While travelling in a taxi, have you ever noticed that the app shows the estimated time to reach the destination? It is possible due to the study of the relation between total distance and the average speed of the taxi, which is known as the Relation. Also, you have seen that the fare for different distances is different. This shows that for every different distance, the fare changes as a variable function depending on the distance. Let’s see the definition of a Relation and a Function. A relation is a relationship between sets of values. In math, the relation is between the $x$-values and $y$-values of ordered pairs. The set of all primary elements of the ordered pairs is called a domain of $R$, and the set of all second elements of the ordered pairs is called a range of $R$. A relation ' $f$ ' is said to be a function if every element of a non-empty set $X$ has only one image or range to a non-empty set Y.
This Story also Contains
This article on the NCERT Math Class 11 Chapter 2 is briefly about relations and functions. This article contains NCERT Class 11 Maths Chapter 2 exemplar solutions with step-by-step explanations. NCERT Exemplar solutions for other subjects and classes can be downloaded by clicking on NCERT Exemplar solutions.
Also, read,
|
NCERT Exemplar Class 11 Maths Solutions Chapter 2 Exercise 2.3 Page no.: 27 Total questions: 41 |
Question 1
Answer:
Given data: $A = \{ -1,2,3\}$and$B = \{ 1,3\}$.
Now, let’s solve the problems one by one.
i) $A \times B = \{-1, 2, 3 \} \times \{1, 3\}= \{(-1, 1), (-1, 3), (2, 1), (2, 3), (3, 1), (3, 3)\}$
ii) $B \times A = \{1, 3\} \times \{-1, 2, 3\}= \{(1, -1), (3, -1), (1, 2), (3, 2), (1, 3), (3, 3)\}$
iii) $B \times B = \{1, 3\} \times \{1, 3\} = \{(1, 1), (1, 3), (3, 1), (3, 3)\}$
iv)$A \times A =\{-1, 2, 3\} \times \{-1, 2, 3\}= \{(-1, -1), (-1, 2), (-1, 3), (2,-1), (2, 2), (2, 3), (3, -1), (3, 2), (3, 3)\}$
Question 2
If $P = \ \{ {x : x < 3, x \in N} \ \}$, $Q = \ \{ {x : x \leq 2, x \in W} \ \}$. Find $(P \cup Q) \times (P \cap Q)$, where W is the set of whole numbers.
Answer:
Given data:
$P = \{x: x\leq 3, x \in N \} \Rightarrow P = \{1, 2 \}$
$Q = \{x:x \leq 2, x \in W \} \Rightarrow Q =\{ 0,1,2 \}$
Now, $(P \cup Q) = {0, 1, 2} \text{ and} (P \cap Q) = {1, 2}$
Thus, $(P\cup Q)\times (P\cap Q) =\{0, 1, 2\} \times \{1, 2\} = \{ {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} \}$
Question 3
If $A = \ \{ {x : x \in W, x < 2} \ \}$,$B = \ \{ {x : x \in N, 1 < x < 5} \ \}$, $C=\{3,5\}$ find
I) $A \times (B \cap C)$ (ii) $A \times (B \cup C)$
Answer:
Given data:
$C = \ \{3, 5\ \}$
Now, we can find,
$(B \cap C) = \ \{3\ \}$ &
$(B \cup C) = \ \{2, 3, 4, 5\ \}$
i)$A \times (B \cap C) = \ \{0, 1\ \} \times \ \{3\ \} = \ \{(0, 3), (1, 3)\ \}$
ii)$A \times (B \cup C) = \ \{0, 1\ \} \times \ \{2, 3, 4, 5\ \} = \ \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\ \}$
Question 4
Answer:
i) Given data:
$(2a + b, a - b) = (8, 3)$
If & only if the corresponding coordinates are equal, the two ordered pairs will be equal.
Thus, $2a + b = 8$ …… (i)
& $a - b = 3$ ……. (ii)
From (i) & (ii), we get,
$a = \frac{11}{3}$ & $b = \frac{2}{3}$
ii) Given:
$(\frac a 4, a - 2b) = (0, 6 + b)$
If & only if the corresponding coordinates are equal, the two ordered pairs will be equal.
Thus, $\frac a 4 = 0 \rightarrow a = 0$
& $a - 2b = 6 + b \rightarrow a + 3b = 6$
$0 - 3b = 6$
$b = -2$
Thus, a = 0 & b = -2
Question 5
Answer:
Given data:
$A = \ \{1, 2, 3, 4, 5\ \}$ &
$S = \ \{(x, y) : x \in A, y \in A\ \}$
Now,
Question 6
Given $R = \ \{(x, y) : x, y \in W, x^2 + y^2 = 25\ \}$. Find the domain and Range of R.
Answer:
Given:
$R = \ \{(x,y) : x, y \in W, x^2 + y^2 = 25\ \}$
$(0,5),(3,4),(5,0) \&(4,3)$, are the ordered pairs satisfying the condition $x^2 + y^2 = 25$.
Therefore, here,
$Domain = \ \{0,3,4,5\ \}$ &
$Range = \ \{0,3,4,5\ \}$
Question 7
Answer:
Given data: $R1 = \{(x, y) / y = 2x + 7 \text{ where} x \in R \text{ and} -5 \leq x \leq 5\}$
Thus, domain of R1 will be $\ \{x: -5 \leq x \leq 5 = [-5,5] \ \}$
Domain = $\ \{-5,-4,-3,-2,-1,0,1,2,3,4,5\ \}$
& $y = 2x + 7$
Thus, the values of y will be
$\ \{-3,-1,1,3,5,7,9,11,13,15,17\ \}$
Thus, domain of $R_1 = [-5,5]$
& range of $R_1 = [-3,17]$
Question 8
Answer:
Given data:$x^2 + y^ 2 = 64$, where x & y $\in$ Z
Thus, it is clear that 64 is the sum of the squares of 2 integers
Thus, for x=0
Y will be = $\pm8$ & vice-versa.
Therefore, $R_2 = \ \{(0,8),(0,-8),(8,0),(-8,0)\ \}$
Question 9
Answer:
Given data: $R_3 = \ \{(x,|x|\ \}$ where x is a real no.
Thus, the domain of R3 will be equal to that of R & its range will be
$R_3 = (0, \infty) ... (since,\|x\| = R_+]$
Question 10
Is the given relation a function? Give reasons for your answer.
(i) $h = \ \{(4, 6), (3, 9), (- 11, 6), (3, 11)\ \}$
(ii) $f = \ \{(x, x) | x \: \: is \: \: a \: \: real\: \: number\ \}$
(iii) $g = n, (\frac 1 n) |n \: \: is\: \: a\: \: positive\: \: integer$
(iv)$s = \ \{(n, n^2) | n \: \: is\: \: a\: \: positive\: \: integer\ \}$
(v) $t = \ \{(x, 3) | x \: \: is \: \: a \: \: real\: \: number\ \}$.
Answer:
(i) Given data: $h = \ \{(4,6),(3,9),(-11,6),(3,11)\ \}$
‘h’ is not a function since there are two images- 9 & 11 for the relation 3.
(ii) $f = | \{(x,x)| x \: \: is\: \: a\: \: real\: \: no.\ \}$
Here, f is a function because every element of the domain has a unique image.
(iii) $g = | \{(n, \frac 1 n)| n \: \: is\: \: a\: \: positive\: \: integer\ \}$
‘g’ is a function because there is a unique image, ‘\frac 1 n’, for every element in the domain.
(iv)
$S = | \{(n, n^2)|n \: \: is\: \: a\: \: positive\: \: integer.\ \}$
‘S’ is a function since the square of any integer is a unique number. & thus, for every element in the domain, there is a unique image.
(V) $T = | \{(x,3)| x \: \: is\: \: a\: \: real\: \: number\ \}$
Here, ‘t’ is a constant function since we can observe that there is a constant no. 3 for every real element in the domain.
Question 11
(b) $f\left(\frac{1}{2}\right) \times g(14)$
(c) $f (- 2) + g (- 1)$
(d) $f (t) - f (- 2)$
(e) $\frac{(f(t) - f(5))}{ (t - 5)}, if \: \: t \neq 5$
Answer:
Given data: $f(x) = x^2 + 7$ & $g(x) = 3x + 5$
$= 16 - 10$
$= 6$
$= \frac{29}{4} \times 47$
$= \frac{1363}{4}$
$= 11 + 2 = 13$
$= t^2 - 4$
$=\frac{( t^2 + 7 - 32)}{t – 5}$
$= \frac{(t^2 - 25)}{(t - 5)}$
$=(t - 5) \frac{(t + 5)}{(t - 5)}$
$= t + 5$
Question 12
(b) For what real numbers x, $f (x) < g (x)$?
Answer:
Given data: $f(x) = 2x + 1$& $g(x) = 4x -7$
i) Now, for, f(x) = g(x),
$2x + 1 = 4x - 7$
$-2x = -8$
Thus, $x = 4$, viz, the required real no.
ii) For, f(x) < g(x),
$2x + 1 < 4x - 7$
$-2x < -8$
Thus, $2x > 8$
Thus, $x > 4$, viz., the required real no.
Question 13
If f and g are two real-valued functions defined as $f (x) = 2x + 1$, $g (x) = x^2 + 1$, then find.
(i) f + g (ii) f - g (iii) fg (iv)$\frac{f}{g}$
Answer:
Given data: $f (x) = 2x + 1$ & $g (x) = x^2 + 1$
i) $f + g = f(x) + g(x)$
$= 2x+1+x^2+1$
$= x^2 + 2x + 2$
ii) $f- g = f(x) - g(x)$
$= (2x + 1) - (x^2 + 1)$
$= 2x - x^2$
iii) $f.g = f(x).g(x)$
$= (2x + 1) (x^2 + 1)$
$= 2x^3 + x^2 + 2x + 1$
iv) $\frac{f}{8} = \frac{f(x)}{g(x)}$
$= 2x + \frac{1}{x^2} + 1$
Question 14
Express the following functions as a set of ordered pairs and determine their range.
$f: X \rightarrow R, f (x) = x^3 + 1, where X = \ \{-1, 0, 3, 9, 7\ \}$
Answer:
Given data: $F: x \rightarrow R, f(x) = x^3 + 1, where, x = \ \{-1,0,3,9,7\ \}$
We know that, here, $x = \ \{-1,0,3,9,7\ \}$
For x = -1,
$f(-1)^3 + 1 = 0$
For x = 0,
$f(0) = (0)^3 + 1 = 1$
For x = 3,
$f(3) = (3)^3 + 1 = 28$
For x = 9,
$F(9) = (9)^3 + 1 = 730$
For x = 7,
$F(7) = (7)^3 + 1 = 344$
Thus, $(-1,0),(0,1),(3,28),(7,344) \&(9,730)$ are the ordered pairs &
$Range = \ \{0,1,28,344,730\ \}.$
Question 15
Find the values of x for which the functions
$f (x) = 3x^2 - 1 \: \: and \: \: g (x) = 3 + x$ are equal.
Answer:
Given data: $f (x) = 3x^2 - 1 \: \: and \: \: g (x) = 3 + x$
Now, it is given that - $f(x) = g(x),$
Thus, $3x^2 - 1 = 3 + x$
$3x^2 - x - 4 = 0$
$3x^2 - 4x + 3x - 4 = 0$
$x(3x - 4) + 1(3x - 4) = 0$
$(3x - 4)(x + 1) = 0$
$3x - 4 = 0 \: \: or\: \: x + 1= 0$
$3x = 4 \: \: or\: \: x = -1$
$x = 4/3$
Thus, -1 & 4/3 are the values of x.
Question 16
Answer:
Given data:
$g = \ \{(1,1),(2,3),(3,5),(4,7)\ \}$
Here, ‘g’ is a function since every element of the domain has a unique image.
$g(x) = \alpha x + \beta ... (given)$
Now, for (1,1)
$g(1) = \alpha (1) + \beta = 1$
$\alpha + \beta = 1 ....... (i)$
& for (2,3),
$g(2) = \alpha (2) + \beta = 3$
$2\alpha + \beta = 3 ........ (ii)$
On solving (i) & (ii), we get,
$\alpha = 2 \: \: and\: \: \beta = -1.$
$g(x) = 2x -1$
It is satisfying for other values of x; hence, it is a function.
Question 17
Find the domain of each of the following functions given by
i) $f(x) = \frac{1}{\sqrt{1-\\cos x}}$
ii) $f(x) = \frac{1}{\sqrt{x+\ | x \ |}}$
iii)$f(x) =x\ | x \ |$
iv) $f(x) =\frac{x^3-x+3}{x^2-1}$
v) $f(x) =\frac{3x}{2x-8}$
Answer:
i) Given data: $f(x) = \frac{1}{\sqrt{1-\\cos x}}$
Now, we know that,
$-1 \leq \cos x \leq 1$
$1 \geq -\cos x \geq -1$
$1 + 1 \geq 1 - \cos x \geq -1+1$
$2 \geq 1 - \cos x \geq 0$
$0 \leq 1 - \cos x \leq 2$
Now, for the real value of the domain,
$1 - \cos x\neq0,\cos x \neq 1$
But, $x \neq 0\: \: 2n\pi \: \: \forall n \in Z$
Thus, domain of $f = R - \ \{2n\pi, n \in Z\ \}$
ii)Given data: $f(x) = \frac{1}{\sqrt{x+\ | x \ |}}$
Now, $x + \ |x \ | = x+x = 2x ...... if \: \: x \geq0$
&$x + \ |x \ | = x - x = 0 ...... if \: \: x < 0$
Now, $x<0$ is not defined so far; hence,
The domain = $R^+$
iii)Given data:$f(x) =x\ | x \ |$
For all x $\in$ R, f(x) is defined
Thus, the domain of f = R.
iv)Given data:$f(x) =\frac{x^3-x+3}{x^2-1}$
Here, only if$x^2 - 1 \neq 0$, f(x) is defined,
$(x-1)(x+1) \neq 0,$
$Thus, x \neq 1$
$and\: \: x \neq -1$
Therefore, domain of $f = R - \ \{-1,1\ \}$
v)Given data: $f(x) =\frac{3x}{2x-8}$
F(x) is only defined at $2x - 8 \neq 0, x \neq 4$,
Thus, the domain = $R - \ \{4\ \}$.
Question 18
Find the range of the following functions given by
i) $f\ ( x \ )= \frac{3}{2-x^2}$
ii)$f\ ( x \ )= 1-\ | x-2 \ |$
iii) $f\ ( x \ )= \ | x-3 \ |$
iv) $f\ ( x \ )= 1+3\cos 2x$
Answer:
i)Given data: $f\ ( x \ )= \frac{3}{2-x^2}$
Let us consider that, y = f(x)
Thus, $y = 3/(2 - x^2)$
Thus,
$y(2 - x^2) = 3$
$2y - yx^2 = 3$
$yx^2 = 2y - 3$
$x^2 = 2 - 3/y$
x is real, if $2y - 3 \geq0 \: \: and\: \: y \geq0$
Thus, $y \geq 3/2$
Therefore,
Range of $f = (3/2, \infty)$
ii)Given data: $f\ ( x \ )= 1-\ | x-2 \ |$
Now, we know that,
$\ |x-2 \ | = -(x-2) , if x < 2, \: \: and\: \: \ | x-2 \ |= (x-2), if \geq 2$
Thus, $\ |-x-2 \ | \geq 0$
Thus, $1 -\ | x-2 \ | \leq 1$
Therefore,
Range of$f = (-\infty, 1)$
iii)Given data: $f\ ( x \ )= \ | x-3 \ |$
Now, we know that,
$\ |x-3 \ | \geq 0$
Thus, $f(x) = 0$
Therefore, range of $f = (0,\infty)$
iv)Given data: $f\ ( x \ )= 1+3\cos 2x$
Now, we know that,
$-1 \leq cos 2x \leq 1$
Thus, $-3 \leq 3 cos 2x \leq 3$
$-3 + 1 \leq 1 + 3 cos 2x \leq 3 + 1$
Thus, $-2 \leq 1 + 3 cos 3x \leq 4$
$-2 \leq f(x) \leq 4$
Therefore, range of $f = [-2, 4].$
Question 19
Redefine the function $f(x) = |x - 2| + |2 + x|, - 3 \leq x \leq 3$
Answer:
$
\text{Given data: } f(x) = |x - 2| + |2 + x|, \quad -3 \leq x \leq 3
$
$
|x-2| =
\begin{cases}
x - 2, & x \geq 2 \\
-(x - 2), & x < 2
\end{cases}
$
$
|2+x| =
\begin{cases}
-(2 + x), & x < -2 \\
(2 + x), & x \geq -2
\end{cases}
$
$
f(x) =
\begin{cases}
-(x - 2) - (2 + x), & -3 \leq x < -2 \\
-(x - 2) + (2 + x), & -2 \leq x < 2 \\
(x - 2) + (2 + x), & 2 \leq x \leq 3
\end{cases}
$
$
f(x) =
\begin{cases}
-2x, & -3 \leq x < -2 \\
4, & -2 \leq x < 2 \\
2x, & 2 \leq x \leq 3
\end{cases}
$
Question 20
If $f(x)=\frac{x-1}{x+1}$, then show that:
i)$f(\frac{1}{x})=-f(x)$ ii) $f(-\frac{1}{x})=\frac{-1}{f(x)}$
Answer:
Given data: $f(x)=\frac{x-1}{x+1}$
i) $f\left(\frac{1}{x}\right) = \frac{\frac{1}{x}-1}{\frac{1}{x}+1}$
$= \frac{1-x}{1+x}$
= $-\frac{(x-1)}{x+1} = -f(x)$
Thus, $f\left(\frac{1}{x}\right) = -f(x)$
ii) $f(-\frac 1 x) = \frac{\frac{-1}{x}-1}{\frac{-1}{x}+1}$
$= \frac{1 + x}{1 – x}$
$=\frac{ 1}{1 + x/1 - x}$
$=\frac{ -1}{ f(x)}$
Thus, $f\left(\frac{-1}{x}\right) = \frac{-1}{f(x)}$.
Question 21
(i)$(f + g) (x)$
(ii) $(f - g) (x)$
(iii) $(fg) (x)$
(iv) $\left(\frac{f}{g}\right) (x)$
Answer:
Given data: $f(x) = \sqrt{x}\: \: and\: \: g (x) = x$ are the two functions which are defined in the domain $R^+ \cup \ \{0\ \}$
Now, (i) $(f+g)(x) = f(x) + g(x)$
$=\sqrt{x} + x$
ii) $(f-g)(x) = f(x) - g(x)$
$=\sqrt{x} - x$
iii)$(fg)(x) = f(x)\cdot g(x)$
$= \sqrt{x}.x$
$= x^{\frac{3}{2}}$
iv) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$
$= \frac{\sqrt{x}}{x}$
$= \frac{1}{\sqrt{x}}$
Question 22
Find the domain and Range of the function $f (x) = 1/\sqrt{(x-5)}$.
Answer:
Given: $f (x) = \frac{1}{\sqrt{(x-5)}}$
When, $x-5>0, i.e., x>5$, f(x) is real
Thus, $domain = (5, \infty)$
Now, to find the range, we will put
$y = f(x) = \frac{1}{\sqrt{x-5}}$
Thus, $\sqrt {x-5} = 1/y$
$x-5 = \frac{1}{y^2}$
$x = \frac{1}{y^2} + 5$
Therefore, for $x \in (5, \infty), y \in R$.
Therefore, the range of $ = R^+$
Question 23
If $f( x)= y = \frac{ax-b}{cx-a}$ then prove that $f (y) = x$
Answer:
Given: $f( x)= y = \frac{ax-b}{cx-a}$
Now, let us put $x = y$ in $f(x)$,
$f(y) = \frac{ay-b}{cy-a}$
$= \frac{a\frac{\ |ax-b \ |}{\ | cx-a \ |}-b}{c\frac{\ |ax-b \ |}{\ | cx-a \ |}-a}$
Thus, $f(y) = \frac{a^2x-ab-bcx+ab}{cax-bc-cax+a^2}$
$=\frac{(a^{2} x)-bcx}{a^2-bc}$
$= \frac{x(a^2-bc)}{a^2-bc}$
$=x$
Therefore, $f(y) = x$.
Question 24
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is
(a) $m^{n}$
(b) $n^{m}- 1$
(c) $mn – 1$
(d) $2^{mn}- 1$
Answer:
Given data: n(A) = m & n(B) = n
Thus, n(AxB) = n(A).n(B)
= mn
Thus, $2^{mn-1}$ is the total no. of relations,
Therefore, opt (d) is correct.
Question 25
If$[x]^2 - 5[x] + 6 = 0$, where [. ] denote the greatest integer function, then
(a) $x \in [3,4]$
(b) $x\in (2, 3]$
(c)$x\in [2, 3]$
(d) $x \in [2, 4)$
Answer:
$x \in [2,3]$ Given : $[x]^2 - 5[x] + 6 = 0$
Thus, $[x]^2 - 3[x]2[x] + 6 = 0$
$[x]([x]-3) - 2([x]-3) = 0$
$([x]-3)([x]-2) = 0$
Thus,$[x] = 2,3$
Or we can say that $x \in [2,4)$
Therefore, opt (d) is the correct option.
Question 26
Range of $f\ ( x \ )=\frac{1}{1-2\\cos x}$ is
A.$\ [ \frac{1}{3},1 \ ]$
B.$\ [-1, \frac{1}{3} \ ]$
C. $\ ( -\infty ,-1 \ ]\cup \ [ -\frac{1}{3},1 \ )$
D.$\ [ -\frac{1}{3},1 \ ]$
Answer:
Given data: $f\ ( x \ )=\frac{1}{1-2\\cos x}$
Now, we know that,
$-1 \geq \\cos x \geq1$
Thus, $-1\leq cost \leq 1$
$-2 \leq -2\cos x \leq 2$
$\\ -1 \leq 1-2 \\cos x<0 \text { or } 0<1-2 \\cos x \leq 3 $
$\\\\ -1 \geq \frac{1}{1-2 \\cos x}>-\infty \text { or } \infty>\frac{1}{1-2 \\cos x} \geq \frac{1}{3} $
$\\\\\ \frac{1}{1-2 \\cos x} \in(-\infty,-1] \cup [\frac{1}{3}, \infty)$
Therefore, (c) is the correct option.
Question 27
Let $f(x)=\sqrt{(1+x^2 )}$, then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) . f(y)$
(C) $f(x y) \leq f(x) \cdot f(y)$
(D) None of these
Answer:
Given data: $f(x)=\sqrt{(1+x^2 )}$,
$f(xy) = \sqrt{(1+x^2 y^2 )}$
$f(x).f(y) = \sqrt{(1+x^2 )}. \sqrt{(1+x^2 y^2 )}$
$=\sqrt{1+x^2+y^2+ x^2 y^2 }$
Thus, $\sqrt{1+x^2 y^2 } \leq \sqrt{1+x^2+y^2+ x^2 y^2 }$
i.e.,$f(xy)\leq f(x).f(y)$
Thus, (c) is the correct answer.
Question 28
Domain of $\sqrt {a^2-x^2}$ (a>0) is
A. (- a, a)
B. [- a, a]
C. [0, a]
D. (- a, 0]
Answer:
Let us take,
$f(x) = a^2-x^2$
& f(x) is defined at $a^2-x^2\geq 0$
$x^2-a^2 \leq 0$
$x^2\leq a^2$
Thus, $-a\leq x\leq a$
Thus, domain of f(x) will be [-a,a]
Therefore, (b) is the correct answer.
Question 29
If$f(x)= ax+ b$, where a and b are integers, f(-1) = -5 and f(3) - 3, then a and b are equal to
(a) a = -3, b =-1
(b) a = 2, b =-3
(c) a = 0, b = 2
(d) a = 2, b = 3
Answer:
Given data: $f(x)= ax+ b$
Now, $f(-1) = a(-1) + b$
i.e., $-5 = -a +b$
Thus, $a-b = 5$ ......... (i)
Now, $f(3) = 3a + b$
i.e., $3 = 3a +b$
Thus, $3a + b = 3$ ..... (ii)
From (i) & (ii), we get,
a = 2 & b = -3
Therefore, (b) is the correct answer.
Question 30
Answer:
Given data: $f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^2-1}}$
Now, we know that,
f(x) is defined when, $4-x\geq0\: \: and \: \: x^2-1>0$
Thus, $-x\geq-4 \: \: and \: \: (x-1)(x+1)>0$
Thus, $x\leq 4\: \: and\: \: x<-\frac 1 x>1$
Thus, the domain of f(x) =$(-\infty,-1)\cup(1,4]$
Therefore, opt (a) is the correct answer.
Question 31
The domain and range of the real function f defined by$f(x) = \frac{4-x}{x-4}$ is given by
Answer:
Given data: $y=f(x) = \frac{4-x}{x-4}$
We know that, the domain of $f(x) = R-\ \{4\ \}$
Thus, $yx - 4y = 4-x$
$yx+x = 4y+4$
$x(y+1) = 4y+4$
$x = 4(1+y)/1+y$
Now, if x is a real no. then,
$1+y \neq 0$
Thus, $y \neq -1$
Thus, the range of$f(x) = R - (-1)$
Thus, opt (3) is the correct answer.
Question 32
The domain and range of real function f defined by $f (x) =\sqrt{ x-1}$ is given by
Answer:
Given data: $f (x) =\sqrt{ x-1}$
f(x) is defined $x-1 \geq 0$
& domain of $f(x) = [1,\infty)$
Now, let $y = f(x) =\sqrt{ x-1}$
$y^2 = x - 1$
Thus, $x = y^2 + 1$
Now, if x is real then y should $\in$ R
Thus, Range of $f(x) = [0,\infty)$
Hence, opt (4) is the correct answer.
Question 33
The domain of the function f given by $f(x) = (x^2+2x+1)/(x^2-x-6)$
A. $R - \ \{3, - 2\ \}$
B. $R - \ \{-3, 2\ \}$
C. $R - [3, - 2]$
D. $R - (3, - 2)$
Answer:
Given data: $f(x) = \frac{(x^2+2x+1)}{(x^2-x-6)}$
Now, f(x) is defined by $x^2-x-6=0$
Thus, $x^2-3x+2x-6\neq0$
$(x-3)(x+2) \neq 0$
Thus,$x \neq -2 \text{ or} 3$
This domain of $f(x) = R-\ \{-2,3\ \}$
Hence, the correct answer is opt (a).
Question 34
The domain and range of the function f given by $f (x) = 2 - \ |x -5 \ |$ is
A. $Domain = R^{+}, Range = ( - \infty, 1]$
B. $Domain = R, Range = ( - \infty, 2]$
C. $Domain = R, Range = (- \infty, 2)$
D. $Domain = R^{+}, Range = (- \infty, 2]$
Answer:
Given data: $f (x) = 2 - \ |x -5 \ |$
& f(x) is defined by $x \in R$
Thus, its domain is f(x) = R
$\ |x-5 \ | \geq 0$
$-|x-5| \leq 0$
$2-\ |x-5 \ |\leq 2$
Thus, $f(x) \leq 2$
Thus, range of $f(x) =(-\infty,2]$
Therefore, opt (b) is the correct answer.
Question 35
The domain for which the functions defined by$f (x) = 3x^2 - 1$ and $g (x) = 3 + x$are equal is
A.$\ \{ -1,\frac{4}{3} \ \}$
B.$\ [ -1,\frac{4}{3} \ ]$
C.$\ ( -1,\frac{4}{3} \ )$
D.$\ [ -1,\frac{4}{3} \ )$
Answer:
Given data: $f (x) = 3x^2 - 1$ and $g (x) = 3 + x$
Now, f(x) = g(x)
Thus,
$3x^2 - 1 = 3 + x$
$x(3x-4) + 1(3x-4) = 0$
Thus, $x+1 = 0 or 3x-4 = 0$
Thus, $x = -1 or x = 4/3$
Thus, its domain is $\{ -1, 4/3\}$
Therefore, (a) is the correct option.
Question 36
Answer:
Given: $f=\{(0,1),(2,0),(3,-4),(4,2),(5,1)\} \& g=\{(1,0),(2,2),(3,-1),(4,4),(5,3)\}$
Thus, domain of f is$\ \{0,2,3,4,5\ \}$ & that of g = $\ \{1,2,3,4,5\ \}$
Now, domain of f.g = $\ \{2,3,4,5\ \}$
Thus, the filler is$\ \{2,3,4,5\ \}.$
Question 37
|
A |
$f-g$ |
i |
$\ \{ \ ( 2,\frac{4}{5} \ ),\ ( 8,\frac{-1}{4} \ ),\ ( 10,\frac{-3}{13} \ ) \ \}$ |
|
B |
$f+g$ |
ii | |
|
C |
$f\cdot g$ |
iii | |
|
D |
$\frac{f}{g}$ |
iv |
Answer:
Given data: $f= \ \{(2,4), (5,6), (8, -1), (10, -3)\ \}$ and $g = \ \{(2, 5), (7,1), (8,4), (10,13), (11, 5)\ \}$
Domain of $f(x)$ is $\{2,5,8,10\}$, Domain of $\mathrm{g}(\mathrm{x})$ i s$\{2,7,8,10,11\}$
Now, $f-g, f+g, f\cdot g$ & $\frac{f}{g}$ are defined in the domain $\{2,8,10\}$
$(f-g)(8) = -5$
$(f-g)(10) = -16$
Thus,$(f-g) = \ \{(2,-1),(8,-5),(10,16)\ \}$
$(f+g)(8) = 3$
$(f+g)(10) = 10$
Thus, $(f+g) = \ \{(2,9),(8,3),(10,10)\ \}$
$(f.g) (8)= -4$
$(f.g)(10) = -39$
Thus, $(f.g) = \ \{(2,20),(8,-4),(10,-39)\ \}$
$(f/g)(8) = -1/4$
$(f/g)(10) = -3/13$
Thus, $V = \ \{(2,4/5), (8,(-1/4), (10,-3/13)\ \}$
Thus, the correct matches will be
$(a) \rightarrow(i i i),(b) \rightarrow(i v),(c) \rightarrow(i i) \&(d) \rightarrow(i)$
Question 38
The ordered pair (5,2) belongs to the relation $R =\ \{(x,y): y = x - 5, x,y \in Z \ \}$
Answer:
Given data:$R =\ \{(x,y): y = x - 5, x,y \in Z \ \}$
Now, for (5,2),
$Y = x-5$
Putting $x = 5 \: \: and\: \: y = 5-5 = 0\neq2$
Thus, (5,2) is not the ordered pair of R; hence, it is false.
Question 39
If $P = \ \{1, 2\ \}$, then $P \times P \times P = \ \{(1, 1,1), (2,2, 2), (1, 2,2), (2,1, 1)\ \}$
Answer:
Given data: $P = \ \{1, 2\ \}$
Now, $P \times P = \ \{1,2\ \} \times \ \{1,2\ \}$
$= \ \{(1,1),(1,2),(2,1),(2,2)\ \}$
& $P \times P \times P = \ \{1,2\ \} \times \ \{1,2\ \} \times \ \{1,2\ \}$
$= \ \{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\ \}$
Thus, the statement is false.
Question 40
Answer:
Given data: $A= \ \{1,2, 3\ \}, 5= \ \{3,4\ \} and\: \: C= \ \{4, 5, 6\ \}$
Now,$A \times B = \ \{(1,3),(1,4),(2,3),(3,3),(3,4)\ \}$
$A \times C = \ \{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\ \}$
Now,$(A \times B) \cup (A \times C) = \ \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\ \}.$
Thus, the given statement is true.
Question 41
Answer:
Given data: $(x - 2, y + 5) = \ ( -2,\frac{1}{3} \ )$
Now,$x - 2 = -1, i.e., x = 0$ & $y +5 = 1/3$, thus, $y = -14/3$
Thus, the given statement is false.
Question 42
If $A\times B= \ \{(a, x), (a, y), (b, x), (b, y)\ \}$, then $M = \ \{a, b\ \},B= \ \{x, y\ \}.$
Answer:
Given data: $A = \ \{a,b\ \} , B = \ \{x,y\ \}$
$A \times B = \ \{(a,x),(a,y),(b,x),(b,y)\ \}$
Therefore, the statement is true.
NCERT Exemplar Class 11 Maths Solutions Chapter 2 play a crucial role in building a strong conceptual foundation in Relations and Functions. Regular practice of these solutions helps students understand abstract concepts in a simple and practical manner.
Here are some points on why these NCERT Exemplar Class 11 Maths Solutions Chapter 2 are important.
All NCERT Class 11 Maths Solutions are available in one spot on Careers360 for easy access. Click the links below to view them.
Careers360 offers all NCERT Class 11 Maths Exemplar Solutions in one place for students. Just click the links below to see them.
Here are the subject-wise links for the NCERT Solutions of class 11:
Given below are the subject-wise NCERT Notes of class 11 :
Checking the updated syllabus at the start of the academic year helps students stay prepared. Below, you’ll find the syllabus links along with useful reference books.
Given below are the subject-wise Exemplar solutions of class 11 NCERT:
Frequently Asked Questions (FAQs)
This chapter is one of the basic chapters of calculus maths and is helpful in solving many problems related to maths and physics during higher education and engineering.
Yes, these NCERT Exemplar Class 11 Maths solutions chapter 2 are available offline as one can download these solutions through a download link.
Our team has solved 23 questions from three exercises along with 12 miscellaneous questions mentioned in the NCERT book.
These NCERT Exemplar Solutions for Class 11 Maths chapter 2 are prepared by our team of teachers of maths who have CBSE teaching experience of many years.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters