = 0$
D. $a^2 + b^2 = c^2 + d^2$
Answer:
The answer is the option (d).
$a+ib=c+id$
$|a+ib|=|c+id|$
$\sqrt{a^2+b^2} =\sqrt{c^2+d^2}$
Squaring both sides, $a^2+b^2=c^2+d^2$
Hence, d is correct
Question:45
The complex number z which satisfies the condition $\left |\frac{i+z}{i-z} \right |=1$ lies on
A. circle $x^2 + y^2 = 1$
B. the x-axis
C. the y-axis
D. the line $x + y = 1$
Answer:
The answer is the option (b).
$\begin{array}{c} \text { Let } z=x+i y \quad\left|\frac{i+x+i y}{i-x-y i}\right|=1 \\\\ \left|\frac{x-(y+1) i}{-x-(y-1) i}\right|=1 \\\\ |x+(y+1) i|=|-x-(y-1) i| \\\\ \sqrt{x^{2}+(y+1)^{2}}=\sqrt{x^{2}+(y-1)^{2}} \\\\ x^{2}+(y+1)^{2}=x^{2}+(y-1)^{2} \\\\ y^{2}+2 y+1=y^{2}-2 y+1 \\ 2 y=-2 y \\\\ y=0 ; x-a x i s \end{array}$
Hence, b is correct
Question:46
If z is a complex number, then
A.$|z^2| > |z|^2$
B. $|z^2| \: \: equals\: \: |z|^2$
C.$|z^2| < |z|^2$
D. $|z^2| \geq |z|^2$
Answer:
. The answer is the option (b).
$Let \: \: z=x+iy \: \: \: \: ,|z|^2=x^2+y^2$
$Now,z^2=x^2+y^2 i^2+2xyi$
$z^2=x^2-y^2+2xyi$
$|z|^2=\sqrt{(x^2-y^2 )^2+(2xy)^2 }$
$=\sqrt{x^4+y^4+2x^2 y^2} =\sqrt{(x^2+y^2 )^2}$
$|z|^2=x^2+y^2=|z|^2$
Hence, b is correct
Question:47
$|z_1 + z_2| = |z_1| + |z_2|$ is possible if
A. $z_1 =\bar{z_1}$
B. z2=z1
C. $arg (z_1) = arg (z_2)$
D. $|z_1| = |z_2|$
Answer:
The answer is the option (c).
Since, $|z_1+z_2 |=|z_1 |+|z_2 |$
$|z_1+z_2 |=|r_1 \left ( \cos \theta _1+i\sin\theta _1 \right )+r_2 \left ( \cos \theta _2+i\sin\theta _2 \right )|$
$=\sqrt{r_{1}^{2} \cos ^{2} \theta_{1}+r_{2}^{2} \cos ^{2} \theta_{2}+2 r_{1} r_{2} \cos \theta_{1} \cos \theta_{2}+r_{1}^{2} \sin ^{2} \theta_{1}+r_{2}^{2} \sin ^{2} \theta_{2}+2 r_{1} r_{2} \sin \theta_{1} \sin \theta_{2}}$
So, $\begin{array}{c} =\sqrt{r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)} \\ \left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right| \\\\ \sqrt{r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}=r_{1}+r_{2} \end{array}$
Squaring both sides,
$\begin{array}{c} r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \\ 2 r_{1} r_{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)=0 \\ 1-\cos \left(\theta_{1}-\theta_{2}\right)=0 \\ \cos \left(\theta_{1}-\theta_{2}\right)=1 \\ \theta_{1}-\theta_{2}=0 \\ \theta_{1}=\theta_{2} \\ \operatorname{so} \arg \left(z_{1}\right)=\arg \left(z_{2}\right) \end{array}$
Question:48
The real value of θ for which the expression $\frac{1+i \cos \theta}{1-2 i \cos \theta}$ is a real number is:
A. $n\pi+\frac{\pi}{4}$
B. $n\pi+(-1)^n\frac{\pi}{4}$
C. $2n\pi+\frac{\pi}{2}$
D. none of these
Answer:
On solving we get
$\frac{1+3 i \cos \theta-2 \cos ^{2} \theta}{1-4 i^{2} \cos ^{2} \theta} \\=\frac{1+3 i \cos \theta-2 \cos ^{2} \theta}{1+4 \cos ^{2} \theta}$
$=\frac{\left(1-2 \cos ^{2} \theta\right)+3 i \cos \theta}{1+4 \cos ^{2} \theta}$
If z is real number then
$\frac{3 \cos \theta}{1+4 \cos ^{2} \theta}=0$
$\\3 \cos \theta=0 \\\cos \theta=0$
Question:49
The value of $arg (x)$ when $x < 0$is:
A. 0
B. $\frac{\pi}{2}$
C. π
D. none of these
Answer:
The answer is the option (c).
$\\ Let\: \: z= -x+0i \: \: and \: \: x<0 \\ |z|=\sqrt{(-1)^2+(0)^2 }=1,x<0$
Since, the point (-x,0)lies on the negative side of the real axis , principal argument (z)=π
Hence, option c is correct
Question:50
If $f(z)=\frac{7-z}{1-z^2}$where $z = 1 + 2i$, then $|f(z)|$ is
A. $\frac{\left | z \right |}{2}$
B. $|z|$
C. $2|z|$
D. none of these
Answer:
The answer is the option (a).
Given that $\\ z=1+2i \\ |z|=\sqrt{(1)^2+(2)^2 }=\sqrt5$
Now $f(z)=\frac{7-z}{1-z^2}$
$\begin{aligned} =\frac{7-(1+2 i)}{1-(1+2 i)^{2}} &=\frac{7-1-2 i}{1-1-4 i^{2}-4 i} \\ =\frac{6-2 i}{4-4 i} &=\frac{3-i}{2-2 i} \end{aligned}$
$\begin{aligned} =\frac{3-i}{2-2 i} * \frac{2+2 i}{2+2 i}=\frac{6+6 i-2 i-2 i^{2}}{4-4 i} \\ =\frac{6+4 i+2}{4+4} &=\frac{8+4 i}{8} \\ =1+\frac{1}{2} i & \end{aligned}$
$f(z)=\sqrt{(1)^{2}+\left(\frac{1}{2}\right)^{2}}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}=\frac{|z|}{2}$
Hence, option a is correct
Various laws need to be followed and derived by a mathematician when it comes to multiplying the two complex numbers. All of them are named over the features of the specific formula derivation. Ahead, you will also learn about the Modulus and Conjugate of complex numbers and how to solve sums with their help. There is an Argand and Polar representation in the chapter, relating to graphical presentations. A point needs to be derived at the ‘x’ and ‘y’ axis to form an argand or complex plane.
Students, with the help of NCERT Exemplar Class 11 Maths solutions chapter 5, will not face any issues when trying to solve such problems. It will also help them score better in exams.
All the concepts have been covered in NCERT Exemplar solutions for Class 11 Maths chapter 5. By using NCERT Exemplar Class 11 Maths chapter 5 solutions PDF Download function, students can access quality study material that is effectively constructed by experts for the best learning experience.
Belonging to the algebraic part of the subject, it is always fun for the students to solve these problems, once they are clear with the concept. NCERT Exemplar Class 11 Maths chapter 5 solutions will help in understanding the said concept and give examples in how to apply them to questions of any kind.
Other than that, in geometric applications, complex numbers are also very useful, for students in their near future. Students, through NCERT Exemplar Class 11 Maths solutions chapter 5, will also learn graphs in an advanced manner with newer placements and some difficult problems, which would make them sharper and clever.
· Class 11 Maths NCERT Exemplar solutions chapter 5 has detailed that complex numbers, their operations, square root, power, identities, representation of complex numbers and quadratic equations are important topics which students should pay extra attention to.
· In NCERT Exemplar Class 11 Maths chapter 5 solutions, students will also learn about quadratic equations. A quadratic equation is an equation where rearrangement of a particular equation is done via a standard form, where x is the unknown number, whereas, a, b and c, are known numbers. An equation with four numbers is said to be quadratic equations.
Check Chapter-Wise NCERT Solutions of Book
Chapter-1 | |
Chapter-2 | |
Chapter-3 | |
Chapter-4 | |
Chapter-5 | Complex Numbers and Quadratic equations |
Chapter-6 | |
Chapter-7 | |
Chapter-8 | |
Chapter-9 | |
Chapter-10 | |
Chapter-11 | |
Chapter-12 | |
Chapter-13 | |
Chapter-14 | |
Chapter-15 | |
Chapter-16 |
Read more NCERT Solution subject wise -
Also, read NCERT Notes subject wise -
Also Check NCERT Books and NCERT Syllabus here:
Yes, for those who want to score high in their school exams and also want to do better in entrance exams, practising NCERT questions is a must.
Yes, our experts have solved every question in the most detail-oriented way in NCERT Exemplar Class 11 Maths solutions Chapter 5.
In this chapter, the complex numbers are explained, their properties, operations on complex numbers along with quadratic equations.
Yes, the solutions can be downloaded using the NCERT Exemplar Class 11 Maths Chapter 5 solutions PDF Download function, as one can get the offline PDF after clicking on the download link.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE