Pearson | PTE
Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK
NCERT exemplar Class 12 Maths solutions chapter 11 Three Dimensional Geometry - If you observe the world around you, you see everything in three dimensions! Even a tiny strand of hair has dimensions of length, width, and depth. 3D geometry refers to the mathematics of perception, direction, and shape. NCERT exemplar Class 12 Maths chapter 11 solutions initiates that there is always a requirement of three parameters to work with the comprehensive concepts of three-dimensional geometry. NCERT exemplar solutions For Class 12 Maths chapter 11 would help you out in any three-dimensional Mathematical problem that you're stuck on and get you back in your study loop. NCERT exemplar Class 12 Maths solutions chapter 11 PDF download is helpful for students to learn offline when there is a slow internet connection. Also, read - NCERT Class 12 Maths Solutions
During the Covid-19 pandemic, CBSE allowed students to appear for board exams in their own schools. However, this self-centre policy led to issues, including allegations of paper leaks and result manipulation in 2021 when the exams were conducted in two terms.
Question:1
Answer:
Given, $\overline{OA}$ is inclined at 600 to and at $\overline{OX}$ 450 to $\overline{OY}$
$\overline{OA}$ = 10 units.
We want to find the position vector of point A in space, which is nothing but $\overline{OA}$
We know, there are three axes in space: X, Y, and Z.
Let OA be inclined with OZ at an angle α.
We know, directions cosines are associated by the relation:
l² + m² + n² = 1 ….(i)
In this question, direction cosines are the cosines of the angles inclined by on $\overline{OA}$, $\overline{OX}$, $\overline{OY}$ and $\overline{OZ}$
So,$l=\cos 60^{\circ},m=\cos 45^{\circ},n=\cos \alpha$
Substituting the values of l, m, and n in equation (i),
$\left (\cos 60^{\circ} \right )^{2}+\left (m=\cos 45^{\circ} \right )^{2}+\left (n=\cos \alpha \right )^{2}=1$
We know the values of $\cos 60^{\circ}$and $\cos 45^{\circ}$, i.e. 1/2 and 1/√2 respectively.
Therefore, we get
$\left ( \frac{1}{2} \right )^{2}+\left ( \frac{1}{\sqrt{2}} \right )^{2}+\cos^{2}\alpha =1$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos^{2}\alpha =1$
$\Rightarrow \cos^{2}\alpha =1-\frac{1}{4}-\frac{1}{2}$
$\Rightarrow \cos^{2}\alpha =\frac{4-1-2}{4}$
$\Rightarrow \cos^{2}\alpha =\frac{1}{4}$
$\Rightarrow \cos \alpha =\pm \sqrt{\frac{1}{4}}$
$\Rightarrow \cos \alpha =\pm \frac{1}{2}$
So $\overrightarrow{OA}$ is given as
$\overrightarrow{OA}=\overrightarrow{OA}\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )$..........(ii)
We have,
$l = \cos 60^{\circ} = \frac{1}{2}\\ m =\ cos 45^{\circ} = \frac{1}{\sqrt{2}}\\ n = \cos \alpha = \pm \frac{1}{2}\\$
Inserting these values of l, m and n in equation (ii),
$\overrightarrow{OA}=\left |\overrightarrow{OA} \right |\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )$
Also ,Put $\Rightarrow \overrightarrow{OA}=10\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )$
$\Rightarrow \overrightarrow{OA}=10\times \frac{1}{2} \hat{i}+10\times\frac{1}{\sqrt{2}}\hat{j}+10\times\frac{1}{2}\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+10\times\frac{\sqrt{2}}{\sqrt{2}}\times+10\times\frac{1}{\sqrt{2}}\hat{j}\pm 5\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+\frac{10\times\sqrt{2}}{2}\hat{j}\pm 5\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+5\sqrt{2}\hat{j}\pm 5\hat{k}$
Thus, position vector of A in space $=5i+5\sqrt{2}\hat{j}\pm 5\hat{k}$
Question:2
Answer:
Given, vector = $3\hat{i}-2\hat{j}+6\hat{k}$
Point = (1, -2, 3)
We can write this point in vector form as $\hat{i}-2\hat{j}+3\hat{k}$
Let ,
$\overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}$
$\overrightarrow{b}=3\hat{i}-2\hat{j}+6\hat{k}$
We must find the vector equation of the line parallel to the vector $\overrightarrow{b}$ and passing through the point
We know, equation of $\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}$ a line passing through a point and parallel to a given vector is denoted as
Where, $\lambda \epsilon \mathbb{R}$
In other words, we need to find $\overrightarrow{r}$
This can be achieved by substituting the values of the vectors in the above equation. We get
$\overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
$\Rightarrow \overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
This can be further rearranged, upon which we get:
$\Rightarrow \vec{r}=\hat{i}-2\hat{j}+3\hat{k}+3\lambda \hat{j}+3\hat{k}+6\lambda\hat{k}$
$\Rightarrow \vec{r}=\hat{i}+3\lambda \hat{i}-2\hat{j}-2\lambda\hat{j}+3\hat{k}+6\lambda\hat{k}$
$\Rightarrow \vec{r}=\left ( 1-3\lambda \right )\hat{i}+\left ( -2-2\lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}$
Thus, the require vector equation of line is $\vec{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
which can also be written as $\left ( 1-3\lambda \right )i+\left ( -2-2 \lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}$
Question:3
Answer:
We have the lines,
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
$\frac{x-4}{5}=\frac{y-1}{2}=z$
Let us denote these lines as L1and L2, such that
$L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
where $\lambda ,\mu \epsilon \mathbb{R}$
We must show that the lines L1and L2 intersect.
To show this, let us first find any point on line L1 and line L2
For L1:
$L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$\Rightarrow \frac{x-1}{2}=\lambda,\frac{y-2}{3}=\lambda,\frac{z-3}{4}=\lambda$
We must find the values of x, y, and z. Therefore, let us take $\Rightarrow \frac{x-1}{2}=\lambda$
$\Rightarrow x-1=2\lambda$
$\Rightarrow x=2\lambda+1$
Take $\frac{y-2}{3}=\lambda$
$\Rightarrow y-2=3\lambda$
$\Rightarrow y=3 \lambda+2$
Take $\frac{z-3}{4}=\lambda$
$\Rightarrow z-3=4\lambda$
$\Rightarrow z=4\lambda+3...(i)$
Therefore, any point on L1 can be represented as $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$.
Now,
For L2:
$L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
$\Rightarrow \frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
$\Rightarrow \frac{x-4}{5}=\mu,\frac{y-1}{2}=\mu,z=\mu$
We must find the values of x, y, and z. Therefore,
Take $\frac{x-4}{5}=\mu$
$\Rightarrow x-4=5\mu$
$\Rightarrow x=5\mu+4$
Take $\frac{y-1}{2}=\mu$
$\Rightarrow y-1=2\mu$
$\Rightarrow y=2\mu+1$
Take $z=\mu$
$\Rightarrow z=\mu........(ii)$
Hence, any point on line L? can be represented as (5μ + 4, 2μ + 1, μ).
If lines L1 and L2 intersect, then there exist λ and μ such that
$\left ( 2\lambda+1,3\lambda+3,4\lambda+3 \right )\equiv \left ( 5\mu+4,2\mu+1,\mu \right )$
$\Rightarrow 2\lambda+1= 5\mu+4......(iii)$
$3\lambda+2=2\mu+1.....(iv)$
$4\lambda+3=\mu.....(iv)$
Substituting the value of μ from equation (v) into equation (iv),
$3\lambda+2=2\left ( 4\lambda+3 \right )+1$
$\Rightarrow 3\lambda+2=8\lambda+6+1$
$\Rightarrow 3\lambda+2=8\lambda+7$
$\Rightarrow 8\lambda-3\lambda=2-7$
$\Rightarrow 5\lambda=-5$
$\Rightarrow \lambda=-\frac{5}{5}$
$\Rightarrow \lambda=-1$
Putting this value of $\lambda$ in eq (v),
$4\left ( -1 \right )+3=\mu$
$\Rightarrow \mu=-4+3$
$\Rightarrow \mu=-1$
To check, we can substitute the values of $\lambda$ and $\mu$ in equation (iii), giving us:
$2(-1) + 1 = 5(-1) + 4$
$\Rightarrow -2 + 1 = -5 + 4$
$\Rightarrow -1 = -1$
Therefore $\lambda$ and $\mu$ also satisfy equation (iii).
So, the z-coordinate from equation (i),
$z=4\lambda +3$
$\Rightarrow z=4\left ( -1 \right )+3 \left [ \because \lambda=-1 \right ]$
$\Rightarrow z=-4+3$
$\Rightarrow z=-1$
And the z-coordinate from equation (ii),
$z=\mu$
$z=-1\left [ \because \mu=-1 \right ]$
So, the lines intersect at the point
$(5\mu + 4, 2\mu + 1, \mu) = (5(-1) + 4, 2(-1) + 1, -1).\\ Or, (5\mu + 4, 2\mu + 1, \mu) = (-5 + 4, -2 + 1, -1)\\ Or (5\mu + 4, 2\mu + 1, \mu) = (-1, -1, -1)$
Therefore the lines intersect at the point (-1, -1, -1).
Question:4
Find the angle between the lines $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda \left ( 2 \hat{i}+\hat {j}+2\hat{k} \right )$ and
Answer:
Given, lines:
$\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$
$\vec{r}=\left (2\hat{i}-5\hat{k} \right )+\mu\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )$
We are instructed to find the angle between the lines.
The line $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$ is parallel to the vector
$2\hat{i}+\hat{j}+2\hat{k}$
Let
$\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$
Then, we can say the line $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$ is parallel to vector $\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$
Similarly, let $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$
Then, we can say is $\vec{r}=2\hat{j}-5\hat{k}+\mu \left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )$ parallel to the vector $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$
If we take θ as the angle between the lines, then cosine θ is:
$\cos \theta = \frac{\vec{b_{1}}\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |}$
Substituting the values of $\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$ and $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$ in the above equation,
We get
$\cos \theta=\frac{\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |}$
Here,
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=\left ( 2 \times 6 \right )+\left ( 1 \times 3 \right )+\left ( 2 \times 2 \right )$
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=12+3+4$
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=19...........(i)$
Also,
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{2^{2}+1^{2}+2^{2}}\sqrt{6^{2}+3^{2}+2^{2}}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{4+1+4}\sqrt{36+9+4}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{9}\sqrt{49}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=3 \times 7$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=21............(ii)$
Substituting the values of $\cos \theta$ in equation (i) and (ii), we get
$\cos \theta=\frac{19}{21}$
$\Rightarrow \theta=\cos^{-1}\left (\frac{19}{21} \right )$
Therefore, the angle between the lines is $\cos^{-1}\left (\frac{19}{21} \right )$
Question:5
Answer:
Given: A (0, -1, -1), B (4, 5, 1), C (3, 9, 4), D (-4, 4, 4).
To prove: The line passing through A and B intersects the line passing through C and D.
Proof: We know, equation of a line passing through two points (x1 , y1 , z1) and (x2 , y2 , z2) is:
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Hence, the equation of the line passing through A (0, -1, -1) and B (4, 5,1) is:
$\frac{x-0}{4-0}=\frac{y-(-1)}{5-(-1)}=\frac{z-(-1)}{1-(-1)}$
, where x1 = 0, y1 = -1, z1 = -1; and x2 = 4, y2 = 5, z2 = 1
$\Rightarrow \frac{x-0}{4}=\frac{y+1}{6}=\frac{z+1}{2}\\ \Rightarrow \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}$
Let
$L_{1}: \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}=\lambda\\ \\ \frac{x}{4}=\lambda, \frac{y+1}{6}=\lambda,\frac{z+1}{2}=\lambda\\$
We must find the values of x, y, and z. Therefore,
$Take \frac{x}{4}=\lambda\\ \Rightarrow x=4\lambda\\ \\ Take \frac{y+1}{6}=\lambda\\ \Rightarrow y+1=6\lambda\\ \Rightarrow y=6\lambda-1\\ \\ Take \frac{z+1}{2}=\lambda\\ \Rightarrow z+1=2\lambda\\ \Rightarrow z=2\lambda-1\\ \\$
This implies that any point on the line L1 is (4λ, 6λ – 1, 2λ – 1).
The equation of the line passing through points C (3, 9, 4) and D (-4, 4, 4) is:
$\frac{x-3}{-4-3}=\frac{y-9}{4-9}=\frac{z-4}{4-4}$
, where x1 = 3, y1 = 9, z1 = 4; and x2 = -4, y2 = 4, z2 = 4
$\frac{x-3}{-7}=\frac{y-9}{-5}=\frac{z-4}{0}$
Let
$L_{2}:\frac{x-3}{-7}=\frac{\left (y-9 \right )}{-5}=\frac{z-4}{0}=\mu$
$\Rightarrow \frac{x-3}{-7}=\mu,\frac{\left (y-9 \right )}{-5}=\mu,\frac{z-4}{0}=\mu$
We must find the values of x, y, and z. Therefore,
$Take \, \frac{x-3}{-7}=\mu\\ \Rightarrow x-3=-7\mu\\ \Rightarrow x=-7\mu+3\\ \\ Take \,\frac{\left (y-9 \right )}{-5}=\mu \\ \Rightarrow y-9=-5\mu\\ \Rightarrow y=-5\mu+9\\ \\ Take\frac{z-4}{0}=\mu \\ \Rightarrow z-4=0\\ \Rightarrow z=4$
This implies that any point on line L2 is (-7μ +3, -5μ + 9, 4).
If the lines intersect, then there must exist a value of λ and for μ, for which
$\left (4\lambda, 6\lambda - 1, 2\lambda -1\right) \equiv \left(-7\mu + 3, -5\mu + 9, 4\right ) \\ \Rightarrow 4\lambda = -7\mu + 3...(i)\\ 6\lambda - 1 = -5\mu + 9..(ii)\\ 2\lambda - 1 = 4 �(iii)\\$
From equation (iii), we get
$2\lambda - 1 = 4 \\ \Rightarrow 2\lambda=4+1\\ \Rightarrow 2\lambda=5\\ \Rightarrow \lambda=\frac{5}{2}$
Substituting the value of λ in equation (i),
$4\left ( \frac{5}{2} \right )=-7\mu+3\\ \Rightarrow 2 \times 5=-7\mu+3\\ \Rightarrow 10=-7\mu+3\\ \Rightarrow 7\mu=3-10\\ \Rightarrow 7\mu=-7 \\ \Rightarrow -\frac{7}{7}\\ \Rightarrow \mu=-1$
Substituting these values of λ and μ in equation (ii),
$6\left ( \frac{5}{2} \right )-1=-5\left ( -1 \right )+9\\ \Rightarrow 3 \times 5 - 1 = 5 + 9\\ \Rightarrow 15 - 1 = 14\\ \Rightarrow 14 = 14$
Since the values of λ and μ satisfy eq (ii), the lines intersect.
Hence, proved that the line through A and B intersects the line through C and D.
Question:6
Answer:
Given: x = py + q, z = ry + s, and x = p’y + q’, z = r’y + s’ are perpendicular.
To Prove: pp’ + rr’ + 1 = 0.
Proof:
Let us take x = py + q and z = ry + s.
From x = py + q;
py = x - q
$\Rightarrow y=\frac{x-q}{p}$
From z = ry + s;
ry = z - s
$\Rightarrow y=\frac{z-s}{r}$
So, $\frac{x-q}{p}=y=\frac{z-s}{r}$
$\frac{x-q}{p}=\frac{y}{1}=\frac{z-s}{r}$ Or, … (i)
Now, if we take x = p’y + q’ and z = r’y + s’
From x = p’y + q’;
p’y = x - q’
$\Rightarrow y=\frac{x-{q}'}{{p}'}$
From z = r’y + s’;
r’y = z - s’
$\Rightarrow y=\frac{z-{s}'}{{r}'}$
So,
$\frac{x-{q}'}{{p}'}=y=\frac{z-{s}'}{{r}'}$
Or,
$L_{2}:\frac{x-{q}'}{{p}'}=\frac{y}{1}=\frac{z-{s}'}{{r}'}.......(ii)$
From (i),
Line L1 is parallel to $p\hat{i}+\hat{j}+r\hat{k}$ (from the denominators of the equation (i))
From (ii),
Line L2 is parallel to ${p}'\hat{i}+\hat{j}+{r}'\hat{k}$ (from the denominators of the equation (ii))
According to the question, L1 and L2 are perpendicular.
Therefore, the dot product of the vectors should equate to 0.
Or,
$\left (p\hat{i}+\hat{j}+r\hat{k} \right ).\left ({p}'\hat{i}+\hat{j}+{r}'\hat{k} \right )\\ \Rightarrow p{p}'+1+r{r}'=0$
(since, in vector dot product, $\left (x\hat{i}+y\hat{j}+z\hat{k} \right )\left ({x}'\hat{i}+{y}'\hat{j}+{z}'\hat{k} \right )= x{x}'+y{y}'+z{z}'=0$
Or,
$p{p}'+r{r}'+1=0$
Therefore, the lines are perpendicular if pp’ + rr’ + 1 = 0.
Question:7
Answer:
Given, there exists a plane which perpendicularly bisects the line joining A (2, 3, 4) and B (4, 5, 8) at right angles. We must find the equation of this plane.
First, let us find the midpoint of AB.
Since the midpoint of any line is halfway between the two end points,
$Midpoint \: of \: AB=\left ( \frac{2+4}{2},\frac{3+5}{2},\frac{4+8}{2} \right )$
$Midpoint \: of \: AB=\left ( \frac{6}{2},\frac{8}{2},\frac{12}{2} \right )$
= (3, 4, 6).
We can represent this as a position vector, $\vec{a}=3\hat{i}+4\hat{j}+6\hat{k}$
Next, we must find the normal of the plane, $\vec{n}$
$\vec{n}=\left ( 4-2 \right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 8-4 \right )\hat{k}\\ \Rightarrow \vec{n}=2\hat{i}+2\hat{j}+4\hat{k}$
We know, the equation of the plane which perpendicularly bisects the line joining two given points is
$\left ( \vec{r}-\vec{a} \right )\vec{n}=0$
Where,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$
Substituting the values in the above equation,
$\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right ) -\left (3\hat{i}+4\hat{j}+6\hat{k} \right ) \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-4\hat{j}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow \left ( x\hat{i}-3\hat{i}+y\hat{j}-4\hat{j}+z\hat{k}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow \left ( (x-3)\hat{i}+(y-4)\hat{j}+(z-6)\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow 2\left ( x-3 \right )+2(y-4)+4(z-6)=0$
Upon further simplification,
$\Rightarrow 2x-6+2y-8+4z-24=0\\ \Rightarrow 2x+2y+4z-6-8-24=0\\ \Rightarrow 2x+2y+4z-38=0\\ \Rightarrow 2\left ( x+y+2z-19 \right )=0\\ \Rightarrow x+y+2z-19=0\\ \Rightarrow x+y+2z=19$
Therefore, the required equation of the plane is x + y + 2z = 19.
Question:8
Answer:
Given, the plane is at a distance of $3\sqrt{3}$ from the origin, and the normal is equally inclined to coordinate axes.
We need to find the equation of this plane.
We know, the vector equation of a plane located at a distance d from the origin is represented by:
$\vec{r}.\hat{n}=d\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )=d$
lx + my + nz = d ….(i) , where l, m and n are the direction cosines of the normal of the plane.
Since the normal is equally inclined to the coordinate axes,
$l = m = n \\ \cos \alpha =\cos\beta =\cos \gamma �(ii)$
Also, we know,
$\cos^{2} \alpha =\cos^{2}\beta =\cos^{2} \gamma=1\\ \Rightarrow \cos^{2} \alpha =\cos^{2}\alpha =\cos^{2} \alpha =1 \: \: \left ( from(ii) \right )\\ \Rightarrow 3\cos^{2}\alpha=1\\ \Rightarrow \cos^{2}\alpha=\frac{1}{3}\\ \Rightarrow \cos \alpha =\frac{1}{\sqrt{3}}$
This means, $l=m=n =\frac{1}{\sqrt{3}}$
if we substitute the values of l, m and n in equation (i),
$\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=d\: \: \left [where\: d=3\sqrt{3} \right ]$
So,
$\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=3\sqrt{3} \\ \Rightarrow \frac{x+y+z}{\sqrt{3}}=3\sqrt{3}\\ \Rightarrow x+y+z=3\sqrt{3}\times \sqrt{3}\\ \Rightarrow x+y+z=3 \times 3=9$
Therefore, the required equation of the plane is x + y + z = 9.
Question:9
Answer:
Given: the line drawn from point (-2, -1, -3) meets a plane at 900 at the point (1, -3, 3). We must find the equation of the plane.
Any line perpendicular to the plane is the normal.
Let the points be P (-2, -1, -3) and Q (1, -3, 3), then the line PQ is a normal to the plane.
Hence, PQ = (1 + 2, -3 + 1, 3 + 3)=> PQ = (3, -2, 6)
=> Normal to the plane = $\vec{PQ}$
$\vec{PQ}=3\hat{i}-2\hat{j}+6\hat{k}$
The vector equation of a plane is represented by $\left (\vec{r}-\vec{a} \right ).\vec{n}=0$
Putting the obtained values in this equation,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=\hat{i}-3\hat{j}+3\hat{k}\\ \vec{n}=3\hat{i}-2\hat{j}+6\hat{k}$
We get,
$\Rightarrow \left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (\hat{i}-3\hat{j}+3\hat{k} \right ) \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}-y\hat{j}+z\hat{k}-\hat{i}+3\hat{j}-3\hat{k} \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}-\hat{i}+y\hat{j}+3\hat{j}+z\hat{k}-3\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ((x-1)\hat{i}+(y+3)\hat{j}+(z-3)\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0$
$\Rightarrow 3(x - 1) + (-2)(y + 3) + 6(z - 3) = 0\\ \Rightarrow3(x - 1) - 2(y + 3) + 6(z - 3) = 0\\ \Rightarrow 3x- 3 -2y - 6 + 6z - 18 = 0\\ \Rightarrow 3x - 2y +6z - 3 - 6 - 18 = 0\\ \Rightarrow 3x - 2y + 6z - 9 - 18 = 0\\ \Rightarrow 3x - 2y + 6z - 27 = 0\\ \Rightarrow 3x - 2y + 6z = 27$
Therefore, the required equation of the plane is 3x - 2y + 6z = 27.
Question:10
Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).
Answer:
Given points are (2, 1, 0), (3, -2, -2), and (3, 1, 7).
We know, equation of a line passing through 3 non-collinear points (x1 , y1 , z1 ), (x2 , y2 , z2 ) and (x3 , y3 , z3 ) is given as:
$\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}=0$
Where, (x1 , y1 , z1 ) = (2, 1, 0)
(x2 , y2 , z2 ) = (3, -2, -2)
(x3 , y3 , z3 ) = (3, 1, 7)
Therefore, x1 = 2, y1 = 1, z1 = 0; x2 = 3, y2 = -2, z2 = -2; x3 = 3, y3 = 1, z3 = 7
Substituting these values in the line equation,
$\begin{vmatrix} x-2 &y-1 &z-0 \\ 3-2&-2-1 &-2-0 \\ 3-2&1-1 &7-0 \end{vmatrix}=0\\ \\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=0$
$\\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=\left ( x-2 \right )\left ( \left ( -3 \times 7 \right )-\left ( -2 \times 0 \right ) \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21-0 \right )-\left ( y-1 \right )\left ( 7-(-2) \right )+z\left ( 0-(-3) \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21 \right )-\left ( y-1 \right )\left ( 7+2 \right )+z\left ( 0+3 \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21\left ( x-2 \right )-9\left ( y-1 \right )+3z$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x+42-9y+9+3z$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+42+9$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+51$
Now, since
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=0$
$\Rightarrow -21x -9y + 3z + 51 = 0\\ \Rightarrow -21x - 9y + 3z = -51\\ \Rightarrow -3(7x + 3y - z) = -3 \times 17\\ \Rightarrow 7x + 3y - z = 17$
Hence, the required equation of the plane is 7x + 3y - z = 17.
Question:11
Answer:
Given the equation of the line, we need to find the equations of two lines through the origin which intersect the given line.
According to the theorem, equation of a line with direction ratios d1 = (b1 , b2 , b3 ) that passes through the point (x1 , y1 , z1 ) is expressed as:
$\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}$
We also know, the angle between two lines with direction ratios d1 and d2 respectively is given by:
$\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )$
We use these theorems to find the equations of the two lines.
Let the equation of a line be:
$\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )$
Given that it passes through the origin, (0, 0, 0)
Therefore, equation of both lines passing through the origin will be :
$\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda \, \, .....(i)$
Let,
$\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}=\mu \, \, .....(ii)$
Direction ratio of the line = (2, 1, 1)
$\Rightarrow d_{1} = (2, 1, 1).... (iii)$
If we represent the direction ratio in terms of a position vector,
$d_{1}=2\hat{i}+\hat{j}+\hat{k} .....(iv)$
Any point on the line is given by (x, y, z). From (ii),
$\frac{x-3}{2}=\mu, \frac{y-3}{1}=\mu ,\frac{z}{1}=\mu$
$\\\text{take} \ \frac{x-3}{2}=\mu\\ \Rightarrow x-3=2\mu\\ \Rightarrow x=2\mu+3\\ \\ take \frac{y-3}{1}=\mu \\ \Rightarrow y-3=\mu\\ \Rightarrow y=\mu+3\\ \\ take \frac{z}{1}=\mu\\ \Rightarrow z=\mu$
Hence, any point on line (ii) is $P(2\mu + 3, \mu + 3, \mu)$
Since line (i) passes through the origin, we can say
$\left ( b_{1},b_{2},b_{3} \right )\equiv (2\mu + 3, \mu + 3, \mu)$
$\Rightarrow \: direction\: \: ratio\: of\; line(i)= (2\mu + 3, \mu + 3, \mu)\\ \Rightarrow d_{2}= (2\mu + 3, \mu + 3, \mu)....(v)$
We can represent the direction ratio in terms of position vector like:
$d_{2}= \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \: \: ....(vi)$
From the theorem, we know
$\cos \theta=\frac{d_{1}.d_{2}}{\left |d_{1} \right |\left |d_{2} \right |}$
If we substitute the values of d? and d? from (iv) and (vi) in the above equation, and putting $\theta=\frac{\pi}{3}$ from the question:
$\Rightarrow \cos \frac{\pi}{3}=\frac{\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |}$
Solving the numerator,
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 2\left (2\mu + 3 \right )+1\left ( \mu + 3 \right )+1. \mu$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu + 6+\mu + 3+ \mu$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu +\mu + \mu+6+3$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 6\mu+9$
Solving the denominator,
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{2^{2}+1^{2}+1^{2}}\sqrt{ \left (2\mu + 3 \right )^{2}+\left ( \mu + 3 \right )^{2}+ \mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{4+1+1}\sqrt{ \left (2\mu \right )^{2}+ 3^{2}+2\left ( 2\mu \right )\left ( 3 \right )+\left ( \mu \right )^{2}+3^{2}+ 2(\mu)(3)+\mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{4\mu^{2}+9+12\mu+u^{2}+9+6\mu+\mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{4\mu^{2}+u^{2}+\mu^{2}+12\mu+6\mu+9+9}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6\mu^{2}+18\mu+18}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6\left (\mu^{2}+3\mu+3 \right )}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6}\sqrt{\mu^{2}+3\mu+3}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=6\sqrt{\mu^{2}+3\mu+3 }$
And cos π/3 = 1/2
Substituting the values, we get
$\Rightarrow \frac{1}{2}=\frac{6\mu+9}{6\sqrt{\mu^{2}+3\mu+3}}$
Performing cross multiplication,
$\Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2\left (6\mu+9 \right )\\ \Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2 \times 3\left (2\mu+3 \right )\\ \Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=6\left (2\mu+3 \right )\\ \Rightarrow \sqrt{\mu^{2}+3\mu+3}=2\mu+3$
Squaring both sides,
$\Rightarrow \left (\sqrt{\mu^{2}+3\mu+3} \right )^{2}=\left (2\mu+3 \right )^{2}\\ \Rightarrow \mu^{2}+3\mu+3=(2\mu)^{2}+3^{2}+2(2\mu)(3)\left [ \because (a+b)^{2}=a^{2}+b^{2}+2ab \right ]\\ \Rightarrow \mu^{2}+3\mu+3=4\mu^{2}+9+12\mu\\ \Rightarrow 4\mu^{2}-\mu^{2}+12\mu-3\mu+9-3=0\\ \Rightarrow 3\mu^{2}+9\mu+6=0$
$\Rightarrow 3\left ( \mu^{2}+3\mu+2 \right ) =0\\ \Rightarrow \mu^{2}+3\mu+2=0\\ \Rightarrow\mu^{2}+2\mu+\mu+2=0\\ \Rightarrow \mu\left ( \mu+2 \right )+\left ( \mu+2 \right )=0\\ \Rightarrow \left ( \mu+1 \right )+\left ( \mu+2 \right )=0\\$
$\Rightarrow \left ( \mu+1 \right )=0 \: \: or\: \left ( \mu+2 \right )=0\\ \Rightarrow \mu=-1 \: \: \: or\: \: \: \mu=-2$
Therefore, from equation (v)
Direction ratio =$(2\mu+ 3, \mu + 3, \mu)$
Putting μ = -1:
Direction Ratio = (2(-1) + 3, (-1) + 3, -1)
⇒ Direction Ratio = (-2 + 3, -1 + 3, -1)
⇒ Direction Ratio = (1, 2, -1) …(vi)
Now putting μ = -2:
Direction Ratio = (2(-2) + 3, (-2) + 3, -2)
⇒ Direction Ratio = (-4 + 3, -2 + 3, -2)
⇒ Direction Ratio = (-1, 1, -2) …(vii)
Using the direction ratios in (vi) and (vii) in equation (i);
$\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda\\ \\ \\ \frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda$
And,
$\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda$
Therefore, the two required lines are $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda$ and $\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda$
Question:12
Answer:
Given, two lines whose direction cosines are l + m + n = 0 - (i); and l² + m² - n² = 0 - (ii). We need to find the angle between these lines.
First, we must find the values of l, m and n.
From equation (i), l + m + n = 0
=> n = - l - m
=> n = -(l + m) …(iii)
If we substitute the value of n from (i) in (ii),
$l^{2}+m^{2}-n^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left (-\left ( l+m \right ) \right )^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left ( l+m \right ) ^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left ( l^{2}+m^{2}+2lm \right )=0\\ \Rightarrow l^{2}+m^{2} -l^{2}-m^{2}-2lm=0\\ \Rightarrow l^{2}-l^{2}+m^{2}-m^{2}-2lm=0\\ \Rightarrow -2lm=0\\ \Rightarrow lm=0$
⇒ l = 0 or m = 0
Putting l = 0 in equation (i),
=> 0 + m + n = 0
=> m + n = 0
=> m = -n
If m = $\lambda$, then
n = -m = -$\lambda$
Hence, direction ratios (l, m, n) = (0, $\lambda$, -$\lambda$)
=> Position vector parallel to these given lines = $0\hat{i}+\lambda\hat{j}-\lambda \hat{k}$
$\Rightarrow d_{1}=\lambda\hat{j}-\lambda \hat{k}$
Now, putting m = 0 in equation (i),
=> l + 0 + n = 0
=> l + n = 0
=> l = -n
If n = $\lambda$, then
l = -n = -$\lambda$
Hence, direction ratios (l, m, n) = (-$\lambda$, 0, $\lambda$)
=> Position vector parallel to these given lines = $-\lambda \hat{i}+\0\hat{j}+\lambda \hat{k}$
$\Rightarrow d_{2}=-\lambda\hat{i}+\lambda \hat{k}$
From the theorem, we get the angle between the two lines whose direction ratios are d1 and d2 as:
$\theta=\cos^{-1}\left ( \frac{\left | d_{1}.d_{2} \right |}{\left | d_{1}\right |\left |d_{2} \right |} \right )$
If we substitute the values of d1 and d2, we get
$\theta=\cos^{-1}\left ( \frac{\left| \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |}{\left | \left ( \lambda \hat{j}-\lambda \hat{k} \right )\right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |} \right )$
Solving the numerator,
$\left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) =0+0+\left ( -\lambda \right )\left ( \lambda \right )\\ \Rightarrow \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right )= -\lambda^{2}$
Solving the denominator,
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}\left (-\lambda \right )^{2}} \sqrt{\left (- \lambda \right )^{2}+\lambda ^{2}}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}+\lambda^{2}} \sqrt{ \lambda^{2}+\lambda ^{2}}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |= \lambda ^{2}+\lambda^{2}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=2 \lambda ^{2}$
Substituting the values in θ,
$\theta=\cos^{-1}\left ( \frac{\left | -\lambda^{2} \right |}{\lambda^{2}} \right )\\ \Rightarrow \theta=\cos^{-1}=\frac{1}{2}\\ \Rightarrow \theta=\frac{\pi}{3}\left [ \because \cos\frac{\pi}{3}=\frac{1}{2} \right ]$
Therefore, the required angle between the lines is π/3.
Question:13
Answer:
Given: direction cosines of a variable line in two adjacent positions are l, m, n and $l+\delta l, m+\delta m,n+\delta n,$
We have to prove that the small angle $\delta \theta$ between the two positions is given by $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$
We know, the relationships between direction cosines is given as
$l^{2}+ m^{2}+ n^{2}=1 ....(1)$
Also, $\left (l+\delta l \right )^{2}+ \left (m+\delta m \right )^{2}+ \left (n+\delta n \right )^{2}=1$
$\Rightarrow l^{2}+(\delta l)^{2}+2(l)(\delta l)+m^{2}+(\delta m)^{2}+2(m)(\delta m)+n^{2}+(\delta n)^{2}+2(n)(\delta n)=1\\ \Rightarrow l^{2}+m^{2}+n^{2}+\left (\delta l \right )^{2}+\left (\delta m \right )^{2}+\left (\delta n \right )^{2}+2l\delta l+2m\delta m+2n\delta n=1\\ \Rightarrow 1+\delta l^{2}+\delta m^{2}+ \delta n^{2}+2l\delta l+2m\delta m+2n\delta n=1\: \: \: \left [ from (i) \right ] \\ \Rightarrow 2l\delta l+2m\delta m+2n\delta n+\delta l^{2}+\delta m^{2}+ \delta n^{2}=1-1 \\ \Rightarrow 2 \left (l\delta l+m\delta m+n\delta n \right )=-\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right )\\ \Rightarrow l\delta l+m\delta m+n\delta n =-\frac{1}{2}\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right ).......(iii)$
Let
$\vec{a}=l\hat{i}+m\hat{j}+n\hat{k}\\ \Rightarrow \vec{b}=\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k}$
We know, angle between two lines = $\cos \theta=\vec{a}. \vec{b}$
Here, the angle is very small because the line is variable in different although adjacent positions. According to the question, this small angle is $\delta \theta$
Therefore,
$\cos \delta \theta=\vec{a}. \vec{b}$
Substituting the values of the two vectors, we get
$\Rightarrow \cos \delta \theta = \left (l\hat{i}+m\hat{j}+n\hat{k} \right ).\left (\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k} \right )$
The dot product of 2 vectors is calculated by obtaining the sum of the product of the coefficients of $\hat{i},\hat{j}\; and \; \hat{k}$
$\Rightarrow \cos \delta \theta =l \left ( l+\delta l \right )+m \left ( m+\delta m \right )+n \left ( n+\delta n \right )\\ \Rightarrow \cos \delta \theta = l^{2}+l \delta l+m^{2}+m \delta m+n^{2}+n \delta n\\ \Rightarrow \cos \delta \theta =l^{2}+m^{2}+n^{2}+l \delta l+m \delta m+n \delta n\\ \Rightarrow \cos \delta \theta =1+l \delta l+m \delta m+n \delta n\: \: \left [ from(i) \right ]\\ \Rightarrow \cos \delta \theta=1-\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )\: \: \: \: \left [ \because from(ii) \right ]\\ \Rightarrow \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )=1-\cos \delta \theta$
Or,
$\Rightarrow 1-\cos \delta \theta= \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )$
We know, $1 -\cos 2 \theta = 2\sin^{2} \theta$
On the left-hand side, the angle is $2 \theta$. On the right hand side, it becomes half, that is, $\frac{ 2 \theta}{2} =\theta$.
Similarly replacing $2 \theta$ by $\delta \theta$ in LHS, then making the angle on the RHS half,
We get:
$1 -\cos \delta \theta = 2\sin^{2} \frac{\delta \theta}{2}$
$\Rightarrow 2\sin^{2} \frac{\delta \theta}{2}=\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )\\ \Rightarrow 2 \times 2\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\ \Rightarrow 4\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\ \Rightarrow 4\left ( \sin \frac{\delta \theta}{2} \right )^{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\$
Since $\delta \theta$ is a very small angle, $\frac{\delta \theta}{2}$ will be much smaller. Hence $\sin \frac{\delta \theta}{2}$ will also be very small in value.
$\Rightarrow \sin \frac{\delta \theta}{2}=\frac{\delta \theta}{2}\\ \\ \Rightarrow 4\left ( \frac{\delta \theta}{2} \right )^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}\\ \Rightarrow 4 \frac{\delta \theta^{2}}{4} =\delta l^{2}+\delta m^{2}+\delta n^{2}\\ \\ \Rightarrow \delta \theta^{2} =\delta l^{2}+\delta m^{2}+\delta n^{2}\\$
Hence, proved.
Question:14
Answer:
We have the points O (0, 0, 0) and A (a, b, c) where a, b, and c are direction ratios. We need to find the direction cosines of line OA and the equation of the plane through A at right angle to OA.
To begin with,
$\vec{OA}=Position\: vector\: of\: A-Position\: vector\: of\:O\\ \Rightarrow \vec{OA}=\left ( a\hat{i}+b\hat{j}+c\hat{k} \right )-\left ( 0\hat{i}+0\hat{j}+0\hat{k} \right ) \\ \Rightarrow \vec{OA}= a\hat{i}-0\hat{i}+b\hat{j}-0\hat{j}+c\hat{k}-0\hat{k}\\ \Rightarrow \vec{OA}= a\hat{i}+b\hat{j}+c\hat{k}$
We know, if (a, b, c) are the direction ratios of a given vector, then its direction cosines will be:
$\left ( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )$
According to the question, the direction ratios are (a, b, c), therefore the direction cosines of the vector OA are the same as the above formula, that is,
$\left ( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )$
Given, the plane is perpendicular to OA. We know, a normal is a line or vector which is perpendicular to a given object. Therefore, we can say:
$\vec{n}=\vec{OA}\\ \Rightarrow \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\ \left [ \because \vec{OA}=a\hat{i}+b\hat{j}+c\hat{k} \right ]$
Also, the vector equation of a plane where the normal is passing through the plane and passing through is,
$\left ( \vec{r}-\vec{a} \right ).\vec{n}=0$
Where
$\vec{r}-\vec{a} = vector\: from\: \vec{A}\: to\: \vec{R} \\ \vec{a}=Position\: vector\: of\: the\: given\: point\: in\: the\: plane\\ \vec{n}=normal\: vector\: to\: the\: plane$
Here, the given point in the plane is A (a, b, c).
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=a\hat{i}+b\hat{j}+c\hat{k}\\ \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\$
Substituting the vectors respectively, we get:
$\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (a\hat{i}+b\hat{j}+c\hat{k} \right ) \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow \left (x\hat{i}+y\hat{j}+z\hat{k} -a\hat{i}-b\hat{j}-c\hat{k} \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow \left (\left (x-a \right )\hat{i}+\left (y-b \right )\hat{j}+\left (z-c \right )\hat{k}\right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow a\left (x-a \right )+b\left (y-b \right )+c\left (z-c \right )=0\\$
Upon simplifying this, we get:
$\Rightarrow ax - a^{2} + by-b^{2} + cz - c^{2} =0\\ \Rightarrow ax + by + cz - a^{2}-b^{2}- c^{2} =0\\ \Rightarrow a^{2}+b^{2}+ c^{2} =ax + by + cz$
Hence, the required equation of the plane is a² + b² + c² = ax + by + cz.
Question:15
Answer:
Given, we have 2 systems of rectangular axes. Both the systems have the same origin, and there is a plane that cuts both systems.
One system is cut at a distance of a, b, c.
The other system is cut at a distance of a’, b’, c’.
To prove:
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}$
Proof: Since a plane intersects both the systems at distances a, b, c, and a’, b’, c’ respectively, this plane will have different equations in the two different systems.
Let us consider the equation of the plane in the system with distances a, b, c to be:
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Let us consider the equation of the plane in the system with distances a’, b’, c’ be:
$\frac{x}{a'}+\frac{y}{b'}+\frac{z}{c'}=1$
According to the question, the plane cuts both the systems from the origin. We know, the perpendicular distance of a plane $ax + by + cz + d =0$ from the origin is given by:
$\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |$
(where not all a, b, and c are zero)
Therefore, the perpendicular distance from the origin of the first plane is:
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |$
And, the perpendicular distance from the origin of the second plane:
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |$
We also know, if two systems of lines have the same origin, their perpendicular distances from the origin to the plane in both systems are equal.
Therefore,
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |=\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |$
$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} =\frac{1}{\sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}}$
Cross-multiplying,
$\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
Squaring both sides,
$\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
$\Rightarrow \frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$
Or
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}$
Hence, proved.
Question:16
Answer:
Given, the perpendicular from the point (let) C (2, 3, -8) to the line of which the equation is,
$\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$
This can be re-written as,
$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}$
Hence, the vector equation of the line is, $-2\hat{i}+6\hat{j}-3\hat{k}$
We must find the foot of the perpendicular from the point C (2, 3, -8) to given line, as well as the perpendicular distance from the given point C to the line.
To start with, let us locate the point of intersection between the point and the line.
Let us take,
$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}=\lambda$
$\frac{x-4}{-2}=\lambda,\frac{y}{6}=\lambda,\frac{z-1}{-3}=\lambda$
$from\frac{x-4}{-2}=\lambda\\\Rightarrow x-4=-2\lambda \\\Rightarrow x=4-2\lambda\\ \\ from \frac{y}{6}=\lambda\\ \Rightarrow y=6\lambda\\ \\ from \frac{z-1}{-3}=\lambda\\ \Rightarrow z-1=-3\lambda\\\Rightarrow z=1-3\lambda$
We have,$x = 4 - 2\lambda , y = 6\lambda, z = 1 - 3\lambda$
Therefore, the coordinates of any point on the given line is $\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$
Let us consider the foot of the perpendicular from C(2, 3, -8) on line to be$L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$
Therefore, the direction ratios of $CL\left ( 4 - 2\lambda-2 , 6\lambda-3, 1 - 3\lambda-(-8) \right )$
$=\left ( 4 - 2\lambda-2 , 6\lambda-3, 1+8 - 3\lambda \right )\\ =\left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right )$
Also, the direction ratio of the line is,$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}$ (-2, 6, -3).
Since L is the foot of the perpendicular on the line,
Sum of the product of these direction ratios $\left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right )$ and (-2, 6, -3) = 0.
$-2\left ( 2-2\lambda\right ) +6\left (6\lambda-3 \right )+(-3)\left ( 9 - 3\lambda \right )\\\\ \Rightarrow -4+4\lambda+36\lambda-18-27+9\lambda=0\\ \Rightarrow \left ( 4\lambda+36\lambda+9\lambda \right )+\left ( -4-18-27 \right )=0\\ \Rightarrow 49\lambda-49=0\\ \Rightarrow 49\lambda=49\\ \Rightarrow \lambda= \frac{49}{49}\\Hence \: \: \lambda=1$
If we substitute this value of λ in $L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$, we get
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2(1), 6(1), 1 - 3(1))$
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2, 6, 1 - 3)$
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(2, 6, -2)$
Now, we must calculate the perpendicular distance of point C from the line, that is point L.
In other words, we need to find $\left | \vec{CL} \right |$
We know, $\vec{CL} =\left ( 2-2\lambda,6\lambda-3,9-3\lambda \right )$
Substituting λ = 1,
$\vec{CL} =\left ( 2-2(1),6(1)-3,9-3(1) \right )\\ \Rightarrow \vec{CL} =\left ( 2-2,6-3,9-3 \right )\\ \Rightarrow \vec{CL} =\left ( 0,3,6 \right )$
To find $\left | \vec{CL} \right |$
$\left | \vec{CL} \right |=\sqrt{0^{2}+3^{2}+6^{2}}\\ \Rightarrow \left | \vec{CL} \right |=\sqrt{0+9+36} \Rightarrow \left | \vec{CL} \right |=\sqrt{45}\\ \Rightarrow \left | \vec{CL} \right |=3\sqrt{5}$
Therefore, the foot of the perpendicular from the point C to the given line is (2, 6, -2) and the perpendicular distance is $3\sqrt{5}$ units.
Question:17
Find the distance of a point (2, 4, -1) from the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$
Answer:
Given, the point P (2, 4, -1), the equation of the line is $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$
We must find the distance of point P from this line.
Note, to find the distance between a point and a line, we should get foot of the perpendicular from the point on the line.
Let, P(2, 4, -1) be the given point and be $L:\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda$ the given line.
Direction ratio of the line L is (1, 4, -9) …(i)
Let us find any point on this line.
Taking L,
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda$
$\frac{x+5}{1}=\lambda,\frac{y+3}{4}=\lambda,\frac{z-6}{-9}=\lambda$
$Take \frac{x+5}{1}=\lambda\\ \Rightarrow x+5=\lambda\\ \Rightarrow x=\lambda - 5\\\\ Take \frac{y+3}{4}=\lambda\\ \Rightarrow y+3=4\lambda\\ \Rightarrow y=4\lambda-3\\ \\ Take \frac{z-6}{-9}=\lambda\\ \Rightarrow z-6=-9\lambda\\ \Rightarrow z=6-9\lambda$
Therefore, any point on the line L is $(\lambda - 5, 4\lambda - 3, 6 - 9\lambda)$
Let this point be $Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda)$, the foot of the perpendicular from the point P (2, 4, -1) on the line L.
Hence, the direction ratio of PQ is given by
$(\lambda - 5-2, 4\lambda - 3-4, 6 - 9\lambda-(-1))$
=> Direction ratio of PQ= $(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$ …(ii)
Also, we know, if two lines are perpendicular to each other, then the dot product of their direction ratios should be 0.
Here, PQ is perpendicular to L. We have, from (i) and (ii),
Direction ratio of L = (1, 4, -9)
Direction ratio of PQ = $(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$
Therefore,
$(1, 4, -9).(\lambda - 7, 4\lambda - 7, 7 - 9\lambda) = 0\\ \Rightarrow 1 (\lambda- 7) + 4 (4\lambda - 7) + (-9) (7 - 9\lambda) = 0\\ \Rightarrow \lambda - 7 + 16\lambda - 28 -63 + 81\lambda = 0\\ \Rightarrow \lambda + 16\lambda + 81\lambda - 7 - 28- 63 = 0\\ \Rightarrow 98\lambda - 98 = 0\\ \Rightarrow 98\lambda = 98\\ \Rightarrow \lambda = 1$
Hence, the coordinate of Q, i.e. the foot of the perpendicular from the point on the given line is,
$Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4(1) - 3, 6 - 9)\\ \Rightarrow Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4 - 3, 6 - 9)\\ \Rightarrow => Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = (-4, 1, -3)$
Now, to find the perpendicular distance from P to the line, that is point Q,
That is, to find $\left | \vec{PQ} \right |$
We know,
$\left | \vec{PQ} \right |=(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$
Substituting $\lambda=1$
$\vec{PQ}=(1 - 7, 4(1)- 7, 7 - 9(1))\\ \Rightarrow \vec{PQ}=\left ( -6,4-7,7-9 \right )\\ \Rightarrow \vec{PQ}=\left ( -6,-3,-9 \right )$
Now, to find
$\left | \vec{PQ} \right |= \sqrt{(-6)^{2}+(-3)^{2}+(-2)^{2} }\\ \Rightarrow \left | \vec{PQ} \right |= \sqrt{36+9+4}\\ \Rightarrow \left | \vec{PQ} \right |= \sqrt{49}\\ \Rightarrow \left | \vec{PQ} \right |= 7$
Therefore, the distance from the given point to the given line = 7 units.
Question:18
Answer:
Given, point P (1, 3/2, 2)
The plane is 2x - 2y + 4z + 5 = 0
We must find the foot of the perpendicular from the point P to the equation of the given plane.
Also, we must find the distance from the point P to the plane.
Let us consider the foot of the perpendicular from point P to be Q.
Let Q be Q (x1 , y1 , z1)
So, the direction ratio of PQ is given by
(x1 - 1, y1 - 3/2, z1 - 2)
Now, let us consider the normal to the plane 2x - 2y + 4z + 5 = 0:
It is obviously parallel to PQ, since a normal is a line or vector that is perpendicular to a given object. The direction ratio simply states the number of units to move along each axis.
For any plane, ax + by + cz = d, where, a, b, and c are normal vectors to the plane.
Hence, the direction ratios are (a, b, c).
Therefore, the direction ratio of the normal = (2, -2, 4) for plane 2x - 2y + 4z + 5 = 0.
The Cartesian equation of the line PQ, where P(1, 3/2, 2) and Q (x1 , y1 , z1) is:
$\frac{x_{1}-1}{2}=\frac{y_{1}-\frac{3}{2}}{-2}=\frac{z_{1}-2}{4}=\lambda(say)$
To find any point on this line,
$\frac{x_{1}-1}{2}=\lambda,\frac{y_{1}-\frac{3}{2}}{-2}=\lambda,\frac{z_{1}-2}{4}=\lambda$
$from \frac{x_{1}-1}{2}=\lambda\\\Rightarrow x_{1}-1=2\lambda\\\Rightarrow x_{1}=2\lambda+1\\ \\ \\ from \frac{y_{1}-\frac{3}{2}}{-2}=\lambda\\ \Rightarrow y_{1}-\frac{3}{2}=-2\lambda\\\Rightarrow y_{1}=\frac{3}{2}-2\lambda\\ \\ \\ from \frac{z_{1}-2}{4}=\lambda\\\Rightarrow z_{1}-2=4\lambda \\\Rightarrow z_{1}=4\lambda+2$
Any point on the line is $(2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2).$
This point is Q.
$Q\left ( x_{1},y_{1},z_{1} \right )=Q(2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2)....(i)$
And, it was assumed that is lies on the given plane. Substituting x1, y1, and z1 in the plane equation, we get:
2x1 - 2y1 + 4z1 + 5 = 0
$\Rightarrow 2\left (2\lambda+ 1 \right )-2\left ( \frac{3}{2} - 2\lambda \right )+4\left (4\lambda + 2 \right )+5=0$
Simplifying to find the value of $\lambda$
$\Rightarrow 4\lambda + 2 - 3 + 4\lambda + 16\lambda + 8 + 5 = 0\\ \Rightarrow 4\lambda + 4\lambda + 16\lambda + 2 - 3 + 8 + 5 = 0\\ \Rightarrow 24\lambda + 12 = 0\\ \Rightarrow 24\lambda = -12\\ \Rightarrow \lambda =-\frac{12}{24}\\ \Rightarrow \lambda =-\frac{1}{2}$
Since Q is the foot of the perpendicular from the point P,
We substitute the value of $\lambda$ in equation (i) to get:
$Q\left ( x_{1},y_{1},z_{1} \right )=Q(2(-\frac{1}{2})+ 1, \frac{3}{2} - 2(-\frac{1}{2}), 4(-\frac{1}{2}) + 2)\\ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( -1+1,\frac{3}{2}+1,-2+2 \right )\\ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( 0,\frac{5}{2},0 \right )$
Then, to find $\left | \vec{PQ} \right |$
Where, P = (1, 3/2, 2) and Q = (0, 5/2, 0)
$\left | \vec{PQ} \right |=\sqrt{\left (0-1 \right )^{2}+\left ( \frac{5}{2}-\frac{3}{2} \right )^{2}+\left ( 0-1 \right )^{2}}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{(-1)^{2}+(1)^{2}+(-2)^{2}}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{1+1+4}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{6}$
Thus, the foot of the perpendicular from the given point to the plane is (0, 5/2, 0) and the distance is $\sqrt{6}$ units.
Question:19
Answer:
Given, a line passes through a point P (3, 0, 1) and is parallel to the planes x + 2y = 0 and 3y - z = 0.
We must find the equation of this line.
Let the position vector of point P be
$\vec{a}=3\hat{i}+0\hat{j}+\hat{k}$
Or,
$\vec{a}=3\hat{i}+\hat{k}.....(i)$
Let us consider the normal to the given planes, that is, perpendicular to the normal of the plane x + 2y = 0 and 3y - z = 0
Normal to the plane x + 2y = 0 can be given as $\vec{n_{1}}=\hat{i}+2\hat{j}$
Normal to the plane 3y - z = 0 can be given as $\vec{n_{2}}=3\hat{j}-\hat{k}$
So, $\vec{n}$ is perpendicular to both these normals.
So,
$\vec{n}=\vec{n_{1}}\times \vec{n_{2}}$
$\Rightarrow \vec{n}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 0 & 3 & -1 \end{vmatrix}$
Taking the 1st row and the 1st column, we multiply the 1st element of the row $\left (a_{11} \right )$ with the difference of products of the opposite elements $\left (a_{22}\times a_{33}-a_{23} \times a_{32} \right )$, excluding 1st row and 1st column
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )$
Here,
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )$
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements $\left (a_{21}\times a_{33}-a_{23} \times a_{31} \right )$
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )$
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements $\left (a_{22}\times a_{33}-a_{23} \times a_{32} \right )$ excluding the 1st row and 3rd column.
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21} \times a_{32}-a_{22} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )+\hat{k}\left ( \left ( 1 \times 3 \right )-\left ( 2 \times 0 \right ) \right )$
Futher simplifying it,
$\Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( -2-0 \right )-\hat{j}\left ( -1-0 \right )+\hat{k}\left ( 3-0 \right )\\ \\ \\ \Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=-2\hat{i}+\hat{j}+3\hat{k}\\ \\ \\ \rightarrow \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}$
Therefore, the direction ratio is (-2, 1, 3) …(iii)
We know, vector equation of any line passing through a point and parallel to a vector is $\vec{r}=\vec{a}+\lambda \vec{b}$ where $\lambda \epsilon \mathbb{R}$
Hence, from (i) and (ii),
$\vec{a}=3\hat{i}+\hat{k}\\ \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}$
Putting these vectors in the equation $\hat{r}=\hat{a}+\lambda \hat{n}\\$
We get
$\hat{r}=\left ( 3\vec{i}+\vec{k} \right )+\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )$
But we know,
$\hat{r}=x\vec{i}+y\hat{j}+z\vec{k}$
Substituting this,
$\left (x\vec{i}+y\hat{j}+z\vec{k} \right )=\left ( 3\hat{i}+\hat{k} \right )+\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left (x\vec{i}+y\hat{j}+z\vec{k} \right )-\left ( 3\hat{i}+\hat{k} \right )=\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\$
Thus, the required equation of the line is $\left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\$
Question:20
Answer:
Given, a plane passes through the points (2, 1, -1) and (-1, 3, 4) and is perpendicular to the plane x - 2y + 4z = 10.
We want to find the equation of this plane.
We know, the Cartesian equation of a plane passing through (x1, y1, z1)
with direction ratios perpendicular to a, b, c for its normal is given as:
a (x - x1) +b (y - y1) + c (z - z1) = 0
Hence,
Let us consider the equation of the plane passing through (2, 1, -1) to be
a(x – 2) + b(y – 1) + c(z – (-1)) = 0
⇒ a(x – 2) + b(y – 1) + c(z + 1) = 0 …(i)
Since it also passes through point (-1, 3, 4) we just replace x, y, z by -1, 3, and 4 respectively.
⇒ a(-1 – 2) + b(3 – 1) + c(4 + 1) = 0
⇒ -3a + 2b + 5c = 0 …(ii)
Since a, b, and c are direction ratios and this plane is perpendicular to the plane x - 2y + 4z = 10, we just replace x, y, and z with a, b, and c respectively (neglecting 10) and we equate this to 0.
=> a - 2b + 4c = 0 …(iii)
To solve two equations x1a + y1b + z1c = 0 and x2a + y2b + z2c = 0, we use the formula
$\frac{a}{\begin{vmatrix} y_{1} &z_{1} \\ y_{2}&z_{2} \end{vmatrix}}=\frac{b}{\begin{vmatrix} z_{1} &x_{1} \\ z_{2}&x_{2} \end{vmatrix}}=\frac{c}{\begin{vmatrix} x_{1} &y_{1} \\ x_{2}&y_{2} \end{vmatrix}}$
Similarly, to solve for equations (ii) and (iii):
$\frac{a}{\begin{vmatrix}2 &5 \\ -2&4 \end{vmatrix}}=\frac{b}{\begin{vmatrix} 5 &-3 \\ 4&1 \end{vmatrix}}=\frac{c}{\begin{vmatrix}-3 & 2 \\ 1&-2 \end{vmatrix}}$
$\Rightarrow \frac{a}{\left ( 2 \times 4 \right )-\left ( 5 \times -2 \right )}=\frac{b}{\left ( 5 \times 1 \right )-\left ( -3 \times 4 \right )}=\frac{c}{\left ( -3 \times -2 \right )-\left ( 2 \times 1 \right )}$
$\Rightarrow \frac{a}{8+10}=\frac{b}{5+12}=\frac{c}{6-2}$
$\Rightarrow \frac{a}{18}=\frac{b}{17}=\frac{c}{4}=\lambda$
$\Rightarrow \frac{a}{18}=\lambda, \frac{b}{17}=\lambda, \frac{c}{4}=\lambda$
That is,
$\Rightarrow \frac{a}{18}=\lambda\\ \Rightarrow a=18 \lambda\\ \\ \Rightarrow \frac{b}{17}=\lambda\\ \Rightarrow b=17 \lambda\\ \\ \Rightarrow \frac{c}{4}=\lambda\\ \Rightarrow c=4 \lambda\\ \\$
Substituting these values of a, b, and c in equation (i), we get
$a(x - 2) + b(y - 1) + c(z + 1) = 0\\ \Rightarrow 18\lambda(x - 2) + 17\lambda(y - 1) + 4\lambda(z + 1) = 0\\ \Rightarrow \lambda[18(x - 2) + 17(y - 1) + 4(z + 1)] = 0\\ \Rightarrow 18(x - 2) + 17(y - 1) + 4(z + 1) = 0\\ \Rightarrow 18x - 36 + 17y - 17 + 4z + 4 = 0\\ \Rightarrow 18x + 17y + 4z - 36 - 17 + 4 = 0\\ \Rightarrow 18x + 17y + 4z - 49 = 0\\ \Rightarrow 18x + 17y + 4z = 49\\$
Therefore, the required equation of the plane is 18x + 17y + 4z = 49.
Question:21
Answer:
Given two lines,
$\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k}...........(i)\\ \\ \vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )...........(ii)$
Taking equation (i),
$\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k} \\ \Rightarrow \vec{r}= 8\hat{i}+3\lambda \hat{i}- 9\hat{j}+16\lambda \hat{j})+ 10 \hat{k}+7\lambda \hat{k} \\ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+3 \lambda \hat{i}-16 \lambda \hat{j}+7 \lambda \hat{k}\\ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda \left(3 \hat{i}-16 \hat{j}+7 \hat{k} \right ).............(iii)$
We know, the vector equation of a line passing through a point and parallel to a vector is where $\lambda\epsilon \mathbb{R}$
$\vec{a}$ = Position vector of the point through which line passes
$\vec{b}$ = Normal to the line
Comparing this with equation (iii), we get
$\vec{a_{1}}=8\hat{i}-9\hat{j}+10\hat{k}\\ \vec{b_{1}}=3\hat{i}-16\hat{j}+7\hat{k}\\$
Now take equation (ii)
$\vec{r}=15\hat{i}+29\hat{i}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right ) \\ \vec{r}=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )..........(iv)$
Similarly from (iv)
$\vec{a_{2}}=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )\\ \vec{b_{2}}=\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )$
So, the shortest distance between two lines can be represented as:
$d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |$
solve $\vec{b_{1}} \times \vec{b_{2}}$
$\vec{b_{1}} \times \vec{b_{2}}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$
Taking 1st row and 1st column, we multiply the 1st element of the row (a??) with the difference of the product of the opposite elements $\left ( a_{22}\times a_{33}-a_{23} \times a_{32}\right )$, excluding the 1st row and the 1st column;
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )$
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??)
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )$
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??), excluding the 1st row and 3rd column.
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21}\times a_{32}-a_{22} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )+\hat{k}\left ( \left ( 3 \times 8 \right )-\left ( -16 \times 3 \right ) \right )$
Further simplifying it.
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (80-56 \right )-\hat{j}\left (-15-21 \right )+\hat{k}\left (24+48 \right )$
$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=24\hat{i}+36\hat{j}+72\hat{k}\\ \\ \\ \Rightarrow \vec{b}\times \vec{b}= 24\hat{i}+36\hat{j}+72\hat{k}........(v)$
And,
$\left | \vec{b}\times \vec{b} \right |= \left |24\hat{i}+36\hat{j}+72\hat{k} \right |\\ \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=\sqrt{24^{2}+36^{2}+72^{2}} \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{2^{2}+3^{2}+6^{2}} \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \sqrt{4+9+36}\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{49}\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \times 7\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=84...........(vi)$
$Now \; \; solving \: \: \vec{a_{2}}- \vec{a_{1}}\\ \\ \vec{a_{2}}- \vec{a_{1}} =\left (15\hat{i}+29\hat{i}+5\hat{k} \right )-\left ( 8\hat{i}-9\hat{j}+10\hat{k} \right )\\ \Rightarrow \vec{a_{2}}- \vec{a_{1}} = 15\hat{i}-8\hat{i}+29\hat{j}+9\hat{j}+5\hat{k}-10\hat{k}\\ \Rightarrow \vec{a_{2}}- \vec{a_{1}} = 7\hat{i}+38\hat{j}-5\hat{k}.....(vii)$
Substituting the values from (v), (vi) and (vii) in d, we get
$d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |$
$\Rightarrow d =\left | \frac{\left ( 24\hat{i}+36\hat{j}+72\hat{k} \right ).\left ( 7\hat{i}+38\hat{j}-5\hat{k} \right )}{84} \right |\\ \Rightarrow d =\left | \frac{24 \times 7 +36 \times 38+72 \times -5}{84} \right |\\ \Rightarrow d =\left | \frac{168+1368-360}{84} \right |\\ \Rightarrow d =\left | \frac{1176}{84} \right |\\ \Rightarrow d =14\\$
Thus, the shortest distance between the lines is 14 units.
Question:22
Answer:
Given, a plane is perpendicular to another plane 5x + 3y + 6z + 8 = 0,and also contains line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.
We must find the equation of this plane.
We know, the equation of a plane passing through the line of intersection of the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given as,
$( a_{1}x + b_{1}y + c_{1}z + d_{1}) +\lambda(a_{2}x + b_{2}y + c_{2}z + d_{2}) = 0$
Similarly, the equation of a plane through the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0. is given by,
$(x + 2y + 3z - 4) + \lambda(2x + y - z + 5) = 0 \\ \Rightarrow x + 2y + 3z - 4 + 2\lambda x + \lambda - \lambda z + 5\lambda = 0\\ \Rightarrow x + 2 \lambda x + 2y + \lambda y + 3z - \lambda z - 4 + 5 \lambda = 0\\ \Rightarrow (1 + 2 \lambda)x + (2 + \lambda)y + (3 - \lambda)z - 4 + 5 \lambda = 0 ....(i)$
Thus, the direction ratio of plane in (i) is,
$(1 + 2\lambda, 2 + \lambda, 3 - \lambda)$
Since the plane in equation (i) is perpendicular to the plane 5x + 3y + 6z + 8 = 0;
we can replace x, y, z with (1 + 2λ), (2 + λ) and (3 - λ) respectively in the plane 5x + 3y + 6z + 8 = 0 (neglecting 8) and equating to 0.
This gives us,
$5(1 + 2\lambda) + 3(2 + \lambda) + 6(3 - \lambda) = 0\\ \Rightarrow 5 + 10\lambda + 6 + 3\lambda + 18 - 6\lambda = 0\\ \Rightarrow 10\lambda + 3\lambda- 6\lambda + 5 + 6 + 18 = 0\\ \Rightarrow 7\lambda + 29 = 0\\ \Rightarrow 7\lambda = -29\\ \Rightarrow \lambda=- \frac{29}{7}$
Substituting this value of $\lambda$ in equation (i) we get
$\left ( 1+2\left (-\frac{29}{7} \right ) \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4+5\left (-\frac{29}{7} \right )=0\\ \\ \\ \Rightarrow \left ( 1+\frac{58}{7} \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4-\frac{145}{7}=0\\ \\ \\ \Rightarrow \left ( \frac{7-58}{7} \right )x+\left ( \frac{14-29}{7} \right )y+\left ( \frac{21+29}{7} \right )z+\left ( \frac{-28-145}{7} \right )=0 \\ \\ \\ \Rightarrow -\frac{51}{7}x-\frac{15}{7}y+\frac{50}{7}z-\frac{173}{7}=0\\ \\ \\ \Rightarrow -51x - 15y + 50z - 173 = 0 \\ \\ \Rightarrow 51x + 15y - 50z + 173 = 0$
Thus, the required equation of the plane is 51x + 15y - 50z + 173 = 0.
Question:23
Answer:
Given, the plane ax + by = 0 is rotated about its line of intersection with z = 0 by an angle $\alpha$
To prove: equation of the plane in its new position is
$ax+by\pm z\sqrt{a^{2}+b^{2}}\tan \alpha=0$
Proof: Two planes are given, ax + by = 0 …(i) and z = 0 …(ii)
We know, the equation of the plane passing through the line of intersection of the planes (i) and (ii) is
$ax + by + \lambda z = 0...(iii)$
where, $\lambda \epsilon \mathbb{R}$
The angle between the new plane and plane (i) is given as $\alpha$
Since the angle between two planes is equivalent to the angle between their normals, the direction ratio of normal to ax + by = 0 or ax + by +0z = 0 is (a, b, 0).
$\Rightarrow \vec{l}=a\hat{i}+b\hat{j}$
And, the direction ratio of normal to $ax + by + \lambda z = 0$ is (a, b, λ).
$\Rightarrow \vec{m}=a\hat{i}+b\hat{j}+\lambda \hat{k}$
Also, we know, angle between 2 normal vectors of the two given planes can be given as;
$\cos \alpha=\frac{\vec{l}\vec{m}}{\left |\vec{l} \right |\left |\vec{m} \right |}$
If we substitute the values of these vectors, we get
$\cos \alpha=\frac{\left (a\hat{i}+b\hat{j} \right )\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right )}{\left |\left (a\hat{i}+b\hat{j} \right ) \right |\left |\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right ) \right |}\\$
$\Rightarrow \cos \alpha=\frac{a.a+b.b+0.\lambda}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}$
We then multiply $\sqrt{a^{2}+b^{2}}$ by the numerator and denominator on the right hand side of the equation to get
$\Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}\times \frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}}}\\ \\ \Rightarrow \cos \alpha=\frac{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}}}{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \\ \Rightarrow \cos \alpha=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \\$
Applying square on both sides,
$\Rightarrow \cos^{2} \alpha=\left (\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}} \right )^{2}\\ \\ \Rightarrow \cos^{2} \alpha=\frac{a^{2}+b^{2}}{a^{2}+b^{2}+\lambda ^{2}}$
$\Rightarrow (a^{2} + b^{2} + \lambda^{2}) cos^{2} \alpha = a^{2} + b^{2}\\ \Rightarrow a^{2} \cos^{2} \alpha + b^{2} \cos^{2} \alpha + \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2}\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2} - a^{2} \cos^{2} \alpha -b^{2}\cos^{2} \alpha\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} - a^{2} \cos^{2} \alpha + b^{2} -b^{2} \cos^{2} \alpha\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2}(1 -\cos^{2} \alpha) + b^{2}(1 - \cos^{2} \alpha)\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2})(1 - \cos^{2} \alpha)\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2}) \sin^{2} \alpha [since, \sin^{2} \alpha + \cos^{2} \alpha = 1]$
$\Rightarrow \lambda^{2} = \frac{(a^{2} + b^{2}) \sin^{2} \alpha }{\cos^{2} \alpha}\\ Since \frac{sin^{2}\alpha}{\cos^{2}\alpha}=\tan^{2}\alpha\\ \Rightarrow \lambda^{2}=\left ( a^{2}+b^{2} \right )tan^{2}\alpha\\ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )tan^{2}\alpha}\\ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\$
Substituting the value of $\lambda$ in equation (iii) to find the plane equation,
ax + by + λz = 0
$\lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\$
Hence proved.
Question:24
Answer:
Given two planes,
$\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0\\ \vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0$
Also given, the perpendicular distance of the plane from the origin = 1.
We must find the equation of this plane.
We know,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$
Simplifying the planes,
$\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( \hat{i}+3\hat{j} \right )-6=0\\ \Rightarrow x+3y-6=0........(i)$
Also, for
$\vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow 3x-y-4z=0$
The equation of a plane through the line of intersection of x + 3y - 6 = 0 and 3x - y - 4z = 0 can be given as
$(x + 3y - 6) + \lambda(3x - y - 4z) = 0\\ \Rightarrow x + 3y - 6 + 3\lambda x - \lambda y - 4\lambda z = 0\\ \Rightarrow x + 3\lambda x + 3y - \lambda y - 6 - 4\lambda z = 0\\ \Rightarrow (1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = 0 �(iii)$
Also, we know, the perpendicular distance of a plane, ax + by + cz + d = 0 from the origin, let’s say P, is given by
$P=\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |$
Similarly, the perpendicular distance of the plane in equation (iii) from the origin (=1 according to the question) is:
$1=\left | \frac{-6}{\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}} \right |\\ \\ \Rightarrow \sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}=6$
Taking the square of both sides,
$\Rightarrow \left (\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}} \right )^{2}=6^{2}$
$\Rightarrow (1 + 3\lambda)^{2} + (3 - \lambda)^{2} + (-4\lambda)^{2} = 36\\ \Rightarrow 1 + (3\lambda)^{2} + 2(1)(3\lambda) + (3)^{2} + \lambda^2 - 2(3)(\lambda) + 16\lambda^{2} = 36\\ \Rightarrow 1 + 9\lambda^{2} + 6\lambda + 9 + \lambda^{2} - 6\lambda + 16\lambda^{2} = 36\\ \Rightarrow 9\lambda^{2} + 16\lambda^{2} + \lambda^{2} + 6\lambda - 6\lambda = 36 - 1 - 9\\ \Rightarrow 26\lambda^{2} + 0 = 26\\ => \lambda^{2} = 26/26\\ => \lambda^{2} = 1\\ => \lambda = \pm 1$
First, we subsitute $\lambda=1$ in eq (iii) to find the plane equation
$(1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = `0\\ \Rightarrow (1 + 3(1))x - (3 - 1)y - 4(1)z - 6 = 0\\ \Rightarrow 4x - 2y - 4z- 6 = 0$
Now, we substitute λ= -1 in eq (iii) to find the plane equation
$(1 + 3\lambda)x + (3 - \lambda)y - 4 \lambda z - 6 = 0\\ \Rightarrow (1 + 3(-1))x + (3 - (-1))y - 4(-1)z - 6 = 0\\ \Rightarrow (1 - 3)x + (3 + 1)y + 4z - 6 = 0\\ \Rightarrow -2x + 4y + 4z - 6 = 0$
Therefore, the equation of the required plane is -2x + 4y + 4z – 6 = 0 and 4x – 2y – 4z – 6 = 0.
Question:25
Answer:
Given two points,
$\\\vec{A}=\hat{i}-\hat{j}+3\hat{k}\\ \vec{B}=3\left ( \hat{i}+\hat{j}+\hat{k} \right )=3\hat{i}+3\hat{j}+\hat{k}\\ \vec{r}.\left ( 5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0$
Also,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\\\$
Where,
Therefore,
$\left (x\hat{i}+y\hat{j}+z\hat{k} \right ).\left (5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0\\ \\ \Rightarrow 5x + 2y - 7z + 9 = 0$
We must show that the points A and B are equidistant from the plane
5x + 2y - 7z + 9 = 0
We also need to show that the points lie on the opposite side of the plane.
Normal of the plane is, $\vec{N=} 5{i} + 2\hat{j} - 7\hat{k}$
We know, the perpendicular distance of the position vector of a point to the plane, p: ax + by + cz + d = 0 is given as:$D=\left | \frac{p(l,m,n)}{\left |\vec{N} \right |} \right |$
Where $\left |\vec{N} \right |=Normal \: vector\: of\: the\: plane$
$\vec{N} =a\vec{i}+b\vec{j}+c\vec{k}$
Thus, the perpendicular distance of the point $\vec{A} =\vec{i}-\vec{j}+3\vec{k}=A(1,-1,3)$ to the plane 5x + 2y - 7z + 9 = 0 having normal $\vec{N} =5\vec{i}+2\vec{j}-7\vec{k}$ is given by,
$\left | D_{1} \right |=\left |\frac{5(1)+2(-1)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{5-2-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{-9}{\sqrt{25+4+49}} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{9}{\sqrt{78}} \right |\\$
Hence, the perpendicular distance of the point $\vec{B}=3\hat{i}+3\hat{j}+3\hat{k}=B(3,3,3)$ to the plane 5x + 2y - 7z + 9 = 0 having normal $\vec{N}=5\hat{i}+2\hat{j}-7\hat{k}$
$\left | D_{2} \right |=\left |\frac{5(3)+2(3)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{15+6-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{25+4+49}} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{78}} \right |\\$
Therefore, |D1| = |D2|
However, D1 and D2 have different signs.
Therefore, the points A and B will lie on opposite sides of the plane.
Hence, we have successfully shown that the points are equidistant from the plane and lie on opposite sides of the plane.
Question:26
Answer:
Given,
$\vec{AB}=3\hat{i}-\hat{j}+\hat{k}\\ \vec{CD}=-3\hat{i}+2\hat{j}+4\hat{k}$
And the position vectors
$\vec{OA}=6\hat{i}+7\hat{j}+4\hat{k}\\ \vec{OC}=-9\hat{j}+2\hat{k}$
Therefore, the line passing through A and along AB will have the equation:
$\vec{r}=6\hat{i}+7\hat{j}+4\hat{k}+\lambda\left ( 3\hat{i}-\hat{j}+\hat{k} \right )\\ \Rightarrow \vec{r}=\left ( 6+3\lambda \right )\hat{i}+\left ( 7-\lambda \right )\hat{j}+\left ( 4+\lambda \right )\hat{k}$
and the line passing through C and along CD will have equation
$\vec{r}=-9\hat{j}+2\hat{k}+\mu \left ( -3\hat{i}+2\hat{j}+4\hat{k} \right )\\ \Rightarrow \vec{r}=-3\mu \hat{i}+\left ( 2\mu-9 \right )\hat{j}+\left ( 2+4\mu \right )\hat{k}$
Now, PQ is a vector perpendicular to both AB and CD, such that Q lies on CD and P lies on AB. Thus, coordinates of P and Q will be of the form
$P (6 + 3\lambda, 7 - \lambda, 4 + \lambda)....(i)\\ Q (-3\mu, 2\mu - 9, 2 + 4\mu) .....(ii)$
Hence, the vector PQ will be given as
$\vec{PQ}=\left ( -3\mu-6-3\lambda \right )\hat{i}+\left ( 2\mu-16+\lambda \right )\hat{j}+\left ( 4\mu-2-\lambda \right )\hat{k}$
Now, since PQ is perpendicular to both, hence the dot products of AB.PQ and CD.PQ will be equal to 0.
AB. PQ = 0 and CD. PQ = 0
$AB. PQ = 3(-3\mu - 6 - 3\lambda) - (2\mu - 16 + \lambda) + (4\mu - 2 - \lambda)\\ \Rightarrow 0 = -9\mu - 18 - 9\lambda - 2\mu + 16 - \lambda + 4\mu - 2 - \lambda\\ \Rightarrow -7\mu - 11\lambda - 4 = 0.....(iii)\\ CD.PQ = 3(-3\mu - 6 - 3\lambda) + 2(2\mu - 16 + \lambda) + 4(4\mu - 2 - \lambda)\\ \Rightarrow 0 = -9\mu - 18 -9\lambda + 4\mu - 32 + 2\lambda +16 \mu -8 - 4\lambda\\ \Rightarrow 29\mu + 7\lambda - 22 = 0 ....(iv)$
Solving (iii) and (iv), we get
$\lambda = -1\; \; and \: \: \mu = 1$
Putting the value of $\lambda$ in (i) we get,
$P (6 + 3(-1), 7 - (-1), 4 + (-1))\\ P (6-3,7+1,4-1)\\ P (3,8,3)$
Putting the value of $\mu$ in (ii) we get,
$Q (-3(1), 2(1) - 9, 2 + 4(1))\\ Q (-3, 2 - 9, 2 +4)\\ Q (-3, -7, 6)$
Hence, position vector of P and Q will be
$\\\vec{OP}=3\hat{i}+8\hat{j}+3\hat{k}\\ \vec{OQ}=-3\hat{i}-7\hat{j}+6\hat{k}$
Question:27
Answer:
We have given
$2l + 2m - n = 0...(i)\\ \Rightarrow n = 2(l + m)...(ii)$
, and
$mn + nl + lm = 0\\ \Rightarrow 2m(l + m) + 2(l + m)l + lm = 0\\ \Rightarrow 2lm + 2m^{2} + 2l^{2} + 2lm + lm = 0\\ \Rightarrow 2m^{2} + 5lm + 2l^{2} = 0\\ \Rightarrow 2m^{2} + 4lm + lm + 2l^{2} = 0\\ \Rightarrow (2m + l)(m + 2l) = 0$
Thus, we get two cases:
$l = -2m$
=> -4m + 2m - n = 0 [from (i)]
=> n = 2m
, and
m = -2l
=> 2l + 2(-2l) - n = 0
=> 2l - 4l = n
=> n = -2l
Hence, the direction ratios of one line is proportional to -2m, m or -2m or direction ratios are (-2, 1, -2) and the direction ratios of another line is proportional to l, -2l, -2l, or direction ratios are (1, -2, -2)
Thus, the direction vectors of two lines are $b_{1}=-2\hat{i}+\hat{j}-2\hat{k} \: and \: b_{2}=\hat{i}-2\hat{j}-2\hat{k}$
Also, the angle between the two lines $\vec{r}=\vec{a_{1}}+\lambda \vec{b_{1}} \: and \: \vec{r}=\vec{a_{2}}+\mu \vec{b_{2}}$ is given by:
$\cos \theta=\left |\frac{\vec{b_{1}}.\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |} \right |$
Now,
$\vec{b_{1}}.\vec{b_{2}}=2(1)+1(-2)+(-2)(-2)\\ =2-2+4\\=0\\ \Rightarrow \cos\theta=0\\ \Rightarrow \theta=90^{\circ}$
Therefore, the lines have a 900 angle between them.
Question:28
Answer:
Let the direction vector of the 3 mutually perpendicular lines be
$\vec{a}=l_{1}\hat{i}+m_{1}\hat{j}+n_{1}\hat{k}\\ \\ \vec{b}=l_{2}\hat{i}+m_{2}\hat{j}+n_{2}\hat{k}\\ \\ \vec{c}=l_{3}\hat{i}+m_{3}\hat{j}+n_{3}\hat{k}$
Let the direction vectors associated with direction cosines $l_{1} + l_{2} + l_{3} , m_{1} + m_{2} + m_{3} , n_{1} + n_{2} + n_{3}$ be
$\vec{p}=\left (l_{1} + l_{2} + l_{3} \right )\hat{i}+\left (m_{1} + m_{2} + m_{3} \right )\hat{j}+\left ( n_{1} + n_{2} + n_{3} \right )\hat{k}$
Since the lines associated with the direction vectors a, b, and c are mutually perpendicular, we get
$\vec{a}.\vec{b}=0$ (Since the dot product of two perpendicular vectors is 0)
=>$l_{1}l_{2} + m_{1}m_{2}+n_{1}n_{2}=0$ …(1)
Similarly,
$l_{1}l_{3} + m_{1}m_{3}+n_{1}n_{3}=0$ …(2)
Finally, $\vec{b}.\vec{c}=0$
=>$l_{2}l_{3} + m_{2}m_{3}+n_{2}n_{3}=0$ …(3)
Now, let us consider x, y and z as the angles made by direction vectors a, b, and c respectively with p.
Then,
$\cos x=\vec{a}.\vec{p}$
$\Rightarrow \cos x =l_{1}\left ( l_{1}+l_{2}+l_{3} \right )+m_{1}\left ( m_{1}+m_{2}+m_{3} \right )+n_{1}\left ( n_{1}+n_{2}+n_{3} \right )\\ \Rightarrow \cos x=l_{1}^{2}+l_{1}l_{2}+l_{1}l_{3}+m_{1}^{2}+m_{1}m_{2}+m_{1}m_{3}+n_{1}^{2}+n_{1}n_{2}+n_{1}n_{3}\\ \Rightarrow cos x= l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+\left ( l_{1}l_{2}+m_{1}m_{2}+ n_{1}n_{2} \right )+\left ( l_{1}l_{3}+m_{1}m_{3}+ n_{1}n_{3} \right )\\$
We know, $l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$ [since the sum of squares of direction cosines of a line = 1]
$\Rightarrow \cos x=1+0=1$ [from (1) and (2)]
Then, $\cos y=1$ and $\cos z=1$
=> x = y = z = 0.
Therefore, the vector p makes equal angles with the vectors a, b and c.
Question:29
Distance of the point (α, β, y) is:
A. β B. |β| C. |β| + |y| D. √(α² + y²)
Answer:
Drawing a perpendicular from (α, β, y) to the y-axis gives us a foot of $\left ( \alpha ,\beta ,\gamma \right )$ perpendicular with coordinates (0, β, 0).
Also, using the distance formula, we can calculate the distance between two points as:
$AB=\sqrt{\left ( x_{2}-x_{1} \right )^{2}+\left ( y_{2}-y_{1} \right )^{2}+\left ( z_{2}-z_{1} \right )^{2}}$
Thus, the required distance $=\sqrt{\left ( \alpha-0 \right )^{2}+\left ( \beta-\beta \right )^{2}+\left(\gamma-0 \right )^{2}}=\sqrt{\alpha^{2}+\gamma^{2}}$
(Option D)
Question:30
If the direction cosines of a line are k, k, k, then:
A. k > 0
B. 0 < k < 1
C. k = 1
D. k = 1/√3 or -1/√3
Answer:
We know that the sum of squares of the direction cosines of a line = 1
=> k² + k² + k² = 1
=> 3k² = 1
$\Rightarrow k=\pm\frac{1}{\sqrt{3}}$ (Option D)
Question:31
The distance of the plane $\vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1$ from the origin is:
A. 1
B. 7
C. 1/7
D. None of these
Answer:
Given plane is
$\vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1$
Let
$\vec{n}=\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k}$
$\left |\vec{n} \right |=\sqrt{\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} }=1$
=> n is a unit vector
Thus, the equation of the plane is of the form $\vec{r}.\hat{n} =d$, where n is
the unit vector and d is the distance from the origin.
Comparing, we get d =1, hence the distance of the plane from origin is 1
(Option A)
Question:32
The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and
The plane 2x - 2y + z = 5 is:
A. 10/6√5
B. 4/5√2
C. 2√3/5
D. √2/10
Answer:
The equation of the line is given as
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
The direction vector of this line can be represented as $\vec{b}=3\hat{i}+4 \hat{j}+5\hat{k}$
Also given is the equation of the plane 2x - 2y + z = 5
The normal to this plane is,$\vec{n}=2\hat{i}-2 \hat{j}+\hat{k}$
We also know that the angle $\phi$ between the line with the direction
vector b and the plane with the normal vector n is,
$\sin \phi =\left | \frac{\vec{b}.\vec{n}}{\left | \vec{b} \right |\left | \vec{n} \right |} \right |$
$\Rightarrow \sin \phi =\left |\frac{3(2)+4(-2)+5(1)}{\sqrt{3^{2}+4^{2}+5^{2}}\sqrt{2^{2}+(-2)^{2}+1^{2}}} \right |$
$\Rightarrow \sin \phi =\left |\frac{3}{3\sqrt{50}} \right |$
$=\frac{1}{5\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{\sqrt{2}}{10}$
(Option D)
Question:33
The reflection of the point (α, β, γ) in the xy- plane is:
A. (α, β, 0)
B. (0, 0, γ)
C. (-α, -β, -γ)
D. (α, β, -γ)
Answer:
The equation of the XY plane is Z = 0
Given point (α, β, γ); if we draw a perpendicular from this point in the XY plane, the coordinates of the plane will be
(α, β, 0).
Let the reflection be (x, y, z)
So, $\alpha=\frac{\alpha+x}{2}$
=> x = α
$\beta=\frac{\beta+y}{2}$
=> y = β
$0=\frac{\gamma+z}{2}$
=> z = -γ
The reflection is: (α, β, -γ). (option D)
Question:34
The area of the quadrilateral ABCD, where A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2) is equal to:
A. 9 square units
B. 18 square units
C. 27 square units
D. 81 square units
Answer:
Given, A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2);
$\vec{AB}=\left ( 2-0 \right )\hat{i}+\left ( 3-4 \right )\hat{j}+\left ( -1-1 \right )\hat{k}=2\hat{i}-\hat{j}-2\hat{k}$
$\vec{BC}=\left ( 4-2\right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 0-(-1) \right )\hat{k}=2\hat{i}+2\hat{j}+\hat{k}$
$\vec{CD}=\left ( 2-4\right )\hat{i}+\left ( 6-5 \right )\hat{j}+\left ( 2-0 \right )\hat{k}=-2\hat{i}+\hat{j}+2\hat{k}=-\vec{AB}$
$\vec{DA}=\left ( 0-2\right )\hat{i}+\left ( 4-6 \right )\hat{j}+\left ( 1-2 \right )\hat{k}=-2\hat{i}-2\hat{j}-1\hat{k}=-\vec{BC}$
Since opposite vectors of this parallelogram are equal and opposite, ABCD is a parallelogram and we know the area of a parallelogram is | AB x CD|
$=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{vmatrix}$
$=\left | \hat{i}\left ( -1+4 \right )+\hat{j}\left ( -4-2 \right )+\hat{k}\left ( 4+2 \right ) \right |$
$=\left | 3\hat{i}-6\hat{j}+6\hat{k} \right |$
$=\sqrt{3^{2}+(-6)^{2}+6^{2}}=\sqrt{81}$
= 9 square units (Option A).
Question:35
The locus represented by xy + yz = 0 is:
A. A pair of perpendicular lines
B. A pair of parallel lines
C. A pair of parallel planes
D. A pair of perpendicular planes
Answer:
Given, xy + yz = 0
=> x (y + z) = 0
=> x = 0 and y + z = 0
Clearly, the above equations are the equations of planes [of the form ax + by + cz + d = 0]
Also, x = 0 has the normal vector $\hat{i}$
And y + z = 0 has the normal vector $\hat{j}+\hat{k}$
And the dot product of these two is
$\hat{i}\left (\hat{j}+\hat{k} \right )=\hat{i}.\hat{j}+\hat{i}.\hat{k}$
= 0
Hence, the planes are perpendicular (Option D).
Question:36
The plane 2x - 3y + 6z - 11 = 0 makes an angle $\sin^{-1}(\alpha)$ with the x-axis. The value of α is:
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$
Answer:
Given, the equation of the plane is 2x - 3y + 6z - 11 = 0.
The normal to this plane is,
$\vec{n}=2\hat{i}-3\hat{j}+6\hat{k}$
Also, the x-axis has the direction vector $\vec{b}=\hat{i}$
Also, we know that the angle $\varphi$ between the line with direction vector b and the plane having the normal vector n is:
$\\ \sin \varphi =\left | \frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |} \right |\\ \Rightarrow \sin \varphi=\left | \frac{1(2)+0(-3)+0(6)}{\sqrt{2^{2}+3^{2}+6^{2}}\sqrt{1^{2}+0^{2}+0^{2}}} \right |\\ \Rightarrow \sin \varphi = \left | \frac{2}{\sqrt{49}} \right |=\frac{2}{7}\\\Rightarrow \varphi =\sin^{-1}\left ( \frac{2}{7} \right )$
On comparing, we find$\alpha =\frac{2}{7}$ (Option C)
Question:37
Answer:
We know, the equation of a plane cutting the coordinate axes at (a, 0, 0), (0, b, 0) and (0, 0, c) is given as
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
In this case, a = 2, b = 3, and c = 4.
Therefore, putting these values in the equation of the plane, we get
$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
Question:38
Answer:
If l, m, and n are the direction cosines and the direction ratios of a line are a, b, and c, then we know:
$\\l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}\\l=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
According to the question,
a = 2, b = 2, c = -1
Then
$\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3$
Thus, the direction cosines are
l = 2/3, b = 2/3, c = -1/3
Question:39
Answer:
The equation of the line is given as
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
Clearly, the line passes through A (5, -4, 6) and has the direction ratios 3, 7, and 2.
Also, the position vector of A is $\vec{a}=5\hat{i}-4\hat{j}+6\hat{k}$
The direction vector of the given line will be:
$\vec{b}=3\hat{i}+7\hat{j}+2\hat{k}$
Also, the vector equation of a line passing through the given point whose position vector is a and b is:
$\vec{r}=\vec{a}+\lambda \vec{b}$
Hence, the required equation of the line will be:
$\vec{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k} \right )+\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k}\right )$
Question:40
Answer:
By expanding the dot product given in the question, we can get the Cartesian equation of the plane.
Given: $\vec{r}.\left ( \hat{i}+\hat{j}-\hat{k} \right )=2$
$\vec{r}=x\hat{i}+y\hat{j}-z\hat{k}$
Putting
$\Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right )\left ( \hat{i}+\hat{j}-\hat{k} \right )=2$
$\Rightarrow x + y - z = 2$
Thus, the required Cartesian equation is x + y - z = 2.
Question:41
Answer:
Given, the equation of the plane is x + 2y + 3z - 6 = 0
The normal to this plane will be The unit vector of this normal is:
$\\ \vec{n}=\frac{\vec{n}}{\left |\vec{n} \right |}\\ \vec{n}=\frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{1}{\sqrt{14}}\hat{i}+\frac{2}{\sqrt{14}}\hat{j}+\frac{3}{\sqrt{14}}\hat{k}$
Therefore, the statement is True
Question:42
Answer:
The position vector of the first point (3, 4, -7) is $\vec{a}=3\hat{i}+4\hat{j}-7\hat{k}$
And the position vector of the second point(1, -1, 6): $\vec{b}=\hat{i}-\hat{j}+6\hat{k}$
Also, the vector equation of a line passing through two points with position vectors a and b is given by:
$\vec{r}=\vec{a}+\lambda\left ( \vec{b}-\vec{a} \right )$
Thus, the required line equation is
$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( \hat{i}-\hat{j}+6\hat{k}-\left ( 3\hat{i}+4\hat{j}-7\hat{k} \right ) \right )$
$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( -2\hat{i}-5\hat{j}+13\hat{k} \right )$
Question:43
Answer:
To begin with, we convert the given plane equation to intercept form:
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$where a, b, and c are the intercepts on x, y, and z, axes respectively.
Given, $2x - 3y + 5z + 4 = 0$
$\Rightarrow -2x + 3y - 5z = 4$
Dividing this equation on both sides by 4,
$\Rightarrow \frac{-1}{2}x + \frac{3}{4}y - \frac{5}{4}z = 1$
On comparison, we get the intercepts -2, 4/3, and -4/5 respectively.
Therefore, the statement is True.
Question:44
Answer:
We know, the angle $\phi$ between the plane with normal vector n and the line with direction vector b is denoted by:
$\sin\varphi\frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |}$
Given equation of the line is $r=\left ( 5 \hat{i}-\hat{j}-4\hat{k} \right )+\lambda\left ( 2 \hat{i}-\hat{j}+k \right )$
Hence, its direction vector will be:
$\vec{b}=2\hat{i}-\hat{j}+\hat{k}$
Given equation of the plane is $\vec{r}.\left (3\hat{i}-4\hat{j}-\hat{k} \right )+5=0$
Hence, its normal vector will be:
$\vec{n}=3\hat{i}-4\hat{j}-\hat{k}$
Thus, we have:
$\sin\varphi =\left | \frac{\left ( 2\hat{i}-\hat{j}+\hat{k} \right )\left ( 3\hat{i}-4\hat{j}-\hat{k} \right )}{\sqrt{2^{2}+(-1)^{2}+1^{2}}\sqrt{3^{2}+(-4)^{2}+(-1)^{2}}} \right |\\ \Rightarrow \sin \varphi=\frac{2(3)-1(-4)+1(-1)}{\sqrt{6}\sqrt{26}}=\frac{9}{\sqrt{156}}=\frac{9}{2\sqrt{39}}$
$\varphi =\sin^{-1}\frac{9}{2\sqrt{39}}$
Therefore, the given statement is False.
Question:45
Answer:
In vector form, if we take θ as the angle between the two planes
$\vec{r}.\vec{n_{1}}=\vec{d_{1}}$ and $\vec{r}.\vec{n_{2}}=\vec{d_{2}}$
Then
$\theta=\frac{\left | \vec{n_{1}}.\vec{n_{2}} \right |}{\left | \vec{n_{1}} \right |\left | \vec{n_{2}} \right |}$
Now, the given planes are $\vec{r}.\left ( 2\hat{i}-3\hat{j}+\hat{k} \right )=1$ and $\vec{r}.\left ( \hat{i}-\hat{j}\right )=4$
Here, $\vec{n_{1}}=2 \hat{i}-3\hat{j}+\hat{k}$ and $\vec{n_{2}}=\hat{i}-\hat{j}$
Therefore,
$\theta =\cos^{-1}\frac{2(1)+3(1)+1(0)}{\sqrt{2^{2}+(-3)^{2}+1^{2}}\sqrt{1^{2}+(-1)^{2}+0^{2}}}$
$=\cos^{-1}\frac{5}{\sqrt{2}\sqrt{14}}\\=\cos^{-1}\frac{5}{2\sqrt{7}}$
The statement is False.
Question:46
Answer:
The equation of the line is given as
$\Rightarrow \vec{r}=2\hat{i}-3\hat{j}-\hat{k}+\lambda \left ( \hat{i}-\hat{j}+2\hat{k} \right )\\ \Rightarrow \vec{r}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}$
Any point lying on this line will satisfy the plane equation if the line itself lies in the plane. Also, any point on this line will have a position vector:
$\vec{a}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}$
Given equation of the plane $\vec{r}.\left ( 3\hat{i}+\hat{j}-\hat{k} \right )+2=0$
If we put a in the above equation,
$\left (\left (2 + \lambda \right )\hat{i}+ \left(-3 - \lambda \right) \hat{j} + \left (-1 + 2\lambda \right)\hat{k} \right ).\left ( 3\hat{i}+\hat{j}-\hat{k} \right ) + 2 \\ = \left (2 + \lambda \right ) \left(3\right) + \left(-3 - \lambda \right) \left(1\right) + \left (-1 + 2\lambda \right)\left(-1 \right) + 2 \\ = 6 - 3\lambda - 3 - \lambda + 1 - 2\lambda + 2 \\ = 5 - 6\lambda \neq R.H.S$
Thus, the line does not lie in the given plane.
Therefore, the given statement is False.
Question:47
Answer:
The given equation of the line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
It is clear from the equation that this line passes through A (5, -4, 6) and has the direction ratios 3, 7 and 2.
The position vector of A is $\vec{a}=5\hat{i}-4\hat{j}+6\hat{k}$
And the direction vector of the line will be
We know, the vector equation of a line that passes through a given point with position vector a and b is given as
$\vec{r}=3\hat{i}+7\hat{j}+2\hat{k}$
Hence, the required line equation will be:
$\hat{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k}\right )\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k} \right )$
Thus, the statement is True.
Question:48
Answer:
We know, the equation of a line in Cartesian form is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
, where a, b and c are the direction ratios and (x1, y1, z1) is a particular point on the line.
The given line is parallel to therefore it has 2, 1, 3 as direction ratios.
(a = 2, b = 1, c = 3)
The line passes through (5, -2, 4)
Substituting these values, we get the equation of line:
$\frac{x-5}{2}=\frac{y+2}{1}=\frac{z-4}{3}$
Thus, the given statement is False.
Question:49
Answer:
Let us take O as the origin, P as the foot of the perpendicular drawn from origin to the plane.
Then the position vector OP is:
$\vec{n}=\vec{OP}=5\hat{i}-3\hat{j}-2\hat{k}$
The unit vector of n is:
$\vec{n}=\frac{\vec{n}}{\left | \vec{n} \right |}\\ \hat{n}=\frac{5\hat{i}-3\hat{j}-2\hat{k}}{\sqrt{5^{2}+(-3)^{2}+(-2)^{2}}}=\frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k}$
$OP =\sqrt{\left ( 5-0 \right )^{2}+\left ( -3-0 \right )^{2}+\left (-2-0 \right )^{2}} \\ =\sqrt{25+9+4}\\ =\sqrt{38}$
Now, the equation of the plane with unit normal vector n and having a perpendicular drawn from the origin d is:
$\vec{r}.\hat{n}=d$
Therefore,
Equation of the given plane will be,
$\vec{r}.\left ( \frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k} \right )=\sqrt{38}\\ \Rightarrow \vec{r}.\left ( 5\hat{i}-3\hat{j}-2\hat{k} \right )=38$
=> The given statement is True.
The main topics and sub topics covered in this chapter of are as follows:
Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK
· NCERT Exemplar Class 12 Maths chapter 11 solutions define Dimension as the standard measure of an object's size and shape.
· We would use the concept of Vector algebra to make three-dimensional geometry organised and straightforward.
· In Class 12 Maths NCERT exemplar solutions chapter 11, we will study the direction aspects of a line joining two points, including the direction cosines and the ratios, discuss the equations of lines and planes in space, measure the shortest distance between two lines and learn more about the Cartesian form analytical and geometric representation.
Chapter 1 | |
Chapter 2 | |
Chapter 3 | |
Chapter 4 | |
Chapter 5 | |
Chapter 6 | |
Chapter 7 | |
Chapter 8 | |
Chapter 9 | |
Chapter 10 | |
Chapter 11 | Three Dimensional Geometry |
Chapter 12 | |
Chapter 13 |
This entire chapter talks about the dimensional geometry which covered vector usage to measure and determine line, planes and angles.
Yes, for those who want a clear picture of how to solve questions in three-dimensional geometry, our NCERT exemplar Class 12 Maths solutions chapter 11 can be highly supportive.
The best way is to use these solutions as reference, while one is solving the questions for practicing.
Yes, these questions and NCERT exemplar Class 12 Maths solutions chapter 11 can be downloaded by using the webpage to PDF tool available online.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE