Sequences and patterns are significant parts of fields such as finance, science, and architecture, among others. Consider an example where growth of investments over time is calculated and analysis of population increase is done. In such scenarios, the concept of geometric progression is used. Along with this, concepts like arithmetic mean and geometric mean are widely used in statistics, economics, and data analysis to find central tendencies.
This Story also Contains
Class 11 Maths Chapter 8 Miscellaneous Exercise of NCERT provides a mix of problems drawn from all the topics covered in the chapter. These include arithmetic and geometric progressions, sums of series, and special series. If you are looking for NCERT Solutions, you can click on the given link to get NCERT Solutions for Classes 6 to 12.
Question 1: If f is a function satisfying f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3 and
$\sum_{x=1}^{n} f(x) = 120$ , find the value of n.
Answer:
Given : f (x +y) = f(x) f(y) for all x, y $\epsilon$ N such that f(1) = 3
$f(1) = 3$
Taking $x=y=1$ , we have
$f(1+1)=f(2)=f(1)*f(1)=3*3=9$
$f(1+1+1)=f(1+2)=f(1)*f(2)=3*9=27$
$f(1+1+1+1)=f(1+3)=f(1)*f(3)=3*27=81$
$f(1),f(2),f(3),f(4).....................$ is $3,9,27,81,..............................$ forms a GP with first term=3 and common ratio = 3.
$\sum_{x=1}^{n} f(x) = 120=S_n$
$S_n=\frac{a(1-r^n)}{1-r}$
$120=\frac{3(1-3^n)}{1-3}$
$40=\frac{(1-3^n)}{-2}$
$-80=(1-3^n)$
$-80-1=(-3^n)$
$-81=(-3^n)$
$3^n=81$
Therefore, $n=4$
Thus, value of n is 4.
Answer:
Let the sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2
$S_n=\frac{a(1-r^n)}{1-r}$
$315=\frac{5(1-2^n)}{1-2}$
$63=\frac{(1-2^n)}{-1}$
$-63=(1-2^n)$
$-63-1=(-2^n)$
$-64=(-2^n)$
$2^n=64$
Therefore, $n=6$
Thus, the value of n is 6.
Last term of GP=6th term$=a.r^{n-1}=5.2^5=5*32=160$
The last term of GP =160
Question 3: The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Answer:
Given: The first term of a G.P. is 1. The sum of the third term and fifth term is 90.
$a=1$
$a_3=a.r^2=r^2$ $a_5=a.r^4=r^4$
$\therefore \, \, r^2+r^4=90$
$\therefore \, \, r^4+r^2-90=0$
$\Rightarrow \, \, r^2=\frac{-1\pm \sqrt{1+360}}{2}$
$r^2=\frac{-1\pm \sqrt{361}}{2}$ $r^2=-10 \, or \, 9$
$r=\pm 3$
Thus, the common ratio of GP is $\pm 3$.
Answer:
Let three terms of GP be $a,ar,ar^2.$
Then, we have $a+ar+ar^2=56$
$a(1+r+r^2)=56$...............................................1
$a-1,ar-7,ar^2-21$ from an AP.
$\therefore ar-7-(a-1)=ar^2-21-(ar-7)$
$ar-7-a+1=ar^2-21-ar+7$
$ar-6-a=ar^2-14-ar$
$\Rightarrow ar^2-2ar+a=8$
$\Rightarrow ar^2-ar-ar+a=8$
$\Rightarrow a(r^2-2r+1)=8$
$\Rightarrow a(r^2-1)^2=8$....................................................................2
From equation 1 and 2, we get
$\Rightarrow 7(r^2-2r+1)=1+r+r^2$
$\Rightarrow 7r^2-14r+7-1-r-r^2=0$
$\Rightarrow 6r^2-15r+6=0$
$\Rightarrow 2r^2-5r+2=0$
$\Rightarrow 2r^2-4r-r+2=0$
$\Rightarrow 2r(r-2)-1(r-2)=0$
$\Rightarrow (r-2)(2r-1)=0$
$\Rightarrow r=2,r=\frac{1}{2}$
If r=2, GP = 8,16,32
If r=0.2, GP= 32,16,8.
Thus, the numbers required are 8,16,32.
