NCERT Solutions for Miscellaneous Exercise Chapter 7 Class 11 - Binomial Theorem

NCERT Solutions for Miscellaneous Exercise Chapter 7 Class 11 - Binomial Theorem

Komal MiglaniUpdated on 06 May 2025, 02:32 PM IST

The binomial theorem deals with the topics related to the expansion of expressions raised to higher powers in less time and an error-free manner. The binomial theorem has a wide range of applications, ranging from algebra and probability to mathematical analysis. This chapter deals with the concept of binomial expansion for positive integers, related concepts such as Pascal’s Triangle, and the general and middle terms in a binomial expansion.

Miscellaneous Exercise of Chapter 7 of NCERT discusses problems related to direct expansion, term identification, and application-based questions of the binomial theorem. To get conceptual clarity on this topic, students are advised to attempt the problems independently first, before referring to the detailed solutions. Students can also access complete NCERT Solutions from Class 6 to Class 12 provided here in an elaborate and easy-to-understand manner.

This Story also Contains

  1. NCERT Solutions Class 11 Maths Chapter 7 Miscellaneous Exercise
  2. Topics covered in Chapter 7 Binomial Theorem Miscellaneous Exercise
  3. NCERT Solutions of Class 11 Subject Wise
  4. Subject-Wise NCERT Exemplar Solutions



NCERT Solutions Class 11 Maths Chapter 7 Miscellaneous Exercise


Question 1: If a and b are distinct integers, prove that$a - b$ is a factor of $a^n - b^n$ , whenever n is a positive integer.
[Hint: write $a^n = (a - b + b)^n$ and expand]

Answer:

we need to prove,

$a^n-b^n=k(a-b)$ where k is some natural number.

Now let's add and subtract b from a so that we can prove the above result,

$a=a-b+b$

$a^n=(a-b+b)^n=[(a-b)+b]^n$

$=^nC_0(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_nb^n$

$=(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_{n-1}(a-b)b^{n-1}+b^n$$\Rightarrow a^n-b^n=(a-b)[(a-b)^{n-1}+^nC_2(a-b)^{n-2}+........+^nC_{n-1}b^{n-1}]$

$\Rightarrow a^n-b^n=k(a-b)$

Hence,$a - b$ is a factor of $a^n - b^n$.

Question 2: Evaluate $\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6$.

Answer:

First let's simplify the expression $(a+b)^6-(a-b)^6$ using binomial theorem,

So,

$(a+b)^6=^6C_0a^6+^6C_1a^5b+^6C_2a^4b^2+^6C_3a^3b^3+^6C_4a^2b^4+^6C_5ab^5+^6C_6b^6$$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$

And

$(a-b)^6=^6C_0a^6-^6C_1a^5b+^6C_2a^4b^2-^6C_3a^3b^3+^6C_4a^2b^4-^6C_5ab^5+^6C_6b^6$

$(a+b)^6=a^6-6a^5b+15a^4b^2-20a^3b^3+15a^2b^4-6ab^5+b^6$

Now,

$(a+b)^6-(a-b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$$-a^6+6a^5b-15a^4b^2+20a^3b^3-15a^2b^4+6ab^5-b^6$

$(a+b)^6-(a-b)^6=2[6a^5b+20a^3b^3+6ab^5]$

Now, Putting $a=\sqrt{3}\:and\:b=\sqrt{2},$ we get

$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[6(\sqrt{3})^5(\sqrt{2})+20(\sqrt{3})^3(\sqrt{2})^3+6(\sqrt{3})(\sqrt{2})^5]$

$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[54\sqrt{6}+120\sqrt{6}+24\sqrt{6}]$

$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2\times198\sqrt{6}$

$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=396\sqrt{6}$

Question 3: Find the value of $\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4$

Answer:

First, lets simplify the expression $(x+y)^4-(x-y)^4$ using binomial expansion,

$(x+y)^4=^4C_0x^4+^4C_1x^3y+^4C_2x^2y^2+^4C_3xy^3+^4C_4y^4$

$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4$

And

$(x-y)^4=^4C_0x^4-^4C_1x^3y+^4C_2x^2y^2-^4C_3xy^3+^4C_4y^4$

$(x-y)^4=x^4-4x^3y+6x^2y^2-4xy^3+y^4$

Now,

$(x+y)^4-(x-y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4-$$x^4+4x^3y-6x^2y^2+4xy^3-y^4$

$(x+y)^4-(x-y)^4=2(x^4+6x^2y^2+y^4)$

Now, Putting $x=a^2 and\:y=\sqrt{a^2-1}$ we get,

$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[(a^2)^4+6(a^2)^2(\sqrt{a^2-1})^2+(\sqrt{a^2-1})^4]$

$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[a^8+6a^4(a^2-1)+(a^2-1)^2]$

$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-12a^4+2a^4-4a^2+2$

$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-10a^4-4a^2+2$

Question 4: Find an approximation of (0.99)5 using the first three terms of its expansion.

Answer:

As we can write 0.99 as 1-0.01,

$(0.99)^5=(1-0.001)^5=^5C_0(1)^5-^5C_1(1)^4(0.01)+^5C_2(1)^3(0.01)^2$$+\:other \:negligible \:terms$

$\Rightarrow (0.99)^5=1-5(0.01)+10(0.01)^2$

$\Rightarrow (0.99)^5=1-0.05+0.001$

$\Rightarrow (0.99)^5=0.951$

Hence the value of $(0.99)^5$ is 0.951 approximately.


Question 5: Expand using Binomial Theorem $\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$

Answer:

Given the expression,

$\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$

Binomial expansion of this expression is

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4\\=\left ( \left (1 + \frac{x}{2} \right ) -\frac{2}{x}\right )^4=^4C_0\left ( 1+\frac{x}{2} \right )^4-^4C_1\left ( 1+\frac{x}{2} \right )^3\left ( \frac{2}{x} \right )+$$^4C_2\left ( 1+\frac{x}{2} \right )^2\left ( \frac{2}{x} \right )^2$$-^4C_3\left ( 1+\frac{x}{2} \right )\left ( \frac{2}{x} \right )^3+^4C_4\left ( \frac{2}{x} \right )^4$

$\Rightarrow \left ( 1+\frac{x}{2} \right )^4-\frac{8}{x}\left ( 1+\frac{x}{2} \right )^3+$$\frac{24}{x^2}+\frac{24}{x}+6$$-\frac{32}{x^3}+\frac{16}{x^4}..........(1)$

Now Applying Binomial Theorem again,

$\left ( 1+\frac{x}{2} \right )^4=^4C_0(1)^4+^4C_1(1)^3\left ( \frac{x}{2} \right )+^4C_2(1)^2\left ( \frac{x}{2} \right )^2+^4C_3(1)\left ( \frac{x}{2} \right )^3$$+^4C_4\left ( \frac{x}{2} \right )^4$

$= 1+ 4\left ( \frac{x}{2} \right )+6\left ( \frac{x^2}{4} \right )+4\left ( \frac{x^3}{8} \right )+\frac{x^4}{16}$

$=1+2x+\frac{3x^2}{2}+\frac{x^3}{3}+\frac{x^4}{16}..............(2)$

And

$\left ( 1+\frac{x}{2} \right )^3=^3C_0(1)^3+^3C_1(1)^2\left ( \frac{x}{2} \right )+^3C_2(1)\left ( \frac{x}{2} \right )^2+^3C_3\left ( \frac{x}{2} \right )^3$

$\left ( 1+\frac{x}{2} \right )^3= 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^3}{8}..........(3)$

Now, From (1), (2) and (3) we get,

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}-12-6x-x^2$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$

$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$=\frac{16}{x}+\frac{8}{x^2}-\frac{32}{x^3}+\frac{16}{x^4}-4x+\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^4}{16}-5$

Question 6: Find the expansion of $(3x^2 - 2ax +3a^2)^3$ using binomial theorem.

Answer:

Given $(3x^2 - 2ax +3a^2)^3$

By Binomial Theorem It can also be written as

$(3x^2 - 2ax +3a^2)^3=((3x^2 - 2ax) +3a^2)^3$

$= ^3C_0(3x^2-2ax)^3+^3C_1(3x^2-2ax)^2(3a^2)+^3C_2(3x^2-2ax)(3a^2)^2+^3C_3(3a^2)^3$

$= (3x^2-2ax)^3+3(3x^2-2ax)^2(3a^2)+3(3x^2-2ax)(3a^2)^2+(3a^2)^3$

$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+36a^4x^2+81a^4x^2-54a^5x+27a^6$

$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+117a^4x^2-54a^5x+27a^6...........(1)$

Now, Again By Binomial Theorem,

$(3x^2-2ax)^3=^3C_0(3x^2)^3-^3C_1(3x^2)^2(2ax)+^3C_2(3x^2)(2ax)^2-^3C_3(2ax)^3$

$(3x^2-2ax)^3= 27x^6-3(9x^4)(2ax)+3(3x^2)(4a^2x^2)-8a^2x^3$

$(3x^2-2ax)^3= 27x^6-54x^5+36a^2x^4-8a^3x^3............(2)$

From (1) and (2) we get,

$(3x^2-2ax+3a^2)^3=27x^6-54x^5+36a^2x^3+81a^2x^4-108a^3x^3+117a^4x^2$$-54a^5x+27a^6$

$(3x^2-2ax+3a^2)^3=27x^6-54x^5+117a^2x^3-116a^3x^3+117a^4x^2$$-54a^5x+27a^6$

Also, see

Topics covered in Chapter 7 Binomial Theorem Miscellaneous Exercise

1. General Term in Binomial Expansion

The general term in binomial expansion helps in finding the specific term in the binomial expansion without expanding the entire expression. It’s useful to directly locate a term like the 5th or 7th term in the expansion.

2. Middle Term(s) of the Expansion

Depending on whether the exponent is even or odd, the expansion has either one or two middle terms. This concept is often used in questions asking you to find the term(s) that appear in the centre of the expansion.

3. Coefficient of a Particular Term

Sometimes it is asked to find just the coefficient (number part) of a term like one involving a power of x. The coefficient of a particular term helps in finding how to spot and extract that value quickly, without writing out the full expansion.

Also Read

NCERT Solutions of Class 11 Subject Wise

Students can also access the NCERT solutions for other subjects and make their learning feasible.

Subject-Wise NCERT Exemplar Solutions

Use the links provided in the table below to get your hands on the NCERT exemplar solutions available for all the subjects.


Frequently Asked Questions (FAQs)

Q: Does miscellaneous exercises are important for the CBSE exam ?
A:

More than 90% of the questions in the CBSE exam are not asked from the miscellaneous exercise, so it is not very important for CBSE exams.

Q: Does miscellaneous exercises are important for the engineering entrance exam ?
A:

As many questions in the engineering entrance exams like JEE Main, SRMJEE are asked from the miscellaneous exercise, you must be familiar with these types of questions.

Q: What is Pascal's triangle ?
A:

The array of coefficients of binomial expansion is called Pascal’s triangle.

Q: Do I need to buy biology NCERT exemplar solution book for Class 11?
A:

No, you don't need to buy a solution book for Class 11 Biology. Here you will get NCERT Exemplar Solutions for Class 11 Biology.

Q: What is the weightage of Complex Numbers in JEE Main exam ?
A:

Complex Numbers has 3.3 % weightage in the JEE Main exam. Generally, one question is asked from this chapter is asked in the JEE Main exam.

Q: What is the weightage of NCERT syllabus Calculus part in the CBSE Class 11 Maths ?
A:

Calculus has 5 marks weightage in the CBSE Class 11 Maths final exam.

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)