NEET Most scoring concepts
ApplyThis ebook serves as a valuable study guide for NEET 2025 exam.
In the previous exercises of this chapter, you have already learned about the binomial expansion for positive integer and pascal triangle, general and middle term of binomial expansion, etc. In the Class 11 Maths chapter 8 miscellaneous solutions, you will get mixed questions from all the topics of this chapter. You must have completed both the NCERT book previous exercises of this chapter before solving this exercise. The miscellaneous exercise chapter 8 Class 11 is considered to be tougher than the previous exercises of this chapter but if you have solved all the problems of the previous exercises you won't find much difficulty to understanding the miscellaneous exercise chapter 8 Class 11.
JEE Main Scholarship Test Kit (Class 11): Narayana | Physics Wallah | Aakash | Unacademy
Suggested: JEE Main: high scoring chapters | Past 10 year's papers
Miscellaneous exercises are not much important for the CBSE exam as most of the questions the CBSE exam are not asked from the miscellaneous exercise but these exercises are very important for the engineering entrance exams like JEE Main, SRMJEE, etc. Also, check NCERT Solutions if you are looking for the NCERT solutions from Classes 6 to 12 at one place.
Also, see
Answer:
As we know the Binomial expansion of $(a + b)^n$ is given by
$(a+b)^n=^nC_0a^n+^nC_1a^{n-1}b+^nC_2a^{n-2}b^2+......^nC_nb^n$
Given in the question,
$^nC_0a^n=729.......(1)$
$^nC_1a^{n-1}b=7290.......(2)$
$^nC_2a^{n-2}b^2=30375.......(3)$
Now, dividing (1) by (2) we get,
$\Rightarrow \frac{^nC_0a^n}{^nC_1a^{n-1}b}=\frac{729}{7290}$
$\Rightarrow \frac{\frac{n!}{n!0!}}{\frac{n!}{1!(n-1)!}}\times\frac{a}{b}=\frac{729}{7290}$
$\Rightarrow\frac{(n-1)!}{n!}\times\frac{a}{b}=\frac{1}{10}$
$\Rightarrow\frac{1}{n}\times\frac{a}{b}=\frac{1}{10}$
$10a=nb......(4)$
Now, Dividing (2) by (3) we get,
$\Rightarrow \frac{^nC_1a^{n-1}b}{^nC_2a^{n-2}b^2}=\frac{7290}{30375}$
$\Rightarrow \frac{\frac{n!}{1!(n-1)!}}{\frac{n!}{2!(n-2)!}}\times\frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow \frac{2(n-2)!}{(n-1)!}\times\frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow \frac{2}{(n-1)}\times\frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow 2\times30375\times a=7290\times b\times(n-1)$
$\Rightarrow 60750a=7290b(n-1).......(5)$
Now, From (4) and (5), we get,
$n=6,a=3\:and\:b=5$
Question:2 Find a if the coefficients of $x^2$and $x^3$ in the expansion of $(3 + ax)^9$ are equal.
Answer:
As we know that the general $(r+1)^{th}$ term $T_{r+1}$ in the binomial expansion of $(a+b)^n$ is given by
$T_{r+1}=^nC_ra^{n-r}b^r$
So, the general $(r+1)^{th}$ term $T_{r+1}$ in the binomial expansion of $(3 + ax)^9$ is
$T_{r+1}=^nC_r3^{n-r}(ax)^r=^nC_r3^{n-r}a^rx^r$
Now, $x^2$ will come when $r=2$ and $x^3$ will come when $r=3$
So, the coefficient of $x^2$ is
$K_{x^2}=^nC_23^{9-2}a^2=^nC_23^7a^2$
And the coefficient of $x^3$ is
$K_{x^3}=^9C_33^{9-3}a^2=^9C_33^6a^3$
Now, Given in the question,
$K_{x^2}=K_{x^3}$
$^9C_23^7a^2=^9C_33^6a^3$
$\frac{9!}{2!7!}\times3=\frac{9!}{3!6!}\times a$
$a=\frac{18}{14}=\frac{9}{7}$
Hence the value of a is 9/7.
Question:3 Find the coefficient of $x^5$ in the product $(1 + 2x)^6 (1 - x)^7$ using binomial theorem.
Answer:
First, lets expand both expressions individually,
So,
$(1+2x)^6=^6C_0+^6C_1(2x)+^6C_2(2x)^2+^6C_3(2x)^3+^6C_4(2x)^4+^6C_5(2x)^5+$$^6C_6(2x)^6$
$(1+2x)^6=^6C_0+2\times^6C_1x+4\times^6C_2x^2+8\times^6C_3x^3+16\times^6C_4x^4+32\times^6C_5x^5+$$64\times^6C_6x^6$
$(1+2x)^6=1+12x+60x^2+160x^3+240x^4+192x^5+64x^6$
And
$(1-x)^7=^7C_0-^7C_1x+^7C_2x^2-^7C_3x^3+^7C_4x^4-^7C_5x^5+^7C_6x^6-^7C_7x^7$
$(1-x)^7=1-7x+21x^2-35x^3+35x^4-21x^5+7x^6-x^7$
Now,
$(1 + 2x)^6 (1 - x)^7=(1+12x+60x^2+160x^3+240x^4+192x^5+64x^6)$$(1-7x+21x^2-35x^3+35x^4-21x^5+7x^6-x^7)$
Now, for the coefficient of $x^5$, we multiply and add those terms whose product gives $x^5$.So,
The term which contain $x^5$are,
$\Rightarrow (1)(-21x^5)+(12x)(35x^4)+(60x^2)(-35x^3)+(160x^3)(21x^2)+(240x^4)(-7x)$$+(192x^5)(1)$
$\Rightarrow 171x^5$
Hence the coefficient of $x^5$ is 171.
Answer:
we need to prove,
$a^n-b^n=k(a-b)$ where k is some natural number.
Now let's add and subtract b from a so that we can prove the above result,
$a=a-b+b$
$a^n=(a-b+b)^n=[(a-b)+b]^n$
$=^nC_0(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_nb^n$
$=(a-b)^n+^nC_1(a-b)^{n-1}b+........^nC_{n-1}(a-b)b^{n-1}+b^n$$\Rightarrow a^n-b^n=(a-b)[(a-b)^{n-1}+^nC_2(a-b)^{n-2}+........+^nC_{n-1}b^{n-1}]$
$\Rightarrow a^n-b^n=k(a-b)$
Hence,$a - b$ is a factor of $a^n - b^n$.
Question:5 Evaluate $\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6$.
Answer:
First let's simplify the expression $(a+b)^6-(a-b)^6$ using binomial theorem,
So,
$(a+b)^6=^6C_0a^6+^6C_1a^5b+^6C_2a^4b^2+^6C_3a^3b^3+^6C_4a^2b^4+^6C_5ab^5+^6C_6b^6$$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$
And
$(a-b)^6=^6C_0a^6-^6C_1a^5b+^6C_2a^4b^2-^6C_3a^3b^3+^6C_4a^2b^4-^6C_5ab^5+^6C_6b^6$
$(a+b)^6=a^6-6a^5b+15a^4b^2-20a^3b^3+15a^2b^4-6ab^5+b^6$
Now,
$(a+b)^6-(a-b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6$$-a^6+6a^5b-15a^4b^2+20a^3b^3-15a^2b^4+6ab^5-b^6$
$(a+b)^6-(a-b)^6=2[6a^5b+20a^3b^3+6ab^5]$
Now, Putting $a=\sqrt{3}\:and\:b=\sqrt{2},$ we get
$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[6(\sqrt{3})^5(\sqrt{2})+20(\sqrt{3})^3(\sqrt{2})^3+6(\sqrt{3})(\sqrt{2})^5]$
$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2[54\sqrt{6}+120\sqrt{6}+24\sqrt{6}]$
$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=2\times198\sqrt{6}$
$\left(\sqrt3 + \sqrt2 \right )^6 - \left(\sqrt{3} - \sqrt2 \right )^6=396\sqrt{6}$
Question:6 Find the value of $\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4$
Answer:
First, lets simplify the expression $(x+y)^4-(x-y)^4$ using binomial expansion,
$(x+y)^4=^4C_0x^4+^4C_1x^3y+^4C_2x^2y^2+^4C_3xy^3+^4C_4y^4$
$(x+y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4$
And
$(x-y)^4=^4C_0x^4-^4C_1x^3y+^4C_2x^2y^2-^4C_3xy^3+^4C_4y^4$
$(x-y)^4=x^4-4x^3y+6x^2y^2-4xy^3+y^4$
Now,
$(x+y)^4-(x-y)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4-$$x^4+4x^3y-6x^2y^2+4xy^3-y^4$
$(x+y)^4-(x-y)^4=2(x^4+6x^2y^2+y^4)$
Now, Putting $x=a^2\and\:y=\sqrt{a^2-1}$ we get,
$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[(a^2)^4+6(a^2)^2(\sqrt{a^2-1})^2+(\sqrt{a^2-1})^4]$
$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2[a^8+6a^4(a^2-1)+(a^2-1)^2]$
$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-12a^4+2a^4-4a^2+2$
$\left(a^2 + \sqrt{a^2 -1} \right )^4 + \left(a^2 - \sqrt{a^2 -1} \right )^4=2a^8+12a^6-10a^4-4a^2+2$
Question:7 Find an approximation of (0.99)5 using the first three terms of its expansion.
Answer:
As we can write 0.99 as 1-0.01,
$(0.99)^5=(1-0.001)^5=^5C_0(1)^5-^5C_1(1)^4(0.01)+^5C_2(1)^3(0.01)^2$$+\:other \:negligible \:terms$
$\Rightarrow (0.99)^5=1-5(0.01)+10(0.01)^2$
$\Rightarrow (0.99)^5=1-0.05+0.001$
$\Rightarrow (0.99)^5=0.951$
Hence the value of $(0.99)^5$ is 0.951 approximately.
Answer:
Given, the expression
$\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}} \right )^n$
Fifth term from the beginning is
$T_5=^nC_4(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^4$
$T_5=^nC_4\frac{(\sqrt[4]{2})^n}{(\sqrt[4]{2})^4}\times\frac{1}{3}$
$T_5=\frac{n!}{4!(n-4)!}\times\frac{(\sqrt[4]{2})^n}{2}\times\frac{1}{3}$
And Fifth term from the end is,
$T_{n-5}=^nC_{n-4}(\sqrt[4]{2})^4\left ( \frac{1}{\sqrt[4]{3}} \right )^{n-4}$
$T_{n-5}=^nC_{n-4}(\sqrt[4]{2})^4\left ( \frac{(\sqrt[4]{3})^4}{(\sqrt[4]{3})^n} \right )$
$T_{n-5}=\frac{n!}{4!(n-4)!}\times2\times\left ( \frac{3}{(\sqrt[4]{3})^n} \right )$
Now, As given in the question,
$T_5:T_{n-5}=\sqrt{6}:1$
So,
$\left(\frac{n!}{4!(n-4)!}\times\frac{(\sqrt[4]{2})^n}{2}\times\frac{1}{3}\right):\left( \frac{n!}{4!(n-4)!}\times2\times\left ( \frac{3}{(\sqrt[4]{3})^n} \right )\right)=\sqrt{6}:1$
From Here ,
$\frac{(\sqrt[4]{2})^n}{6}:\frac{6}{(\sqrt[4]{3})^n}=\sqrt{6}:1$
$\frac{(\sqrt[4]{2})^n(\sqrt[4]{3})^n}{6\times6}=\sqrt{6}$
$(\sqrt[4]{6})^n=36\sqrt{6}$
$6^{\frac{n}{4}}=6^{\frac{5}{2}}$
From here,
$\frac{n}{4}=\frac{5}{2}$
$n=10$
Hence the value of n is 10.
Question:9 Expand using Binomial Theorem $\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$
Answer:
Given the expression,
$\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4, \ x\neq 0$
Binomial expansion of this expression is
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4\\=\left ( \left (1 + \frac{x}{2} \right ) -\frac{2}{x}\right )^4=^4C_0\left ( 1+\frac{x}{2} \right )^4-^4C_1\left ( 1+\frac{x}{2} \right )^3\left ( \frac{2}{x} \right )+$$^4C_2\left ( 1+\frac{x}{2} \right )^2\left ( \frac{2}{x} \right )^2$$-^4C_3\left ( 1+\frac{x}{2} \right )\left ( \frac{2}{x} \right )^3+^4C_4\left ( \frac{2}{x} \right )^4$
$\Rightarrow \left ( 1+\frac{x}{2} \right )^4-\frac{8}{x}\left ( 1+\frac{x}{2} \right )^3+$$\frac{24}{x^2}+\frac{24}{x}+6$$-\frac{32}{x^3}+\frac{16}{x^4}..........(1)$
Now Applying Binomial Theorem again,
$\left ( 1+\frac{x}{2} \right )^4=^4C_0(1)^4+^4C_1(1)^3\left ( \frac{x}{2} \right )+^4C_2(1)^2\left ( \frac{x}{2} \right )^2+^4C_3(1)\left ( \frac{x}{2} \right )^3$$+^4C_4\left ( \frac{x}{2} \right )^4$
$= 1+ 4\left ( \frac{x}{2} \right )+6\left ( \frac{x^2}{4} \right )+4\left ( \frac{x^3}{8} \right )+\frac{x^4}{16}$
$=1+2x+\frac{3x^2}{2}+\frac{x^3}{3}+\frac{x^4}{16}..............(2)$
And
$\left ( 1+\frac{x}{2} \right )^3=^3C_0(1)^3+^3C_1(1)^2\left ( \frac{x}{2} \right )+^3C_2(1)\left ( \frac{x}{2} \right )^2+^3C_3\left ( \frac{x}{2} \right )^3$
$\left ( 1+\frac{x}{2} \right )^3= 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^3}{8}..........(3)$
Now, From (1), (2) and (3) we get,
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}-12-6x-x^2$$+\frac{8}{x^2}+\frac{24}{x}+6-\frac{32}{x^3}+\frac{16}{x^4}$
$\\\left(1 + \frac{x}{2} - \frac{2}{x} \right )^4=1+2x+\frac{3x^2}{2}+\frac{x^3}{8}+\frac{x^4}{16}-\frac{8}{x}\left ( 1+\frac{3x}{2}+\frac{3x^2}{4}+\frac{x^2}{8} \right )$$=\frac{16}{x}+\frac{8}{x^2}-\frac{32}{x^3}+\frac{16}{x^4}-4x+\frac{x^2}{2}+\frac{x^3}{2}+\frac{x^4}{16}-5$
Question:10 Find the expansion of $(3x^2 - 2ax +3a^2)^3$ using binomial theorem.
Answer:
Given $(3x^2 - 2ax +3a^2)^3$
By Binomial Theorem It can also be written as
$(3x^2 - 2ax +3a^2)^3=((3x^2 - 2ax) +3a^2)^3$
$= ^3C_0(3x^2-2ax)^3+^3C_1(3x^2-2ax)^2(3a^2)+^3C_2(3x^2-2ax)(3a^2)^2+^3C_3(3a^2)^3$
$= (3x^2-2ax)^3+3(3x^2-2ax)^2(3a^2)+3(3x^2-2ax)(3a^2)^2+(3a^2)^3$
$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+36a^4x^2+81a^4x^2-54a^5x+27a^6$
$= (3x^2-2ax)^3+81a^2x^4-108a^3x^3+117a^4x^2-54a^5x+27a^6...........(1)$
Now, Again By Binomial Theorem,
$(3x^2-2ax)^3=^3C_0(3x^2)^3-^3C_1(3x^2)^2(2ax)+^3C_2(3x^2)(2ax)^2-^3C_3(2ax)^3$
$(3x^2-2ax)^3= 27x^6-3(9x^4)(2ax)+3(3x^2)(4a^2x^2)-8a^2x^3$
$(3x^2-2ax)^3= 27x^6-54x^5+36a^2x^4-8a^3x^3............(2)$
From (1) and (2) we get,
$(3x^2-2ax+3a^2)^3=27x^6-54x^5+36a^2x^3+81a^2x^4-108a^3x^3+117a^4x^2$$-54a^5x+27a^6$
$(3x^2-2ax+3a^2)^3=27x^6-54x^5+117a^2x^3-116a^3x^3+117a^4x^2$$-54a^5x+27a^6$
As the name suggests Class 11 Maths chapter 8 miscellaneous solutions consist of mixed types of questions from all the previous exercises of this chapter. There are seven examples given before the miscellaneous exercise chapter 8 Class 11 which you must try to solve. Also, you must try to solve miscellaneous exercise problems given in the NCERT solutions for Class 11 Maths chapter 8 miscellaneous exercise. You can take help from Class 11 Maths chapter 8 miscellaneous solutions if you are not able to solve these problems by yourself.
Also Read| Binomial Theorem Class 11 Notes
Also see-
Happy learning!!!
More than 90% of the questions in the CBSE exam are not asked from the miscellaneous exercise, so it is not very important for CBSE exams.
As many questions in the engineering entrance exams like JEE Main, SRMJEE are asked from the miscellaneous exercise, you must be familiar with these types of questions.
The array of coefficients of binomial expansion is called Pascal’s triangle.
No, you don't need to buy a solution book for Class 11 Biology. Here you will get NCERT Exemplar Solutions for Class 11 Biology.
Complex Numbers has 3.3 % weightage in the JEE Main exam. Generally, one question is asked from this chapter is asked in the JEE Main exam.
Calculus has 5 marks weightage in the CBSE Class 11 Maths final exam.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE