NCERT Exemplar Class 11 Maths Solutions Chapter 9 has been assembled very carefully by our experts. In our daily lives, we often come across patterns such as the increasing number of chairs in each row of an auditorium, or savings added to a piggy bank every month. These patterns are perfect examples of sequences and series. A sequence is simply a list of numbers arranged in a particular order, while a series is the sum of the terms of a sequence. In Class 11, you’ll learn about arithmetic and geometric progressions, how to find terms, and how to calculate their sums. These concepts are not only useful in mathematics but also in finance, computer science, and real-world planning.
This Story also Contains
NCERT Exemplar Class 11 Maths Chapter 9 Solutions cover a variety of topics linked with sequences and series. Class 11 Maths NCERT Exemplar Solutions Chapter 9 also helps with establishing relationships between different terms of sequence and series, followed by varied numerical problems and their Solutions for practice and a better understanding of the concept.
Also, read,
| Class 11 Maths Chapter 9 Solutions Exercise: 9.3 Page number: 161-164 Total questions: 36 |
Answer:
The sum of the first p terms and the first term is given. We have to find the next q terms. So, the total terms become p+q.
Hence, the sum of all terms minus the sum of the first p terms will give the sum of the next q terms. However, the sum of the first p terms is zero, so the sum of the next q terms will be the same as the sum of all terms.
Sum of n terms is given by $S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right)$
$\\ \text { required sum }=S_{p+q}-S_{p}=\frac{p+q}{2}(2 a+(p+q-1) d) \ldots \ldots(i) \\ S_{p}=\frac{p}{2}(2 a+(p-1) d \\ 0=2 a+(p-1) d \\ d=-\frac{2 a}{p-1}$
Replacing the value of d in equation (i)
$\\ \text {required sum}=\frac{p+q}{2}\left(2 a+(p+q-1)\left(-\frac{2 a}{p-1}\right)\right. \\ =\frac{p+q}{2}\left(2 a-\frac{2 a p+2 a q-2 a}{p-1}\right) \\ =\frac{p+q}{2}(2 a)\left(1-\frac{p-1}{p-1}-\frac{q}{p-1}\right) \\ \text {On simplifying,} \\ =a(p+q)\left(-\frac{q}{p-1}\right)=-\frac{a(p+q) q}{p-1}$
Answer:
Total amount saved in 20 years is $S_{20}=66000$
Let the amount saved in the first year be ‘a.’
Since he increases by 200 Rs every year, d=200
Sum formula of A.P is $S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right)$
$S_{20}= \left( \frac{20}{2} \right) \left( 2a+ \left( 20-1 \right) 200 \right)$
$66000=10 \left( 2a+3800 \right)$
$a=1400$
Answer:
The man’s salary in the first month is Rs. 5200 and increases every month by Rs. 320. So, we have the value of ‘a’ and ‘d’.
$t_{n}=a+ \left( n-1 \right) d$
Salary in 10 th month is given by $t_{10}=5200+ \left( 10-1 \right) 320=8080$
For total earnings in the first year, the first 12 terms of the sequence are added.
$S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right)$
$S_{12}= \left( \frac{12}{2} \right) \left( 2 \left( 5200 \right) + \left( 12-1 \right) 320 \right)$
$S_{12}=6(10400+11(320)=83520$
Answer:
The nth term is given by $t_{n}=ar^{n-1}$
The pth term is given by $t_{p}=ar^{p-1}$
$q=ar^{p-1}$
$\frac{q}{r^{p}}=\frac{a}{r}$
$t_{q}=ar^{q-1}$
$p=ar^{q-1}$
$\\ \frac{p}{r^{q}}=\frac{a}{r}\\\\ \frac{p}{r^{q}}=\frac{q}{r^{p}}\\\\ r^{p-q}=\frac{q}{p}\\$
$r= \left( \frac{q}{p} \right) ^{\frac{1}{p-q}}$
$t_{p+q}=a \left( r \right) ^{p+q-1}$
$t_{p+q}= \left( ar^{p-1} \right) r^{q} \\\\ t_{p+q}=qr^{q} \\\\ t_{p+q}=q \left( \left( \frac{q}{p} \right) ^{\frac{1}{p-q}} \right) ^{q} \\\\$
$t_{p+q}=q \left( \frac{q^{\frac{q}{p-q}}}{p^{\frac{q}{p-q}}} \right) = \left( \frac{q^{1+\frac{q}{p-q}}}{p^{\frac{q}{p-q}}} \right) = \left( \frac{q^{\frac{p}{p-q}}}{p^{\frac{q}{p-q}}} \right) = \left( \frac{q^{p}}{p^{q}} \right) ^{\frac{1}{p-q}} \\\\$.
Question 5
Answer:
The first day he made 5 frames and 2 more frames each passing day. So,
a=5 and d=2
$S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right)$
Let us assume that it takes ‘n’ days to build 192 window frames.
$\\ S_{n}= \left( \frac{n}{2} \right) \left( 10+ \left( n-1 \right) 2 \right) \\\\ 192= \left( \frac{n}{2} \right) \left( 8+2n \right) \\\\ 384=2n^{2}+8n \\\\ n^{2}+4n-192=0 \\\\ \left( n-12 \right) \left( n+16 \right) =0 \\\\$
Since the number of days can’t be negative, n = 12.