Answer:
Let GP be $A_1, A_2, A_3, \ldots \ldots \ldots \ldots \ldots \ldots . A_{2 n}$
Number of terms = 2n
According to the given condition,
$\left(A_1, A_2, A_3, \ldots \ldots \ldots \ldots \ldots \ldots A_{2 n}\right)$=$5\left(A_1, A_3, \ldots \ldots \ldots \ldots \ldots \ldots . A_{2_n-1}\right)$
$\Rightarrow\left(A_1, A_2, A_3, \ldots \ldots \ldots \ldots \ldots . . A_{2 n}\right)$$-5\left(A_1, A_3, \ldots \ldots \ldots \ldots \ldots . . A_{2 n-1}\right)=0$
$\Rightarrow\left(A_2, A_4, A_6, \ldots \ldots \ldots \ldots \ldots . A_{2 n}\right)$=$4\left(A_1, A_3, \ldots \ldots \ldots \ldots \ldots \ldots . A_{2 n-1}\right)$
Let the be GP as $a,ar,ar^2,..................$
$\Rightarrow \frac{ar(r^n-1)}{r-1}=\frac{4.a(r^{n}-1)}{r-1}$
$\Rightarrow ar=4a$
$\Rightarrow r=4$
Thus, the common ratio is 4.
Answer:
Given :
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} (x\neq 0 )$
Taking ,
$\frac{a+ bx}{a-bx} = \frac{b+cx}{b-cx}$
$\Rightarrow (a+ bx) (b-cx) = (b+cx) (a-bx)$
$\Rightarrow ab+ b^2x-bcx^2-acx) = ba-b^2x+acx-bcx^2$
$\Rightarrow 2 b^2x = 2acx$
$\Rightarrow b^2 = ac$
$\Rightarrow \frac{b}{a}=\frac{c}{b}..................1$
Taking,
$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$
$\Rightarrow (b+cx)(c-dx)=(c+dx)(b-cx)$
$\Rightarrow bc-bdx+c^2x-cdx^2=bc-c^2x+bdx-cdx^2$
$\Rightarrow 2bdx=2c^2x$
$\Rightarrow bd=c^2$
$\Rightarrow \frac{d}{c}=\frac{c}{b}..............................2$
From equation 1 and 2 , we have
$\Rightarrow \frac{d}{c}=\frac{c}{b}=\frac{b}{a}$
Thus, a,b,c,d are in GP.
Answer:
Ler there be a GP $=a,ar,ar^2,ar^3,....................$
According to given information,
$S=\frac{a(r^n-1)}{r-1}$
$P=a^n \times r^{(1+2+...................n-1)}$
$P=a^n \times r^{\frac{n(n-1)}{2}}$
$R=\frac{1}{a}+\frac{1}{ar}+\frac{1}{ar^2}+..................\frac{1}{ar^{n-1}}$
$R=\frac{r^{n-1}+r^{n-2}+r^{n-3}+..............r+1}{a.r^{n-1}}$
$R=\frac{1}{a.r^{n-1}}\times \frac{1(r^n-1)}{r-1}$
$R= \frac{(r^n-1)}{a.r^{n-1}.(r-1)}$
To prove : $P^2 R^n = S ^n$
LHS : $P^2 R^n$
$= a^{2n}.r^{n(n-1)}\frac{(r^n-1)^n}{a^n.r^{n(n-1)}.(r-1)^n}$
$= a^{n} \frac{(r^n-1)^n}{(r-1)^n}$
$= \left ( \frac{a(r^n-1)}{(r-1)} \right )^{n}$
$=S^n=RHS$
Hence proved
Question 8: If a, b, c, d are in G.P, prove that $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Answer:
Given: a, b, c, d are in G.P.
To prove:$(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in G.P.
Then we can write,
$b^2=ac...............................1$
$c^2=bd...............................2$
$ad=bc...............................3$
Let $(a^n + b^n), (b^n + c^n), (c^n + d^n)$ be in GP
$(b^n + c^n)^2 =(a^n + b^n) (c^n + d^n)$
LHS: $(b^n + c^n)^2$
$(b^n + c^n)^2 =b^{2n}+c^{2n}+2b^nc^n$
$(b^n + c^n)^2 =(b^2)^n+(c^2)^n+2b^nc^n$
$=(ac)^n+(bd)^n+2b^nc^n$
$=a^nc^n+b^nc^n+a^nd^n+b^nd^n$
$=c^n(a^n+b^n)+d^n(a^n+b^n)$
$=(a^n+b^n)(c^n+d^n)=RHS$
Hence proved
Thus,$(a^n + b^n), (b^n + c^n), (c^n + d^n)$ are in GP
Answer:
Given: a and b are the roots of $x^2 -3 x + p = 0$
Then, $a+b=3\, \, \, \, and\, \, \, \, ab=p......................1$
Also, c, d are roots of $x^2 -12 x + q = 0$
$c+d=12\, \, \, \, and\, \, \, \, cd=q......................2$
Given: a, b, c, d form a G.P
Let, $a=x,b=xr,c=xr^2,d=xr^3$
From 1 and 2, we get
$x+xr=3$ and $xr^2+xr^3=12$
$\Rightarrow x(1+r)=3$ $xr^2(1+r)=12$
On dividing them,
$\frac{xr^2(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^2=4$
$\Rightarrow r=\pm 2$
When , r=2 ,
$x=\frac{3}{1+2}=1$
When , r=-2,
$x=\frac{3}{1-2}=-3$
CASE (1) when r=2 and x=1,
$ab=x^2r=2\, \, \, and \, \, \, \, cd=x^2r^5=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17:15.
CASE (2) when r=-2 and x=-3,
$ab=x^2r=-18\, \, \, and \, \, \, \, cd=x^2r^5=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-305}{-270}=\frac{17}{15}$
i.e. (q + p) : (q – p) = 17:15.
Answer:
Let two numbers be a and b.
$AM=\frac{a+b}{2}\, \, \, and\, \, \, \, \, GM=\sqrt{ab}$
According to the given condition,
$\frac{a+b}{2\sqrt{ab}}=\frac{m}{n}$
$\Rightarrow \frac{(a+b)^2}{4ab}=\frac{m^2}{n^2}$
$\Rightarrow (a+b)^2=\frac{4ab.m^2}{n^2}$
$\Rightarrow (a+b)=\frac{2\sqrt{ab}.m}{n}$...................................................................1
$(a-b)^2=(a+b)^2-4ab$
We get,
$(a-b)^2=\left ( \frac{4abm^2}{n^2} \right )-4ab$
$(a-b)^2=\left ( \frac{4abm^2-4abn^2}{n^2} \right )$
$\Rightarrow (a-b)^2=\left ( \frac{4ab(m^2-n^2)}{n^2} \right )$
$\Rightarrow (a-b)=\left ( \frac{2\sqrt{ab}\sqrt{(m^2-n^2)}}{n} \right )$.....................................................2
From 1 and 2, we get
$2a =\left ( \frac{2\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$a =\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
Putting the value of a in equation 1, we have
$b=\left ( \frac{2.\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( m+\sqrt{(m^2-n^2)} \right )$
$b=\left ( \frac{\sqrt{ab}}{n} \right ) m-\left ( \frac{\sqrt{ab}}{n} \right )\left ( \sqrt{(m^2-n^2)} \right )$
$=\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )$
$\therefore a:b=\frac{a}{b}=\frac{\left ( \frac{\sqrt{ab}}{n} \right )\left (m+ \sqrt{(m^2-n^2)} \right )}{\left ( \frac{\sqrt{ab}}{n} \right )\left (m- \sqrt{(m^2-n^2)} \right )}$
$=\frac{\left (m+ \sqrt{(m^2-n^2)} \right )}{\left (m- \sqrt{(m^2-n^2)} \right )}$
$a:b=\left (m+ \sqrt{(m^2-n^2)} \right ) : \left (m- \sqrt{(m^2-n^2)} \right )$
Question 11:(i) Find the sum of the following series up to n terms: $5 + 55+ 555 + ....$
Answer:
$5 + 55+ 555 + ....$ is not a GP.
It can be changed in GP by writing terms as
$S_n=5 + 55+ 555 + ....$ to n terms
$S_n=\frac{5}{9}[9+99+999+9999+................]$
$S_n=\frac{5}{9}[(10-1)+(10^2-1)+(10^3-1)+(10^4-1)+................]$
$S_n=\frac{5}{9}[(10+10^2+10^3+........)-(1+1+1.....................)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{10-1}-(n)]$
$S_n=\frac{5}{9}[\frac{10(10^n-1)}{9}-(n)]$
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
Thus, the sum is
$S_n=\frac{50}{81}[(10^n-1)]-\frac{5n}{9}$
Question 11:(ii) Find the sum of the following series up to n terms: .6 +. 66 +. 666+…
Answer:
Sum of 0.6 +0. 66 + 0. 666+….................
It can be written as
$S_n=0.6+0.66+0.666+..........................$ to n terms
$S_n=6[0.1+0.11+0.111+0.1111+................]$
$S_n=\frac{6}{9}[0.9+0.99+0.999+0.9999+................]$
$S_n=\frac{6}{9}[(1-\frac{1}{10})+(1-\frac{1}{10^2})+(1-\frac{1}{10^3})+(1-\frac{1}{10^4})+................]$
$S_n=\frac{2}{3}[(1+1+1.....................n\, terms)-\frac{1}{10}(1+\frac{1}{10}+\frac{1}{10^2}+...................n \, terms)]$
$S_n=\frac{2}{3}[n-\frac{\frac{1}{10}(\frac{1}{10}^n-1)}{\frac{1}{10}-1}]$
$S_n=\frac{2 n}{3}-\frac{2}{30}\left[\frac{10\left(1-10^{-n}\right)}{9}\right]$
$S_n=\frac{2 n}{3}-\frac{2}{27}\left(1-10^{-n}\right)$
Question 12: Find the 20th term of the series $2 \times 4+4\times 6+\times 6\times 8+....+n$ terms.
Answer:
the series = $2 \times 4+4\times 6+\times 6\times 8+....+n$
$\therefore n^{th}\, term=a_n=2n(2n+2)=4n^2+4n$
$\therefore a_{20}=2(20)[2(20)+2]$
$=40[40+2]$
$=40[42]$
$=1680$
Thus, the 20th term of series is 1680
Answer:
Given : Farmer pays Rs 6000 cash.
Therefore , unpaid amount = 12000-6000=Rs. 6000
According to given condition, interest paid annually is
12% of 6000,12% of 5500,12% of 5000,......................12% of 500.
Thus, total interest to be paid
$=12\%of\, 6000+12\%of\, 5500+.............12\%of\, 500$
$=12\%of\, (6000+ 5500+.............+ 500)$
$=12\%of\, (500+ 1000+.............+ 6000)$
Here, $500, 1000,.............5500,6000$ is a AP with first term =a=500 and common difference =d = 500
We know that $a_n=a+(n-1)d$
$\Rightarrow 6000=500+(n-1)500$
$\Rightarrow 5500=(n-1)500$
$\Rightarrow 11=(n-1)$
$\Rightarrow n=11+1=12$
Sum of AP:
$S_{12}=\frac{12}{2}[2(500)+(12-1) 500]$
$S_{12}=6[1000+5500]$
$=6\left [ 6500 \right ]$
$=39000$
Thus, interest to be paid :
$=12\%of\, (500+ 1000+.............+ 6000)$
$=12\%of\, ( 39000)$
$=Rs. 4680$
Thus, cost of tractor = Rs. 12000+ Rs. 4680 = Rs. 16680
Answer:
Given: Shamshad Ali buys a scooter for Rs 22000.
Therefore , unpaid amount = 22000-4000=Rs. 18000
According to the given condition, interest paid annually is
10% of 18000,10% of 17000,10% of 16000,......................10% of 1000.
Thus, total interest to be paid
$=10\%of\, 18000+10\%of\, 17000+.............10\%of\, 1000$
$=10\%of\, (18000+ 17000+.............+ 1000)$
$=10\%of\, (1000+ 2000+.............+ 18000)$
Here, $1000, 2000,.............17000,18000$ is a AP with first term =a=1000 and common difference =d = 1000
We know that $a_n=a+(n-1)d$
$\Rightarrow 18000=1000+(n-1)1000$
$\Rightarrow 17000=(n-1)1000$
$\Rightarrow 17=(n-1)$
$\Rightarrow n=17+1=18$
Sum of AP:
$S_{18}=\frac{18}{2}[2(1000)+(18-1) 1000]$
$=9\left [ 2000+17000 \right ]$
$=9\left [ 19000 \right ]$
$=171000$
Thus, interest to be paid :
$=10\%of\, (1000+ 2000+.............+ 18000)$
$=10\%of\, ( 171000)$
$=Rs. 17100$
Thus, cost of tractor = Rs. 22000+ Rs. 17100 = Rs. 39100
Answer:
The numbers of letters mailed forms a GP : $4,4^2,4^3,.............4^8$
first term = a=4
common ratio=r=4
number of terms = 8
We know that the sum of GP is
$S_n=\frac{a(r^n-1)}{r-1}$
$=\frac{4(4^8-1)}{4-1}$
$=\frac{4(65536-1)}{3}$
$=\frac{4(65535)}{3}$
$=87380$
costs to mail one letter are 50 paise.
Cost of mailing 87380 letters
$=Rs. \, 87380\times \frac{50}{100}$
$=Rs. \,43690$
Thus, the amount spent when the 8th set of the letter is mailed is Rs. 43690.
Answer:
Given : A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually.
$=\frac{5}{100}\times 10000=Rs.500$
$\therefore$ Interest in fifteen year 10000+ 14 times Rs. 500
$\therefore$ Amount in 15 th year $=Rs. 10000+14\times 500$
$=Rs. 10000+7000$
$=Rs. 17000$
$\therefore$ Amount in 20 th year $=Rs. 10000+20\times 500$
$=Rs. 10000+10000$
$=Rs. 20000$
Answer:
Cost of machine = Rs. 15625
Machine depreciate each year by 20%.
Therefore, its value every year is 80% of the original cost i.e. $\frac{4}{5}$ of the original cost.
$\therefore$ Value at the end of 5 years
$=15625\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}$
$=5120$
Thus, the value of the machine at the end of 5 years is Rs. 5120
Answer:
Let x be the number of days in which 150 workers finish the work.
According to the given information, we have
$150x=150+146+142+............(x+8)terms$
Series $150x=150+146+142+............(x+8)terms$ is a AP
first term=a=150
common difference= -4
number of terms = x+8
$\Rightarrow 150x=\frac{x+8}{2}\left [ 2(150)+(x+8-1)(-4) \right ]$
$\Rightarrow 300x=x+8\left [ 300-4x-28 \right ]$
$\Rightarrow 300x= 300x-4x^2-28x+2400-32x+224$
$\Rightarrow x^2+15x-544=0$
$\Rightarrow x^2+32x-17x-544=0$
$\Rightarrow x(x+32)-17(x+32)=0$
$\Rightarrow (x+32)(x-17)=0$
$\Rightarrow x=-32,17$
Since x cannot be negative so x=17.
Thus, in 17 days 150 workers finish the work.
Thus, the required number of days = 17+8=25 days.
Also Read
Arithmetic Progression (A.P.)
In an arithmetic progression, the difference between any two consecutive terms is constant. It is commonly used in daily life situations like calculating savings, salaries, or planning installments.
Geometric Progression (G.P.)
A geometric progression is a sequence where each term is found by multiplying the previous term by a fixed number. It is useful in problems involving growth, decay, and compound interest.
Relationship Between A.M. and G.M.
The Arithmetic Mean (A.M.) and Geometric Mean (G.M.) are measures of central tendency. This topic explores how they relate to each other and the inequality that connects them.
Sum to n terms of Special Series
This includes formulas and techniques to find the sum of series like natural numbers, squares, and cubes. These are important in simplifying large summations and solving advanced problems.
Also Read
Students can also access the NCERT solutions for other subjects and make their learning feasible.
Use the links provided in the table below to get your hands on the NCERT exemplar solutions available for all the subjects.
NCERT Exemplar Solutions for Class 11 Maths |
NCERT Exemplar Solutions for Class 11 Physics |
NCERT Exemplar Solutions for Class 11 Chemistry |
NCERT Exemplar Solutions for Class 11 Biology |
Frequently Asked Questions (FAQs)
Sequence means an arrangement of numbers in a definite order according to some rule.
The finite sequence is s sequence containing a finite number of terms.
The infinite sequence is s sequence containing an infinite number of terms.
If the terms of a sequence are expressed as the sum of terms then it is called a series.
Sum of A.P. = n(a+l)/2
Arithmetic mean (A.M.) = (5+9)/2 = 7
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE