NCERT Exemplar Class 11 Maths Solutions Chapter 2 Relations and Functions

NCERT Exemplar Class 11 Maths Solutions Chapter 2 Relations and Functions

Komal MiglaniUpdated on 30 Mar 2025, 07:51 PM IST

While travelling in a taxi, have you ever noticed that the app shows the estimated time to reach the destination? It is possible due to the study of the relation between total distance and the average speed of the taxi, this is known as Relation. Also you have seen the fare for different distances is different. This shows that for every different distance, the fare changes as a variable function depending on distance. Let’s see the definition of Relation and Function. A relation is a relationship between sets of values. In math, the relation is between the $x$-values and $y$-values of ordered pairs. The set of all primary elements of the ordered pairs is called a domain of $R$, and the set of all second elements of the ordered pairs is called a range of $R$. A relation ' $f$ ' is said to be a function if every element of a non-empty set $X$ has only one image or range to a non-empty set Y.

This Story also Contains

  1. NCERT Exemplar Class 11 Maths Solutions Chapter 2 Relations and Functions
  2. Importance of solving NCERT Exemplar Class 11 Maths Solutions Chapter 2
  3. NCERT Solutions for Class 11 Mathematics Chapters
  4. NCERT Exemplar Class 11 Solutions
  5. Read more NCERT Solution subject
  6. Also, read NCERT notes subject-wise
  7. Also, check NCERT Books and NCERT Syllabus here

This article on NCERT Math Class 11 Chapter 2 is briefly about relations and functions. This article contains NCERT Class 11 Maths Chapter 2 exemplar solutions with step-by-step explanations. NCERT Exemplar solutions for other subjects and classes can be downloaded by clicking on NCERT Exemplar solutions.

NCERT Exemplar Class 11 Maths Solutions Chapter 2 Relations and Functions

NCERT Exemplar Class 11 Maths Solutions Chapter 2

Exercise 2.3

(Page no. 27, Total questions - 41)

Question:1

Let $A = \{ -1,2,3\}$ and $B = \{ 1,3\}$. Determine
i) $A\times B$ ii)$B\times A$ iii) $B\times B$ iv) $A\times A$

Answer:

Given data: $A = \{ -1,2,3\}$and$B = \{ 1,3\}$.

Now, let’s solve the problems one by one.

i) $A \times B = \{-1, 2, 3 \} \times \{1, 3\}= \{(-1, 1), (-1, 3), (2, 1), (2, 3), (3, 1), (3, 3)\}$

ii) $B \times A = \{1, 3\} \times \{-1, 2, 3\}= \{(1, -1), (3, -1), (1, 2), (3, 2), (1, 3), (3, 3)\}$

iii) $B \times B = \{1, 3\} \times \{1, 3\} = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$

iv)$A \times A =\{-1, 2, 3\} \times \{-1, 2, 3\}= \{(-1, -1), (-1, 2), (-1, 3), (2,-1), (2, 2), (2, 3), (3, -1), (3, 2), (3, 3)\}$

Question:2

If $P = \ \{ {x : x < 3, x \in N} \ \}$, $Q = \ \{ {x : x \leq 2, x \in W} \ \}$. Find $(P \cup Q) \times (P \cap Q)$, where W is the set of whole numbers.
Answer:
Given data:
$P = \{x: x\leq 3, x \in N \} \Rightarrow P = \{1, 2 \}$
$Q = \{x:x \leq 2, x \in W \} \Rightarrow Q =\{ 0,1,2 \}$

Now, $(P \cup Q) = {0, 1, 2} \text{ and} (P \cap Q) = {1, 2}$

Thus, $(P\cup Q)\times (P\cap Q) =\{0, 1, 2\} \times \{1, 2\} = \{ {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} \}$

Question:3

If $A = \ \{ {x : x \in W, x < 2} \ \}$,$B = \ \{ {x : x \in N, 1 < x < 5} \ \}$, $C=\{3,5\}$ find

I) $A \times (B \cap C)$ (ii) $A \times (B \cup C)$

Answer:

Given data:

$C = \ \{3, 5\ \}$

Now, we can find,

$(B \cap C) = \ \{3\ \}$ &

$(B \cup C) = \ \{2, 3, 4, 5\ \}$
i)$A \times (B \cap C) = \ \{0, 1\ \} \times \ \{3\ \} = \ \{(0, 3), (1, 3)\ \}$
ii)$A \times (B \cup C) = \ \{0, 1\ \} \times \ \{2, 3, 4, 5\ \} = \ \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\ \}$

Question:4

In each of the following cases, find a and b.
(i) $(2a + b, a - b) = (8, 3)$
(ii) $(a/4 , a - 2b) = (0, 6 + b)$

Answer:

i) Given data:
$(2a + b, a - b) = (8, 3)$
If & only if the corresponding coordinates are equal, the two ordered pairs will be equal.

Thus, $2a + b = 8$ …… (i)

& $a - b = 3$ ……. (ii)

From (i) & (ii), we get,

$a = \frac{11}{3}$ & $b = \frac{2}{3}$

ii) Given:

$(a/4, a - 2b) = (0, 6 + b)$

If & only if the corresponding coordinates are equal, the two ordered pairs will be equal.

Thus, $a/4 = 0 \rightarrow a = 0$

& $a - 2b = 6 + b \rightarrow a + 3b = 6$

$0 - 3b = 6$

$b = -2$

Thus, a = 0 & b = -2

Question:5

Given $A = \ \{1, 2, 3, 4, 5\ \}$, $S = \ \{(x, y) : x \in A, y \in A\ \}$. Find the ordered pairs which satisfy the conditions given below:
(i) $x + y = 5$
(ii) $x + y < 5$
(iii) $x + y > 8$

Answer:

Given data:

$A = \ \{1, 2, 3, 4, 5\ \}$ &

$S = \ \{(x, y) : x \in A, y \in A\ \}$

Now,

  • The ordered pairs that satisfy the given condition, $x + y = 5$ are, $(1,4),(4,1),(2,3) \&(3,2)$
  • The ordered pairs that satisfy the given condition, $x + y < 5$ are, $(1,1), (1,2), (2,1), (1,3), (2,2), (3,1)$.
  • The ordered pairs that satisfy the given condition, $x + y > 8$ are, $(4,5), (5,4), (5,5)$.

Question:6

Given $R = \ \{(x, y) : x, y \in W, x^2 + y^2 = 25\ \}$. Find the domain and Range of R.

Answer:

Given:

$R = \ \{(x,y) : x, y \in W, x^2 + y^2 = 25\ \}$

$(0,5),(3,4),(5,0) \&(4,3)$, are the ordered pairs satisfying the condition $x^2 + y^2 = 25$.

Therefore, here,

$Domain = \ \{0,3,4,5\ \}$ &

$Range = \ \{0,3,4,5\ \}$

Question:7

If $R1 = \ \{(x, y) | y = 2x + 7, where\: \: x \in R \: \: and - 5 \leq x \leq 5\ \}$ is a relation. Then find the domain and Range of $R1$.

Answer:

Given data: $R1 = \{(x, y) / y = 2x + 7 \text{ where} x \in R \text{ and} -5 \leq x \leq 5\}$

Thus, domain of R1 will be $\ \{x: -5 \leq x \leq 5 = [-5,5] \ \}$

Domain = $\ \{-5,-4,-3,-2,-1,0,1,2,3,4,5\ \}$

& $y = 2x + 7$

Thus, the values of y will be

$\ \{-3,-1,1,3,5,7,9,11,13,15,17\ \}$

Thus, domain of $R_1 = [-5,5]$

& range of $R_1 = [-3,17]$

Question:8

If $R_2 = \ \{(x, y) | \: \: x \: \: and \: \: y \: \: are \: \: integers \: \: and\: \: x^2 + y^2 = 64\ \}$ is a relation. Then find $R_2$.

Answer:

Given data:$x^2 + y^ 2 = 64$, where x & y $\in$ Z

Thus, it is clear that 64 is the sum of the squares of 2 integers

Thus, for, x=0

Y will be = $\pm8$ & vice-versa.

Therefore, $R_2 = \ \{(0,8),(0,-8),(8,0),(-8,0)\ \}$

Question:9

If $R3 = \ \{(x, |x|) |x \: \: is\: \: a\: \: real\: \: number\ \}$is a relation. Then, find the domain and range of R3.

Answer:

Given data: $R_3 = \ \{(x,|x|\ \}$ where x is a real no.

Thus, the domain of R3 will be equal to that of R & its range will be

$R_3 = (0, \infty) ... (since,\|x\| = R_+]$

Question:10

Is the given relation a function? Give reasons for your answer.

(i) $h = \ \{(4, 6), (3, 9), (- 11, 6), (3, 11)\ \}$

(ii) $f = \ \{(x, x) | x \: \: is \: \: a \: \: real\: \: number\ \}$

(iii) $g = n, (1/n) |n \: \: is\: \: a\: \: positive\: \: integer$

(iv)$s = \ \{(n, n2) | n \: \: is\: \: a\: \: positive\: \: integer\ \}$

(v) $t = \ \{(x, 3) | x \: \: is \: \: a \: \: real\: \: number\ \}$.

Answer:

(i) Given data: $h = \ \{(4,6),(3,9),(-11,6),(3,11)\ \}$

‘h’ is not a function since there are two images- 9 & 11 for the relation 3.

(ii) $f = \ \{(x,x)/ x \: \: is\: \: a\: \: real\: \: no.\ \}$

Here, f is a function because every element of the domain has a unique image.

(iii) $g = \ \{(n, 1/n)/ n \: \: is\: \: a\: \: positive\: \: integer\ \}$

‘g’ is a function because there is a unique image, ‘1/n’, for every element in the domain.

(iv)
$S = \ \{(n, n2)/ n \: \: is\: \: a\: \: positive\: \: integer.\ \}$

‘S’ is a function since the square of any integer is a unique number. & thus, for every element in the domain, there is a unique image.

(V) $T = \ \{(x,3)/ x \: \: is\: \: a\: \: real\: \: number\ \}$

Here, ‘t’ is a constant function since we can observe that there is a constant no. 3 for every real element in the domain.

Question:11

If f and g are real functions defined by $f (x) = x^2 + 7$ and $g (x) = 3x + 5$, find each of the following
(a) $f (3) + g (- 5)$

(b) $f\left(\frac{1}{2}\right) \times g(14)$

(c) $f (- 2) + g (- 1)$

(d) $f (t) - f (- 2)$

(e) $\frac{(f(t) - f(5))}{ (t - 5)}, if \: \: t \neq 5$

Answer:

Given data: $f(x) = x^2 + 7$ & $g(x) = 3x + 5$

  1. $f(3) + g(-5) = [(3)^2 + 7] + [3(-5) + 5]$

$= 16 - 10$

$= 6$

  1. $f(\frac{1}{2} ) \times g(14) = [\left(\frac{1}{2}\right)^2 + 7] \times [3 \times 14 + 5]$

$= \frac{29}{4} \times 47$

$= \frac{1363}{4}$

  1. $f(-2) + g(-1) = [(-2)^2 + 7] + [(-1) + 5]$

$= 11 + 2 = 13$

  1. $f(t) - f(-2) = (t^2 + 7) - [(-2)^2 + 7]$

$= t^2 - 4$

  1. $f(t) - f(5)/ t - 5$, (t is not equal to 5) = $(t^2 + 7) - (5^2 + 7)/ t - 5$

$=\frac{( t^2 + 7 - 32)}{t – 5}$

$= \frac{(t^2 - 25)}{(t - 5)}$

$=(t - 5) \frac{(t + 5)}{(t - 5)}$

$= t + 5$

Question:12

Let f and g be real functions defined by $(x) = 2x + 1$ and $g (x) = 4x - 7$.
(a) For what real numbers x, $f (x)$ = $g (x)$?

(b) For what real numbers x, $f (x) < g (x)$?

Answer:

Given data: $f(x) = 2x + 1$& $g(x) = 4x -7$

i) Now, for, f(x) = g(x),

$2x + 1 = 4x - 7$

$-2x = -8$

Thus, $x = 4$, viz, the required real no.

ii) For, f(x) < g(x),

$2x + 1 < 4x - 7$

$-2x < -8$

Thus, $2x > 8$

Thus, $x > 4$, viz., the required real no.

Question:13

If f and g are two real-valued functions defined as $f (x) = 2x + 1$, $g (x) = x^2 + 1$, then find.

(i) f + g (ii) f - g (iii) fg (iv)$\frac{f}{g}$

Answer:

Given data: $f (x) = 2x + 1$ & $g (x) = x^2 + 1$
i) $f + g = f(x) + g(x)$

$= 2x+1+x^2+1$

$= x^2 + 2x + 2$
ii) $f- g = f(x) - g(x)$

$= (2x + 1) - (x^2 + 1)$

$= 2x - x^2$

iii) $f.g = f(x).g(x)$

$= (2x + 1) (x^2 + 1)$

$= 2x^3 + x^2 + 2x + 1$

iv) $\frac{f}{8} = \frac{f(x)}{g(x)}$

$= 2x + \frac{1}{x^2} + 1$

Question:14

Express the following functions as a set of ordered pairs and determine their range.

$f: X \rightarrow R, f (x) = x^3 + 1, where X = \ \{-1, 0, 3, 9, 7\ \}$

Answer:

Given data: $F: x \rightarrow R, f(x) = x^3 + 1, where, x = \ \{-1,0,3,9,7\ \}$

We know that, here, $x = \ \{-1,0,3,9,7\ \}$

For x = -1,

$f(-1)^3 + 1 = 0$

For x = 0,

$f(0) = (0)^3 + 1 = 1$

For x = 3,

$f(3) = (3)^3 + 1 = 28$

For x = 9,

$F(9) = (9)^3 + 1 = 730$

For x = 7,

$F(7) = (7)^3 + 1 = 344$

Thus, $(-1,0),(0,1),(3,28),(7,344) \&(9,730)$ are the ordered pairs &

$Range = \ \{0,1,28,344,730\ \}.$

Question:15

Find the values of x for which the functions

$f (x) = 3x^2 - 1 \: \: and \: \: g (x) = 3 + x$ are equal.

Answer:

Given data: $f (x) = 3x^2 - 1 \: \: and \: \: g (x) = 3 + x$

Now, it is given that - $f(x) = g(x),$

Thus, $3x^2 - 1 = 3 + x$

$3x^2 - x - 4 = 0$

$3x^2 - 4x + 3x - 4 = 0$

$x(3x - 4) + 1(3x - 4) = 0$

$(3x - 4)(x + 1) = 0$

$3x - 4 = 0 \: \: or\: \: x + 1= 0$

$3x = 4 \: \: or\: \: x = -1$

$x = 4/3$

Thus, -1 & 4/3 are the values of x.

Question:16

Is $g = \ \{(1, 1), (2, 3), (3, 5), (4, 7)\ \}$a function? Justify. If this is described by the relation, $g (x) = \alpha x + \beta$, then what values should be assigned to $\alpha \ and \ \beta$?

Answer:

Given data:

$g = \ \{(1,1),(2,3),(3,5),(4,7)\ \}$

Here, ‘g’ is a function since every element of the domain has a unique image.

$g(x) = \alpha x + \beta ... (given)$

Now, for (1,1)

$g(1) = \alpha (1) + \beta = 1$

$\alpha + \beta = 1 ....... (i)$

& for (2,3),

$g(2) = \alpha (2) + \beta = 3$

$2\alpha + \beta = 3 ........ (ii)$

On solving (i) & (ii), we get,

$\alpha = 2 \: \: and\: \: \beta = -1.$

$g(x) = 2x -1$

It is satisfying for other values of x; hence, it is a function.

Question:17

Find the domain of each of the following functions given by

i) $f(x) = \frac{1}{\sqrt{1-\cos x}}$

ii) $f(x) = \frac{1}{\sqrt{x+\ | x \ |}}$

iii)$f(x) =x\ | x \ |$

iv) $f(x) =\frac{x^3-x+3}{x^2-1}$

v) $f(x) =\frac{3x}{2x-8}$

Answer:

i) Given data: $f(x) = \frac{1}{\sqrt{1-\cos x}}$
Now, we know that,
$-1 \leq cosx \leq 1$
$1 \geq -cosx \geq -1$
$1 + 1 \geq 1 - cos x \geq -1+1$
$2 \geq 1 - cos x \geq 0$
$0 \leq 1 - cos x \leq 2$
Now, for the real value of the domain,
$1 - cos x\neq0,cosx \neq 1$
But, $x \neq 0\: \: 2n\pi \: \: \forall n \in Z$
Thus, domain of $f = R - \ \{2n\pi, n \in Z\ \}$

ii)Given data: $f(x) = \frac{1}{\sqrt{x+\ | x \ |}}$
Now, $x + \ |x \ | = x+x = 2x ...... if \: \: x \geq0$
&$x + \ |x \ | = x - x = 0 ...... if \: \: x < 0$
Now, $x<0$ is not defined so far; hence,
The domain = $R^+$
iii)Given data:$f(x) =x\ | x \ |$
For all x $\in$ R, f(x) is defined
Thus, the domain of f = R.
iv)Given data:$f(x) =\frac{x^3-x+3}{x^2-1}$
Here, only if$x^2 - 1 \neq 0$, f(x) is defined,
$(x-1)(x+1) \neq 0,$
$Thus, x \neq 1$
$and\: \: x \neq -1$
Therefore, domain of $f = R - \ \{-1,1\ \}$
v)Given data: $f(x) =\frac{3x}{2x-8}$

F(x) is only defined at $2x - 8 \neq 0, x \neq 4$,

Thus, the domain = $R - \ \{4\ \}$.

Question:18

Find the range of the following functions given by

i) $f\ ( x \ )= \frac{3}{2-x^2}$

ii)$f\ ( x \ )= 1-\ | x-2 \ |$

iii) $f\ ( x \ )= \ | x-3 \ |$

iv) $f\ ( x \ )= 1+3\cos 2x$

Answer:

i)Given data: $f\ ( x \ )= \frac{3}{2-x^2}$
Let us consider that, y = f(x)
Thus, $y = 3/(2 - x^2)$
Thus,
$y(2 - x^2) = 3$
$2y - yx^2 = 3$
$yx^2 = 2y - 3$
$x^2 = 2 - 3/y$
x is real, if $2y - 3 \geq0 \: \: and\: \: y \geq0$
Thus, $y \geq 3/2$
Therefore,
Range of $f = (3/2, \infty)$
ii)Given data: $f\ ( x \ )= 1-\ | x-2 \ |$
Now, we know that,
$\ |x-2 \ | = -(x-2) , if x < 2, \: \: and\: \: \ | x-2 \ |= (x-2), if \geq 2$
Thus, $\ |-x-2 \ | \geq 0$
Thus, $1 -\ | x-2 \ | \leq 1$
Therefore,
Range of$f = (-\infty, 1)$
iii)Given data: $f\ ( x \ )= \ | x-3 \ |$

Now, we know that,

$\ |x-3 \ | \geq 0$

Thus, $f(x) = 0$
Therefore, range of $f = (0,\infty)$
iv)Given data: $f\ ( x \ )= 1+3\cos 2x$

Now, we know that,

$-1 \leq cos 2x \leq 1$

Thus, $-3 \leq 3 cos 2x \leq 3$

$-3 + 1 \leq 1 + 3 cos 2x \leq 3 + 1$

Thus, $-2 \leq 1 + 3 cos 3x \leq 4$

$-2 \leq f(x) \leq 4$

Therefore, range of $f = [-2, 4].$

Question:19

Redefine the function $f(x) = |x - 2| + |2 + x|, - 3 \leq x \leq 3$
Answer:

$
\text{Given data: } f(x) = |x - 2| + |2 + x|, \quad -3 \leq x \leq 3
$

$
|x-2| =
\begin{cases}
x - 2, & x \geq 2 \\
-(x - 2), & x < 2
\end{cases}
$

$
|2+x| =
\begin{cases}
-(2 + x), & x < -2 \\
(2 + x), & x \geq -2
\end{cases}
$

$
f(x) =
\begin{cases}
-(x - 2) - (2 + x), & -3 \leq x < -2 \\
-(x - 2) + (2 + x), & -2 \leq x < 2 \\
(x - 2) + (2 + x), & 2 \leq x \leq 3
\end{cases}
$

$
f(x) =
\begin{cases}
-2x, & -3 \leq x < -2 \\
4, & -2 \leq x < 2 \\
2x, & 2 \leq x \leq 3
\end{cases}
$

Question:20

If $f(x)=\frac{x-1}{x+1}$, then show that:

i)$f(\frac{1}{x})=-f(x)$ ii) $f(-\frac{1}{x})=\frac{-1}{f(x)}$

Answer:

Given data: $f(x)=\frac{x-1}{x+1}$
i) $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1}$
$= \frac{1-x}{1+x}$
= $-\frac{(x-1)}{x+1} = -f(x)$
Thus, $f\left(\frac{1}{x}\right) = -f(x)$
ii) $f(-1/x) = \frac{\frac{-1}{x}-1}{\frac{-1}{x}+1}$
$= \frac{1 + x}{1 – x}$
$=\frac{ 1}{1 + x/1 - x}$
$=\frac{ -1}{ f(x)}$
Thus, $f\left(\frac{-1}{x}\right) = \frac{-1}{f(x)}$.

Question:21

Let$f(x) = \sqrt{x}\: \: and\: \: g (x) = x$ be two functions defined in the domain $R^+\cup \ \{0\ \}$. Find

(i)$(f + g) (x)$

(ii) $(f - g) (x)$

(iii) $(fg) (x)$

(iv) $\left(\frac{f}{g}\right) (x)$

Answer:

Given data: $f(x) = \sqrt{x}\: \: and\: \: g (x) = x$ are the two functions which are defined in the domain $R^+ \cup \ \{0\ \}$

Now, (i) $(f+g)(x) = f(x) + g(x)$

$=\sqrt{x} + x$

ii) $(f-g)(x) = f(x) - g(x)$

$=\sqrt{x} - x$

iii)$(fg)(x) = f(x)\cdot g(x)$

$= \sqrt{x}.x$

$= x^{\frac{3}{2}}$

iv) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

$= \frac{\sqrt{x}}{x}$

$= \frac{1}{\sqrt{x}}$

Question:22

Find the domain and Range of the function $f (x) = 1/\sqrt{(x-5)}$.
Answer:

Given: $f (x) = \frac{1}{\sqrt{(x-5)}}$

When, $x-5>0, i.e., x>5$, f(x) is real

Thus, $domain = (5, \infty)$

Now, to find the range, we will put

$y = f(x) = \frac{1}{\sqrt{x-5}}$

Thus, $\sqrt {x-5} = 1/y$

$x-5 = \frac{1}{y^2}$

$x = \frac{1}{y^2} + 5$

Therefore, for $x \in (5, \infty), y \in R$.

Therefore, the range of $ = R^+$

Question:23

If $f( x)= y = \frac{ax-b}{cx-a}$ then prove that $f (y) = x$

Answer:

Given: $f( x)= y = \frac{ax-b}{cx-a}$

Now, let us put $x = y$ in $f(x)$,

$f(y) = \frac{ay-b}{cy-a}$

$= \frac{a\frac{\ |ax-b \ |}{\ | cx-a \ |}-b}{c\frac{\ |ax-b \ |}{\ | cx-a \ |}-a}$

Thus, $f(y) = \frac{a^2x-ab-bcx+ab}{cax-bc-cax+a^2}$

$=\frac{(a^{2} x)-bcx}{a^2-bc}$

$= \frac{x(a^2-bc)}{a^2-bc}$

$=x$

Therefore, $f(y) = x$.

Question:24

Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is
(a) $m^{n}$
(b) $n^{m}- 1$
(c) $mn – 1$
(d) $2^{mn}- 1$

Answer:

Given data: n(A) = m & n(B) = n

Thus, n(AxB) = n(A).n(B)

= mn

Thus, $2^{mn-1}$ is the total no. of relations,
Therefore, opt (d) is correct.

Question:25

If$[x]^2 - 5[x] + 6 = 0$, where [. ] denote the greatest integer function, then
(a) $x \in [3,4]$
(b) $x\in (2, 3]$
(c)$x\in [2, 3]$
(d) $x \in [2, 4)$

Answer:

$x \in [2,3]$ Given : $[x]^2 - 5[x] + 6 = 0$

Thus, $[x]^2 - 3[x]2[x] + 6 = 0$

$[x]([x]-3) - 2([x]-3) = 0$

$([x]-3)([x]-2) = 0$

Thus,$[x] = 2,3$

Or we can say that $x \in [2,4)$

Therefore, opt (d) is the correct option.

Question:26

Range of $f\ ( x \ )=\frac{1}{1-2\cos x}$ is

A.$\ [ \frac{1}{3},1 \ ]$
B.$\ [-1, \frac{1}{3} \ ]$
C. $\ ( -\infty ,-1 \ ]\cup \ [ -\frac{1}{3},1 \ )$
D.$\ [ -\frac{1}{3},1 \ ]$

Answer:

Given data: $f\ ( x \ )=\frac{1}{1-2\cos x}$

Now, we know that,

$-1 \geq \cos x \geq1$

Thus, $-1\leq cost \leq 1$

$-2 \leq -2cosx \leq 2$

$\\ -1 \leq 1-2 \cos x<0 \text { or } 0<1-2 \cos x \leq 3 $

$\\\\ -1 \geq \frac{1}{1-2 \cos x}>-\infty \text { or } \infty>\frac{1}{1-2 \cos x} \geq \frac{1}{3} $

$\\\\\ \frac{1}{1-2 \cos x} \in(-\infty,-1] \cup [\frac{1}{3}, \infty)$
Therefore, (c) is the correct option.

Question:27

Let $f(x)=\sqrt{(1+x^2 )}$, then
(A) $f(x y)=f(x) \cdot f(y)$

(B) $f(x y) \geq f(x) . f(y)$

(C) $f(x y) \leq f(x) \cdot f(y)$

(D) None of these

Answer:

Given data: $f(x)=\sqrt{(1+x^2 )}$,
$f(xy) = \sqrt{(1+x^2 y^2 )}$
$f(x).f(y) = \sqrt{(1+x^2 )}. \sqrt{(1+x^2 y^2 )}$
$=\sqrt{1+x^2+y^2+ x^2 y^2 }$
Thus, $\sqrt{1+x^2 y^2 } \leq \sqrt{1+x^2+y^2+ x^2 y^2 }$

i.e.,$f(xy)\leq f(x).f(y)$

Thus, (c) is the correct answer.

Question:28

Domain of $\sqrt {a^2-x^2}$ (a>0) is
A. (- a, a)
B. [- a, a]
C. [0, a]
D. (- a, 0]

Answer:

Let us take,

$f(x) = a^2-x^2$

& f(x) is defined at $a^2-x^2\geq 0$

$x^2-a^2 \leq 0$

$x^2\leq a^2$

Thus, $-a\leq x\leq a$

Thus, domain of f(x) will be [-a,a]

Therefore, (b) is the correct answer.

Question:29

If$f(x)= ax+ b$, where a and b are integers, f(-1) = -5 and f(3) - 3, then a and b are equal to
(a) a = -3, b =-1
(b) a = 2, b =-3
(c) a = 0, b = 2
(d) a = 2, b = 3

Answer:

Given data: $f(x)= ax+ b$

Now, $f(-1) = a(-1) + b$

i.e., $-5 = -a +b$

Thus, $a-b = 5$ ......... (i)

Now, $f(3) = 3a + b$

i.e., $3 = 3a +b$

Thus, $3a + b = 3$ ..... (ii)

From (i) & (ii), we get,

a = 2 & b = -3

Therefore, (b) is the correct answer.

Question:30

  1. The domain of the function f defined by $f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^2-1}}$ is equal to
    A. $(- \infty, - 1) \cup (1, 4]$
    B. $(- \infty, - 1] \cup (1, 4]$
    C. $(- \infty, - 1) \cup [1, 4]$
    D. $(- \infty, - 1) \cup [1, 4)$

Answer:

Given data: $f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^2-1}}$

Now, we know that,

f(x) is defined when, $4-x\geq0\: \: and \: \: x^2-1>0$

Thus, $-x\geq-4 \: \: and \: \: (x-1)(x+1)>0$

Thus, $x\leq 4\: \: and\: \: x<-1/x>1$

Thus, the domain of f(x) =$(-\infty,-1)\cup(1,4]$

Therefore, opt (a) is the correct answer.

Question:31

The domain and range of the real function f defined by$f(x) = \frac{4-x}{x-4}$ is given by

  1. $Domain = R, Range = \ \{-1, 1\ \}$
  2. $Domain = R - \ \{1\ \}, Range = R$
  3. $Domain = R - \ \{4\ \}, Range = \ \{- 1\ \}$
  4. $Domain = R - \ \{- 4\ \}, Range = \ \{-1, 1\ \}$

Answer:

Given data: $y=f(x) = \frac{4-x}{x-4}$

We know that, the domain of $f(x) = R-\ \{4\ \}$

Thus, $yx - 4y = 4-x$

$yx+x = 4y+4$

$x(y+1) = 4y+4$

$x = 4(1+y)/1+y$

Now, if x is a real no. then,

$1+y \neq 0$

Thus, $y \neq -1$

Thus, the range of$f(x) = R - (-1)$

Thus, opt (3) is the correct answer.

Question:32

The domain and range of real function f defined by $f (x) =\sqrt{ x-1}$ is given by

  1. $Domain = (1, \infty), Range = (0, \infty)$
  2. $Domain = [1, \infty), Range = (0, \infty)$
  3. $Domain = [1, \infty), Range = [0, \infty)$
  4. $Domain = [1, \infty), Range = [0, \infty)$

Answer:

Given data: $f (x) =\sqrt{ x-1}$

f(x) is defined $x-1 \geq 0$

& domain of $f(x) = [1,\infty)$

Now, let $y = f(x) =\sqrt{ x-1}$

$y^2 = x - 1$

Thus, $x = y^2 + 1$

Now, if x is real then y should $\in$ R

Thus, Range of $f(x) = [0,\infty)$
Hence, opt (4) is the correct answer.

Question:33

The domain of the function f given by $f(x) = (x^2+2x+1)/(x^2-x-6)$
A. $R - \ \{3, - 2\ \}$
B. $R - \ \{-3, 2\ \}$
C. $R - [3, - 2]$
D. $R - (3, - 2)$

Answer:

Given data: $f(x) = \frac{(x^2+2x+1)}{(x^2-x-6)}$

Now, f(x) is defined by $x^2-x-6=0$

Thus, $x^2-3x+2x-6\neq0$

$(x-3)(x+2) \neq 0$

Thus,$x \neq -2 \text{ or} 3$

This domain of $f(x) = R-\ \{-2,3\ \}$

Hence, the correct answer is opt (a).

Question:34

The domain and range of the function f given by $f (x) = 2 - \ |x -5 \ |$ is
A. $Domain = R^{+}, Range = ( - \infty, 1]$
B. $Domain = R, Range = ( - \infty, 2]$
C. $Domain = R, Range = (- \infty, 2)$
D. $Domain = R^{+}, Range = (- \infty, 2]$

Answer:

Given data: $f (x) = 2 - \ |x -5 \ |$
& f(x) is defined by $x \in R$

Thus, its domain is f(x) = R

$\ |x-5 \ | \geq 0$

$-|x-5| \leq 0$

$2-\ |x-5 \ |\leq 2$

Thus, $f(x) \leq 2$

Thus, range of $f(x) =(-\infty,2]$

Therefore, opt (b) is the correct answer.

Question:35

The domain for which the functions defined by$f (x) = 3x^2 - 1$ and $g (x) = 3 + x$are equal is

A.$\ \{ -1,\frac{4}{3} \ \}$
B.$\ [ -1,\frac{4}{3} \ ]$
C.$\ ( -1,\frac{4}{3} \ )$
D.$\ [ -1,\frac{4}{3} \ )$

Answer:

Given data: $f (x) = 3x^2 - 1$ and $g (x) = 3 + x$

Now, f(x) = g(x)

Thus,

$3x^2 - 1 = 3 + x$

$x(3x-4) + 1(3x-4) = 0$

Thus, $x+1 = 0 or 3x-4 = 0$

Thus, $x = -1 or x = 4/3$

Thus, its domain is $\{ -1, 4/3\}$

Therefore, (a) is the correct option.

Question:36

Let f and g be two real functions given by $f= \ \{(0, 1), (2,0), (3,.-4), (4,2), (5, 1)\ \}$
$g= \ \{(1,0), (2,2), (3,-1), (4,4), (5, 3)\ \}$ then the domain of $f \times g$ is given by________ .

Answer:

Given: $f=\{(0,1),(2,0),(3,-4),(4,2),(5,1)\} \& g=\{(1,0),(2,2),(3,-1),(4,4),(5,3)\}$

Thus, domain of f is$\ \{0,2,3,4,5\ \}$ & that of g = $\ \{1,2,3,4,5\ \}$

Now, domain of f.g = $\ \{2,3,4,5\ \}$

Thus, the filler is$\ \{2,3,4,5\ \}.$

Question:37

Let $f= \ \{(2,4), (5,6), (8, -1), (10, -3)\ \}$ and $g = \ \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\ \}$ be two real functions. Then, match the following:

Answer:

Given data: $f= \ \{(2,4), (5,6), (8, -1), (10, -3)\ \}$ and $g = \ \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\ \}$
Domain of $f(x)$ is $\{2,5,8,10\}$, Domain of $\mathrm{g}(\mathrm{x})$ i s$\{2,7,8,10,11\}$

Now, $f-g, f+g, f\cdot g$ & $\frac{f}{g}$ are defined in the domain $\{2,8,10\}$

  1. $(f-g)2 = f(2) - g(2) = -1$

$(f-g)(8) = -5$

$(f-g)(10) = -16$

Thus,$(f-g) = \ \{(2,-1),(8,-5),(10,16)\ \}$

  1. $(f+g) (2)= f(2) + g(2) = 9$

$(f+g)(8) = 3$

$(f+g)(10) = 10$

Thus, $(f+g) = \ \{(2,9),(8,3),(10,10)\ \}$

  1. $(f.g)(2) = f(2) . g(2) = 20$

$(f.g) (8)= -4$

$(f.g)(10) = -39$

Thus, $(f.g) = \ \{(2,20),(8,-4),(10,-39)\ \}$

  1. $(f/g)(2) = f(2)/g(2) = 4/52(f/g) = f(2)/g(2) = 4/5$

$(f/g)(8) = -1/4$

$(f/g)(10) = -3/13$

Thus, $V = \ \{(2,4/5), (8,(-1/4), (10,-3/13)\ \}$

Thus, the correct matches will be

$(a) \rightarrow(i i i),(b) \rightarrow(i v),(c) \rightarrow(i i) \&(d) \rightarrow(i)$

Question:38

The ordered pair (5,2) belongs to the relation $R =\ \{(x,y): y = x - 5, x,y \in Z \ \}$

Answer:

Given data:$R =\ \{(x,y): y = x - 5, x,y \in Z \ \}$

Now, for (5,2),

$Y = x-5$

Putting $x = 5 \: \: and\: \: y = 5-5 = 0\neq2$

Thus, (5,2) is not the ordered pair of R; hence, it is false.

Question:39

If $P = \ \{1, 2\ \}$, then $P \times P \times P = \ \{(1, 1,1), (2,2, 2), (1, 2,2), (2,1, 1)\ \}$

Answer:

Given data: $P = \ \{1, 2\ \}$

Now, $P \times P = \ \{1,2\ \} \times \ \{1,2\ \}$

$= \ \{(1,1),(1,2),(2,1),(2,2)\ \}$

& $P \times P \times P = \ \{1,2\ \} \times \ \{1,2\ \} \times \ \{1,2\ \}$

$= \ \{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\ \}$

Thus, the statement is false.

Question:40

If $A= \ \{1,2, 3\ \}, 5= \ \{3,4\ \} and\: \: C= \ \{4, 5, 6\ \}$, then$(A \times B) \cup (A \times C) = \ \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3,4), (3, 5), (3,6)\ \}.$

Answer:

Given data: $A= \ \{1,2, 3\ \}, 5= \ \{3,4\ \} and\: \: C= \ \{4, 5, 6\ \}$

Now,$A \times B = \ \{(1,3),(1,4),(2,3),(3,3),(3,4)\ \}$

$A \times C = \ \{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\ \}$

Now,$(A \times B) \cup (A \times C) = \ \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\ \}.$

Thus, the given statement is true.

Question:41

State True or False for the following statements

If$(x - 2, y + 5) = \ ( -2,\frac{1}{3} \ )$ are two equal ordered pairs, then$x = 4, y=\frac{-14}{3}$.

Answer:

Given data: $(x - 2, y + 5) = \ ( -2,\frac{1}{3} \ )$

Now,$x - 2 = -1, i.e., x = 0$ & $y +5 = 1/3$, thus, $y = -14/3$

Thus, the given statement is false.

Question:42

If $A\times B= \ \{(a, x), (a, y), (b, x), (b, y)\ \}$, then $M = \ \{a, b\ \},B= \ \{x, y\ \}.$

Answer:

Given data: $A = \ \{a,b\ \} , B = \ \{x,y\ \}$

$A \times B = \ \{(a,x),(a,y),(b,x),(b,y)\ \}$

Therefore, the statement is true.

Importance of solving NCERT Exemplar Class 11 Maths Solutions Chapter 2

Through Class 11 Maths NCERT Exemplar Solutions Chapter 2, the students will learn briefly about different types of relations and functions and their associated functions. NCERT Exemplar solutions for Class 11 Maths Chapter 2 will help students further learn about sets and will help them relate this concept to real-life situations. With NCERT Exemplar Class 11 Maths Solutions Chapter 2, the students will understand the use of function and relation in daily routine. It can also be related to different marks a student scores during different semesters for college or different scores of exams in a year at the school of a particular student is as seen established through the use of relation and functions.

NCERT Exemplar Class 11 Solutions

Our experts prepared the solutions NCERT Exemplar for every subject. You can refer to them to learn the proper approach.

Read more NCERT Solution subject

Our experts prepared solutions for every subject. You can refer them to learn the proper approach

Also, read NCERT notes subject-wise

Notes of all subjects are here; you can refer to them for clarity

Also, check NCERT Books and NCERT Syllabus here

You can find the syllabus of class 11 here

Frequently Asked Questions (FAQs)

Q: How is this chapter helpful for higher education?
A:

This chapter is one of the basic chapters of calculus maths and is helpful in solving many problems related to maths and physics during higher education and engineering.

Q: Are these solutions available offline?
A:

Yes, these NCERT Exemplar Class 11 Maths solutions chapter 2 are available offline as one can download these solutions through a download link.

Q: How many questions are solved in these solutions?
A:

Our team has solved 23 questions from three exercises along with 12 miscellaneous questions mentioned in the NCERT book.

Q: Who has prepared these NCERT Exemplar class 11 maths solutions chapter 2?
A:

These NCERT Exemplar Solutions for Class 11 Maths chapter 2 are prepared by our team of teachers of maths who have CBSE teaching experience of many years. 

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)