Careers360 Logo
NCERT Exemplar Class 12th Maths Solutions Chapter 11 Three Dimensional Geometry

Access premium articles, webinars, resources to make the best decisions for career, course, exams, scholarships, study abroad and much more with

Plan, Prepare & Make the Best Career Choices

NCERT Exemplar Class 12th Maths Solutions Chapter 11 Three Dimensional Geometry

Edited By Ravindra Pindel | Updated on Sep 15, 2022 05:16 PM IST | #CBSE Class 12th

NCERT exemplar Class 12 Maths solutions chapter 11 Three Dimensional Geometry - If you observe the world around you, you see everything in three dimensions! Even a tiny strand of hair has dimensions of length, width, and depth. 3D geometry refers to the mathematics of perception, direction, and shape. NCERT exemplar Class 12 Maths chapter 11 solutions initiates that there is always a requirement of three parameters to work with the comprehensive concepts of three-dimensional geometry. NCERT exemplar solutions For Class 12 Maths chapter 11 would help you out in any three-dimensional Mathematical problem that you're stuck on and get you back in your study loop. NCERT exemplar Class 12 Maths solutions chapter 11 PDF download is helpful for students to learn offline when there is a slow internet connection. Also, read - NCERT Class 12 Maths Solutions

Question:1

Find the position vector of a point A in space, so that \overline{OA} is inclined at 60? to \overline{OX} and 45? to \overline{OY} and \left |\overline{OA} \right |= 10 units.

Answer:

Given, \overline{OA} is inclined at 600 to and at \overline{OX} 450 to \overline{OY}
\overline{OA} = 10 units.
We want to find the position vector of point A in space, which is nothing but \overline{OA}
We know, there are three axes in space: X, Y, and Z.
Let OA be inclined with OZ at an angle α.
We know, directions cosines are associated by the relation:
l² + m² + n² = 1 ….(i)
In this question, direction cosines are the cosines of the angles inclined by on \overline{OA}, \overline{OX}, \overline{OY} and \overline{OZ}
So,l=\cos 60^{\circ},m=\cos 45^{\circ},n=\cos \alpha
Substituting the values of l, m, and n in equation (i),
\left (\cos 60^{\circ} \right )^{2}+\left (m=\cos 45^{\circ} \right )^{2}+\left (n=\cos \alpha \right )^{2}=1
We know the values of \cos 60^{\circ}and \cos 45^{\circ}, i.e. 1/2 and 1/√2 respectively.
Therefore, we get
\left ( \frac{1}{2} \right )^{2}+\left ( \frac{1}{\sqrt{2}} \right )^{2}+\cos^{2}\alpha =1
\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos^{2}\alpha =1
\Rightarrow \cos^{2}\alpha =1-\frac{1}{4}-\frac{1}{2}
\Rightarrow \cos^{2}\alpha =\frac{4-1-2}{4}
\Rightarrow \cos^{2}\alpha =\frac{1}{4}
\Rightarrow \cos \alpha =\pm \sqrt{\frac{1}{4}}
\Rightarrow \cos \alpha =\pm \frac{1}{2}
So \overrightarrow{OA} is given as
\overrightarrow{OA}=\overrightarrow{OA}\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )..........(ii)
We have,
l = \cos 60^{\circ} = \frac{1}{2}\\ m =\ cos 45^{\circ} = \frac{1}{\sqrt{2}}\\ n = \cos \alpha = \pm \frac{1}{2}\\
Inserting these values of l, m and n in equation (ii),
\overrightarrow{OA}=\left |\overrightarrow{OA} \right |\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )
Also ,Put |\overrightarrow{OA}| =10 \Rightarrow \overrightarrow{OA}=10\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )
\Rightarrow \overrightarrow{OA}=10\times \frac{1}{2} \hat{i}+10\times\frac{1}{\sqrt{2}}\hat{j}+10\times\frac{1}{2}\hat{k}
\Rightarrow \overrightarrow{OA}=5i+10\times\frac{\sqrt{2}}{\sqrt{2}}\times+10\times\frac{1}{\sqrt{2}}\hat{j}\pm 5\hat{k}
\Rightarrow \overrightarrow{OA}=5i+\frac{10\times\sqrt{2}}{2}\hat{j}\pm 5\hat{k}
\Rightarrow \overrightarrow{OA}=5i+5\sqrt{2}\hat{j}\pm 5\hat{k}
Thus, position vector of A in space =5i+5\sqrt{2}\hat{j}\pm 5\hat{k}

Question:2

Find the vector equation of the line parallel to the vector 3\hat{i}-2 \hat{j}+3\hat{k} and which passes through the point (1, -2, 3).

Answer:

Given, vector = 3\hat{i}-2\hat{j}+6\hat{k}

Point = (1, -2, 3)

We can write this point in vector form as \hat{i}-2\hat{j}+3\hat{k}

Let ,

\overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}

\overrightarrow{b}=3\hat{i}-2\hat{j}+6\hat{k}

We must find the vector equation of the line parallel to the vector \overrightarrow{b} and passing through the point

We know, equation of \overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b} a line passing through a point and parallel to a given vector is denoted as

Where, \lambda \epsilon \mathbb{R}

In other words, we need to find \overrightarrow{r}

This can be achieved by substituting the values of the vectors in the above equation. We get

\overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )

\Rightarrow \overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )

This can be further rearranged, upon which we get:

\Rightarrow \vec{r}=\hat{i}-2\hat{j}+3\hat{k}+3\lambda \hat{j}+3\hat{k}+6\lambda\hat{k}

\Rightarrow \vec{r}=\hat{i}+3\lambda \hat{i}-2\hat{j}-2\lambda\hat{j}+3\hat{k}+6\lambda\hat{k}

\Rightarrow \vec{r}=\left ( 1-3\lambda \right )\hat{i}+\left ( -2-2\lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}

Thus, the require vector equation of line is \vec{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )

which can also be written as \left ( 1-3\lambda \right )i+\left ( -2-2 \lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}

Question:3

Show that the given lines, \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} and \frac{x-4}{5}=\frac{y-1}{2}=z intersect.
Also, find the point of intersection of the lines.

Answer:

We have the lines,
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}
\frac{x-4}{5}=\frac{y-1}{2}=z
Let us denote these lines as L1and L2, such that
L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda
L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu
where \lambda ,\mu \epsilon \mathbb{R}
We must show that the lines L1and L2 intersect.
To show this, let us first find any point on line L1 and line L2
For L1:
L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda
\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda
\Rightarrow \frac{x-1}{2}=\lambda,\frac{y-2}{3}=\lambda,\frac{z-3}{4}=\lambda
We must find the values of x, y, and z. Therefore, let us take \Rightarrow \frac{x-1}{2}=\lambda
\Rightarrow x-1=2\lambda
\Rightarrow x=2\lambda+1
Take \frac{y-2}{3}=\lambda
\Rightarrow y-2=3\lambda
\Rightarrow y=3 \lambda+2
Take \frac{z-3}{4}=\lambda
\Rightarrow z-3=4\lambda
\Rightarrow z=4\lambda+3...(i)
Therefore, any point on L1 can be represented as (2\lambda + 1, 3\lambda + 2, 4\lambda + 3).
Now,
For L2:
L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu
\Rightarrow \frac{x-4}{5}=\frac{y-1}{2}=z=\mu
\Rightarrow \frac{x-4}{5}=\mu,\frac{y-1}{2}=\mu,z=\mu
We must find the values of x, y, and z. Therefore,
Take \frac{x-4}{5}=\mu
\Rightarrow x-4=5\mu
\Rightarrow x=5\mu+4
Take \frac{y-1}{2}=\mu
\Rightarrow y-1=2\mu
\Rightarrow y=2\mu+1
Take z=\mu
\Rightarrow z=\mu........(ii)
Hence, any point on line L? can be represented as (5μ + 4, 2μ + 1, μ).
If lines L1 and L2 intersect, then there exist λ and μ such that
\left ( 2\lambda+1,3\lambda+3,4\lambda+3 \right )\equiv \left ( 5\mu+4,2\mu+1,\mu \right )
\Rightarrow 2\lambda+1= 5\mu+4......(iii)
3\lambda+2=2\mu+1.....(iv)
4\lambda+3=\mu.....(iv)
Substituting the value of μ from equation (v) into equation (iv),
3\lambda+2=2\left ( 4\lambda+3 \right )+1
\Rightarrow 3\lambda+2=8\lambda+6+1
\Rightarrow 3\lambda+2=8\lambda+7
\Rightarrow 8\lambda-3\lambda=2-7
\Rightarrow 5\lambda=-5
\Rightarrow \lambda=-\frac{5}{5}
\Rightarrow \lambda=-1
Putting this value of \lambda in eq (v),
4\left ( -1 \right )+3=\mu
\Rightarrow \mu=-4+3
\Rightarrow \mu=-1
To check, we can substitute the values of \lambda and \mu in equation (iii), giving us:
2(-1) + 1 = 5(-1) + 4
\Rightarrow -2 + 1 = -5 + 4
\Rightarrow -1 = -1
Therefore \lambda and \mu also satisfy equation (iii).
So, the z-coordinate from equation (i),
z=4\lambda +3
\Rightarrow z=4\left ( -1 \right )+3 \left [ \because \lambda=-1 \right ]
\Rightarrow z=-4+3
\Rightarrow z=-1
And the z-coordinate from equation (ii),
z=\mu
z=-1\left [ \because \mu=-1 \right ]
So, the lines intersect at the point
(5\mu + 4, 2\mu + 1, \mu) = (5(-1) + 4, 2(-1) + 1, -1).\\ Or, (5\mu + 4, 2\mu + 1, \mu) = (-5 + 4, -2 + 1, -1)\\ Or (5\mu + 4, 2\mu + 1, \mu) = (-1, -1, -1)
Therefore the lines intersect at the point (-1, -1, -1).

Question:4

Find the angle between the lines \vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda \left ( 2 \hat{i}+\hat {j}+2\hat{k} \right ) and \vec{r}= \left(2 \hat{i}-5\hat{k} \right )+\mu \left ( 6\hat{i}+3\hat {j}+2\hat{k} \right )

Answer:

Given, lines:
\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )
\vec{r}=\left (2\hat{i}-5\hat{k} \right )+\mu\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )
We are instructed to find the angle between the lines.
The line \vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right ) is parallel to the vector
2\hat{i}+\hat{j}+2\hat{k}
Let
\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}

Then, we can say the line \vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right ) is parallel to vector \vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}
Similarly, let \vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}
Then, we can say is \vec{r}=2\hat{j}-5\hat{k}+\mu \left ( 6\hat{i}+3\hat{j}+2\hat{k} \right ) parallel to the vector \vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}
If we take θ as the angle between the lines, then cosine θ is:
\cos \theta = \frac{\vec{b_{1}}\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |}
Substituting the values of \vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k} and \vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k} in the above equation,
We get
\cos \theta=\frac{\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |}
Here,
\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=\left ( 2 \times 6 \right )+\left ( 1 \times 3 \right )+\left ( 2 \times 2 \right )
\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=12+3+4
\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=19...........(i)
Also,
\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{2^{2}+1^{2}+2^{2}}\sqrt{6^{2}+3^{2}+2^{2}}
\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{4+1+4}\sqrt{36+9+4}
\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{9}\sqrt{49}
\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=3 \times 7
\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=21............(ii)
Substituting the values of \cos \theta in equation (i) and (ii), we get
\cos \theta=\frac{19}{21}
\Rightarrow \theta=\cos^{-1}\left (\frac{19}{21} \right )
Therefore, the angle between the lines is \cos^{-1}\left (\frac{19}{21} \right )

Question:5

Prove that the line through points A (0, -1, -1) and B (4, 5, 1) intersects the line through C (3, 9, 4 ) and D (-4, 4, 4).

Answer:

Given: A (0, -1, -1), B (4, 5, 1), C (3, 9, 4), D (-4, 4, 4).
To prove: The line passing through A and B intersects the line passing through C and D.
Proof: We know, equation of a line passing through two points (x1 , y1 , z1) and (x2 , y2 , z2) is:
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
Hence, the equation of the line passing through A (0, -1, -1) and B (4, 5,1) is:
\frac{x-0}{4-0}=\frac{y-(-1)}{5-(-1)}=\frac{z-(-1)}{1-(-1)}
, where x1 = 0, y1 = -1, z1 = -1; and x2 = 4, y2 = 5, z2 = 1
\Rightarrow \frac{x-0}{4}=\frac{y+1}{6}=\frac{z+1}{2}\\ \Rightarrow \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}
Let
L_{1}: \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}=\lambda\\ \\ \frac{x}{4}=\lambda, \frac{y+1}{6}=\lambda,\frac{z+1}{2}=\lambda\\
We must find the values of x, y, and z. Therefore,
Take \frac{x}{4}=\lambda\\ \Rightarrow x=4\lambda\\ \\ Take \frac{y+1}{6}=\lambda\\ \Rightarrow y+1=6\lambda\\ \Rightarrow y=6\lambda-1\\ \\ Take \frac{z+1}{2}=\lambda\\ \Rightarrow z+1=2\lambda\\ \Rightarrow z=2\lambda-1\\ \\
This implies that any point on the line L1 is (4λ, 6λ – 1, 2λ – 1).
The equation of the line passing through points C (3, 9, 4) and D (-4, 4, 4) is:
\frac{x-3}{-4-3}=\frac{y-9}{4-9}=\frac{z-4}{4-4}
, where x1 = 3, y1 = 9, z1 = 4; and x2 = -4, y2 = 4, z2 = 4
\frac{x-3}{-7}=\frac{y-9}{-5}=\frac{z-4}{0}
Let
L_{2}:\frac{x-3}{-7}=\frac{\left (y-9 \right )}{-5}=\frac{z-4}{0}=\mu
\Rightarrow \frac{x-3}{-7}=\mu,\frac{\left (y-9 \right )}{-5}=\mu,\frac{z-4}{0}=\mu
We must find the values of x, y, and z. Therefore,
Take \, \frac{x-3}{-7}=\mu\\ \Rightarrow x-3=-7\mu\\ \Rightarrow x=-7\mu+3\\ \\ Take \,\frac{\left (y-9 \right )}{-5}=\mu \\ \Rightarrow y-9=-5\mu\\ \Rightarrow y=-5\mu+9\\ \\ Take\frac{z-4}{0}=\mu \\ \Rightarrow z-4=0\\ \Rightarrow z=4
This implies that any point on line L2 is (-7μ +3, -5μ + 9, 4).
If the lines intersect, then there must exist a value of λ and for μ, for which
\left (4\lambda, 6\lambda - 1, 2\lambda -1\right) \equiv \left(-7\mu + 3, -5\mu + 9, 4\right ) \\ \Rightarrow 4\lambda = -7\mu + 3...(i)\\ 6\lambda - 1 = -5\mu + 9..(ii)\\ 2\lambda - 1 = 4 �(iii)\\
From equation (iii), we get
2\lambda - 1 = 4 \\ \Rightarrow 2\lambda=4+1\\ \Rightarrow 2\lambda=5\\ \Rightarrow \lambda=\frac{5}{2}
Substituting the value of λ in equation (i),
4\left ( \frac{5}{2} \right )=-7\mu+3\\ \Rightarrow 2 \times 5=-7\mu+3\\ \Rightarrow 10=-7\mu+3\\ \Rightarrow 7\mu=3-10\\ \Rightarrow 7\mu=-7 \\ \Rightarrow -\frac{7}{7}\\ \Rightarrow \mu=-1
Substituting these values of λ and μ in equation (ii),
6\left ( \frac{5}{2} \right )-1=-5\left ( -1 \right )+9\\ \Rightarrow 3 \times 5 - 1 = 5 + 9\\ \Rightarrow 15 - 1 = 14\\ \Rightarrow 14 = 14
Since the values of λ and μ satisfy eq (ii), the lines intersect.
Hence, proved that the line through A and B intersects the line through C and D.

Question:6

Prove that lines x = py + q, z = ry + s, and x = p’y + q’, z = r’y + s’ are perpendicular if pp’ + rr’ + 1 = 0.

Answer:

Given: x = py + q, z = ry + s, and x = p’y + q’, z = r’y + s’ are perpendicular.
To Prove: pp’ + rr’ + 1 = 0.
Proof:
Let us take x = py + q and z = ry + s.
From x = py + q;
py = x - q
\Rightarrow y=\frac{x-q}{p}
From z = ry + s;
ry = z - s
\Rightarrow y=\frac{z-s}{r}
So, \frac{x-q}{p}=y=\frac{z-s}{r}
\frac{x-q}{p}=\frac{y}{1}=\frac{z-s}{r} Or, … (i)
Now, if we take x = p’y + q’ and z = r’y + s’
From x = p’y + q’;
p’y = x - q’
\Rightarrow y=\frac{x-{q}'}{{p}'}
From z = r’y + s’;
r’y = z - s’
\Rightarrow y=\frac{z-{s}'}{{r}'}
So,
\frac{x-{q}'}{{p}'}=y=\frac{z-{s}'}{{r}'}
Or,
L_{2}:\frac{x-{q}'}{{p}'}=\frac{y}{1}=\frac{z-{s}'}{{r}'}.......(ii)
From (i),
Line L1 is parallel to p\hat{i}+\hat{j}+r\hat{k} (from the denominators of the equation (i))
From (ii),
Line L2 is parallel to {p}'\hat{i}+\hat{j}+{r}'\hat{k} (from the denominators of the equation (ii))
According to the question, L1 and L2 are perpendicular.
Therefore, the dot product of the vectors should equate to 0.
Or,
\left (p\hat{i}+\hat{j}+r\hat{k} \right ).\left ({p}'\hat{i}+\hat{j}+{r}'\hat{k} \right )\\ \Rightarrow p{p}'+1+r{r}'=0
(since, in vector dot product, \left (x\hat{i}+y\hat{j}+z\hat{k} \right )\left ({x}'\hat{i}+{y}'\hat{j}+{z}'\hat{k} \right )= x{x}'+y{y}'+z{z}'=0
Or,
p{p}'+r{r}'+1=0
Therefore, the lines are perpendicular if pp’ + rr’ + 1 = 0.

Question:7

Find the equation of a plane which bisects perpendicularly the line joining A (2, 3, 4) and B (4, 5, 8) at right angles.

Answer:

Given, there exists a plane which perpendicularly bisects the line joining A (2, 3, 4) and B (4, 5, 8) at right angles. We must find the equation of this plane.
First, let us find the midpoint of AB.
Since the midpoint of any line is halfway between the two end points,
Midpoint \: of \: AB=\left ( \frac{2+4}{2},\frac{3+5}{2},\frac{4+8}{2} \right )
Midpoint \: of \: AB=\left ( \frac{6}{2},\frac{8}{2},\frac{12}{2} \right )
= (3, 4, 6).
We can represent this as a position vector, \vec{a}=3\hat{i}+4\hat{j}+6\hat{k}
Next, we must find the normal of the plane, \vec{n}
\vec{n}=\left ( 4-2 \right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 8-4 \right )\hat{k}\\ \Rightarrow \vec{n}=2\hat{i}+2\hat{j}+4\hat{k}
We know, the equation of the plane which perpendicularly bisects the line joining two given points is
\left ( \vec{r}-\vec{a} \right )\vec{n}=0
Where,
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}
Substituting the values in the above equation,
\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right ) -\left (3\hat{i}+4\hat{j}+6\hat{k} \right ) \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-4\hat{j}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow \left ( x\hat{i}-3\hat{i}+y\hat{j}-4\hat{j}+z\hat{k}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow \left ( (x-3)\hat{i}+(y-4)\hat{j}+(z-6)\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0\\\Rightarrow 2\left ( x-3 \right )+2(y-4)+4(z-6)=0
Upon further simplification,
\Rightarrow 2x-6+2y-8+4z-24=0\\ \Rightarrow 2x+2y+4z-6-8-24=0\\ \Rightarrow 2x+2y+4z-38=0\\ \Rightarrow 2\left ( x+y+2z-19 \right )=0\\ \Rightarrow x+y+2z-19=0\\ \Rightarrow x+y+2z=19
Therefore, the required equation of the plane is x + y + 2z = 19.

Question:8

Find the equation of a plane which is at a distance 3\sqrt{3} units from the origin and the normal to which is equally inclined to coordinate axes.

Answer:

Given, the plane is at a distance of 3\sqrt{3} from the origin, and the normal is equally inclined to coordinate axes.
We need to find the equation of this plane.
We know, the vector equation of a plane located at a distance d from the origin is represented by:
\vec{r}.\hat{n}=d\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )=d
lx + my + nz = d ….(i) , where l, m and n are the direction cosines of the normal of the plane.
Since the normal is equally inclined to the coordinate axes,
l = m = n \\ \cos \alpha =\cos\beta =\cos \gamma �(ii)
Also, we know,
\cos^{2} \alpha =\cos^{2}\beta =\cos^{2} \gamma=1\\ \Rightarrow \cos^{2} \alpha =\cos^{2}\alpha =\cos^{2} \alpha =1 \: \: \left ( from(ii) \right )\\ \Rightarrow 3\cos^{2}\alpha=1\\ \Rightarrow \cos^{2}\alpha=\frac{1}{3}\\ \Rightarrow \cos \alpha =\frac{1}{\sqrt{3}}
This means, l=m=n =\frac{1}{\sqrt{3}}
if we substitute the values of l, m and n in equation (i),
\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=d\: \: \left [where\: d=3\sqrt{3} \right ]
So,
\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=3\sqrt{3} \\ \Rightarrow \frac{x+y+z}{\sqrt{3}}=3\sqrt{3}\\ \Rightarrow x+y+z=3\sqrt{3}\times \sqrt{3}\\ \Rightarrow x+y+z=3 \times 3=9
Therefore, the required equation of the plane is x + y + z = 9.

Question:9

. If the line drawn from the point (-2, -1, -3) meets a plane at right angle at the point (1, -3, 3), find the equation of the plane.

Answer:

Given: the line drawn from point (-2, -1, -3) meets a plane at 900 at the point (1, -3, 3). We must find the equation of the plane.
Any line perpendicular to the plane is the normal.
Let the points be P (-2, -1, -3) and Q (1, -3, 3), then the line PQ is a normal to the plane.
Hence, PQ = (1 + 2, -3 + 1, 3 + 3)=> PQ = (3, -2, 6)
=> Normal to the plane = \vec{PQ}
\vec{PQ}=3\hat{i}-2\hat{j}+6\hat{k}
The vector equation of a plane is represented by \left (\vec{r}-\vec{a} \right ).\vec{n}=0
Putting the obtained values in this equation,
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=\hat{i}-3\hat{j}+3\hat{k}\\ \vec{n}=3\hat{i}-2\hat{j}+6\hat{k}
We get,
\Rightarrow \left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (\hat{i}-3\hat{j}+3\hat{k} \right ) \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}-y\hat{j}+z\hat{k}-\hat{i}+3\hat{j}-3\hat{k} \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}-\hat{i}+y\hat{j}+3\hat{j}+z\hat{k}-3\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0\\ \Rightarrow \left ((x-1)\hat{i}+(y+3)\hat{j}+(z-3)\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0
\Rightarrow 3(x - 1) + (-2)(y + 3) + 6(z - 3) = 0\\ \Rightarrow3(x - 1) - 2(y + 3) + 6(z - 3) = 0\\ \Rightarrow 3x- 3 -2y - 6 + 6z - 18 = 0\\ \Rightarrow 3x - 2y +6z - 3 - 6 - 18 = 0\\ \Rightarrow 3x - 2y + 6z - 9 - 18 = 0\\ \Rightarrow 3x - 2y + 6z - 27 = 0\\ \Rightarrow 3x - 2y + 6z = 27
Therefore, the required equation of the plane is 3x - 2y + 6z = 27.

Question:10

Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).

Answer:

Given points are (2, 1, 0), (3, -2, -2), and (3, 1, 7).
We know, equation of a line passing through 3 non-collinear points (x1 , y1 , z1 ), (x2 , y2 , z2 ) and (x3 , y3 , z3 ) is given as:
\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}=0
Where, (x1 , y1 , z1 ) = (2, 1, 0)
(x2 , y2 , z2 ) = (3, -2, -2)
(x3 , y3 , z3 ) = (3, 1, 7)
Therefore, x1 = 2, y1 = 1, z1 = 0; x2 = 3, y2 = -2, z2 = -2; x3 = 3, y3 = 1, z3 = 7
Substituting these values in the line equation,
\begin{vmatrix} x-2 &y-1 &z-0 \\ 3-2&-2-1 &-2-0 \\ 3-2&1-1 &7-0 \end{vmatrix}=0\\ \\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=0
\\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=\left ( x-2 \right )\left ( \left ( -3 \times 7 \right )-\left ( -2 \times 0 \right ) \right )

\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21-0 \right )-\left ( y-1 \right )\left ( 7-(-2) \right )+z\left ( 0-(-3) \right )
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21 \right )-\left ( y-1 \right )\left ( 7+2 \right )+z\left ( 0+3 \right )
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21\left ( x-2 \right )-9\left ( y-1 \right )+3z
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x+42-9y+9+3z
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+42+9
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+51
Now, since
\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=0
\Rightarrow -21x -9y + 3z + 51 = 0\\ \Rightarrow -21x - 9y + 3z = -51\\ \Rightarrow -3(7x + 3y - z) = -3 \times 17\\ \Rightarrow 7x + 3y - z = 17
Hence, the required equation of the plane is 7x + 3y - z = 17.

Question:11

Find the equations of the 2 lines through the origin which intersect the line \frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1} at angles of \frac{\pi}{3} each.

Answer:

Given the equation of the line, we need to find the equations of two lines through the origin which intersect the given line.
According to the theorem, equation of a line with direction ratios d1 = (b1 , b2 , b3 ) that passes through the point (x1 , y1 , z1 ) is expressed as:
\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}
We also know, the angle between two lines with direction ratios d1 and d2 respectively is given by:
\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )
We use these theorems to find the equations of the two lines.
Let the equation of a line be:
\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )
Given that it passes through the origin, (0, 0, 0)
Therefore, equation of both lines passing through the origin will be :
\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda \, \, .....(i)
Let,
\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}=\mu \, \, .....(ii)
Direction ratio of the line = (2, 1, 1)
\Rightarrow d_{1} = (2, 1, 1).... (iii)
If we represent the direction ratio in terms of a position vector,
d_{1}=2\hat{i}+\hat{j}+\hat{k} .....(iv)

Any point on the line is given by (x, y, z). From (ii),
\frac{x-3}{2}=\mu, \frac{y-3}{1}=\mu ,\frac{z}{1}=\mu
\\\text{take} \ \frac{x-3}{2}=\mu\\ \Rightarrow x-3=2\mu\\ \Rightarrow x=2\mu+3\\ \\ take \frac{y-3}{1}=\mu \\ \Rightarrow y-3=\mu\\ \Rightarrow y=\mu+3\\ \\ take \frac{z}{1}=\mu\\ \Rightarrow z=\mu
Hence, any point on line (ii) is P(2\mu + 3, \mu + 3, \mu)
Since line (i) passes through the origin, we can say
\left ( b_{1},b_{2},b_{3} \right )\equiv (2\mu + 3, \mu + 3, \mu)
\Rightarrow \: direction\: \: ratio\: of\; line(i)= (2\mu + 3, \mu + 3, \mu)\\ \Rightarrow d_{2}= (2\mu + 3, \mu + 3, \mu)....(v)
We can represent the direction ratio in terms of position vector like:
d_{2}= \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \: \: ....(vi)
From the theorem, we know
\cos \theta=\frac{d_{1}.d_{2}}{\left |d_{1} \right |\left |d_{2} \right |}
If we substitute the values of d? and d? from (iv) and (vi) in the above equation, and putting \theta=\frac{\pi}{3} from the question:
\Rightarrow \cos \frac{\pi}{3}=\frac{\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |}
Solving the numerator,
\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 2\left (2\mu + 3 \right )+1\left ( \mu + 3 \right )+1. \mu
\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu + 6+\mu + 3+ \mu
\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu +\mu + \mu+6+3
\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 6\mu+9
Solving the denominator,
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{2^{2}+1^{2}+1^{2}}\sqrt{ \left (2\mu + 3 \right )^{2}+\left ( \mu + 3 \right )^{2}+ \mu^{2}}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{4+1+1}\sqrt{ \left (2\mu \right )^{2}+ 3^{2}+2\left ( 2\mu \right )\left ( 3 \right )+\left ( \mu \right )^{2}+3^{2}+ 2(\mu)(3)+\mu^{2}}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{4\mu^{2}+9+12\mu+u^{2}+9+6\mu+\mu^{2}}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{4\mu^{2}+u^{2}+\mu^{2}+12\mu+6\mu+9+9}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6\mu^{2}+18\mu+18}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6\left (\mu^{2}+3\mu+3 \right )}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=\sqrt{6}\sqrt{6}\sqrt{\mu^{2}+3\mu+3}
\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=6\sqrt{\mu^{2}+3\mu+3 }
And cos π/3 = 1/2
Substituting the values, we get
\Rightarrow \frac{1}{2}=\frac{6\mu+9}{6\sqrt{\mu^{2}+3\mu+3}}
Performing cross multiplication,
\Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2\left (6\mu+9 \right )\\ \Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2 \times 3\left (2\mu+3 \right )\\ \Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=6\left (2\mu+3 \right )\\ \Rightarrow \sqrt{\mu^{2}+3\mu+3}=2\mu+3
Squaring both sides,
\Rightarrow \left (\sqrt{\mu^{2}+3\mu+3} \right )^{2}=\left (2\mu+3 \right )^{2}\\ \Rightarrow \mu^{2}+3\mu+3=(2\mu)^{2}+3^{2}+2(2\mu)(3)\left [ \because (a+b)^{2}=a^{2}+b^{2}+2ab \right ]\\ \Rightarrow \mu^{2}+3\mu+3=4\mu^{2}+9+12\mu\\ \Rightarrow 4\mu^{2}-\mu^{2}+12\mu-3\mu+9-3=0\\ \Rightarrow 3\mu^{2}+9\mu+6=0
\Rightarrow 3\left ( \mu^{2}+3\mu+2 \right ) =0\\ \Rightarrow \mu^{2}+3\mu+2=0\\ \Rightarrow\mu^{2}+2\mu+\mu+2=0\\ \Rightarrow \mu\left ( \mu+2 \right )+\left ( \mu+2 \right )=0\\ \Rightarrow \left ( \mu+1 \right )+\left ( \mu+2 \right )=0\\
\Rightarrow \left ( \mu+1 \right )=0 \: \: or\: \left ( \mu+2 \right )=0\\ \Rightarrow \mu=-1 \: \: \: or\: \: \: \mu=-2
Therefore, from equation (v)
Direction ratio =(2\mu+ 3, \mu + 3, \mu)
Putting μ = -1:
Direction Ratio = (2(-1) + 3, (-1) + 3, -1)
⇒ Direction Ratio = (-2 + 3, -1 + 3, -1)
⇒ Direction Ratio = (1, 2, -1) …(vi)
Now putting μ = -2:
Direction Ratio = (2(-2) + 3, (-2) + 3, -2)
⇒ Direction Ratio = (-4 + 3, -2 + 3, -2)
⇒ Direction Ratio = (-1, 1, -2) …(vii)
Using the direction ratios in (vi) and (vii) in equation (i);
\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda\\ \\ \\ \frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda
And,
\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda
Therefore, the two required lines are \frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda and \frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda

Question:12

Find the angle between the lines whose direction cosines are given by equations l + m + n = 0, l2 + m2 - n2 = 0.

Answer:

Given, two lines whose direction cosines are l + m + n = 0 - (i); and l² + m² - n² = 0 - (ii). We need to find the angle between these lines.
First, we must find the values of l, m and n.
From equation (i), l + m + n = 0
=> n = - l - m
=> n = -(l + m) …(iii)
If we substitute the value of n from (i) in (ii),
l^{2}+m^{2}-n^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left (-\left ( l+m \right ) \right )^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left ( l+m \right ) ^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left ( l^{2}+m^{2}+2lm \right )=0\\ \Rightarrow l^{2}+m^{2} -l^{2}-m^{2}-2lm=0\\ \Rightarrow l^{2}-l^{2}+m^{2}-m^{2}-2lm=0\\ \Rightarrow -2lm=0\\ \Rightarrow lm=0
⇒ l = 0 or m = 0
Putting l = 0 in equation (i),
=> 0 + m + n = 0
=> m + n = 0
=> m = -n
If m = \lambda, then
n = -m = -\lambda
Hence, direction ratios (l, m, n) = (0, \lambda, -\lambda)
=> Position vector parallel to these given lines = 0\hat{i}+\lambda\hat{j}-\lambda \hat{k}
\Rightarrow d_{1}=\lambda\hat{j}-\lambda \hat{k}
Now, putting m = 0 in equation (i),
=> l + 0 + n = 0
=> l + n = 0
=> l = -n
If n = \lambda, then
l = -n = -\lambda
Hence, direction ratios (l, m, n) = (-\lambda, 0, \lambda)
=> Position vector parallel to these given lines = -\lambda \hat{i}+\0\hat{j}+\lambda \hat{k}
\Rightarrow d_{2}=-\lambda\hat{i}+\lambda \hat{k}
From the theorem, we get the angle between the two lines whose direction ratios are d1 and d2 as:
\theta=\cos^{-1}\left ( \frac{\left | d_{1}.d_{2} \right |}{\left | d_{1}\right |\left |d_{2} \right |} \right )
If we substitute the values of d1 and d2, we get
\theta=\cos^{-1}\left ( \frac{\left| \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |}{\left | \left ( \lambda \hat{j}-\lambda \hat{k} \right )\right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |} \right )
Solving the numerator,
\left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) =0+0+\left ( -\lambda \right )\left ( \lambda \right )\\ \Rightarrow \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right )= -\lambda^{2}
Solving the denominator,
\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}\left (-\lambda \right )^{2}} \sqrt{\left (- \lambda \right )^{2}+\lambda ^{2}}
\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}+\lambda^{2}} \sqrt{ \lambda^{2}+\lambda ^{2}}
\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |= \lambda ^{2}+\lambda^{2}
\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=2 \lambda ^{2}
Substituting the values in θ,
\theta=\cos^{-1}\left ( \frac{\left | -\lambda^{2} \right |}{\lambda^{2}} \right )\\ \Rightarrow \theta=\cos^{-1}=\frac{1}{2}\\ \Rightarrow \theta=\frac{\pi}{3}\left [ \because \cos\frac{\pi}{3}=\frac{1}{2} \right ]
Therefore, the required angle between the lines is π/3.

Question:13

If a variable line in two adjacent positions has direction cosines l, m, n and l+\delta l,\: m+\delta m,\: n+\delta n, show that the small angle \delta \theta between the two positions is given by \delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}

Answer:

Given: direction cosines of a variable line in two adjacent positions are l, m, n and l+\delta l, m+\delta m,n+\delta n,
We have to prove that the small angle \delta \theta between the two positions is given by \delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}
We know, the relationships between direction cosines is given as
l^{2}+ m^{2}+ n^{2}=1 ....(1)
Also, \left (l+\delta l \right )^{2}+ \left (m+\delta m \right )^{2}+ \left (n+\delta n \right )^{2}=1
\Rightarrow l^{2}+(\delta l)^{2}+2(l)(\delta l)+m^{2}+(\delta m)^{2}+2(m)(\delta m)+n^{2}+(\delta n)^{2}+2(n)(\delta n)=1\\ \Rightarrow l^{2}+m^{2}+n^{2}+\left (\delta l \right )^{2}+\left (\delta m \right )^{2}+\left (\delta n \right )^{2}+2l\delta l+2m\delta m+2n\delta n=1\\ \Rightarrow 1+\delta l^{2}+\delta m^{2}+ \delta n^{2}+2l\delta l+2m\delta m+2n\delta n=1\: \: \: \left [ from (i) \right ] \\ \Rightarrow 2l\delta l+2m\delta m+2n\delta n+\delta l^{2}+\delta m^{2}+ \delta n^{2}=1-1 \\ \Rightarrow 2 \left (l\delta l+m\delta m+n\delta n \right )=-\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right )\\ \Rightarrow l\delta l+m\delta m+n\delta n =-\frac{1}{2}\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right ).......(iii)
Let
\vec{a}=l\hat{i}+m\hat{j}+n\hat{k}\\ \Rightarrow \vec{b}=\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k}
We know, angle between two lines = \cos \theta=\vec{a}. \vec{b}
Here, the angle is very small because the line is variable in different although adjacent positions. According to the question, this small angle is \delta \theta
Therefore,
\cos \delta \theta=\vec{a}. \vec{b}
Substituting the values of the two vectors, we get
\Rightarrow \cos \delta \theta = \left (l\hat{i}+m\hat{j}+n\hat{k} \right ).\left (\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k} \right )
The dot product of 2 vectors is calculated by obtaining the sum of the product of the coefficients of \hat{i},\hat{j}\; and \; \hat{k}
\Rightarrow \cos \delta \theta =l \left ( l+\delta l \right )+m \left ( m+\delta m \right )+n \left ( n+\delta n \right )\\ \Rightarrow \cos \delta \theta = l^{2}+l \delta l+m^{2}+m \delta m+n^{2}+n \delta n\\ \Rightarrow \cos \delta \theta =l^{2}+m^{2}+n^{2}+l \delta l+m \delta m+n \delta n\\ \Rightarrow \cos \delta \theta =1+l \delta l+m \delta m+n \delta n\: \: \left [ from(i) \right ]\\ \Rightarrow \cos \delta \theta=1-\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )\: \: \: \: \left [ \because from(ii) \right ]\\ \Rightarrow \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )=1-\cos \delta \theta
Or,
\Rightarrow 1-\cos \delta \theta= \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )
We know, 1 -\cos 2 \theta = 2\sin^{2} \theta
On the left-hand side, the angle is 2 \theta. On the right hand side, it becomes half, that is, \frac{ 2 \theta}{2} =\theta.
Similarly replacing 2 \theta by \delta \theta in LHS, then making the angle on the RHS half,
We get:
1 -\cos \delta \theta = 2\sin^{2} \frac{\delta \theta}{2}
\Rightarrow 2\sin^{2} \frac{\delta \theta}{2}=\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )\\ \Rightarrow 2 \times 2\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\ \Rightarrow 4\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\ \Rightarrow 4\left ( \sin \frac{\delta \theta}{2} \right )^{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} \\
Since \delta \theta is a very small angle, \frac{\delta \theta}{2} will be much smaller. Hence \sin \frac{\delta \theta}{2} will also be very small in value.
\Rightarrow \sin \frac{\delta \theta}{2}=\frac{\delta \theta}{2}\\ \\ \Rightarrow 4\left ( \frac{\delta \theta}{2} \right )^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}\\ \Rightarrow 4 \frac{\delta \theta^{2}}{4} =\delta l^{2}+\delta m^{2}+\delta n^{2}\\ \\ \Rightarrow \delta \theta^{2} =\delta l^{2}+\delta m^{2}+\delta n^{2}\\
Hence, proved.

Question:14

O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of the plane through A at right angle to OA.

Answer:

We have the points O (0, 0, 0) and A (a, b, c) where a, b, and c are direction ratios. We need to find the direction cosines of line OA and the equation of the plane through A at right angle to OA.
To begin with,
\vec{OA}=Position\: vector\: of\: A-Position\: vector\: of\:O\\ \Rightarrow \vec{OA}=\left ( a\hat{i}+b\hat{j}+c\hat{k} \right )-\left ( 0\hat{i}+0\hat{j}+0\hat{k} \right ) \\ \Rightarrow \vec{OA}= a\hat{i}-0\hat{i}+b\hat{j}-0\hat{j}+c\hat{k}-0\hat{k}\\ \Rightarrow \vec{OA}= a\hat{i}+b\hat{j}+c\hat{k}
We know, if (a, b, c) are the direction ratios of a given vector, then its direction cosines will be:
\left ( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )
According to the question, the direction ratios are (a, b, c), therefore the direction cosines of the vector OA are the same as the above formula, that is,
\left ( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )
Given, the plane is perpendicular to OA. We know, a normal is a line or vector which is perpendicular to a given object. Therefore, we can say:
\vec{n}=\vec{OA}\\ \Rightarrow \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\ \left [ \because \vec{OA}=a\hat{i}+b\hat{j}+c\hat{k} \right ]
Also, the vector equation of a plane where the normal is passing through the plane and passing through is,
\left ( \vec{r}-\vec{a} \right ).\vec{n}=0
Where
\vec{r}-\vec{a} = vector\: from\: \vec{A}\: to\: \vec{R} \\ \vec{a}=Position\: vector\: of\: the\: given\: point\: in\: the\: plane\\ \vec{n}=normal\: vector\: to\: the\: plane
Here, the given point in the plane is A (a, b, c).
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=a\hat{i}+b\hat{j}+c\hat{k}\\ \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\
Substituting the vectors respectively, we get:
\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (a\hat{i}+b\hat{j}+c\hat{k} \right ) \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow \left (x\hat{i}+y\hat{j}+z\hat{k} -a\hat{i}-b\hat{j}-c\hat{k} \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow \left (\left (x-a \right )\hat{i}+\left (y-b \right )\hat{j}+\left (z-c \right )\hat{k}\right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0\\ \Rightarrow a\left (x-a \right )+b\left (y-b \right )+c\left (z-c \right )=0\\
Upon simplifying this, we get:
\Rightarrow ax - a^{2} + by-b^{2} + cz - c^{2} =0\\ \Rightarrow ax + by + cz - a^{2}-b^{2}- c^{2} =0\\ \Rightarrow a^{2}+b^{2}+ c^{2} =ax + by + cz
Hence, the required equation of the plane is a² + b² + c² = ax + by + cz.

Question:15

Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a’, b’, c’ respectively from the origin, prove that:
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}

Answer:

Given, we have 2 systems of rectangular axes. Both the systems have the same origin, and there is a plane that cuts both systems.
One system is cut at a distance of a, b, c.
The other system is cut at a distance of a’, b’, c’.
To prove:
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}
Proof: Since a plane intersects both the systems at distances a, b, c, and a’, b’, c’ respectively, this plane will have different equations in the two different systems.
Let us consider the equation of the plane in the system with distances a, b, c to be:
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
Let us consider the equation of the plane in the system with distances a’, b’, c’ be:
\frac{x}{a'}+\frac{y}{b'}+\frac{z}{c'}=1
According to the question, the plane cuts both the systems from the origin. We know, the perpendicular distance of a plane ax + by + cz + d =0 from the origin is given by:
\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |
(where not all a, b, and c are zero)
Therefore, the perpendicular distance from the origin of the first plane is:
\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |
And, the perpendicular distance from the origin of the second plane:
\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |
We also know, if two systems of lines have the same origin, their perpendicular distances from the origin to the plane in both systems are equal.
Therefore,
\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |=\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |
\Rightarrow \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} =\frac{1}{\sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}}
Cross-multiplying,
\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}
Squaring both sides,
\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}
\Rightarrow \frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}

Or
\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}
Hence, proved.

Question:16

Find the foot of the perpendicular from the point (2, 3, -8) to the line \frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}
Also, find the perpendicular distance from the given point to the line.

Answer:

Given, the perpendicular from the point (let) C (2, 3, -8) to the line of which the equation is,
\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}
This can be re-written as,
\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}
Hence, the vector equation of the line is, -2\hat{i}+6\hat{j}-3\hat{k}
We must find the foot of the perpendicular from the point C (2, 3, -8) to given line, as well as the perpendicular distance from the given point C to the line.
To start with, let us locate the point of intersection between the point and the line.
Let us take,
\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}=\lambda
\frac{x-4}{-2}=\lambda,\frac{y}{6}=\lambda,\frac{z-1}{-3}=\lambda
from\frac{x-4}{-2}=\lambda\\\Rightarrow x-4=-2\lambda \\\Rightarrow x=4-2\lambda\\ \\ from \frac{y}{6}=\lambda\\ \Rightarrow y=6\lambda\\ \\ from \frac{z-1}{-3}=\lambda\\ \Rightarrow z-1=-3\lambda\\\Rightarrow z=1-3\lambda
We have,x = 4 - 2\lambda , y = 6\lambda, z = 1 - 3\lambda
Therefore, the coordinates of any point on the given line is \left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )
a16
Let us consider the foot of the perpendicular from C(2, 3, -8) on line to beL\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )
Therefore, the direction ratios of CL\left ( 4 - 2\lambda-2 , 6\lambda-3, 1 - 3\lambda-(-8) \right )
=\left ( 4 - 2\lambda-2 , 6\lambda-3, 1+8 - 3\lambda \right )\\ =\left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right )

Also, the direction ratio of the line is,\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3} (-2, 6, -3).
Since L is the foot of the perpendicular on the line,
Sum of the product of these direction ratios \left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right ) and (-2, 6, -3) = 0.
-2\left ( 2-2\lambda\right ) +6\left (6\lambda-3 \right )+(-3)\left ( 9 - 3\lambda \right )\\\\ \Rightarrow -4+4\lambda+36\lambda-18-27+9\lambda=0\\ \Rightarrow \left ( 4\lambda+36\lambda+9\lambda \right )+\left ( -4-18-27 \right )=0\\ \Rightarrow 49\lambda-49=0\\ \Rightarrow 49\lambda=49\\ \Rightarrow \lambda= \frac{49}{49}\\Hence \: \: \lambda=1
If we substitute this value of λ in L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right ), we get
\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2(1), 6(1), 1 - 3(1))
\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2, 6, 1 - 3)
\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(2, 6, -2)
Now, we must calculate the perpendicular distance of point C from the line, that is point L.
In other words, we need to find \left | \vec{CL} \right |
We know, \vec{CL} =\left ( 2-2\lambda,6\lambda-3,9-3\lambda \right )
Substituting λ = 1,
\vec{CL} =\left ( 2-2(1),6(1)-3,9-3(1) \right )\\ \Rightarrow \vec{CL} =\left ( 2-2,6-3,9-3 \right )\\ \Rightarrow \vec{CL} =\left ( 0,3,6 \right )
To find \left | \vec{CL} \right |
\left | \vec{CL} \right |=\sqrt{0^{2}+3^{2}+6^{2}}\\ \Rightarrow \left | \vec{CL} \right |=\sqrt{0+9+36} \Rightarrow \left | \vec{CL} \right |=\sqrt{45}\\ \Rightarrow \left | \vec{CL} \right |=3\sqrt{5}
Therefore, the foot of the perpendicular from the point C to the given line is (2, 6, -2) and the perpendicular distance is 3\sqrt{5} units.

Question:17

Find the distance of a point (2, 4, -1) from the line \frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}
Answer:

Given, the point P (2, 4, -1), the equation of the line is \frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}
We must find the distance of point P from this line.
Note, to find the distance between a point and a line, we should get foot of the perpendicular from the point on the line.
Let, P(2, 4, -1) be the given point and be L:\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda the given line.
Direction ratio of the line L is (1, 4, -9) …(i)
Let us find any point on this line.
Taking L,
\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda
\frac{x+5}{1}=\lambda,\frac{y+3}{4}=\lambda,\frac{z-6}{-9}=\lambda
Take \frac{x+5}{1}=\lambda\\ \Rightarrow x+5=\lambda\\ \Rightarrow x=\lambda - 5\\\\ Take \frac{y+3}{4}=\lambda\\ \Rightarrow y+3=4\lambda\\ \Rightarrow y=4\lambda-3\\ \\ Take \frac{z-6}{-9}=\lambda\\ \Rightarrow z-6=-9\lambda\\ \Rightarrow z=6-9\lambda
Therefore, any point on the line L is (\lambda - 5, 4\lambda - 3, 6 - 9\lambda)
Let this point be Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda), the foot of the perpendicular from the point P (2, 4, -1) on the line L.
Hence, the direction ratio of PQ is given by
(\lambda - 5-2, 4\lambda - 3-4, 6 - 9\lambda-(-1))
=> Direction ratio of PQ= (\lambda - 7, 4\lambda - 7, 7 - 9\lambda) …(ii)
Also, we know, if two lines are perpendicular to each other, then the dot product of their direction ratios should be 0.
Here, PQ is perpendicular to L. We have, from (i) and (ii),
Direction ratio of L = (1, 4, -9)
Direction ratio of PQ = (\lambda - 7, 4\lambda - 7, 7 - 9\lambda)
Therefore,
(1, 4, -9).(\lambda - 7, 4\lambda - 7, 7 - 9\lambda) = 0\\ \Rightarrow 1 (\lambda- 7) + 4 (4\lambda - 7) + (-9) (7 - 9\lambda) = 0\\ \Rightarrow \lambda - 7 + 16\lambda - 28 -63 + 81\lambda = 0\\ \Rightarrow \lambda + 16\lambda + 81\lambda - 7 - 28- 63 = 0\\ \Rightarrow 98\lambda - 98 = 0\\ \Rightarrow 98\lambda = 98\\ \Rightarrow \lambda = 1
Hence, the coordinate of Q, i.e. the foot of the perpendicular from the point on the given line is,
Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4(1) - 3, 6 - 9)\\ \Rightarrow Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4 - 3, 6 - 9)\\ \Rightarrow => Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = (-4, 1, -3)
Now, to find the perpendicular distance from P to the line, that is point Q,
That is, to find \left | \vec{PQ} \right |
We know,
\left | \vec{PQ} \right |=(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)
Substituting \lambda=1
\vec{PQ}=(1 - 7, 4(1)- 7, 7 - 9(1))\\ \Rightarrow \vec{PQ}=\left ( -6,4-7,7-9 \right )\\ \Rightarrow \vec{PQ}=\left ( -6,-3,-9 \right )
Now, to find
\left | \vec{PQ} \right |= \sqrt{(-6)^{2}+(-3)^{2}+(-2)^{2} }\\ \Rightarrow \left | \vec{PQ} \right |= \sqrt{36+9+4}\\ \Rightarrow \left | \vec{PQ} \right |= \sqrt{49}\\ \Rightarrow \left | \vec{PQ} \right |= 7
Therefore, the distance from the given point to the given line = 7 units.

Question:18

Find the length and the foot of the perpendicular from the point (1, 3/2, 2) to the plane 2x - 2y + 4z + 5 = 0.

Answer:

Given, point P (1, 3/2, 2)
The plane is 2x - 2y + 4z + 5 = 0
We must find the foot of the perpendicular from the point P to the equation of the given plane.
Also, we must find the distance from the point P to the plane.
Let us consider the foot of the perpendicular from point P to be Q.
Let Q be Q (x1 , y1 , z1)
So, the direction ratio of PQ is given by
(x1 - 1, y1 - 3/2, z1 - 2)
Now, let us consider the normal to the plane 2x - 2y + 4z + 5 = 0:
It is obviously parallel to PQ, since a normal is a line or vector that is perpendicular to a given object. The direction ratio simply states the number of units to move along each axis.
For any plane, ax + by + cz = d, where, a, b, and c are normal vectors to the plane.
Hence, the direction ratios are (a, b, c).
Therefore, the direction ratio of the normal = (2, -2, 4) for plane 2x - 2y + 4z + 5 = 0.
The Cartesian equation of the line PQ, where P(1, 3/2, 2) and Q (x1 , y1 , z1) is:
\frac{x_{1}-1}{2}=\frac{y_{1}-\frac{3}{2}}{-2}=\frac{z_{1}-2}{4}=\lambda(say)
To find any point on this line,
\frac{x_{1}-1}{2}=\lambda,\frac{y_{1}-\frac{3}{2}}{-2}=\lambda,\frac{z_{1}-2}{4}=\lambda
from \frac{x_{1}-1}{2}=\lambda\\\Rightarrow x_{1}-1=2\lambda\\\Rightarrow x_{1}=2\lambda+1\\ \\ \\ from \frac{y_{1}-\frac{3}{2}}{-2}=\lambda\\ \Rightarrow y_{1}-\frac{3}{2}=-2\lambda\\\Rightarrow y_{1}=\frac{3}{2}-2\lambda\\ \\ \\ from \frac{z_{1}-2}{4}=\lambda\\\Rightarrow z_{1}-2=4\lambda \\\Rightarrow z_{1}=4\lambda+2
Any point on the line is (2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2).
This point is Q.
Q\left ( x_{1},y_{1},z_{1} \right )=Q(2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2)....(i)
And, it was assumed that is lies on the given plane. Substituting x1, y1, and z1 in the plane equation, we get:
2x1 - 2y1 + 4z1 + 5 = 0
\Rightarrow 2\left (2\lambda+ 1 \right )-2\left ( \frac{3}{2} - 2\lambda \right )+4\left (4\lambda + 2 \right )+5=0
Simplifying to find the value of \lambda
\Rightarrow 4\lambda + 2 - 3 + 4\lambda + 16\lambda + 8 + 5 = 0\\ \Rightarrow 4\lambda + 4\lambda + 16\lambda + 2 - 3 + 8 + 5 = 0\\ \Rightarrow 24\lambda + 12 = 0\\ \Rightarrow 24\lambda = -12\\ \Rightarrow \lambda =-\frac{12}{24}\\ \Rightarrow \lambda =-\frac{1}{2}
Since Q is the foot of the perpendicular from the point P,
We substitute the value of \lambda in equation (i) to get:
Q\left ( x_{1},y_{1},z_{1} \right )=Q(2(-\frac{1}{2})+ 1, \frac{3}{2} - 2(-\frac{1}{2}), 4(-\frac{1}{2}) + 2)\\ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( -1+1,\frac{3}{2}+1,-2+2 \right )\\ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( 0,\frac{5}{2},0 \right )
Then, to find \left | \vec{PQ} \right |
Where, P = (1, 3/2, 2) and Q = (0, 5/2, 0)
\left | \vec{PQ} \right |=\sqrt{\left (0-1 \right )^{2}+\left ( \frac{5}{2}-\frac{3}{2} \right )^{2}+\left ( 0-1 \right )^{2}}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{(-1)^{2}+(1)^{2}+(-2)^{2}}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{1+1+4}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{6}
Thus, the foot of the perpendicular from the given point to the plane is (0, 5/2, 0) and the distance is \sqrt{6} units.

Question:19

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y - z = 0.

Answer:

Given, a line passes through a point P (3, 0, 1) and is parallel to the planes x + 2y = 0 and 3y - z = 0.
We must find the equation of this line.
Let the position vector of point P be
\vec{a}=3\hat{i}+0\hat{j}+\hat{k}
Or,
\vec{a}=3\hat{i}+\hat{k}.....(i)
Let us consider the normal to the given planes, that is, perpendicular to the normal of the plane x + 2y = 0 and 3y - z = 0
Normal to the plane x + 2y = 0 can be given as \vec{n_{1}}=\hat{i}+2\hat{j}
Normal to the plane 3y - z = 0 can be given as \vec{n_{2}}=3\hat{j}-\hat{k}
So, \vec{n} is perpendicular to both these normals.
So,
\vec{n}=\vec{n_{1}}\times \vec{n_{2}}
\Rightarrow \vec{n}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 0 & 3 & -1 \end{vmatrix}
Taking the 1st row and the 1st column, we multiply the 1st element of the row \left (a_{11} \right ) with the difference of products of the opposite elements \left (a_{22}\times a_{33}-a_{23} \times a_{32} \right ), excluding 1st row and 1st column
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )
Here,
\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements \left (a_{21}\times a_{33}-a_{23} \times a_{31} \right )
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )
Here
\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements \left (a_{22}\times a_{33}-a_{23} \times a_{32} \right ) excluding the 1st row and 3rd column.
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21} \times a_{32}-a_{22} \times a_{31} \right )
Here
\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )+\hat{k}\left ( \left ( 1 \times 3 \right )-\left ( 2 \times 0 \right ) \right )
Futher simplifying it,
\Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( -2-0 \right )-\hat{j}\left ( -1-0 \right )+\hat{k}\left ( 3-0 \right )\\ \\ \\ \Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=-2\hat{i}+\hat{j}+3\hat{k}\\ \\ \\ \rightarrow \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}
Therefore, the direction ratio is (-2, 1, 3) …(iii)
We know, vector equation of any line passing through a point and parallel to a vector is \vec{r}=\vec{a}+\lambda \vec{b} where \lambda \epsilon \mathbb{R}
Hence, from (i) and (ii),
\vec{a}=3\hat{i}+\hat{k}\\ \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}

Putting these vectors in the equation \hat{r}=\hat{a}+\lambda \hat{n}\\

We get
\hat{r}=\left ( 3\vec{i}+\vec{k} \right )+\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )
But we know,
\hat{r}=x\vec{i}+y\hat{j}+z\vec{k}
Substituting this,
\left (x\vec{i}+y\hat{j}+z\vec{k} \right )=\left ( 3\hat{i}+\hat{k} \right )+\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left (x\vec{i}+y\hat{j}+z\vec{k} \right )-\left ( 3\hat{i}+\hat{k} \right )=\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\ \Rightarrow \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\
Thus, the required equation of the line is \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\

Question:20

Find the equation of the plane through the points (2, 1, -1) and (-1, 3, 4) and perpendicular to the plane x - 2y + 4z = 10.

Answer:

Given, a plane passes through the points (2, 1, -1) and (-1, 3, 4) and is perpendicular to the plane x - 2y + 4z = 10.
We want to find the equation of this plane.
We know, the Cartesian equation of a plane passing through (x1, y1, z1)
with direction ratios perpendicular to a, b, c for its normal is given as:
a (x - x1) +b (y - y1) + c (z - z1) = 0
Hence,
Let us consider the equation of the plane passing through (2, 1, -1) to be
a(x – 2) + b(y – 1) + c(z – (-1)) = 0
⇒ a(x – 2) + b(y – 1) + c(z + 1) = 0 …(i)
Since it also passes through point (-1, 3, 4) we just replace x, y, z by -1, 3, and 4 respectively.
⇒ a(-1 – 2) + b(3 – 1) + c(4 + 1) = 0
⇒ -3a + 2b + 5c = 0 …(ii)
Since a, b, and c are direction ratios and this plane is perpendicular to the plane x - 2y + 4z = 10, we just replace x, y, and z with a, b, and c respectively (neglecting 10) and we equate this to 0.
=> a - 2b + 4c = 0 …(iii)
To solve two equations x1a + y1b + z1c = 0 and x2a + y2b + z2c = 0, we use the formula
\frac{a}{\begin{vmatrix} y_{1} &z_{1} \\ y_{2}&z_{2} \end{vmatrix}}=\frac{b}{\begin{vmatrix} z_{1} &x_{1} \\ z_{2}&x_{2} \end{vmatrix}}=\frac{c}{\begin{vmatrix} x_{1} &y_{1} \\ x_{2}&y_{2} \end{vmatrix}}
Similarly, to solve for equations (ii) and (iii):
\frac{a}{\begin{vmatrix}2 &5 \\ -2&4 \end{vmatrix}}=\frac{b}{\begin{vmatrix} 5 &-3 \\ 4&1 \end{vmatrix}}=\frac{c}{\begin{vmatrix}-3 & 2 \\ 1&-2 \end{vmatrix}}
\Rightarrow \frac{a}{\left ( 2 \times 4 \right )-\left ( 5 \times -2 \right )}=\frac{b}{\left ( 5 \times 1 \right )-\left ( -3 \times 4 \right )}=\frac{c}{\left ( -3 \times -2 \right )-\left ( 2 \times 1 \right )}
\Rightarrow \frac{a}{8+10}=\frac{b}{5+12}=\frac{c}{6-2}
\Rightarrow \frac{a}{18}=\frac{b}{17}=\frac{c}{4}=\lambda
\Rightarrow \frac{a}{18}=\lambda, \frac{b}{17}=\lambda, \frac{c}{4}=\lambda
That is,
\Rightarrow \frac{a}{18}=\lambda\\ \Rightarrow a=18 \lambda\\ \\ \Rightarrow \frac{b}{17}=\lambda\\ \Rightarrow b=17 \lambda\\ \\ \Rightarrow \frac{c}{4}=\lambda\\ \Rightarrow c=4 \lambda\\ \\
Substituting these values of a, b, and c in equation (i), we get
a(x - 2) + b(y - 1) + c(z + 1) = 0\\ \Rightarrow 18\lambda(x - 2) + 17\lambda(y - 1) + 4\lambda(z + 1) = 0\\ \Rightarrow \lambda[18(x - 2) + 17(y - 1) + 4(z + 1)] = 0\\ \Rightarrow 18(x - 2) + 17(y - 1) + 4(z + 1) = 0\\ \Rightarrow 18x - 36 + 17y - 17 + 4z + 4 = 0\\ \Rightarrow 18x + 17y + 4z - 36 - 17 + 4 = 0\\ \Rightarrow 18x + 17y + 4z - 49 = 0\\ \Rightarrow 18x + 17y + 4z = 49\\
Therefore, the required equation of the plane is 18x + 17y + 4z = 49.

Question:21

Find the shortest distance between the lines given by r=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k} and r=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )

Answer:

Given two lines,
\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k}...........(i)\\ \\ \vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )...........(ii)
Taking equation (i),
\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k} \\ \Rightarrow \vec{r}= 8\hat{i}+3\lambda \hat{i}- 9\hat{j}+16\lambda \hat{j})+ 10 \hat{k}+7\lambda \hat{k} \\ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+3 \lambda \hat{i}-16 \lambda \hat{j}+7 \lambda \hat{k}\\ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda \left(3 \hat{i}-16 \hat{j}+7 \hat{k} \right ).............(iii)
We know, the vector equation of a line passing through a point and parallel to a vector is where \lambda\epsilon \mathbb{R}
\vec{a} = Position vector of the point through which line passes
\vec{b} = Normal to the line
Comparing this with equation (iii), we get
\vec{a_{1}}=8\hat{i}-9\hat{j}+10\hat{k}\\ \vec{b_{1}}=3\hat{i}-16\hat{j}+7\hat{k}\\
Now take equation (ii)
\vec{r}=15\hat{i}+29\hat{i}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right ) \\ \vec{r}=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )..........(iv)
Similarly from (iv)
\vec{a_{2}}=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )\\ \vec{b_{2}}=\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )
So, the shortest distance between two lines can be represented as:
d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |
solve \vec{b_{1}} \times \vec{b_{2}}
\vec{b_{1}} \times \vec{b_{2}}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}
Taking 1st row and 1st column, we multiply the 1st element of the row (a??) with the difference of the product of the opposite elements \left ( a_{22}\times a_{33}-a_{23} \times a_{32}\right ), excluding the 1st row and the 1st column;
\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )
Here
\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??)
\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )
Here
\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??), excluding the 1st row and 3rd column.
\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21}\times a_{32}-a_{22} \times a_{31} \right )
Here
\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )+\hat{k}\left ( \left ( 3 \times 8 \right )-\left ( -16 \times 3 \right ) \right )
Further simplifying it.
\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (80-56 \right )-\hat{j}\left (-15-21 \right )+\hat{k}\left (24+48 \right )
\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=24\hat{i}+36\hat{j}+72\hat{k}\\ \\ \\ \Rightarrow \vec{b}\times \vec{b}= 24\hat{i}+36\hat{j}+72\hat{k}........(v)
And,
\left | \vec{b}\times \vec{b} \right |= \left |24\hat{i}+36\hat{j}+72\hat{k} \right |\\ \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=\sqrt{24^{2}+36^{2}+72^{2}} \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{2^{2}+3^{2}+6^{2}} \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \sqrt{4+9+36}\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{49}\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \times 7\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=84...........(vi)
Now \; \; solving \: \: \vec{a_{2}}- \vec{a_{1}}\\ \\ \vec{a_{2}}- \vec{a_{1}} =\left (15\hat{i}+29\hat{i}+5\hat{k} \right )-\left ( 8\hat{i}-9\hat{j}+10\hat{k} \right )\\ \Rightarrow \vec{a_{2}}- \vec{a_{1}} = 15\hat{i}-8\hat{i}+29\hat{j}+9\hat{j}+5\hat{k}-10\hat{k}\\ \Rightarrow \vec{a_{2}}- \vec{a_{1}} = 7\hat{i}+38\hat{j}-5\hat{k}.....(vii)
Substituting the values from (v), (vi) and (vii) in d, we get
d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |
\Rightarrow d =\left | \frac{\left ( 24\hat{i}+36\hat{j}+72\hat{k} \right ).\left ( 7\hat{i}+38\hat{j}-5\hat{k} \right )}{84} \right |\\ \Rightarrow d =\left | \frac{24 \times 7 +36 \times 38+72 \times -5}{84} \right |\\ \Rightarrow d =\left | \frac{168+1368-360}{84} \right |\\ \Rightarrow d =\left | \frac{1176}{84} \right |\\ \Rightarrow d =14\\
Thus, the shortest distance between the lines is 14 units.

Question:22

Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 , which contains the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.

Answer:

Given, a plane is perpendicular to another plane 5x + 3y + 6z + 8 = 0,and also contains line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.
We must find the equation of this plane.
We know, the equation of a plane passing through the line of intersection of the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given as,
( a_{1}x + b_{1}y + c_{1}z + d_{1}) +\lambda(a_{2}x + b_{2}y + c_{2}z + d_{2}) = 0
Similarly, the equation of a plane through the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0. is given by,
(x + 2y + 3z - 4) + \lambda(2x + y - z + 5) = 0 \\ \Rightarrow x + 2y + 3z - 4 + 2\lambda x + \lambda - \lambda z + 5\lambda = 0\\ \Rightarrow x + 2 \lambda x + 2y + \lambda y + 3z - \lambda z - 4 + 5 \lambda = 0\\ \Rightarrow (1 + 2 \lambda)x + (2 + \lambda)y + (3 - \lambda)z - 4 + 5 \lambda = 0 ....(i)
Thus, the direction ratio of plane in (i) is,
(1 + 2\lambda, 2 + \lambda, 3 - \lambda)
Since the plane in equation (i) is perpendicular to the plane 5x + 3y + 6z + 8 = 0;
we can replace x, y, z with (1 + 2λ), (2 + λ) and (3 - λ) respectively in the plane 5x + 3y + 6z + 8 = 0 (neglecting 8) and equating to 0.
This gives us,
5(1 + 2\lambda) + 3(2 + \lambda) + 6(3 - \lambda) = 0\\ \Rightarrow 5 + 10\lambda + 6 + 3\lambda + 18 - 6\lambda = 0\\ \Rightarrow 10\lambda + 3\lambda- 6\lambda + 5 + 6 + 18 = 0\\ \Rightarrow 7\lambda + 29 = 0\\ \Rightarrow 7\lambda = -29\\ \Rightarrow \lambda=- \frac{29}{7}
Substituting this value of \lambda in equation (i) we get
\left ( 1+2\left (-\frac{29}{7} \right ) \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4+5\left (-\frac{29}{7} \right )=0\\ \\ \\ \Rightarrow \left ( 1+\frac{58}{7} \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4-\frac{145}{7}=0\\ \\ \\ \Rightarrow \left ( \frac{7-58}{7} \right )x+\left ( \frac{14-29}{7} \right )y+\left ( \frac{21+29}{7} \right )z+\left ( \frac{-28-145}{7} \right )=0 \\ \\ \\ \Rightarrow -\frac{51}{7}x-\frac{15}{7}y+\frac{50}{7}z-\frac{173}{7}=0\\ \\ \\ \Rightarrow -51x - 15y + 50z - 173 = 0 \\ \\ \Rightarrow 51x + 15y - 50z + 173 = 0
Thus, the required equation of the plane is 51x + 15y - 50z + 173 = 0.

Question:23

The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove the equation of the plane in its new position is ax+by\pm \left ( \sqrt{a^{2}+b^{2}} \tan \alpha \right )z=0

Answer:

Given, the plane ax + by = 0 is rotated about its line of intersection with z = 0 by an angle \alpha
To prove: equation of the plane in its new position is
ax+by\pm z\sqrt{a^{2}+b^{2}}\tan \alpha=0
Proof: Two planes are given, ax + by = 0 …(i) and z = 0 …(ii)
We know, the equation of the plane passing through the line of intersection of the planes (i) and (ii) is
ax + by + \lambda z = 0...(iii)
where, \lambda \epsilon \mathbb{R}
The angle between the new plane and plane (i) is given as \alpha
Since the angle between two planes is equivalent to the angle between their normals, the direction ratio of normal to ax + by = 0 or ax + by +0z = 0 is (a, b, 0).
\Rightarrow \vec{l}=a\hat{i}+b\hat{j}
And, the direction ratio of normal to ax + by + \lambda z = 0 is (a, b, λ).
\Rightarrow \vec{m}=a\hat{i}+b\hat{j}+\lambda \hat{k}
Also, we know, angle between 2 normal vectors of the two given planes can be given as;
\cos \alpha=\frac{\vec{l}\vec{m}}{\left |\vec{l} \right |\left |\vec{m} \right |}
If we substitute the values of these vectors, we get
\cos \alpha=\frac{\left (a\hat{i}+b\hat{j} \right )\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right )}{\left |\left (a\hat{i}+b\hat{j} \right ) \right |\left |\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right ) \right |}\\
\Rightarrow \cos \alpha=\frac{a.a+b.b+0.\lambda}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}
We then multiply \sqrt{a^{2}+b^{2}} by the numerator and denominator on the right hand side of the equation to get
\Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}\times \frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}}}\\ \\ \Rightarrow \cos \alpha=\frac{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}}}{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \\ \Rightarrow \cos \alpha=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \\
Applying square on both sides,
\Rightarrow \cos^{2} \alpha=\left (\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}} \right )^{2}\\ \\ \Rightarrow \cos^{2} \alpha=\frac{a^{2}+b^{2}}{a^{2}+b^{2}+\lambda ^{2}}
\Rightarrow (a^{2} + b^{2} + \lambda^{2}) cos^{2} \alpha = a^{2} + b^{2}\\ \Rightarrow a^{2} \cos^{2} \alpha + b^{2} \cos^{2} \alpha + \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2}\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2} - a^{2} \cos^{2} \alpha -b^{2}\cos^{2} \alpha\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} - a^{2} \cos^{2} \alpha + b^{2} -b^{2} \cos^{2} \alpha\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2}(1 -\cos^{2} \alpha) + b^{2}(1 - \cos^{2} \alpha)\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2})(1 - \cos^{2} \alpha)\\ \Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2}) \sin^{2} \alpha [since, \sin^{2} \alpha + \cos^{2} \alpha = 1]
\Rightarrow \lambda^{2} = \frac{(a^{2} + b^{2}) \sin^{2} \alpha }{\cos^{2} \alpha}\\ Since \frac{sin^{2}\alpha}{\cos^{2}\alpha}=\tan^{2}\alpha\\ \Rightarrow \lambda^{2}=\left ( a^{2}+b^{2} \right )tan^{2}\alpha\\ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )tan^{2}\alpha}\\ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\
Substituting the value of \lambda in equation (iii) to find the plane equation,
ax + by + λz = 0
\lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\
Hence proved.

Question:24

Find the equation of the plane through the intersection of the planes r.\left ( \hat{i}+3\hat{j} \right )-6=0and r.\left ( 3\hat{i}-\hat{j}-4\hat{k} \right )=0whose perpendicular distance from origin is unity.

Answer:

Given two planes,
\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0\\ \vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0
Also given, the perpendicular distance of the plane from the origin = 1.
We must find the equation of this plane.
We know,
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}
Simplifying the planes,
\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( \hat{i}+3\hat{j} \right )-6=0\\ \Rightarrow x+3y-6=0........(i)
Also, for
\vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow 3x-y-4z=0
The equation of a plane through the line of intersection of x + 3y - 6 = 0 and 3x - y - 4z = 0 can be given as
(x + 3y - 6) + \lambda(3x - y - 4z) = 0\\ \Rightarrow x + 3y - 6 + 3\lambda x - \lambda y - 4\lambda z = 0\\ \Rightarrow x + 3\lambda x + 3y - \lambda y - 6 - 4\lambda z = 0\\ \Rightarrow (1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = 0 �(iii)
Also, we know, the perpendicular distance of a plane, ax + by + cz + d = 0 from the origin, let’s say P, is given by
P=\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |
Similarly, the perpendicular distance of the plane in equation (iii) from the origin (=1 according to the question) is:
1=\left | \frac{-6}{\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}} \right |\\ \\ \Rightarrow \sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}=6
Taking the square of both sides,
\Rightarrow \left (\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}} \right )^{2}=6^{2}
\Rightarrow (1 + 3\lambda)^{2} + (3 - \lambda)^{2} + (-4\lambda)^{2} = 36\\ \Rightarrow 1 + (3\lambda)^{2} + 2(1)(3\lambda) + (3)^{2} + \lambda^2 - 2(3)(\lambda) + 16\lambda^{2} = 36\\ \Rightarrow 1 + 9\lambda^{2} + 6\lambda + 9 + \lambda^{2} - 6\lambda + 16\lambda^{2} = 36\\ \Rightarrow 9\lambda^{2} + 16\lambda^{2} + \lambda^{2} + 6\lambda - 6\lambda = 36 - 1 - 9\\ \Rightarrow 26\lambda^{2} + 0 = 26\\ => \lambda^{2} = 26/26\\ => \lambda^{2} = 1\\ => \lambda = \pm 1
First, we subsitute \lambda=1 in eq (iii) to find the plane equation
(1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = `0\\ \Rightarrow (1 + 3(1))x - (3 - 1)y - 4(1)z - 6 = 0\\ \Rightarrow 4x - 2y - 4z- 6 = 0
Now, we substitute λ= -1 in eq (iii) to find the plane equation
(1 + 3\lambda)x + (3 - \lambda)y - 4 \lambda z - 6 = 0\\ \Rightarrow (1 + 3(-1))x + (3 - (-1))y - 4(-1)z - 6 = 0\\ \Rightarrow (1 - 3)x + (3 + 1)y + 4z - 6 = 0\\ \Rightarrow -2x + 4y + 4z - 6 = 0
Therefore, the equation of the required plane is -2x + 4y + 4z – 6 = 0 and 4x – 2y – 4z – 6 = 0.

Question:25

Show that the points \hat{i}-\hat{j}+3\hat{k} and 3\left ( \hat{i}+\hat{j}+\hat{k} \right ) are equidistant from the plane r.\left ( 5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0and lies on the opposite of it.

Answer:

Given two points,
\\\vec{A}=\hat{i}-\hat{j}+3\hat{k}\\ \vec{B}=3\left ( \hat{i}+\hat{j}+\hat{k} \right )=3\hat{i}+3\hat{j}+\hat{k}\\ \vec{r}.\left ( 5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0
Also,
\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\\\
Where,
Therefore,
\left (x\hat{i}+y\hat{j}+z\hat{k} \right ).\left (5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0\\ \\ \Rightarrow 5x + 2y - 7z + 9 = 0
We must show that the points A and B are equidistant from the plane
5x + 2y - 7z + 9 = 0
We also need to show that the points lie on the opposite side of the plane.
Normal of the plane is, \vec{N=} 5{i} + 2\hat{j} - 7\hat{k}
We know, the perpendicular distance of the position vector of a point
\vec{A}=l \hat{i}+m \hat{j}+n \hat{k} \Rightarrow A(l,m,n) to the plane, p: ax + by + cz + d = 0 is given as:D=\left | \frac{p(l,m,n)}{\left |\vec{N} \right |} \right |
Where \left |\vec{N} \right |=Normal \: vector\: of\: the\: plane
\vec{N} =a\vec{i}+b\vec{j}+c\vec{k}
Thus, the perpendicular distance of the point \vec{A} =\vec{i}-\vec{j}+3\vec{k}=A(1,-1,3) to the plane 5x + 2y - 7z + 9 = 0 having normal \vec{N} =5\vec{i}+2\vec{j}-7\vec{k} is given by,
\left | D_{1} \right |=\left |\frac{5(1)+2(-1)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{5-2-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{-9}{\sqrt{25+4+49}} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{9}{\sqrt{78}} \right |\\
Hence, the perpendicular distance of the point \vec{B}=3\hat{i}+3\hat{j}+3\hat{k}=B(3,3,3) to the plane 5x + 2y - 7z + 9 = 0 having normal \vec{N}=5\hat{i}+2\hat{j}-7\hat{k}
\left | D_{2} \right |=\left |\frac{5(3)+2(3)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{15+6-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{25+4+49}} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{78}} \right |\\
Therefore, |D1| = |D2|
However, D1 and D2 have different signs.
Therefore, the points A and B will lie on opposite sides of the plane.
Hence, we have successfully shown that the points are equidistant from the plane and lie on opposite sides of the plane.

Question:26

AB=3\hat{i}-\hat{j}+\hat{k}\; \; and\; \; AB=-3\hat{i}+2\hat{j}+4\hat{k}are two vectors. The positions vectors of the points A and C are 6\hat{i}+7\hat{j}+4\hat{k}\; \; and\; \;-9\hat{j}+2\hat{k} respectively. Find the position vector of a point P on the line AB and a point Q on the line CD, such that PQ is perpendicular to AB and CD both.

Answer:

Given,
\vec{AB}=3\hat{i}-\hat{j}+\hat{k}\\ \vec{CD}=-3\hat{i}+2\hat{j}+4\hat{k}
And the position vectors
\vec{OA}=6\hat{i}+7\hat{j}+4\hat{k}\\ \vec{OC}=-9\hat{j}+2\hat{k}
Therefore, the line passing through A and along AB will have the equation:
\vec{r}=6\hat{i}+7\hat{j}+4\hat{k}+\lambda\left ( 3\hat{i}-\hat{j}+\hat{k} \right )\\ \Rightarrow \vec{r}=\left ( 6+3\lambda \right )\hat{i}+\left ( 7-\lambda \right )\hat{j}+\left ( 4+\lambda \right )\hat{k}
and the line passing through C and along CD will have equation
\vec{r}=-9\hat{j}+2\hat{k}+\mu \left ( -3\hat{i}+2\hat{j}+4\hat{k} \right )\\ \Rightarrow \vec{r}=-3\mu \hat{i}+\left ( 2\mu-9 \right )\hat{j}+\left ( 2+4\mu \right )\hat{k}
Now, PQ is a vector perpendicular to both AB and CD, such that Q lies on CD and P lies on AB. Thus, coordinates of P and Q will be of the form
P (6 + 3\lambda, 7 - \lambda, 4 + \lambda)....(i)\\ Q (-3\mu, 2\mu - 9, 2 + 4\mu) .....(ii)
Hence, the vector PQ will be given as
\vec{PQ}=\left ( -3\mu-6-3\lambda \right )\hat{i}+\left ( 2\mu-16+\lambda \right )\hat{j}+\left ( 4\mu-2-\lambda \right )\hat{k}
Now, since PQ is perpendicular to both, hence the dot products of AB.PQ and CD.PQ will be equal to 0.
AB. PQ = 0 and CD. PQ = 0
AB. PQ = 3(-3\mu - 6 - 3\lambda) - (2\mu - 16 + \lambda) + (4\mu - 2 - \lambda)\\ \Rightarrow 0 = -9\mu - 18 - 9\lambda - 2\mu + 16 - \lambda + 4\mu - 2 - \lambda\\ \Rightarrow -7\mu - 11\lambda - 4 = 0.....(iii)\\ CD.PQ = 3(-3\mu - 6 - 3\lambda) + 2(2\mu - 16 + \lambda) + 4(4\mu - 2 - \lambda)\\ \Rightarrow 0 = -9\mu - 18 -9\lambda + 4\mu - 32 + 2\lambda +16 \mu -8 - 4\lambda\\ \Rightarrow 29\mu + 7\lambda - 22 = 0 ....(iv)
Solving (iii) and (iv), we get
\lambda = -1\; \; and \: \: \mu = 1
Putting the value of \lambda in (i) we get,
P (6 + 3(-1), 7 - (-1), 4 + (-1))\\ P (6-3,7+1,4-1)\\ P (3,8,3)
Putting the value of \mu in (ii) we get,
Q (-3(1), 2(1) - 9, 2 + 4(1))\\ Q (-3, 2 - 9, 2 +4)\\ Q (-3, -7, 6)
Hence, position vector of P and Q will be
\\\vec{OP}=3\hat{i}+8\hat{j}+3\hat{k}\\ \vec{OQ}=-3\hat{i}-7\hat{j}+6\hat{k}

Question:27

Show that the straight lines whose direction cosines are given by 2l + 2m - n = 0 and mn + nl + lm = 0 are at right angles.

Answer:

We have given
2l + 2m - n = 0...(i)\\ \Rightarrow n = 2(l + m)...(ii)
, and
mn + nl + lm = 0\\ \Rightarrow 2m(l + m) + 2(l + m)l + lm = 0\\ \Rightarrow 2lm + 2m^{2} + 2l^{2} + 2lm + lm = 0\\ \Rightarrow 2m^{2} + 5lm + 2l^{2} = 0\\ \Rightarrow 2m^{2} + 4lm + lm + 2l^{2} = 0\\ \Rightarrow (2m + l)(m + 2l) = 0
Thus, we get two cases:
l = -2m
=> -4m + 2m - n = 0 [from (i)]
=> n = 2m
, and
m = -2l
=> 2l + 2(-2l) - n = 0
=> 2l - 4l = n
=> n = -2l
Hence, the direction ratios of one line is proportional to -2m, m or -2m or direction ratios are (-2, 1, -2) and the direction ratios of another line is proportional to l, -2l, -2l, or direction ratios are (1, -2, -2)
Thus, the direction vectors of two lines are b_{1}=-2\hat{i}+\hat{j}-2\hat{k} \: and \: b_{2}=\hat{i}-2\hat{j}-2\hat{k}
Also, the angle between the two lines \vec{r}=\vec{a_{1}}+\lambda \vec{b_{1}} \: and \: \vec{r}=\vec{a_{2}}+\mu \vec{b_{2}} is given by:
\cos \theta=\left |\frac{\vec{b_{1}}.\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |} \right |
Now,
\vec{b_{1}}.\vec{b_{2}}=2(1)+1(-2)+(-2)(-2)\\ =2-2+4\\=0\\ \Rightarrow \cos\theta=0\\ \Rightarrow \theta=90^{\circ}
Therefore, the lines have a 900 angle between them.

Question:28

If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of 3 mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3 , m1 + m2 + m3 , n1 + n2 + n3 makes equal angles with them.

Answer:

Let the direction vector of the 3 mutually perpendicular lines be
\vec{a}=l_{1}\hat{i}+m_{1}\hat{j}+n_{1}\hat{k}\\ \\ \vec{b}=l_{2}\hat{i}+m_{2}\hat{j}+n_{2}\hat{k}\\ \\ \vec{c}=l_{3}\hat{i}+m_{3}\hat{j}+n_{3}\hat{k}
Let the direction vectors associated with direction cosines l_{1} + l_{2} + l_{3} , m_{1} + m_{2} + m_{3} , n_{1} + n_{2} + n_{3} be
\vec{p}=\left (l_{1} + l_{2} + l_{3} \right )\hat{i}+\left (m_{1} + m_{2} + m_{3} \right )\hat{j}+\left ( n_{1} + n_{2} + n_{3} \right )\hat{k}
Since the lines associated with the direction vectors a, b, and c are mutually perpendicular, we get
\vec{a}.\vec{b}=0 (Since the dot product of two perpendicular vectors is 0)
=>l_{1}l_{2} + m_{1}m_{2}+n_{1}n_{2}=0 …(1)
Similarly,
l_{1}l_{3} + m_{1}m_{3}+n_{1}n_{3}=0 …(2)
Finally, \vec{b}.\vec{c}=0
=>l_{2}l_{3} + m_{2}m_{3}+n_{2}n_{3}=0 …(3)
Now, let us consider x, y and z as the angles made by direction vectors a, b, and c respectively with p.
Then,
\cos x=\vec{a}.\vec{p}
\Rightarrow \cos x =l_{1}\left ( l_{1}+l_{2}+l_{3} \right )+m_{1}\left ( m_{1}+m_{2}+m_{3} \right )+n_{1}\left ( n_{1}+n_{2}+n_{3} \right )\\ \Rightarrow \cos x=l_{1}^{2}+l_{1}l_{2}+l_{1}l_{3}+m_{1}^{2}+m_{1}m_{2}+m_{1}m_{3}+n_{1}^{2}+n_{1}n_{2}+n_{1}n_{3}\\ \Rightarrow cos x= l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+\left ( l_{1}l_{2}+m_{1}m_{2}+ n_{1}n_{2} \right )+\left ( l_{1}l_{3}+m_{1}m_{3}+ n_{1}n_{3} \right )\\
We know, l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1 [since the sum of squares of direction cosines of a line = 1]
\Rightarrow \cos x=1+0=1 [from (1) and (2)]
Then, \cos y=1 and \cos z=1
=> x = y = z = 0.
Therefore, the vector p makes equal angles with the vectors a, b and c.

Question:29

Distance of the point (α, β, y) is:
A. β B. |β| C. |β| + |y| D. √(α² + y²)

Answer:

Drawing a perpendicular from (α, β, y) to the y-axis gives us a foot of \left ( \alpha ,\beta ,\gamma \right ) perpendicular with coordinates (0, β, 0).
Also, using the distance formula, we can calculate the distance between two points as:
AB=\sqrt{\left ( x_{2}-x_{1} \right )^{2}+\left ( y_{2}-y_{1} \right )^{2}+\left ( z_{2}-z_{1} \right )^{2}}
Thus, the required distance =\sqrt{\left ( \alpha-0 \right )^{2}+\left ( \beta-\beta \right )^{2}+\left(\gamma-0 \right )^{2}}=\sqrt{\alpha^{2}+\gamma^{2}}
(Option D)

Question:30

If the direction cosines of a line are k, k, k, then:
A. k > 0
B. 0 < k < 1
C. k = 1
D. k = 1/√3 or -1/√3

Answer:

We know that the sum of squares of the direction cosines of a line = 1
=> k² + k² + k² = 1
=> 3k² = 1
\Rightarrow k=\pm\frac{1}{\sqrt{3}} (Option D)

Question:31

The distance of the plane \vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1 from the origin is:
A. 1
B. 7
C. 1/7
D. None of these

Answer:

Given plane is
\vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1
Let
\vec{n}=\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k}
\left |\vec{n} \right |=\sqrt{\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} }=1
=> n is a unit vector
Thus, the equation of the plane is of the form \vec{r}.\hat{n} =d, where n is
the unit vector and d is the distance from the origin.
Comparing, we get d =1, hence the distance of the plane from origin is 1
(Option A)

Question:32

The sine of the angle between the straight line \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5} and
The plane 2x - 2y + z = 5 is:

A. 10/6√5
B. 4/5√2
C. 2√3/5
D. √2/10

Answer:

The equation of the line is given as
\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}
The direction vector of this line can be represented as \vec{b}=3\hat{i}+4 \hat{j}+5\hat{k}
Also given is the equation of the plane 2x - 2y + z = 5
The normal to this plane is,\vec{n}=2\hat{i}-2 \hat{j}+\hat{k}
We also know that the angle \phi between the line with the direction
vector b and the plane with the normal vector n is,
\sin \phi =\left | \frac{\vec{b}.\vec{n}}{\left | \vec{b} \right |\left | \vec{n} \right |} \right |
\Rightarrow \sin \phi =\left |\frac{3(2)+4(-2)+5(1)}{\sqrt{3^{2}+4^{2}+5^{2}}\sqrt{2^{2}+(-2)^{2}+1^{2}}} \right |
\Rightarrow \sin \phi =\left |\frac{3}{3\sqrt{50}} \right |
=\frac{1}{5\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}
=\frac{\sqrt{2}}{10}
(Option D)

Question:33

The reflection of the point (α, β, γ) in the xy- plane is:
A. (α, β, 0)
B. (0, 0, γ)
C. (-α, -β, -γ)
D. (α, β, -γ)

Answer:

a33
The equation of the XY plane is Z = 0
Given point (α, β, γ); if we draw a perpendicular from this point in the XY plane, the coordinates of the plane will be
(α, β, 0).
Let the reflection be (x, y, z)
So, \alpha=\frac{\alpha+x}{2}
=> x = α
\beta=\frac{\beta+y}{2}
=> y = β
0=\frac{\gamma+z}{2}
=> z = -γ
The reflection is: (α, β, -γ). (option D)

Question:34

The area of the quadrilateral ABCD, where A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2) is equal to:
A. 9 square units
B. 18 square units
C. 27 square units
D. 81 square units

Answer:

Given, A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2);
\vec{AB}=\left ( 2-0 \right )\hat{i}+\left ( 3-4 \right )\hat{j}+\left ( -1-1 \right )\hat{k}=2\hat{i}-\hat{j}-2\hat{k}
\vec{BC}=\left ( 4-2\right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 0-(-1) \right )\hat{k}=2\hat{i}+2\hat{j}+\hat{k}
\vec{CD}=\left ( 2-4\right )\hat{i}+\left ( 6-5 \right )\hat{j}+\left ( 2-0 \right )\hat{k}=-2\hat{i}+\hat{j}+2\hat{k}=-\vec{AB}
\vec{DA}=\left ( 0-2\right )\hat{i}+\left ( 4-6 \right )\hat{j}+\left ( 1-2 \right )\hat{k}=-2\hat{i}-2\hat{j}-1\hat{k}=-\vec{BC}
Since opposite vectors of this parallelogram are equal and opposite, ABCD is a parallelogram and we know the area of a parallelogram is | AB x CD|
=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{vmatrix}
=\left | \hat{i}\left ( -1+4 \right )+\hat{j}\left ( -4-2 \right )+\hat{k}\left ( 4+2 \right ) \right |
=\left | 3\hat{i}-6\hat{j}+6\hat{k} \right |
=\sqrt{3^{2}+(-6)^{2}+6^{2}}=\sqrt{81}
= 9 square units (Option A).

Question:35

The locus represented by xy + yz = 0 is:
A. A pair of perpendicular lines
B. A pair of parallel lines
C. A pair of parallel planes
D. A pair of perpendicular planes

Answer:

Given, xy + yz = 0
=> x (y + z) = 0
=> x = 0 and y + z = 0
Clearly, the above equations are the equations of planes [of the form ax + by + cz + d = 0]
Also, x = 0 has the normal vector \hat{i}
And y + z = 0 has the normal vector \hat{j}+\hat{k}
And the dot product of these two is
\hat{i}\left (\hat{j}+\hat{k} \right )=\hat{i}.\hat{j}+\hat{i}.\hat{k}
= 0
Hence, the planes are perpendicular (Option D).

Question:36

The plane 2x - 3y + 6z - 11 = 0 makes an angle \sin^{-1}(\alpha) with the x-axis. The value of α is:
A. \frac{\sqrt{3}}{2}
B. \frac{\sqrt{2}}{3}
C. \frac{2}{7}
D. \frac{3}{7}

Answer:

Given, the equation of the plane is 2x - 3y + 6z - 11 = 0.
The normal to this plane is,
\vec{n}=2\hat{i}-3\hat{j}+6\hat{k}
Also, the x-axis has the direction vector \vec{b}=\hat{i}
Also, we know that the angle \varphi between the line with direction vector b and the plane having the normal vector n is:
\\ \sin \varphi =\left | \frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |} \right |\\ \Rightarrow \sin \varphi=\left | \frac{1(2)+0(-3)+0(6)}{\sqrt{2^{2}+3^{2}+6^{2}}\sqrt{1^{2}+0^{2}+0^{2}}} \right |\\ \Rightarrow \sin \varphi = \left | \frac{2}{\sqrt{49}} \right |=\frac{2}{7}\\\Rightarrow \varphi =\sin^{-1}\left ( \frac{2}{7} \right )
On comparing, we find\alpha =\frac{2}{7} (Option C)

Question:37

Fill in the blanks:
A plane passes through the points (2, 0, 0), (0, 3, 0) and (0, 0, 4). The equation of the plane is ______.

Answer:

We know, the equation of a plane cutting the coordinate axes at (a, 0, 0), (0, b, 0) and (0, 0, c) is given as
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
In this case, a = 2, b = 3, and c = 4.
Therefore, putting these values in the equation of the plane, we get
\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1

Question:38

Fill in the blanks: The direction cosines of the vector \left ( 2\hat{i}+2\hat{j}-\hat{k} \right ) are _______.

Answer:

If l, m, and n are the direction cosines and the direction ratios of a line are a, b, and c, then we know:
\\l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}\\l=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
According to the question,
a = 2, b = 2, c = -1
Then
\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3
Thus, the direction cosines are
l = 2/3, b = 2/3, c = -1/3

Question:39

Fill in the blanks: The vector equation of the line \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} is __________.

Answer:

The equation of the line is given as
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}
Clearly, the line passes through A (5, -4, 6) and has the direction ratios 3, 7, and 2.
Also, the position vector of A is \vec{a}=5\hat{i}-4\hat{j}+6\hat{k}
The direction vector of the given line will be:
\vec{b}=3\hat{i}+7\hat{j}+2\hat{k}
Also, the vector equation of a line passing through the given point whose position vector is a and b is:
\vec{r}=\vec{a}+\lambda \vec{b}
Hence, the required equation of the line will be:
\vec{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k} \right )+\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k}\right )

Question:40

Fill in the blanks: The Cartesian equation \vec{r}.\left ( \hat{i}+\hat{j}-\hat{k} \right )=2 of the plane is ______.

Answer:

By expanding the dot product given in the question, we can get the Cartesian equation of the plane.
Given: \vec{r}.\left ( \hat{i}+\hat{j}-\hat{k} \right )=2
\vec{r}=x\hat{i}+y\hat{j}-z\hat{k}
Putting
\Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right )\left ( \hat{i}+\hat{j}-\hat{k} \right )=2
\Rightarrow x + y - z = 2
Thus, the required Cartesian equation is x + y - z = 2.

Question:41

State True or False for the given statement:
The unit vector normal to the plane x + 2y +3z - 6 = 0 is \frac{1}{\sqrt{14}}\hat{i}+\frac{2}{\sqrt{14}}\hat{j}+\frac{3}{\sqrt{14}}\hat{k}

Answer:

Given, the equation of the plane is x + 2y + 3z - 6 = 0
The normal to this plane will be \vec{n}=\hat{i}+2\hat{j}+3\hat{k} The unit vector of this normal is:
\\ \vec{n}=\frac{\vec{n}}{\left |\vec{n} \right |}\\ \vec{n}=\frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{1}{\sqrt{14}}\hat{i}+\frac{2}{\sqrt{14}}\hat{j}+\frac{3}{\sqrt{14}}\hat{k}
Therefore, the statement is True

Question:42

Fill in the blanks:
The vector equation of the line that passes through the points (3, 4, -7) and (1, -1, 6) is ______.

Answer:

The position vector of the first point (3, 4, -7) is \vec{a}=3\hat{i}+4\hat{j}-7\hat{k}
And the position vector of the second point(1, -1, 6): \vec{b}=\hat{i}-\hat{j}+6\hat{k}

Also, the vector equation of a line passing through two points with position vectors a and b is given by:
\vec{r}=\vec{a}+\lambda\left ( \vec{b}-\vec{a} \right )
Thus, the required line equation is
\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( \hat{i}-\hat{j}+6\hat{k}-\left ( 3\hat{i}+4\hat{j}-7\hat{k} \right ) \right )
\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( -2\hat{i}-5\hat{j}+13\hat{k} \right )

Question:43

State True or False for the given statement:
The intercepts made by the plane 2x - 3y + 5z + 4 = 0 on the coordinate axes are -2, \frac{4}{3},\frac{-4}{5}

Answer:

To begin with, we convert the given plane equation to intercept form:
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1where a, b, and c are the intercepts on x, y, and z, axes respectively.
Given, 2x - 3y + 5z + 4 = 0
\Rightarrow -2x + 3y - 5z = 4
Dividing this equation on both sides by 4,
\Rightarrow \frac{-1}{2}x + \frac{3}{4}y - \frac{5}{4}z = 1
On comparison, we get the intercepts -2, 4/3, and -4/5 respectively.
Therefore, the statement is True.

Question:44

State True or False for the given statement: The angle between the line r=\left ( 5 \hat{i}-\hat{j}-4\hat{k} \right )+\lambda\left ( 2 \hat{i}-\hat{j}+k \right ) and the plane r.\left ( 3 \hat{i}-4\hat{j}-\hat{k} \right )+5=0\, \, \, \, \, \, \sin^{-1}\frac{5}{2\sqrt{91}} is

Answer:

We know, the angle \phi between the plane with normal vector n and the line with direction vector b is denoted by:
\sin\varphi\frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |}
Given equation of the line is r=\left ( 5 \hat{i}-\hat{j}-4\hat{k} \right )+\lambda\left ( 2 \hat{i}-\hat{j}+k \right )
Hence, its direction vector will be:
\vec{b}=2\hat{i}-\hat{j}+\hat{k}
Given equation of the plane is \vec{r}.\left (3\hat{i}-4\hat{j}-\hat{k} \right )+5=0
Hence, its normal vector will be:
\vec{n}=3\hat{i}-4\hat{j}-\hat{k}
Thus, we have:
\sin\varphi =\left | \frac{\left ( 2\hat{i}-\hat{j}+\hat{k} \right )\left ( 3\hat{i}-4\hat{j}-\hat{k} \right )}{\sqrt{2^{2}+(-1)^{2}+1^{2}}\sqrt{3^{2}+(-4)^{2}+(-1)^{2}}} \right |\\ \Rightarrow \sin \varphi=\frac{2(3)-1(-4)+1(-1)}{\sqrt{6}\sqrt{26}}=\frac{9}{\sqrt{156}}=\frac{9}{2\sqrt{39}}
\varphi =\sin^{-1}\frac{9}{2\sqrt{39}}
Therefore, the given statement is False.

Question:45

State True or False for the given statement:
The angle between the planes r.\left ( 2\hat{i}-3\hat{j}+\hat{k} \right )=1 and \bar{r}.\left ( \hat{i}-\hat{j} \right )=4 is \cos^{-1}\frac{-5}{\sqrt{58}}

Answer:

In vector form, if we take θ as the angle between the two planes
\vec{r}.\vec{n_{1}}=\vec{d_{1}} and \vec{r}.\vec{n_{2}}=\vec{d_{2}}
Then
\theta=\frac{\left | \vec{n_{1}}.\vec{n_{2}} \right |}{\left | \vec{n_{1}} \right |\left | \vec{n_{2}} \right |}
Now, the given planes are \vec{r}.\left ( 2\hat{i}-3\hat{j}+\hat{k} \right )=1 and \vec{r}.\left ( \hat{i}-\hat{j}\right )=4

Here, \vec{n_{1}}=2 \hat{i}-3\hat{j}+\hat{k} and \vec{n_{2}}=\hat{i}-\hat{j}
Therefore,
\theta =\cos^{-1}\frac{2(1)+3(1)+1(0)}{\sqrt{2^{2}+(-3)^{2}+1^{2}}\sqrt{1^{2}+(-1)^{2}+0^{2}}}
=\cos^{-1}\frac{5}{\sqrt{2}\sqrt{14}}\\=\cos^{-1}\frac{5}{2\sqrt{7}}
The statement is False.

Question:46

State True or False for the given statement:
The line r=2\hat{i}-3\hat{j}-\hat{k}+\lambda\left ( \hat{i}-\hat{j}+2\hat{k} \right ) lies in the plane r.\left (3\hat{i}+\hat{j}-\hat{k} \right )+2=0

Answer:

The equation of the line is given as
\Rightarrow \vec{r}=2\hat{i}-3\hat{j}-\hat{k}+\lambda \left ( \hat{i}-\hat{j}+2\hat{k} \right )\\ \Rightarrow \vec{r}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}
Any point lying on this line will satisfy the plane equation if the line itself lies in the plane. Also, any point on this line will have a position vector:
\vec{a}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}
Given equation of the plane \vec{r}.\left ( 3\hat{i}+\hat{j}-\hat{k} \right )+2=0
If we put a in the above equation,
\left (\left (2 + \lambda \right )\hat{i}+ \left(-3 - \lambda \right) \hat{j} + \left (-1 + 2\lambda \right)\hat{k} \right ).\left ( 3\hat{i}+\hat{j}-\hat{k} \right ) + 2 \\ = \left (2 + \lambda \right ) \left(3\right) + \left(-3 - \lambda \right) \left(1\right) + \left (-1 + 2\lambda \right)\left(-1 \right) + 2 \\ = 6 - 3\lambda - 3 - \lambda + 1 - 2\lambda + 2 \\ = 5 - 6\lambda \neq R.H.S
Thus, the line does not lie in the given plane.
Therefore, the given statement is False.

Question:47

State True or False for the given statement.
The vector equation of the line \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} is r=5\hat{i}-4\hat{j}+6\hat{k}+\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k} \right )

Answer:

The given equation of the line is \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}
It is clear from the equation that this line passes through A (5, -4, 6) and has the direction ratios 3, 7 and 2.
The position vector of A is \vec{a}=5\hat{i}-4\hat{j}+6\hat{k}
And the direction vector of the line will be
We know, the vector equation of a line that passes through a given point with position vector a and b is given as
\vec{r}=3\hat{i}+7\hat{j}+2\hat{k}
Hence, the required line equation will be:
\hat{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k}\right )\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k} \right )
Thus, the statement is True.

Question:48

State True and False for the given statement:
The equation of a line, which is parallel to 2 \hat{i}+\hat{j}+3\hat{k} and which passes through (5, -2, 4) is \frac{x-5}{2}=\frac{y+2}{-1}=\frac{z-4}{3}

Answer:

We know, the equation of a line in Cartesian form is
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
, where a, b and c are the direction ratios and (x1, y1, z1) is a particular point on the line.
The given line is parallel to therefore it has 2, 1, 3 as direction ratios.
(a = 2, b = 1, c = 3)
The line passes through (5, -2, 4)
Substituting these values, we get the equation of line:
\frac{x-5}{2}=\frac{y+2}{1}=\frac{z-4}{3}
Thus, the given statement is False.

Question:49

State True or False for the given statement:
If the foot of the perpendicular drawn from the origin to a plane is (5, -3, -2) then the equation of the plane is r.\left ( 5\hat{i}-3\hat{j}-2\hat{k} \right )=38

Answer:

a49
Let us take O as the origin, P as the foot of the perpendicular drawn from origin to the plane.
Then the position vector OP is:
\vec{n}=\vec{OP}=5\hat{i}-3\hat{j}-2\hat{k}
The unit vector of n is:
\vec{n}=\frac{\vec{n}}{\left | \vec{n} \right |}\\ \hat{n}=\frac{5\hat{i}-3\hat{j}-2\hat{k}}{\sqrt{5^{2}+(-3)^{2}+(-2)^{2}}}=\frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k}
OP =\sqrt{\left ( 5-0 \right )^{2}+\left ( -3-0 \right )^{2}+\left (-2-0 \right )^{2}} \\ =\sqrt{25+9+4}\\ =\sqrt{38}
Now, the equation of the plane with unit normal vector n and having a perpendicular drawn from the origin d is:
\vec{r}.\hat{n}=d
Therefore,
Equation of the given plane will be,
\vec{r}.\left ( \frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k} \right )=\sqrt{38}\\ \Rightarrow \vec{r}.\left ( 5\hat{i}-3\hat{j}-2\hat{k} \right )=38
=> The given statement is True.

Main Subtopics of NCERT Exemplar Class 12 Maths Solutions Chapter 11

The main topics and sub topics covered in this chapter of are as follows:

  • Direction aspects of a line
  • Direction Cosines
  • Direction Ratios
  • Relation between the direction cosines of a line
  • Direction Cosines of a line passing through two points
  • Equation of a line in space
  • Equation of a line through a given point and parallel to a given vector
  • Equation of a line passing through two given points
  • Derivation of Cartesian form from Vector form.
  • Angle between two lines
  • Shortest distance between two lines
  • Distance between two skew lines
  • Distance between parallel lines
  • Planes
  • Equation of a plane in Normal form
  • Equation of a plane perpendicular to a given vector through a given point
  • Equation of a plane passing through three non-collinear points
  • Planes passing through the intersection of two given planes
  • Coplanarity of two lines
  • Angle between two planes
  • Distance of a point from a plane
  • Angle between a line and a plane

Apply to Aakash iACST Scholarship Test 2024

Applications for Admissions are open.

What will the students learn in NCERT Exemplar Class 12 Maths Solutions Chapter 11?

  • NCERT exemplar Class 12 Maths solutions chapter 11 would not only help you find volumes of objects such as cubes, cylinders, pyramids, or location of coordinates but also to expand your learning and potential to achieve academic excellence.
  • The design of assembly systems in manufacturing automobiles and nanotechnology is done with 3D geometry. Various graphic designers, visual artists, and game developers use the concepts of three dimensions to create computer graphics, visual graphs, virtual reality programs, and video games.
  • Geometry acts as a fundamental tool to calculate the location of interplanetary and galactic objects in space and to draft a possible trajectory and find out the entry points to a planet’s atmosphere for a space vehicle's journey.
  • Thus, NCERT exemplar solutions for Class 12 Maths chapter 11 exposes one to a wide array of fields like art, technology, architecture, astronomy and physics, and aspects of geographic information systems.
ALLEN NEET Coaching

Ace your NEET preparation with ALLEN Online Programs

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

NCERT Exemplar Class 12 Maths Solutions

Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 11

· NCERT Exemplar Class 12 Maths chapter 11 solutions define Dimension as the standard measure of an object's size and shape.

· We would use the concept of Vector algebra to make three-dimensional geometry organised and straightforward.

· In Class 12 Maths NCERT exemplar solutions chapter 11, we will study the direction aspects of a line joining two points, including the direction cosines and the ratios, discuss the equations of lines and planes in space, measure the shortest distance between two lines and learn more about the Cartesian form analytical and geometric representation.

NCERT Exemplar Class 12 Solutions

Also, check NCERT Solutions for questions given in the book:

Must Read NCERT Solution subject wise

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Read more NCERT Notes subject wise

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

NEET previous year papers with solutions

Solve NEET previous years question papers & check your preparedness

Also Check NCERT Books and NCERT Syllabus here

Frequently Asked Question (FAQs)

1. What are the topics covered in this chapter?

This entire chapter talks about the dimensional geometry which covered vector usage to measure and determine line, planes and angles.

2. Are these solutions helpful in board exams?

Yes, for those who want a clear picture of how to solve questions in three-dimensional geometry, our NCERT exemplar Class 12 Maths solutions chapter 11 can be highly supportive.

3. How to take help from these solutions?

The best way is to use these solutions as reference, while one is solving the questions for practicing.

4. Are these solutions downloadable?

Yes, these questions and NCERT exemplar Class 12 Maths solutions chapter 11 can be downloaded by using the webpage to PDF tool available online.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello aspirant,

The purpose of graphic design extends beyond the brand's look. Nevertheless, by conveying what the brand stands for, it significantly aids in the development of a sense of understanding between a company and its audience. The future in the field of graphic designing is very promising.

There are various courses available for graphic designing. To know more information about these courses and much more details, you can visit our website by clicking on the link given below.

https://www.careers360.com/courses/graphic-designing-course

Thank you

Hope this information helps you.

hello,

Yes you can appear for the compartment paper again since CBSE gives three chances to a candidate to clear his/her exams so you still have two more attempts. However, you can appear for your improvement paper for all subjects but you cannot appear for the ones in which you have failed.

I hope this was helpful!

Good Luck

Hello dear,

If you was not able to clear 1st compartment and now you giving second compartment so YES, you can go for your improvement exam next year but if a student receives an improvement, they are given the opportunity to retake the boards as a private candidate the following year, but there are some requirements. First, the student must pass all of their subjects; if they received a compartment in any subject, they must then pass the compartment exam before being eligible for the improvement.


As you can registered yourself as private candidate for giving your improvement exam of 12 standard CBSE(Central Board of Secondary Education).For that you have to wait for a whole year which is bit difficult for you.


Positive side of waiting for whole year is you have a whole year to preparing yourself for your examination. You have no distraction or something which may causes your failure in the exams. In whole year you have to stay focused on your 12 standard examination for doing well in it. By this you get a highest marks as a comparison of others.


Believe in Yourself! You can make anything happen


All the very best.

Hello Student,

I appreciate your Interest in education. See the improvement is not restricted to one subject or multiple subjects  and  we cannot say if improvement in one subject in one year leads to improvement in more subjects in coming year.

You just need to have a revision of all subjects what you have completed in the school. have a revision and practice of subjects and concepts helps you better.

All the best.

Hi,

You just need to give the exams for the concerned two subjects in which you have got RT. There is no need to give exam for all of your subjects, you can just fill the form for the two subjects only.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Data Administrator

Database professionals use software to store and organise data such as financial information, and customer shipping records. Individuals who opt for a career as data administrators ensure that data is available for users and secured from unauthorised sales. DB administrators may work in various types of industries. It may involve computer systems design, service firms, insurance companies, banks and hospitals.

4 Jobs Available
Bio Medical Engineer

The field of biomedical engineering opens up a universe of expert chances. An Individual in the biomedical engineering career path work in the field of engineering as well as medicine, in order to find out solutions to common problems of the two fields. The biomedical engineering job opportunities are to collaborate with doctors and researchers to develop medical systems, equipment, or devices that can solve clinical problems. Here we will be discussing jobs after biomedical engineering, how to get a job in biomedical engineering, biomedical engineering scope, and salary. 

4 Jobs Available
Ethical Hacker

A career as ethical hacker involves various challenges and provides lucrative opportunities in the digital era where every giant business and startup owns its cyberspace on the world wide web. Individuals in the ethical hacker career path try to find the vulnerabilities in the cyber system to get its authority. If he or she succeeds in it then he or she gets its illegal authority. Individuals in the ethical hacker career path then steal information or delete the file that could affect the business, functioning, or services of the organization.

3 Jobs Available
GIS Expert

GIS officer work on various GIS software to conduct a study and gather spatial and non-spatial information. GIS experts update the GIS data and maintain it. The databases include aerial or satellite imagery, latitudinal and longitudinal coordinates, and manually digitized images of maps. In a career as GIS expert, one is responsible for creating online and mobile maps.

3 Jobs Available
Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

3 Jobs Available
Geothermal Engineer

Individuals who opt for a career as geothermal engineers are the professionals involved in the processing of geothermal energy. The responsibilities of geothermal engineers may vary depending on the workplace location. Those who work in fields design facilities to process and distribute geothermal energy. They oversee the functioning of machinery used in the field.

3 Jobs Available
Database Architect

If you are intrigued by the programming world and are interested in developing communications networks then a career as database architect may be a good option for you. Data architect roles and responsibilities include building design models for data communication networks. Wide Area Networks (WANs), local area networks (LANs), and intranets are included in the database networks. It is expected that database architects will have in-depth knowledge of a company's business to develop a network to fulfil the requirements of the organisation. Stay tuned as we look at the larger picture and give you more information on what is db architecture, why you should pursue database architecture, what to expect from such a degree and what your job opportunities will be after graduation. Here, we will be discussing how to become a data architect. Students can visit NIT Trichy, IIT Kharagpur, JMI New Delhi

3 Jobs Available
Remote Sensing Technician

Individuals who opt for a career as a remote sensing technician possess unique personalities. Remote sensing analysts seem to be rational human beings, they are strong, independent, persistent, sincere, realistic and resourceful. Some of them are analytical as well, which means they are intelligent, introspective and inquisitive. 

Remote sensing scientists use remote sensing technology to support scientists in fields such as community planning, flight planning or the management of natural resources. Analysing data collected from aircraft, satellites or ground-based platforms using statistical analysis software, image analysis software or Geographic Information Systems (GIS) is a significant part of their work. Do you want to learn how to become remote sensing technician? There's no need to be concerned; we've devised a simple remote sensing technician career path for you. Scroll through the pages and read.

3 Jobs Available
Budget Analyst

Budget analysis, in a nutshell, entails thoroughly analyzing the details of a financial budget. The budget analysis aims to better understand and manage revenue. Budget analysts assist in the achievement of financial targets, the preservation of profitability, and the pursuit of long-term growth for a business. Budget analysts generally have a bachelor's degree in accounting, finance, economics, or a closely related field. Knowledge of Financial Management is of prime importance in this career.

4 Jobs Available
Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

3 Jobs Available
Underwriter

An underwriter is a person who assesses and evaluates the risk of insurance in his or her field like mortgage, loan, health policy, investment, and so on and so forth. The underwriter career path does involve risks as analysing the risks means finding out if there is a way for the insurance underwriter jobs to recover the money from its clients. If the risk turns out to be too much for the company then in the future it is an underwriter who will be held accountable for it. Therefore, one must carry out his or her job with a lot of attention and diligence.

3 Jobs Available
Finance Executive
3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
Operations Manager

Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

3 Jobs Available
Stock Analyst

Individuals who opt for a career as a stock analyst examine the company's investments makes decisions and keep track of financial securities. The nature of such investments will differ from one business to the next. Individuals in the stock analyst career use data mining to forecast a company's profits and revenues, advise clients on whether to buy or sell, participate in seminars, and discussing financial matters with executives and evaluate annual reports.

2 Jobs Available
Researcher

A Researcher is a professional who is responsible for collecting data and information by reviewing the literature and conducting experiments and surveys. He or she uses various methodological processes to provide accurate data and information that is utilised by academicians and other industry professionals. Here, we will discuss what is a researcher, the researcher's salary, types of researchers.

2 Jobs Available
Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

5 Jobs Available
Transportation Planner

A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.

3 Jobs Available
Environmental Engineer

Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems. 

2 Jobs Available
Safety Manager

A Safety Manager is a professional responsible for employee’s safety at work. He or she plans, implements and oversees the company’s employee safety. A Safety Manager ensures compliance and adherence to Occupational Health and Safety (OHS) guidelines.

2 Jobs Available
Conservation Architect

A Conservation Architect is a professional responsible for conserving and restoring buildings or monuments having a historic value. He or she applies techniques to document and stabilise the object’s state without any further damage. A Conservation Architect restores the monuments and heritage buildings to bring them back to their original state.

2 Jobs Available
Structural Engineer

A Structural Engineer designs buildings, bridges, and other related structures. He or she analyzes the structures and makes sure the structures are strong enough to be used by the people. A career as a Structural Engineer requires working in the construction process. It comes under the civil engineering discipline. A Structure Engineer creates structural models with the help of computer-aided design software. 

2 Jobs Available
Highway Engineer

Highway Engineer Job Description: A Highway Engineer is a civil engineer who specialises in planning and building thousands of miles of roads that support connectivity and allow transportation across the country. He or she ensures that traffic management schemes are effectively planned concerning economic sustainability and successful implementation.

2 Jobs Available
Field Surveyor

Are you searching for a Field Surveyor Job Description? A Field Surveyor is a professional responsible for conducting field surveys for various places or geographical conditions. He or she collects the required data and information as per the instructions given by senior officials. 

2 Jobs Available
Orthotist and Prosthetist

Orthotists and Prosthetists are professionals who provide aid to patients with disabilities. They fix them to artificial limbs (prosthetics) and help them to regain stability. There are times when people lose their limbs in an accident. In some other occasions, they are born without a limb or orthopaedic impairment. Orthotists and prosthetists play a crucial role in their lives with fixing them to assistive devices and provide mobility.

6 Jobs Available
Pathologist

A career in pathology in India is filled with several responsibilities as it is a medical branch and affects human lives. The demand for pathologists has been increasing over the past few years as people are getting more aware of different diseases. Not only that, but an increase in population and lifestyle changes have also contributed to the increase in a pathologist’s demand. The pathology careers provide an extremely huge number of opportunities and if you want to be a part of the medical field you can consider being a pathologist. If you want to know more about a career in pathology in India then continue reading this article.

5 Jobs Available
Veterinary Doctor
5 Jobs Available
Speech Therapist
4 Jobs Available
Gynaecologist

Gynaecology can be defined as the study of the female body. The job outlook for gynaecology is excellent since there is evergreen demand for one because of their responsibility of dealing with not only women’s health but also fertility and pregnancy issues. Although most women prefer to have a women obstetrician gynaecologist as their doctor, men also explore a career as a gynaecologist and there are ample amounts of male doctors in the field who are gynaecologists and aid women during delivery and childbirth. 

4 Jobs Available
Audiologist

The audiologist career involves audiology professionals who are responsible to treat hearing loss and proactively preventing the relevant damage. Individuals who opt for a career as an audiologist use various testing strategies with the aim to determine if someone has a normal sensitivity to sounds or not. After the identification of hearing loss, a hearing doctor is required to determine which sections of the hearing are affected, to what extent they are affected, and where the wound causing the hearing loss is found. As soon as the hearing loss is identified, the patients are provided with recommendations for interventions and rehabilitation such as hearing aids, cochlear implants, and appropriate medical referrals. While audiology is a branch of science that studies and researches hearing, balance, and related disorders.

3 Jobs Available
Oncologist

An oncologist is a specialised doctor responsible for providing medical care to patients diagnosed with cancer. He or she uses several therapies to control the cancer and its effect on the human body such as chemotherapy, immunotherapy, radiation therapy and biopsy. An oncologist designs a treatment plan based on a pathology report after diagnosing the type of cancer and where it is spreading inside the body.

3 Jobs Available
Anatomist

Are you searching for an ‘Anatomist job description’? An Anatomist is a research professional who applies the laws of biological science to determine the ability of bodies of various living organisms including animals and humans to regenerate the damaged or destroyed organs. If you want to know what does an anatomist do, then read the entire article, where we will answer all your questions.

2 Jobs Available
Actor

For an individual who opts for a career as an actor, the primary responsibility is to completely speak to the character he or she is playing and to persuade the crowd that the character is genuine by connecting with them and bringing them into the story. This applies to significant roles and littler parts, as all roles join to make an effective creation. Here in this article, we will discuss how to become an actor in India, actor exams, actor salary in India, and actor jobs. 

4 Jobs Available
Acrobat

Individuals who opt for a career as acrobats create and direct original routines for themselves, in addition to developing interpretations of existing routines. The work of circus acrobats can be seen in a variety of performance settings, including circus, reality shows, sports events like the Olympics, movies and commercials. Individuals who opt for a career as acrobats must be prepared to face rejections and intermittent periods of work. The creativity of acrobats may extend to other aspects of the performance. For example, acrobats in the circus may work with gym trainers, celebrities or collaborate with other professionals to enhance such performance elements as costume and or maybe at the teaching end of the career.

3 Jobs Available
Video Game Designer

Career as a video game designer is filled with excitement as well as responsibilities. A video game designer is someone who is involved in the process of creating a game from day one. He or she is responsible for fulfilling duties like designing the character of the game, the several levels involved, plot, art and similar other elements. Individuals who opt for a career as a video game designer may also write the codes for the game using different programming languages.

Depending on the video game designer job description and experience they may also have to lead a team and do the early testing of the game in order to suggest changes and find loopholes.

3 Jobs Available
Radio Jockey

Radio Jockey is an exciting, promising career and a great challenge for music lovers. If you are really interested in a career as radio jockey, then it is very important for an RJ to have an automatic, fun, and friendly personality. If you want to get a job done in this field, a strong command of the language and a good voice are always good things. Apart from this, in order to be a good radio jockey, you will also listen to good radio jockeys so that you can understand their style and later make your own by practicing.

A career as radio jockey has a lot to offer to deserving candidates. If you want to know more about a career as radio jockey, and how to become a radio jockey then continue reading the article.

3 Jobs Available
Choreographer

The word “choreography" actually comes from Greek words that mean “dance writing." Individuals who opt for a career as a choreographer create and direct original dances, in addition to developing interpretations of existing dances. A Choreographer dances and utilises his or her creativity in other aspects of dance performance. For example, he or she may work with the music director to select music or collaborate with other famous choreographers to enhance such performance elements as lighting, costume and set design.

2 Jobs Available
Social Media Manager

A career as social media manager involves implementing the company’s or brand’s marketing plan across all social media channels. Social media managers help in building or improving a brand’s or a company’s website traffic, build brand awareness, create and implement marketing and brand strategy. Social media managers are key to important social communication as well.

2 Jobs Available
Photographer

Photography is considered both a science and an art, an artistic means of expression in which the camera replaces the pen. In a career as a photographer, an individual is hired to capture the moments of public and private events, such as press conferences or weddings, or may also work inside a studio, where people go to get their picture clicked. Photography is divided into many streams each generating numerous career opportunities in photography. With the boom in advertising, media, and the fashion industry, photography has emerged as a lucrative and thrilling career option for many Indian youths.

2 Jobs Available
Producer

An individual who is pursuing a career as a producer is responsible for managing the business aspects of production. They are involved in each aspect of production from its inception to deception. Famous movie producers review the script, recommend changes and visualise the story. 

They are responsible for overseeing the finance involved in the project and distributing the film for broadcasting on various platforms. A career as a producer is quite fulfilling as well as exhaustive in terms of playing different roles in order for a production to be successful. Famous movie producers are responsible for hiring creative and technical personnel on contract basis.

2 Jobs Available
Copy Writer

In a career as a copywriter, one has to consult with the client and understand the brief well. A career as a copywriter has a lot to offer to deserving candidates. Several new mediums of advertising are opening therefore making it a lucrative career choice. Students can pursue various copywriter courses such as Journalism, Advertising, Marketing Management. Here, we have discussed how to become a freelance copywriter, copywriter career path, how to become a copywriter in India, and copywriting career outlook. 

5 Jobs Available
Vlogger

In a career as a vlogger, one generally works for himself or herself. However, once an individual has gained viewership there are several brands and companies that approach them for paid collaboration. It is one of those fields where an individual can earn well while following his or her passion. 

Ever since internet costs got reduced the viewership for these types of content has increased on a large scale. Therefore, a career as a vlogger has a lot to offer. If you want to know more about the Vlogger eligibility, roles and responsibilities then continue reading the article. 

3 Jobs Available
Publisher

For publishing books, newspapers, magazines and digital material, editorial and commercial strategies are set by publishers. Individuals in publishing career paths make choices about the markets their businesses will reach and the type of content that their audience will be served. Individuals in book publisher careers collaborate with editorial staff, designers, authors, and freelance contributors who develop and manage the creation of content.

3 Jobs Available
Journalist

Careers in journalism are filled with excitement as well as responsibilities. One cannot afford to miss out on the details. As it is the small details that provide insights into a story. Depending on those insights a journalist goes about writing a news article. A journalism career can be stressful at times but if you are someone who is passionate about it then it is the right choice for you. If you want to know more about the media field and journalist career then continue reading this article.

3 Jobs Available
Editor

Individuals in the editor career path is an unsung hero of the news industry who polishes the language of the news stories provided by stringers, reporters, copywriters and content writers and also news agencies. Individuals who opt for a career as an editor make it more persuasive, concise and clear for readers. In this article, we will discuss the details of the editor's career path such as how to become an editor in India, editor salary in India and editor skills and qualities.

3 Jobs Available
Reporter

Individuals who opt for a career as a reporter may often be at work on national holidays and festivities. He or she pitches various story ideas and covers news stories in risky situations. Students can pursue a BMC (Bachelor of Mass Communication), B.M.M. (Bachelor of Mass Media), or MAJMC (MA in Journalism and Mass Communication) to become a reporter. While we sit at home reporters travel to locations to collect information that carries a news value.  

2 Jobs Available
Corporate Executive

Are you searching for a Corporate Executive job description? A Corporate Executive role comes with administrative duties. He or she provides support to the leadership of the organisation. A Corporate Executive fulfils the business purpose and ensures its financial stability. In this article, we are going to discuss how to become corporate executive.

2 Jobs Available
Multimedia Specialist

A multimedia specialist is a media professional who creates, audio, videos, graphic image files, computer animations for multimedia applications. He or she is responsible for planning, producing, and maintaining websites and applications. 

2 Jobs Available
Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

5 Jobs Available
QA Manager
4 Jobs Available
Quality Controller

A quality controller plays a crucial role in an organisation. He or she is responsible for performing quality checks on manufactured products. He or she identifies the defects in a product and rejects the product. 

A quality controller records detailed information about products with defects and sends it to the supervisor or plant manager to take necessary actions to improve the production process.

3 Jobs Available
Production Manager
3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
QA Lead

A QA Lead is in charge of the QA Team. The role of QA Lead comes with the responsibility of assessing services and products in order to determine that he or she meets the quality standards. He or she develops, implements and manages test plans. 

2 Jobs Available
Structural Engineer

A Structural Engineer designs buildings, bridges, and other related structures. He or she analyzes the structures and makes sure the structures are strong enough to be used by the people. A career as a Structural Engineer requires working in the construction process. It comes under the civil engineering discipline. A Structure Engineer creates structural models with the help of computer-aided design software. 

2 Jobs Available
Process Development Engineer

The Process Development Engineers design, implement, manufacture, mine, and other production systems using technical knowledge and expertise in the industry. They use computer modeling software to test technologies and machinery. An individual who is opting career as Process Development Engineer is responsible for developing cost-effective and efficient processes. They also monitor the production process and ensure it functions smoothly and efficiently.

2 Jobs Available
QA Manager
4 Jobs Available
AWS Solution Architect

An AWS Solution Architect is someone who specializes in developing and implementing cloud computing systems. He or she has a good understanding of the various aspects of cloud computing and can confidently deploy and manage their systems. He or she troubleshoots the issues and evaluates the risk from the third party. 

4 Jobs Available
Azure Administrator

An Azure Administrator is a professional responsible for implementing, monitoring, and maintaining Azure Solutions. He or she manages cloud infrastructure service instances and various cloud servers as well as sets up public and private cloud systems. 

4 Jobs Available
Computer Programmer

Careers in computer programming primarily refer to the systematic act of writing code and moreover include wider computer science areas. The word 'programmer' or 'coder' has entered into practice with the growing number of newly self-taught tech enthusiasts. Computer programming careers involve the use of designs created by software developers and engineers and transforming them into commands that can be implemented by computers. These commands result in regular usage of social media sites, word-processing applications and browsers.

3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
Information Security Manager

Individuals in the information security manager career path involves in overseeing and controlling all aspects of computer security. The IT security manager job description includes planning and carrying out security measures to protect the business data and information from corruption, theft, unauthorised access, and deliberate attack 

3 Jobs Available
ITSM Manager
3 Jobs Available
Automation Test Engineer

An Automation Test Engineer job involves executing automated test scripts. He or she identifies the project’s problems and troubleshoots them. The role involves documenting the defect using management tools. He or she works with the application team in order to resolve any issues arising during the testing process. 

2 Jobs Available
Back to top