NCERT Solutions for Exercise 9.4 Class 11 Maths Chapter 9 - Sequences and Series

NCERT Solutions for Exercise 9.4 Class 11 Maths Chapter 9 - Sequences and Series

Team Careers360Updated on 13 Jul 2022, 04:35 PM IST

In the previous exercises of this chapter, you have already learned about the sequences, series, progressions like arithmetic progression and geometric progression, arithmetic mean, geometric mean, etc. In the NCERT solutions for Class 11 Maths chapter 9 exercise 9.4, you will learn about some special series like the sum of first n natural numbers, the sum of the square of first n natural numbers, the sum of cubes of n natural numbers, etc.

This Story also Contains

  1. Sequences And Series Class 11 Chapter 9 Exercise: 9.4
  2. Question:1 Find the sum to n terms of each of the series in $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + ...$
  3. More About NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.4:-
  4. Benefits of NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.4:-
  5. NCERT Solutions of Class 11 Subject Wise
  6. NCERT Solutions for Class 11 Maths
  7. Subject Wise NCERT Exampler Solutions

The ways to find the sum of the series are different for different types of series, You will learn about the different ways to find the sum of the series in the NCERT book Class 11 Maths chapter 9 exercise 9.4. All the problems in exercise 9.4 Class 11 Maths give you a different methods to solve the problem. Many times problems from special series are asked in the engineering entrance exam. If you have conceptual clarity of these NCERT syllabus problems, you will be able to solve these problems easily. Check NCERT Solutions link where you will get NCERT solutions for Classes 6 to 12 at one place.

Also, see

Sequences And Series Class 11 Chapter 9 Exercise: 9.4

Question:1 Find the sum to n terms of each of the series in $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + ...$

Answer:

the series = $1 \times 2 + 2 \times 3 + 3 \times 4 + 4 \times 5 + ...$

n th term = $n(n+1)=a_n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k(k+1)$

$=\sum _{k=1}^{n} k^2+\sum _{k=1}^{n} k$

$=\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2}$

$=\frac{n(n+1)}{2}\left ( \frac{(2n+1)}{3}+1 \right )$

$=\frac{n(n+1)}{2}\left ( \frac{(2n+1+3)}{3} \right )$

$=\frac{n(n+1)}{2}\left ( \frac{(2n+4)}{3} \right )$

$=n(n+1)\left ( \frac{(n+2)}{3} \right )$

$= \frac{n(n+1)(n+2)}{3}$

Question:2 Find the sum to n terms of each of the series in $1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...$

Answer:

the series = $1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + ...$

n th term = $n(n+1)(n+2)=a_n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k(k+1)(k+2)$

$=\sum _{k=1}^{n} k^3+3\sum _{k=1}^{n} k^2+2\sum _{k=1}^{n} k$

$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{3.n(n+1)(2n+1)}{6}+\frac{2.n(n+1)}{2}$

$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{2}+n(n+1)$

$=\left [ \frac{n(n+1)}{2} \right ] (\frac{n(n+1)}{2}+(2n+1)+2)$

$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{n^2+n+4n+2+4}{2} \right )$

$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{n^2+5n+6}{2} \right )$

$=\left [ \frac{n(n+1)}{4} \right ] \left ( n^2+5n+6 \right )$

$=\left [ \frac{n(n+1)}{4} \right ] \left ( n^2+2n+3n+6 \right )$

$=\left [ \frac{n(n+1)}{4} \right ] \left ( n(n+2)+3(n+2)\right )$

$=\left [ \frac{n(n+1)}{4} \right ] \left ( (n+2)(n+3)\right )$

$=\left [ \frac{n(n+1)(n+2)(n+3)}{4} \right ]$

Thus, sum is

$=\left [ \frac{n(n+1)(n+2)(n+3)}{4} \right ]$

Question:3 Find the sum to n terms of each of the series $3 \times 1 ^ 2 + 5 \times 2 ^ 2 + 7 \times +....+ 20 ^ 2$

Answer:

the series $3 \times 1 ^ 2 + 5 \times 2 ^ 2 + 7 \times +....+ 20 ^ 2$

nth term = $(2n+1)(n^2)=2n^3+n^2=a_n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} 2k^3+k^2$

$=2\sum _{k=1}^{n} k^3+\sum _{k=1}^{n} k^2$

$=2\left [ \frac{n(n+1)}{2} \right ]^2+\frac{n(n+1)(2n+1)}{6}$

$=\left [ \frac{n^2(n+1)^2}{2} \right ]+\frac{n(n+1)(2n+1)}{6}$

$=\left [ \frac{n(n+1)}{2} \right ](n(n+1)+\frac{(2n+1)}{3})$

$=\left [ \frac{n(n+1)}{2} \right ]\frac{(3n^2+3n+2n+1)}{3}$

$=\left [ \frac{n(n+1)}{2} \right ]\frac{(3n^2+5n+1)}{3}$

$= \frac{n(n+1)(3n^2+5n+1)}{6}$

Thus, the sum is

$= \frac{n(n+1)(3n^2+5n+1)}{6}$

Question:4 Find the sum to n terms of each of the series in $\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+ ...$

Answer:

Series =

$\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+ ...$

$n^{th}\, term=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$

$a_1=\frac{1}{1}-\frac{1}{2}$

$a_2=\frac{1}{2}-\frac{1}{3}$

$a_3=\frac{1}{3}-\frac{1}{4}$.................................

$a_n=\frac{1}{n}-\frac{1}{n+1}$

$a_1+a_2+a_3+...................a_n=\left [ \frac{1}{1} +\frac{1}{2}+\frac{1}{3}+............\frac{1}{n}\right ]-\left [ \frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.............\frac{1}{n+1} \right ]$

$a_1+a_2+a_3+...................a_n=\left [ \frac{1}{1} \right ]-\left [ \frac{1}{n+1} \right ]$

$S_n=\frac{n+1-1}{n+1}$

$S_n=\frac{n}{n+1}$

Hence, the sum is

$S_n=\frac{n}{n+1}$

Question:5 Find the sum to n terms of each of the series in $5 ^ 2 + 6 ^ 2 + 7 ^ 2 + ....+ 2 0 ^2$

Answer:

series = $5 ^ 2 + 6 ^ 2 + 7 ^ 2 + ....+ 2 0 ^2$

n th term = $(n+4)^2=n^2+8n+16=a_n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} (k+4)^2$

$=\sum _{k=1}^{n} k^2+8\sum _{k=1}^{n} k+\sum _{k=1}^{n}16$

$=\frac{n(n+1)(2n+1)}{6}+\frac{8.n(n+1)}{2}+16n$

16th term is $(16+4)^2=20^2$

$S_1_6=\frac{16(16+1)(2(16)+1)}{6}+\frac{8.(16)(16+1)}{2}+16(16)$

$S_1_6=\frac{16(17)(33)}{6}+\frac{8.(16)(17)}{2}+16(16)$

$S_1_6=1496+1088+256$

$S_1_6=2840$

Hence, the sum of the series $5 ^ 2 + 6 ^ 2 + 7 ^ 2 + ....+ 2 0 ^2$ is 2840.

Question:6 Find the sum to n terms of each of the series $3 \times 8 + 6 \times 11 + 9\times 14+...$

Answer:

series = $3 \times 8 + 6 \times 11 + 9\times 14+...$

=(n th term of 3,6,9,...........)$\times$(nth terms of 8,11,14,..........)

n th term = $3n(3n+5)=a_n=9n^2+15n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} 3k(3k+5)$

$=9\sum _{k=1}^{n} k^2+15\sum _{k=1}^{n} k$

$=\frac{9.n(n+1)(2n+1)}{6}+\frac{15.n(n+1)}{2}$

$=\frac{3.n(n+1)(2n+1)}{2}+\frac{15.n(n+1)}{2}$

$=\frac{n(n+1)}{2}\left (3(2n+1)+15 \right )$

$=\frac{3.n(n+1)}{2}\left (2n+1+5 \right )$

$=\frac{3.n(n+1)}{2}\left (2n+6\right )$

$=\frac{3.n(n+1)}{2}.2.\left (n+3\right )$

$=3.n(n+1)\left (n+3\right )$

Hence, sum is $=3.n(n+1)\left (n+3\right )$

Question:7 Find the sum to n terms of each of the series in $1 ^ 2 + ( 1 ^2 +2 ^ 2 ) + ( 1 ^ 2 +2 ^ 2 + 3 ^ 2 ) ...$

Answer:

series = $1 ^ 2 + ( 1 ^2 +2 ^ 2 ) + ( 1 ^ 2 +2 ^ 2 + 3 ^ 2 ) ...$

n th term = $a_n=1^2+2^2+3^2+...................n^2=\frac{n(n+1)(2n+1)}{6}$

$=\frac{n(2n^2+3n+1)}{6}=\frac{2n^3+3n^2+n}{6}$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} \frac{2k^3+3k^2+k}{6}$

$=\frac{1}{3}\sum _{k=1}^{n} k^3+\frac{1}{2}\sum _{k=1}^{n} k^2+\frac{1}{6}\sum _{k=1}^{n} k$

$=\frac{1}{3}\left [ \frac{n(n+1)}{2} \right ]^2+\frac{1}{2}.\frac{n(n+1)(2n+1)}{6}+\frac{1}{6}\frac{n(n+1)}{2}$

$=\left [ \frac{n(n+1)}{6} \right ] (\frac{n(n+1)}{2}+\frac{2n+1}{2}+\frac{1}{2})$

$=\left [ \frac{n(n+1)}{6} \right ] (\frac{n^2+n+2n+1+1}{2})$

$=\left [ \frac{n(n+1)}{6} \right ] (\frac{n^2+n+2n+2}{2})$

$=\left [ \frac{n(n+1)}{6} \right ] (\frac{n(n+1)+2(n+1)}{2})$

$=\left [ \frac{n(n+1)}{6} \right ] (\frac{(n+1)(n+2)}{2})$

$=\left [ \frac{n(n+1)^2(n+2)}{12} \right ]$

Question:8 Find the sum to n terms of the series in Exercises 8 to 10 whose nth terms is given by $n (n+1) ( n + 4 )$

Answer:

nth terms is given by $n (n+1) ( n + 4 )$

$a_n=n (n+1) ( n + 4 )=n(n^2+5n+4)=n^3+5n^2+4n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k(k+1)(k+4)$

$=\sum _{k=1}^{n} k^3+5\sum _{k=1}^{n} k^2+4\sum _{k=1}^{n} k$

$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{5.n(n+1)(2n+1)}{6}+\frac{4.n(n+1)}{2}$

$=\left [ \frac{n(n+1)}{2} \right ]^2+\frac{5.n(n+1)(2n+1)}{6}+2.n(n+1)$

$=\left [ \frac{n(n+1)}{2} \right ] (\frac{n(n+1)}{2}+\frac{5(2n+1)}{3}+4)$

$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+3n+20n+10+24}{6} \right )$

$=\left [ \frac{n(n+1)}{2} \right ] \left ( \frac{3n^2+23n+34}{6} \right )$

$=\left [ \frac{n(n+1)}{24} \right ] \left ( 3n^2+23n+34 \right )$

Question:9 Find the sum to n terms of the series in Exercises 8 to 10 whose nth terms is given by $n^2 + 2 ^ n$

Answer:

nth terms are given by $n^2 + 2 ^ n$

$a_n=n^2 + 2 ^ n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} k^2+\sum _{k=1}^{n} 2^k$

$\sum _{k=1}^{n} 2^k=2^1+2^2+2^3+.....................2^n$

This term is a GP with first term =a =2 and common ratio =r =2.

$\sum _{k=1}^{n} 2^k$$=\frac{2(2^n-1)}{2-1}=2(2^n-1)$

$S_n=\sum _{k=1}^{n} k^2+2(2^n-1)$

$S_n=\frac{n(n+1)(2n+1)}{6}+2(2^n-1)$

Thus, the sum is

$S_n=\frac{n(n+1)(2n+1)}{6}+2(2^n-1)$

Question:10 Find the sum to n terms of the series in Exercises 8 to 10 whose nth terms is given by $( 2n-1) ^2$

Answer:

nth terms is given by $( 2n-1) ^2$.

$a_n=( 2n-1) ^2=4n^2+1-4n$

$S_n=\sum _{k=1}^{n} a_k=\sum _{k=1}^{n} (2k-1)^2$

$=4\sum _{k=1}^{n} k^2-4\sum _{k=1}^{n} k+\sum _{k=1}^{n} 1$

$=\frac{4.n(n+1)(2n+1)}{6}-\frac{4.n(n+1)}{2}+n$

$=\frac{2.n(n+1)(2n+1)}{3}-2.n(n+1)+n$

$=n[\frac{2(n+1)(2n+1)}{3}-2(n+1)+1]$

$=n(\frac{4n^2+6n+2-6n-6+3}{3})$

$=n(\frac{4n^2-1}{3})$

$=n(\frac{(2n+1)(2n-1)}{3})$

More About NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.4:-

Class 11th Maths chapter 9 exercise 9.4 consists of questions related to finding the sum of n terms of special series. There are different types of special series which are to be solved in different ways. Although Class 11 Maths chapter 9 exercise 9.4 is tougher as compared to other exercises of this chapter. But if you have solved different types of special series problems, you won't get much difficulty solving these types of questions in the exam.

Also Read| Sequences And Series Class 11 Notes

Benefits of NCERT Solutions for Class 11 Maths Chapter 9 Exercise 9.4:-

  • NCERT solutions for Class 11 Maths chapter 9 exercise 9.4 are very important for the engineering entrance exam as many times questions from special series are asked in these exams.
  • Class 11 Maths chapter 9 exercise 9.4 solutions are designed by experienced faculty who knows how to write the answer in the CBSE exam.
  • You can use Class 11 Maths chapter 9 exercise 9.4 solutions for the revision of important concepts before the exam.

Also see-

NCERT Solutions of Class 11 Subject Wise

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

11 Aug'25 - 30 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 30 Sep'25 (Online)