Question 6:
Answer:
The sum of interior angles of a polygon having 'n' sides is given by $\left( n-2 \right)\times 180^{\circ}$
By this formula sum of angles with 3 sides, 4 sides, 5 sides, and 6 sides is $180^{\circ},~360^{\circ},~540^{\circ},720^{\circ}$ respectively. As the number of sides increases by 1, the sum of the interior angles increases by $180^{\circ}$
So, for the sum of angles of a polygon with 21 sides $= \left( n-2 \right) \times180^{\circ}~ \\\\$
$\\ = \left( 21-2 \right) \times 180^{\circ}=19\times 180^{\circ}~ \\\\ =3420^{\circ} \\\\$
Question 7
Answer:
Let AB=BC=AC=20cm
Let D, E, and F be midpoints of AC, CB, and AB, which are joined to form an equilateral triangle DEF. So, CD=CE=10cm. Triangle CDE is equilateral. Hence, DE = 10 cm. Similarly, GH = 5 cm
The series of sides of an equilateral triangle will be 20,10,5…..
The series is a G.P. with first term 20 and common ratio =1/2
$t_{n}=20 \left( \frac{1}{2} \right) ^{n-1}$
For the perimeter of the 6 th triangle, we first have to find the side of the 6 th triangle
$t_{6}=\frac{20}{2^{6-1}}=\frac{20}{2^{5}}=\frac{5}{8}cm \\\\$
The perimeter would be thrice the length of its side.
Perimeter of triangle= $3 \left( \frac{5}{8} \right) =\frac{15}{8}cm \\\\$
Question 8
Answer:
It is given that at the start, he has to run 24m to get the first potato, then 28 m as the next potato is 4m away, and so on.
Hence, the sequence of its running will be 24, 28, 32…..
To get potatoes from the starting point, he has to run 24+28+32+….. up to 20 terms.
$\\S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right) \\\\ S_{20}= \left( \frac{20}{2} \right) \left( 2 \left( 24 \right) + \left( 20-1 \right) 4 \right) \\\\ S_{20}=10 \left( 48+76 \right) \\\\ S_{20}=1240m \\\\$
Also, he has to get the potato back to the starting point, hence the total distance will be twice.
Total Distance ran=2×1240=2480m
Question 9
Answer:
Let the amount received by the first place be Rs. A and ‘d’ are the differences in the amount. The last team receives Rs. 275. As there are 16 teams and all teams are given prizes hence the sequence will have 16 terms because there are 16 teams.
As the total prize given is Rs 8000, hence
$a+a-d+a-2d....+275 =8000$
$ n=16$
$S_{16}=8000$
$ S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) (-d) \right)$
$8000= \left( \frac{16}{2} \right) \left( 2a+ \left( 16-1 \right) (-d) \right) =8 \left( 2a-15d \right)$
$1000=2a-15d \\\\ t_{16}=275$
$t_{16}=a+ \left( 16-1 \right) (-d)$
$275=a-15d$
$1000-275= \left( 2a-15d \right) - \left( a-15d \right)$
$ a=725$
Answer:
$LHS=\frac{1}{\sqrt[]{a_{1}}+\sqrt[]{a_{2}}}+\frac{1}{\sqrt[]{a_{2}}+\sqrt[]{a_{3}}}+ \ldots +\frac{1}{\sqrt[]{a_{n-1}}+\sqrt[]{a_{n}}} \\\\$
$\begin{aligned} &\text {Multiplying the first term by } \frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{\sqrt{a_{1}}-\sqrt{a_{2}}}, \text { the second term by } \frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{\sqrt{a_{2}}-\sqrt{a_{3}}}\\ &\text {and so on rationalising each term} \end{aligned}$
$LHS= \left( \frac{1}{\sqrt[]{a_{1}}+\sqrt[]{a_{2}}} \right) \left( \frac{\sqrt[]{a_{1}}-\sqrt[]{a_{2}}}{\sqrt[]{a_{1}}-\sqrt[]{a_{2}}} \right) + \left( \frac{1}{\sqrt[]{a_{2}}+\sqrt[]{a_{3}}} \right) \left( \frac{\sqrt[]{a_{2}}-\sqrt[]{a_{3}}}{\sqrt[]{a_{2}}-\sqrt[]{a_{3}}} \right) + \ldots + \left( \frac{1}{\sqrt[]{a_{n-1}}+\sqrt[]{a_{n}}} \right) \left( \frac{\sqrt[]{a_{n-1}}-\sqrt[]{a_{n}}}{\sqrt[]{a_{n-1}}-\sqrt[]{a_{n}}} \right) \\\\$
$\\= \left( \frac{\sqrt[]{a_{1}}-\sqrt[]{a_{2}}}{a_{1}-a_{2}} \right) + \left( \frac{\sqrt[]{a_{2}}-\sqrt[]{a_{3}}}{a_{2}-a_{3}} \right) + \ldots + \left( \frac{\sqrt[]{a_{n-1}}-\sqrt[]{a_{n}}}{a_{n-1}-a_{n}} \right) \\\\ = \left( \frac{\sqrt[]{a_{1}}-\sqrt[]{a_{2}}}{-d} \right) + \left( \frac{\sqrt[]{a_{2}}-\sqrt[]{a_{3}}}{-d} \right) + \ldots + \left( \frac{\sqrt[]{a_{n-1}}-\sqrt[]{a_{n}}}{-d} \right) \\\\$
$\\ =-\frac{1}{d} \left( \sqrt[]{a_{1}}-\sqrt[]{a_{2}}+\sqrt[]{a_{2}}-\sqrt[]{a_{3}}+ \ldots +\sqrt[]{a_{n-1}}-\sqrt[]{a_{n}} \right) \\\\ =-\frac{1}{d} \left( \sqrt[]{a_{1}}-\sqrt[]{a_{n}} \right) ~ \\\\$
Rationalising again,
$\\ =-\frac{1}{d} \left( \sqrt[]{a_{1}}-\sqrt[]{a_{n}} \right) \left( \frac{ \left( \sqrt[]{a_{1}}+\sqrt[]{a_{n}} \right) }{ \left( \sqrt[]{a_{1}}+\sqrt[]{a_{n}} \right) } \right) \\\\ =-\frac{1}{d}\frac{ \left( a_{1}-a_{n} \right) }{ \left( \sqrt[]{a_{1}}+\sqrt[]{a_{n}} \right) }=-\frac{1}{d}\frac{ \left( - \left( n-1 \right) d \right) }{ \left( \sqrt[]{a_{1}}+\sqrt[]{a_{n}} \right) }=\frac{ \left( n-1 \right) }{ \left( \sqrt[]{a_{1}}+\sqrt[]{a_{n}} \right) } \\\\$
Question 11 Find the sum of the series $\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\ldots$ to
Answer:
Generalising the series in terms of i
$\\ S= \sum _{i=1}^{n} \left[ \left( 2i+1 \right) ^{3}- \left( 2i \right) ^{3} \right] $
$ = \sum _{i=1}^{n} \left[ \left( 2i+1-2i \right) \left( \left( 2i+1 \right) ^{2}+ \left( 2i+1 \right) \left( 2i \right) + \left( 2i \right) ^{2} \right) \right] $
$ = \sum _{i=1}^{n} \left[ 4i^{2}+4i+1+4i^{2}+2i+4i^{2} \right] = \sum _{i=1}^{n} \left[ 12i^{2}+6i+1 \right] \\\\$
$\\ =12 \left[ \frac{n \left( n+1 \right) \left( 2n+1 \right) }{6} \right] +6 \left[ \frac{n \left( n+1 \right) }{2} \right] + \left[ n \right] \\\\ =2 \left[ 2n^{3}+3n^{2}+n \right] +3 \left[ n^{2}+n \right] + \left[ n \right] \\\\$
Sum up to n terms $=4n^{3}+9n^{2}+6n \\\\$
$\\ \text{Sum up to 10 terms }S_{10}=4 \left( 10 \right) ^{3}+9 \left( 10 \right) ^{2}+6 \left( 10 \right) =4960 \\\\$
Question 12: Find the rth term of an A.P. sum of whose first n terms is $2 n+3 n^2$.
$\left[\right.$ Hint : $\left.a_{\mathrm{n}}=S_{\mathrm{n}}-S_{\mathrm{n}-1}\right]$
Answer:
The sum of the first n terms is given by $S_n=2n + 3n^2$
The rth term is
$\\a_{r}=S_{r}-S_{r-1}= \left( 2r+3r^{2} \right) - \left( 2 \left( r-1 \right) +3 \left( r-1 \right) ^{2} \right) \\\\ =2r+3r^{2}- \left( 2r-2+3r^{2}-6r+3 \right) \\\\ =2r+3r^{2}- \left( 3r^{2}-4r+1 \right) \\\\ =6r-1 \\\\$
Answer:
It is given that A is the arithmetic mean and $G_1$, and $G_2$ are two geometric means between any two numbers.
$\\ A=\frac{a+b}{2} \\\\ G=\sqrt {ab} \\\\ G_{1}=\sqrt {aG_{2}} \\\\ G_{2}=\sqrt {G_{1}b} \\\\ G_{1}^{2}=aG_{2} \\\\$
$\\ G_{1}^{2}=a\sqrt {G_{1}b} \\\\ G_{1}^{4}=a^{2}G_{1}b \\\\ G_{1}^{3}=a^{2}b \\\\ G_{1}=a^{\frac{2}{3}}b^{\frac{1}{3}} \\\\$
$\\ G_{2}= \left( a^{\frac{2}{3}}b^{\frac{1}{3}} \times b \right) ^{\frac{1}{2}}=a^{\frac{1}{3}}b^{\frac{2}{3}}~ \\\\ \frac{G_{1}^{2}}{G_{2}}= \left( \frac{ \left( a^{\frac{2}{3}}b^{\frac{1}{3}} \right) ^{2}}{a^{\frac{1}{3}}b^{\frac{2}{3}}} \right) =a \\\\ \frac{G_{2}^{2}}{G_{1}}= \left( \frac{ \left( b^{\frac{2}{3}}a^{\frac{1}{3}} \right) ^{2}}{b^{\frac{1}{3}}a^{\frac{2}{3}}} \right) =b \\\\ \frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}=a+b=2A \\\\$
Answer:
Given that $\theta _{1}, \theta _{2}, \ldots \theta _{n}\text{~are in A.P and common difference is d. } \\\\$
$\\ \sec \theta _{1}\sec \theta _{2}+\sec \theta _{2}\sec \theta _{3}+ \ldots +\sec \theta _{n-1}\sec \theta _{n} \\\\ =\frac{1}{\cos \theta _{1}\cos \theta _{2}}+\frac{1}{\cos \theta _{2}\cos \theta _{3}}+ \ldots +\frac{1}{\cos \theta _{n-1}\cos \theta _{n}} \\\\ =\frac{\sin d}{\sin d} \left( \frac{1}{\cos \theta _{1}\cos \theta _{2}}+\frac{1}{\cos \theta _{2}\cos \theta _{3}}+ \ldots +\frac{1}{\cos \theta _{n-1}\cos \theta _{n}} \right) \\\\$
$\\ =\frac{1}{\sin d} \left( \frac{\sin \left( \theta _{2}- \theta _{1} \right) }{\cos \theta _{1}\cos \theta _{2}}+\frac{\sin \left( \theta _{3}- \theta _{2} \right) }{\cos \theta _{2}\cos \theta _{3}}+ \ldots +\frac{\sin \left( \theta _{n}- \theta _{n-1} \right) }{\cos \theta _{n-1}\cos \theta _{n}} \right) \\\\ =\frac{1}{\sin d} \left( \frac{\sin \theta _{2}\cos \theta _{1}-\cos \theta _{2}\sin \theta _{1}}{\cos \theta _{1}\cos \theta _{2}}+\frac{\sin \theta _{3}\cos \theta _{2}-\cos \theta _{3}\sin \theta _{2}}{\cos \theta _{2}\cos \theta _{3}}+ \ldots +\frac{\sin \theta _{n}\cos \theta _{n-1}-\cos \theta _{n}\sin \theta _{n-1}}{\cos \theta _{n-1}\cos \theta _{n}} \right) \\\\$
$\\=\frac{1}{\sin d} \left( \frac{\sin \theta _{2}\cos \theta _{1}}{\cos \theta _{1}\cos \theta _{2}}-\frac{\sin \theta _{1}\cos \theta _{2}}{\cos \theta _{1}\cos \theta _{2}}+\frac{\sin \theta _{3}\cos \theta _{2}}{\cos \theta _{2}\cos \theta _{3}}-\frac{\sin \theta _{2}\cos \theta _{3}}{\cos \theta _{2}\cos \theta _{3}}+ \ldots +\frac{\sin \theta _{n}\cos \theta _{n-1}}{\cos \theta _{n-1}\cos \theta _{n}}-\frac{\sin \theta _{n}\cos \theta _{n-1}}{\cos \theta _{n-1}\cos \theta _{n}} \right) $
$ =\frac{1}{\sin d} \left( \tan \theta _{2}-\tan \theta _{1}+\tan \theta _{3}-\tan \theta _{2}+ \ldots +\tan \theta _{n}-\tan \theta _{n-1} \right) \\\\$
$\\ =\frac{ \left( \tan \theta _{n}-\tan \theta _{1} \right) }{\sin d} \\\\$
Answer:
The sum of n terms is given by
$S_{n}= \left( \frac{n}{2} \right) \left( 2a+ \left( n-1 \right) d \right) \\\\$
Where ‘a’ is the first term and ’d’ is the common difference
$\\ S_{p}=q \\\\ q=\frac{p}{2} \left( 2a+ \left( p-1 \right) d \right) \\\\ \frac{2q}{p}=2a+ \left( p-1 \right) d \\\\ S_{q}=p \\\\ p=\frac{q}{2} \left( 2a+ \left( q-1 \right) d \right) \\\\$
$\\ \frac{2p}{q}=2a+ \left( q-1 \right) d \\\\ \frac{2p}{q}-\frac{2q}{p}= \left( q-1 \right) d- \left( p-1 \right) d \\\\ \frac{2p}{q}-\frac{2q}{p}= \left( q-p \right) d \\\\ d=\frac{2p^{2}-2q^{2}}{pq \left( q-p \right) }=-\frac{2 \left( p+q \right) }{pq} \\\\$
$\\ S_{p+q}=\frac{p+q}{2} \left( 2a+ \left( p+q-1 \right) d \right) \\\\ =\frac{p}{2} \left( 2a+ \left( p-1 \right) d+qd \right) +\frac{q}{2} \left( 2a+ \left( q-1 \right) d+pd \right) \\\\$
$\\ =\frac{p}{2} \left( 2a+ \left( p-1 \right) d \right) +\frac{pqd}{2}+\frac{q}{2} \left( 2a+ \left( q-1 \right) d \right) +\frac{pqd}{2} \\\\ =q+p+pqd \\\\$
$\\ =q+p+pq \left( -\frac{2 \left( p+q \right) }{pq} \right) =q+p-2p-2q \\\\ S_{p+q}=- \left( p+q \right) \\\\ S_{p-q}=\frac{p-q}{2} \left( 2a+ \left( p-q-1 \right) d \right) \\\\$
$\\ =\frac{p}{2} \left( 2a+ \left( p-1 \right) d \right) -\frac{pqd}{2}-\frac{q}{2} \left( 2a+ \left( p-1 \right) d \right) +\frac{q^{2}d}{2} $
$ =q-\frac{pqd}{2}- \left( \frac{q}{p} \right) \left( \frac{p}{2} \right) \left( 2a+ \left( p-1 \right) d \right) +\frac{q^{2}d}{2} $
$ =q-\frac{q^{2}}{p}-\frac{pqd}{2}+\frac{q^{2}d}{2} $
$ =\frac{ \left( pq-q^{2} \right) }{p}+\frac{d \left( q^{2}-pq \right) }{2} $
$ =\frac{pq-q^{2}}{p}-\frac{pq-q^{2}}{2} \left( -\frac{2 \left( p+q \right) }{pq} \right) \\\\$
$\\ =\frac{pq-q^{2}}{p}+ \left( pq-q^{2} \right) \left[ \frac{1}{q}+\frac{1}{p} \right] \\\\ =\frac{2 \left( pq-q^{2} \right) }{p}+\frac{pq-q^{2}}{q} \\\\ =\frac{2q \left( p-q \right) }{p}+p-q \\\\$
Answer:
Let the first term of AP be m and the common difference as d. Let the first term of GP be I and the common ratio be s.
For AP
$\\ t_{p}=m+ \left( p-1 \right) d \\\\ a=m+ \left( p-1 \right) d \\\\ b=m+ \left( q-1 \right) d \\\\ c=m+ \left( r-1 \right) d \\\\$
For GP
$\\ t_{p}=Is^{p-1} \\\\ a=Is^{p-1} \\\\ b=Is^{q-1} \\\\ c=Is^{r-1} \\\\ b-c= \left( q-r \right) d \\\\$
$\\ c-a= \left( r-p \right) d \\\\ a-b= \left( p-q \right) d \\\\ LHS=a^{b-c}b^{c-a}c^{a-b} \\\\ = \left( Is^{p-1} \right) ^{ \left( q-r \right) d} \left( Is^{q-1} \right) ^{ \left( r-p \right) d} \left( Is^{r-1} \right) ^{ \left( p-q \right) d} \\\\ =I^{ \left( q-r+r-p+p-q \right) d}s^{ \left[ \left( pq-pr-q+r \right) + \left( qr-qp-r+p \right) + \left( rp-rq-p+q \right) \right] d} \\\\ =I^{0}s^{0}=1 \\\\$
Answer:
Given that $S_{n}=3n+2n^{2}$
We know that $a_{2}=S_{2}-S_{1}$
$\\ = \left( 3 \left( 2 \right) +2 \left( 2 \right) ^{2} \right) - \left( 3 \left( 1 \right) +2 \left( 1 \right) ^{2} \right) \\\\ =14-5 \\\\ =9 \\\\ a_{1}=S_{1}=3 \left( 1 \right) +2 \left( 1 \right) ^{2}=5 \\\\ d=a_{2}-a_{1}=9-5=4 \\\\$
Hence, the correct option is d.
Question 18: The third term of G.P. is 4. The product of its first 5 terms is
(A) 43 (B) 44 (C) 45 (D) None of these
Answer:
The third term of G.P is given $T_{3}=4$
$\\ T_{n}=ar^{n-1} \\\\ ar^{2}=4 \\\\$
Product of the first 5 terms
$\\= \left( a \right) \left( ar \right) \left( ar^{2} \right) \left( ar^{3} \right) \left( ar^{4} \right) \\\\ = \left( a^{5}r^{10} \right) = \left( ar^{2} \right) ^{5} \\\\ =4^{5}=1024 \\\\$
Hence, the correct option is c.
Question 19:
Answer:
$\\ 9a_{9}=13a_{13} \\\\ 9 \left( a+ \left( 9-1 \right) d \right) =13 \left( a+ \left( 13-1 \right) d \right) \\\\ 9a+72d=13a+156d \\\\ -4a=84d \\\\ a=-21d \\\\ a_{22}=a+ \left( 22-1 \right) d \\\\ =-21d+21d=0 \\\\$
Hence, the correct option is a.
Question 20
Answer:
It is given that x, 2y, and 3z are in A.P
$\\ 2y-x=3z-2y \\\\ x=4y-3z \\\\ \frac{y}{x}=\frac{z}{y} \\\\ y^{2}=xz \\\\ y^{2}= \left( 4y-3z \right) z \\\\ y^{2}-4yz+3z^{2}=0 \\\\ \left( 3z-y \right) \left( z-y \right) =0 \\\\ y=3z \ or\ y=z \\\\ r=\frac{y}{z}=\frac{1}{3} \\\\$
Hence, the correct option is b.
Question 21
Answer:
The given series is an A.P. with the first term ‘a’ and common difference ‘d’.
$\\ S_{n}=\frac{n}{2} \left[ 2a+ \left( n-1 \right) d \right] \\\\ qn^{2}=\frac{n}{2} \left[ 2a+ \left( n-1 \right) d \right] \\\\ 2qn=2a+ \left( n-1 \right) d \\\\ 2a=2qn- \left( n-1 \right) d \\\\ S_{m}=\frac{n}{2} \left[ 2a+ \left( m-1 \right) d \right] \\\\ qm^{2}=\frac{m}{2} \left[ 2a+ \left( m-1 \right) d \right] \\\\$
$\\2qm=2a+ \left( m-1 \right) d \\\\ 2a=2qm- \left( m-1 \right) d \\\\ 2qm- \left( m-1 \right) d=2qn- \left( n-1 \right) d \\\\ 2q \left( n-m \right) = \left( n-m \right) d \\\\ d=2q \\\\ 2a=2qn- \left( n-1 \right) \left( 2q \right) \\\\$
$\\a=q \\\\ S_{q}=\frac{q}{2} \left[ 2q+ \left( q-1 \right) 2q \right] =q^{3} \\\\$
Hence, the correct option is c.
Question 22
Answer:
Given $S_{2n}=3S_{n} \\\\$
$\\ S_{n}=\frac{n}{2} \left[ 2a+ \left( n-1 \right) d \right] \\\\ S_{2n}=\frac{2n}{2} \left[ 2a+ \left( 2n-1 \right) d \right] \\\\ S_{2n}=3S_{n} \\\\ n \left[ 2a+ \left( 2n-1 \right) d \right] =\frac{3n}{2} \left[ 2a+ \left( n-1 \right) d \right] \\\\ 4a+4nd-2d=6a+3nd-3d \\\\ 2a=nd+d \\\\$
$\\ S_{3n}=\frac{3n}{2} \left[ 2a+ \left( 3n-1 \right) d \right] =\frac{3n}{2} \left[ \left( n+1 \right) d+ \left( 3n-1 \right) d \right] =6n^{2}d \\\\ S_{n}=\frac{n}{2} \left[ 2a+ \left( n-1 \right) d \right] =\frac{n}{2} \left[ \left( n+1 \right) d+ \left( n-1 \right) d \right] =n^{2}d \\\\ \frac{S_{3n}}{S_{n}}=\frac{6n^{2}d}{n^{2}d}=6 \\\\$
Hence, the correct option is b.
Question 23
The minimum value of $4^{\mathrm{x}}+4^{1-\mathrm{x}}, x \in R$ is
Answer:
The AM-GM inequality states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list
$\\ \frac{x+y}{2} \geq \sqrt {xy} \\\\ \frac{4^{x}+4^{1-x}}{2} \geq \sqrt { \left( 4^{x} \right) \left( 4^{1-x} \right) } \\\\ \frac{4^{x}+4^{1-x}}{2} \geq \sqrt {4} \\\\ 4^{x}+4^{1-x} \geq 4 \\\\$
Hence, the correct option is b.
A. $\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}$
B. $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
C. $\frac{\mathrm{n}^2+3 \mathrm{n}+2}{2}$
Answer:
Sum of cubes of first n natural numbers $S_{n}= \sum _{i=1}^{n}i^{3}= \left( \frac{n \left( n+1 \right) }{2} \right) ^{2} \\\\$
Sum of first n natural numbers $s_{n}= \sum _{i=1}^{n}i=\frac{n \left( n+1 \right) }{2} \\\\$
$\\ \sum _{i=1}^{n}\frac{S_{n}}{s_{n}}= \sum _{i=1}^{n}\frac{n^{2}}{2}+\frac{n}{2} \\\\ =\frac{1}{2} \left[ \sum _{i=1}^{n}n^{2}+ \sum _{i=1}^{n}n \right] \\\\ =\frac{1}{2} \left[ \frac{n \left( n+1 \right) \left( 2n+1 \right) }{6}+\frac{n \left( n+1 \right) }{2} \right] \\\\ =\frac{1}{2} \left[ \frac{n \left( n+1 \right) }{2} \left( \frac{2n+1}{3}+1 \right) \right] \\\\$
$\\ =\frac{1}{2}\frac{n \left( n+1 \right) }{2}\frac{ \left( 2n+4 \right) }{3} \\\\ =\frac{n \left( n+1 \right) \left( n+2 \right) }{6} \\\\$
Hence, the correct option is (a).
Question 25
If $t_n$ denotes the $n^{\text {th }}$ term of the series $2+3+6+11+18+\ldots$ then $t_{50}$ is
Answer:
$S_{n}=2+3+6+11+18+ \ldots +t_{50}$(Using method of difference)
$\\ S_{n}=0+2+3+6+11+18+ \ldots +t_{50} $
$ S_{n}-S_{n}= \left( 2-0 \right) + \left( 3-2 \right) + \left( 6-3 \right) + \left( 11-6 \right) + \left( 18-11 \right) + \ldots -t_{50} $
$ t_{50}=2+ \left[ 1+3+5+7+ \ldots upto\: \: 49\: \: terms \right] $
$ t_{50}=2+\frac{49}{2} \left[ 2+ \left( 49-1 \right) 2 \right] $
$ t_{50}=2+49^{2} \\\\$
Hence, the correct option is d.
Answer:
The volume and total S.A of a block are given
Let the length, breadth, and height of a rectangular block be given by $\frac{a}{r}, a,ar$ respectively.
$V=L*B *H=\frac{a}{r} \times a \times ar=a^{3} \\\\$
$\\216=a^{3} \\\\ a=6cm \\\\$
$S=2 \left[ L*B+B*H+H*L \right] =2 \left[ \frac{a}{r} \times a+\frac{a}{r} \times ar+a \times ar \right] =2 \left( \frac{a^{2}}{r}+a^{2}+a^{2}r \right) \\\\$
$\\ 252=2a^{2} \left( \frac{1}{r}+1+r \right) \\\\\frac{252}{72}=\frac{r^{2}+r+1}{r} \\\\ 2r^{2}-5r+2=0 \\\\ \left( 2r-1 \right) \left( r-2 \right) =0 \\\\ r=\frac{1}{2} \ or \ r=2 \\\\$
If a = 6 and r=2 then l,b, and h are $\text{3 cm, 6 cm,12 cm}$ respectively.
If a=6 and r=1/2 then l,b, and h are 12, 6, and 3 respectively.
In both cases, the longest side is 12 units.
Hence, the correct option is a.
Question 27 Fill in the blanks.
For a, b, c to be in G.P. the value of $\frac{a-b}{b-c}$ is equal to ..........
Answer:
It is given that a, b, c are in G.P
$\\ \frac{b}{a}=\frac{c}{b}=r \\\\ \frac{a-b}{b-c}=\frac{\frac{a-b}{b}}{\frac{b-c}{b}}=\frac{\frac{a}{b}-1}{1-\frac{c}{b}}=\frac{\frac{1}{r}-1}{1-r}=\frac{\frac{1-r}{r}}{1-r} \\\\ =\frac{1}{r}=\frac{a}{b}=\frac{b}{c} \\\\$
Question 28 Fill in the blanks:
The sum of terms equidistant from the beginning and end in an A.P. is equal to .............
Answer:
Taking the first and last terms of
$a_{1}+a_{n}=a+a+ \left( n-1 \right) d=2a+ \left( n-1 \right) d$
Taking k-th and (n-k+1) -th term.
$\\ a_{k}+a_{n-k+1}=a+ \left( k-1 \right) d+ \left( a+ \left( n-k+1-1 \right) d \right) \\\\ =2a+ \left( k-1+n-k+1-1 \right) d \\\\ =2a+ \left( n-1 \right) d \\\\ =a_{1}+a_{n} \\\\$
Question 29 Fill in the blanks:
The third term of a G.P. is 4, and the product of the first five terms is ................
Answer:
The third term of a G.P is given by $T_{3}=4$
Let the common ratio be ‘r’
$\\T_{1}=\frac{4}{r^{2}} , T_{2}=\frac{4}{r} , ~T_{4}=4r , T_{5}=4r^{2} \\\\$
Product of first 5 terms $= \left( \frac{4}{r^{2}} \right) \left( \frac{4}{r} \right) \left( 4 \right) \left( 4r \right) \left( 4r^{2} \right) =4^{5}=1024 \\\\$
Question 30 State whether the statement is True or False. Two sequences cannot be in both A.P. and G.P. together.
Answer:
Let the terms of A.P be $a, \left( a+d \right) , \left( a+2d \right) , \ldots$
Let the terms of G.P be $a,ar,ar^{2}$
$\\ a+d=ar \\\\ a+2d=ar^{2} \\\\ r=\frac{a+2d}{a+d}=\frac{a+d}{a} \\\\ a^{2}+2ad=a^{2}+2ad+d^{2} \\\\ d^{2}=0 \\\\ r=\frac{a+2 \left( 0 \right) }{a+ \left( 0 \right) }=1 \\\\$
So the terms of A.P and G.P are the same
Answer:
A progression is a sequence, but a sequence is not a progression because it does not follow a specific pattern.
Hence, the given statement is TRUE.
Answer:
Let us consider an A.P a, a+d, a+2d, a+3d
$\\a_{2}+a_{4}= \left( a+d \right) + \left( a+3d \right) =2 \left( a+2d \right) =2 \left( a_{3} \right) ~~~~ \\\\ ~a_{3}=\frac{a_{2}+a_{4}}{2}~ \\\\$
Hence, the given statement is TRUE.
Question 33 State whether the statement is True or False. The sum or difference of two G.P.s is again a G.P.
Answer:
Let the two G.P be $a,ar_{1},ar_{1}^{2},ar_{1}^{3}, \ldots$
And $b,br_{2},br_{2}^{2},br_{2}^{3}, \ldots \\\\$
The terms of the sum of these two G.P are
$\\T_{1}= \left( b+a \right) \\\\ T_{2}= \left( br_{2}+ar_{1} \right) \\\\ T_{3}= \left( br_{2}^{2}+ar_{1}^{2} \right) \\\\ r^{'}=\frac{T_{3}}{T_{2}}=\frac{T_{2}}{T_{1}} \\\\$
$\\ \frac{T_{3}}{T_{2}}=\frac{br_{2}^{2}+ar_{1}^{2}}{br_{2}+ar_{1}}~and~\frac{T_{2}}{T_{1}}=\frac{br_{2}+ar_{1}}{b+a} \\\\ \frac{T_{3}}{T_{2}} \neq \frac{T_{2}}{T_{1}} \\\\$
The terms of the difference between two G.P are
$\\ T_{1}= \left( b-a \right) \\\\ T_{2}= \left( br_{2}-ar_{1} \right) \\\\ T_{3}= \left( br_{2}^{2}-ar_{1}^{2} \right) \\\\ r^{'}=\frac{T_{3}}{T_{2}}=\frac{T_{2}}{T_{1}} \\\\$
$\\ \frac{br_{2}^{2}-ar_{1}^{2}}{br_{2}-ar_{1}}=\frac{br_{2}-ar_{1}}{b-a} \\\\ \frac{T_{3}}{T_{2}} \neq \frac{T_{2}}{T_{1}} \\\\$
Hence, the difference and sum of 2 G.P is not a G.P because the common ratio is not the same.
Answer:
$S_{n}=an^{2}+bn+c \\\\$
For n=1 $S_{1}=a+b+c \\\\$
$\\ S_{2}=4a+2b+c \\\\ S_{3}=9a+3b+c \\\\ a_{1}=S_{1}=a+b+c \\\\ a_{2}=S_{2}-S_{1}=3a+b \\\\ a_{3}=S_{3}-S_{2}=5a+b \\\\$
$\\d=a_{2}-a_{1}=2a-c \\\\ d=a_{3}-a_{2}=2a \\\\ a_{3}-a_{2} \neq a_{2}-a_{1} \\\\$
So, it does not represent an AP because the common difference is not the same.
Question 35
Match the questions given under Column I with their appropriate answers given under Column II.

Answer:
$\left( a \right) \text{ Given 4, 1, }\frac{1}{4},\frac{1}{16}\text{~~ Here,}\frac{a_{2}}{a_{1}}=\frac{1}{4}~,\frac{a_{3}}{a_{2}}=\frac{\frac{1}{4}}{1}=\frac{1}{4}\text{~ and similarly}\frac{a_{4}}{a_{3}}=\frac{1}{16} *\frac{4}{1}=\frac{1}{4}~~ \\\\$
Hence, the given numbers are in G.P with common ratio $\frac{1}{4}~~ \\\\$
$\\~ \left( a \right) - \left( iii \right)$
$\left( b \right) \text{~Given~2, 3, 5, 7 } $
Here,$~a_{2}-a_{1}=3-2=1~~~ a_{3}-a_{2}=5-3=2~~ a_{4}-a_{3}=7-5=2$
$~a_{2}-a_{1} \neq a_{3}-a_{2}~~ \\\\$
Hence, it is not in the AP.
Now, we will check the ratio $\frac{a_{2}}{a_{1}}=\frac{3}{2},~\frac{a_{3}}{a_{2}}=\frac{5}{7}~~ $
$\\ ~So,\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}\text{~~Thus,~it~is not a G.P } $
$ ~ \left( b \right) - \left( ii \right) ~~ \\\\ ~ \left( c \right) ~13,8,~3, -2, -7 Here, a_{2}-a_{1}=8-13=-5 $
$\\~a_{3}-a_{2}=3-8=~-5 \\\\ ~a_{4}-a_{3}=-2-3=-5~ \\\\ ~~~~a_{2}-a_{1}=a_{3}-a_{2}$
$\text{ Hence, it is an A.P } \\\\ ~~~ \left( c \right) - \left( i \right) \\\\$
Question 36
Match the questions given under Column I with their appropriate answers given under Column II.
|
Column-I
|
Column-II
|
|
a)$1^{2}+2^{2}+3^{2}+\ldots+n^{2}$
|
i)$\left(\frac{n(n+1)}{2}\right)^{2}$
|
|
b)$1^{3}+2^{3}+3^{3}+\ldots+n^{3}$
|
ii)$n(n+1)$
|
|
c)$2+4+6+...+2n$
|
iii)$\frac{n(n+1)(2 n+1)}{6}$
|
|
d)$1+2+3+...+n$
|
iv)$\frac{n(n+1)}{2}$
|
Answer:
Sum of ‘n’ natural numbers $\sum _{i=1}^{n}i= \left( \frac{n \left( n+1 \right) }{2} \right) \\\\$
Sum of cube of ‘n’ natural numbers $\sum _{i=1}^{n}i^{3}= \left( \frac{n \left( n+1 \right) }{2} \right) ^{2} \\\\$
Sum of square of ‘n’ natural numbers $\sum _{i=1}^{n}i^{2}= \left( \frac{n \left( n+1 \right) \left( 2n+1 \right) }{6} \right) \\\\$
Sum of twice times ‘n’ natural numbers $\sum _{i=1}^{n}2i=n \left( n+1 \right) \\\\$
So, (a) – (iii), (b)- (i), (c)- (ii), (d)- (iv)
Some of the important topics for students to review are as follows:
Students can easily find all NCERT Class 11 Maths Solutions in one place on Careers360. Simply tap the links below to get started.
After accessing Class 11 Maths NCERT Solutions Chapter 9, students can study strategically at their own pace. This will boost their confidence in attempting other questions from this Chapter.
For quick and easy access, Careers360 provides all NCERT Class 11 Maths Exemplar Solutions together on one page. Use the links below to open them.
Check out the subject-wise NCERT Solutions links for Class 11 given below.
Use the links below to explore NCERT Notes for Class 11 for each subject.
At the beginning of the academic year, students need to consult the latest syllabus for clarity on the Chapters. Given below are the revised syllabus links and helpful reference books.
Given below are the subject-wise Exemplar Solutions of class 11 NCERT:
Frequently Asked Questions (FAQs)
The formula for the nth term of an arithmetic sequence is: an = a + (n - 1)d,
where a is the first term and d is the common difference.
The formula for the nth term of a geometric sequence is: an = a · rn-1,
where a is the first term and r is the common ratio.
Learning Sequences and Series is important for competitive exams because it helps you solve problems quickly and easily. This topic is common in exams like JEE, NDA, SSC, and others. It improves your thinking skills, helps you find patterns, and prepares you for harder math topics like calculus and algebra. Knowing formulas for arithmetic and geometric sequences saves time in the exam and boosts your score. It’s a basic but very useful part of math.
o find the sum of an arithmetic series in Class 11 Maths, you use the formula:
Sn = n/2 × [2a + (n - 1)d]
or
Sn = n/2 × (a + l)
where:
Sn is the sum of the first n terms,
a is the first term,
d is the common difference,
l is the last term, and
n is the number of terms.
Sequences and Series have many real-life applications in arithmetic. They are used in banking and finance for calculating compound interest and loan payments. In laptop technology, they help with algorithms and coding styles. They are also used in physics for motion and waves, and in economics for predicting boom or decline. Even in each day existence, like saving cash month-to-month or making installment plans, sequences assist us arrange and calculate.
The main difference between Arithmetic Progression (AP) and Geometric Progression (GP) lies in how the terms change.
In AP, each term increases or decreases by a fixed number called the common difference (d).
Example: 2, 4, 6, 8, … (common difference = 2)
In GP, each term is multiplied or divided by a fixed number called the common ratio (r).
Example: 3, 6, 12, 24, … (common ratio = 2)
AP deals with addition or subtraction, while GP deals with multiplication or division.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters