CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Have you ever wondered how large skyscrapers are designed or how the GPS tells us about our exact locations every time? To find the answer, we have to study three-dimensional geometry, where we go beyond our understanding of two-dimensional geometry to the X, Y, and Z coordinate axes. From NCERT Exemplar Class 12 Maths, the chapter Three Dimensional Geometry contains the concepts of Direction Cosines, Equations of lines and planes, as well as the shortest distance between them. Understanding these concepts will help the students grasp three-dimensional geometry easily and enhance their problem-solving ability in real-world applications.
This Story also Contains
This article on NCERT Exemplar Class 12 Maths Solution Chapter 11, Three Dimensional Geometry, offers clear and step-by-step solutions for the exercise problems in the NCERT Exemplar Class 12 Maths book. Students who are in need of Three Dimensional Geometry class 12 exemplar solutions will find this article very useful. It covers all the important Class 12 Maths Chapter 11 question answers. These three dimensional geometry class 12 ncert exemplar solutions are made by the Subject Matter Experts according to the latest CBSE syllabus, ensuring that students can grasp the basic concepts effectively. For the NCERT syllabus, books, notes, and class-wise solutions, refer to NCERT.
Three Dimensional Geometry Exercise 11.3
Page number: 235-240, Total Questions: 49
Question:1
Answer:
Given, $\overline{OA}$ is inclined at 600 to and at $\overline{OX}$, 450 to $\overline{OY}$
$\overline{OA}$ = 10 units.
We want to find the position vector of point A in space, which is nothing but $\overline{OA}$
We know, there are three axes in space: X, Y, and Z.
Let OA be inclined with OZ at an angle α.
We know, directions cosines are associated by the relation:
l² + m² + n² = 1 ….(i)
In this question, direction cosines are the cosines of the angles inclined by on $\overline{OA}$, $\overline{OX}$, $\overline{OY}$ and $\overline{OZ}$
So,$l=\cos 60^{\circ},m=\cos 45^{\circ},n=\cos \alpha$
Substituting the values of l, m, and n in equation (i),
$\left (\cos 60^{\circ} \right )^{2}+\left (m=\cos 45^{\circ} \right )^{2}+\left (n=\cos \alpha \right )^{2}=1$
We know the values of $\cos 60^{\circ}$and $\cos 45^{\circ}$, i.e. 1/2 and 1/√2 respectively.
Therefore, we get
$\left ( \frac{1}{2} \right )^{2}+\left ( \frac{1}{\sqrt{2}} \right )^{2}+\cos^{2}\alpha =1$
$\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos^{2}\alpha =1$
$\Rightarrow \cos^{2}\alpha =1-\frac{1}{4}-\frac{1}{2}$
$\Rightarrow \cos^{2}\alpha =\frac{4-1-2}{4}$
$\Rightarrow \cos^{2}\alpha =\frac{1}{4}$
$\Rightarrow \cos \alpha =\pm \sqrt{\frac{1}{4}}$
$\Rightarrow \cos \alpha =\pm \frac{1}{2}$
So $\overrightarrow{OA}$ is given as
$\overrightarrow{OA}=\overrightarrow{OA}\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )$..........(ii)
We have,
$l = \cos 60^{\circ} = \frac{1}{2}\\ m =\ cos 45^{\circ} = \frac{1}{\sqrt{2}}\\ n = \cos \alpha = \pm \frac{1}{2}\\$
Inserting these values of l, m and n in equation (ii),
$\overrightarrow{OA}=\left |\overrightarrow{OA} \right |\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )$
Also ,Put $\Rightarrow \overrightarrow{OA}=10\left ( \frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}}\hat{j}+\frac{1}{2}\hat{k} \right )$
$\Rightarrow \overrightarrow{OA}=10\times \frac{1}{2} \hat{i}+10\times\frac{1}{\sqrt{2}}\hat{j}+10\times\frac{1}{2}\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+10\times\frac{\sqrt{2}}{\sqrt{2}}\times+10\times\frac{1}{\sqrt{2}}\hat{j}\pm 5\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+\frac{10\times\sqrt{2}}{2}\hat{j}\pm 5\hat{k}$
$\Rightarrow \overrightarrow{OA}=5i+5\sqrt{2}\hat{j}\pm 5\hat{k}$
Thus, position vector of A in space $=5i+5\sqrt{2}\hat{j}\pm 5\hat{k}$
Question:2
Answer:
Given, vector = $3\hat{i}-2\hat{j}+6\hat{k}$
Point = (1, -2, 3)
We can write this point in vector form as $\hat{i}-2\hat{j}+3\hat{k}$
Let ,
$\overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}$
$\overrightarrow{b}=3\hat{i}-2\hat{j}+6\hat{k}$
We must find the vector equation of the line parallel to the vector $\overrightarrow{b}$ and passing through the point
We know, equation of $\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}$ a line passing through a point and parallel to a given vector is denoted as
Where, $\lambda \epsilon \mathbb{R}$
In other words, we need to find $\overrightarrow{r}$
This can be achieved by substituting the values of the vectors in the above equation. We get
$\overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
$\Rightarrow \overrightarrow{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda \left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
This can be further rearranged, upon which we get:
$\Rightarrow \vec{r}=\hat{i}-2\hat{j}+3\hat{k}+3\lambda \hat{j}+3\hat{k}+6\lambda\hat{k}$
$\Rightarrow \vec{r}=\hat{i}+3\lambda \hat{i}-2\hat{j}-2\lambda\hat{j}+3\hat{k}+6\lambda\hat{k}$
$\Rightarrow \vec{r}=\left ( 1-3\lambda \right )\hat{i}+\left ( -2-2\lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}$
Thus, the require vector equation of line is $\vec{r}=\left ( \hat{i}-2\hat{j}+3\hat{k} \right )+\lambda\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )$
which can also be written as $\left ( 1-3\lambda \right )i+\left ( -2-2 \lambda \right )\hat{j}+\left ( 3+6\lambda \right )\hat{k}$
Question:3
Answer:
We have the lines,
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
$\frac{x-4}{5}=\frac{y-1}{2}=z$
Let us denote these lines as L1and L2, such that
$L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
where $\lambda ,\mu \epsilon \mathbb{R}$
We must show that the lines L1and L2 intersect.
To show this, let us first find any point on line L1 and line L2
For L1:
$L_{1}:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
$\Rightarrow \frac{x-1}{2}=\lambda,\frac{y-2}{3}=\lambda,\frac{z-3}{4}=\lambda$
We must find the values of x, y, and z. Therefore, let us take $\Rightarrow \frac{x-1}{2}=\lambda$
$\Rightarrow x-1=2\lambda$
$\Rightarrow x=2\lambda+1$
Take $\frac{y-2}{3}=\lambda$
$\Rightarrow y-2=3\lambda$
$\Rightarrow y=3 \lambda+2$
Take $\frac{z-3}{4}=\lambda$
$\Rightarrow z-3=4\lambda$
$\Rightarrow z=4\lambda+3...(i)$
Therefore, any point on L1 can be represented as $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$.
Now,
For L2:
$L_{2}=\frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
$\Rightarrow \frac{x-4}{5}=\frac{y-1}{2}=z=\mu$
$\Rightarrow \frac{x-4}{5}=\mu,\frac{y-1}{2}=\mu,z=\mu$
We must find the values of x, y, and z. Therefore,
Take $\frac{x-4}{5}=\mu$
$\Rightarrow x-4=5\mu$
$\Rightarrow x=5\mu+4$
Take $\frac{y-1}{2}=\mu$
$\Rightarrow y-1=2\mu$
$\Rightarrow y=2\mu+1$
Take $z=\mu$
$\Rightarrow z=\mu........(ii)$
Hence, any point on line L? can be represented as (5μ + 4, 2μ + 1, μ).
If lines L1 and L2 intersect, then there exist λ and μ such that
$\left ( 2\lambda+1,3\lambda+3,4\lambda+3 \right )\equiv \left ( 5\mu+4,2\mu+1,\mu \right )$
$\Rightarrow 2\lambda+1= 5\mu+4......(iii)$
$3\lambda+2=2\mu+1.....(iv)$
$4\lambda+3=\mu.....(iv)$
Substituting the value of μ from equation (v) into equation (iv),
$3\lambda+2=2\left ( 4\lambda+3 \right )+1$
$\Rightarrow 3\lambda+2=8\lambda+6+1$
$\Rightarrow 3\lambda+2=8\lambda+7$
$\Rightarrow 8\lambda-3\lambda=2-7$
$\Rightarrow 5\lambda=-5$
$\Rightarrow \lambda=-\frac{5}{5}$
$\Rightarrow \lambda=-1$
Putting this value of $\lambda$ in eq (v),
$4\left ( -1 \right )+3=\mu$
$\Rightarrow \mu=-4+3$
$\Rightarrow \mu=-1$
To check, we can substitute the values of $\lambda$ and $\mu$ in equation (iii), giving us:
$2(-1) + 1 = 5(-1) + 4$
$\Rightarrow -2 + 1 = -5 + 4$
$\Rightarrow -1 = -1$
Therefore, $\lambda$ and $\mu$ also satisfy equation (iii).
So, the z-coordinate from equation (i),
$z=4\lambda +3$
$\Rightarrow z=4\left ( -1 \right )+3 \left [ \because \lambda=-1 \right ]$
$\Rightarrow z=-4+3$
$\Rightarrow z=-1$
And the z-coordinate from equation (ii),
$z=\mu$
$z=-1\left [ \because \mu=-1 \right ]$
So, the lines intersect at the point
$(5\mu + 4, 2\mu + 1, \mu) = (5(-1) + 4, 2(-1) + 1, -1)$
Or, $(5\mu + 4, 2\mu + 1, \mu) = (-5 + 4, -2 + 1, -1)$
Or, $(5\mu + 4, 2\mu + 1, \mu) = (-1, -1, -1)$
Therefore, the lines intersect at the point (-1, -1, -1).
Question:4
Find the angle between the lines $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda \left ( 2 \hat{i}+\hat {j}+2\hat{k} \right )$ and
Answer:
Given lines:
$\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$
$\vec{r}=\left (2\hat{i}-5\hat{k} \right )+\mu\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )$
We are instructed to find the angle between the lines.
The line $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$ is parallel to the vector
$2\hat{i}+\hat{j}+2\hat{k}$
Let
$\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$
Then, we can say the line $\vec{r}=3\hat{i}-2\hat{j}+6\hat{k}+\lambda\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )$ is parallel to vector $\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$
Similarly, let $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$
Then, we can say is $\vec{r}=2\hat{j}-5\hat{k}+\mu \left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )$ parallel to the vector $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$
If we take θ as the angle between the lines, then cosine θ is:
$\cos \theta = \frac{\vec{b_{1}}\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |}$
Substituting the values of $\vec{b_{1}}=2\hat{i}+\hat{j}+2\hat{k}$ and $\vec{b_{2}}=6\hat{i}+3\hat{j}+2\hat{k}$ in the above equation,
We get
$\cos \theta=\frac{\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |}$
Here,
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=\left ( 2 \times 6 \right )+\left ( 1 \times 3 \right )+\left ( 2 \times 2 \right )$
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=12+3+4$
$\left ( 2\hat{i}+\hat{j}+2\hat{k} \right )\left ( 6\hat{i}+3\hat{j}+2\hat{k} \right )=19...........(i)$
Also,
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{2^{2}+1^{2}+2^{2}}\sqrt{6^{2}+3^{2}+2^{2}}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{4+1+4}\sqrt{36+9+4}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=\sqrt{9}\sqrt{49}$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=3 \times 7$
$\left |2\hat{i}+\hat{j}+2\hat{k} \right |\left | 6\hat{i}+3\hat{j}+2\hat{k} \right |=21............(ii)$
Substituting the values of $\cos \theta$ in equation (i) and (ii), we get
$\cos \theta=\frac{19}{21}$
$\Rightarrow \theta=\cos^{-1}\left (\frac{19}{21} \right )$
Therefore, the angle between the lines is $\cos^{-1}\left (\frac{19}{21} \right )$
Question:5
Answer:
Given: A (0, -1, -1), B (4, 5, 1), C (3, 9, 4), D (-4, 4, 4).
To prove: The line passing through A and B intersects the line passing through C and D.
Proof: We know, equation of a line passing through two points (x1 , y1 , z1) and (x2 , y2 , z2) is:
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Hence, the equation of the line passing through A (0, -1, -1) and B (4, 5,1) is:
$\frac{x-0}{4-0}=\frac{y-(-1)}{5-(-1)}=\frac{z-(-1)}{1-(-1)}$
, where x1 = 0, y1 = -1, z1 = -1; and x2 = 4, y2 = 5, z2 = 1
$\Rightarrow \frac{x-0}{4}=\frac{y+1}{6}=\frac{z+1}{2}$
$\Rightarrow \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}$
Let
$L_{1}: \frac{x}{4}=\frac{y+1}{6}=\frac{z+1}{2}=\lambda\\ \\ \frac{x}{4}=\lambda, \frac{y+1}{6}=\lambda,\frac{z+1}{2}=\lambda\\$
We must find the values of x, y, and z. Therefore,
$Take \frac{x}{4}=\lambda\\ \Rightarrow x=4\lambda\\ \\ Take \frac{y+1}{6}=\lambda$
$ \Rightarrow y+1=6\lambda\\ \Rightarrow y=6\lambda-1\\ \\ Take \frac{z+1}{2}=\lambda$
$\Rightarrow z+1=2\lambda\\ \Rightarrow z=2\lambda-1\\ \\$
This implies that any point on the line L1 is (4λ, 6λ – 1, 2λ – 1).
The equation of the line passing through points C (3, 9, 4) and D (-4, 4, 4) is:
$\frac{x-3}{-4-3}=\frac{y-9}{4-9}=\frac{z-4}{4-4}$
, where x1 = 3, y1 = 9, z1 = 4; and x2 = -4, y2 = 4, z2 = 4
$\frac{x-3}{-7}=\frac{y-9}{-5}=\frac{z-4}{0}$
Let
$L_{2}:\frac{x-3}{-7}=\frac{\left (y-9 \right )}{-5}=\frac{z-4}{0}=\mu$
$\Rightarrow \frac{x-3}{-7}=\mu,\frac{\left (y-9 \right )}{-5}=\mu,\frac{z-4}{0}=\mu$
We must find the values of x, y, and z. Therefore,
$Take \, \frac{x-3}{-7}=\mu\\ \Rightarrow x-3=-7\mu$
$ \Rightarrow x=-7\mu+3\\ \\ Take \,\frac{\left (y-9 \right )}{-5}=\mu $
$\Rightarrow y-9=-5\mu\\ \Rightarrow y=-5\mu+9\\ \\ Take\frac{z-4}{0}=\mu$
$ \Rightarrow z-4=0\\ \Rightarrow z=4$
This implies that any point on line L2 is (-7μ +3, -5μ + 9, 4).
If the lines intersect, then there must exist a value of λ and for μ, for which
$\left (4\lambda, 6\lambda - 1, 2\lambda -1\right) \equiv \left(-7\mu + 3, -5\mu + 9, 4\right )$
$ \Rightarrow 4\lambda = -7\mu + 3...(i)\\ 6\lambda - 1 = -5\mu + 9..(ii)\\ 2\lambda - 1 = 4 (iii)\\$
From equation (iii), we get
$2\lambda - 1 = 4 \\ \Rightarrow 2\lambda=4+1\\ \Rightarrow 2\lambda=5$
$ \Rightarrow \lambda=\frac{5}{2}$
Substituting the value of λ in equation (i),
$4\left ( \frac{5}{2} \right )=-7\mu+3\\ \Rightarrow 2 \times 5=-7\mu+3$
$\Rightarrow 10=-7\mu+3\\ \Rightarrow 7\mu=3-10\\ \Rightarrow 7\mu=-7$
$ \Rightarrow -\frac{7}{7}\\ \Rightarrow \mu=-1$
Substituting these values of λ and μ in equation (ii),
$6\left ( \frac{5}{2} \right )-1=-5\left ( -1 \right )+9$
$\Rightarrow 3 \times 5 - 1 = 5 + 9$
$\Rightarrow 15 - 1 = 14\\ \Rightarrow 14 = 14$
Since the values of λ and μ satisfy eq (ii), the lines intersect.
Hence, proved that the line through A and B intersects the line through C and D.
Question:6
Answer:
Given: x = py + q, z = ry + s, and x = p’y + q’, z = r’y + s’ are perpendicular.
To Prove: pp’ + rr’ + 1 = 0.
Proof:
Let us take x = py + q and z = ry + s.
From x = py + q;
py = x - q
$\Rightarrow y=\frac{x-q}{p}$
From z = ry + s;
ry = z - s
$\Rightarrow y=\frac{z-s}{r}$
So, $\frac{x-q}{p}=y=\frac{z-s}{r}$
$\frac{x-q}{p}=\frac{y}{1}=\frac{z-s}{r}$ Or, … (i)
Now, if we take x = p’y + q’ and z = r’y + s’
From x = p’y + q’;
p’y = x - q’
$\Rightarrow y=\frac{x-{q}'}{{p}'}$
From z = r’y + s’;
r’y = z - s’
$\Rightarrow y=\frac{z-{s}'}{{r}'}$
So,
$\frac{x-{q}'}{{p}'}=y=\frac{z-{s}'}{{r}'}$
Or,
$L_{2}:\frac{x-{q}'}{{p}'}=\frac{y}{1}=\frac{z-{s}'}{{r}'}.......(ii)$
From (i),
Line L1 is parallel to $p\hat{i}+\hat{j}+r\hat{k}$ (from the denominators of the equation (i))
From (ii),
Line L2 is parallel to ${p}'\hat{i}+\hat{j}+{r}'\hat{k}$ (from the denominators of the equation (ii))
According to the question, L1 and L2 are perpendicular.
Therefore, the dot product of the vectors should equate to 0.
Or,
$\left (p\hat{i}+\hat{j}+r\hat{k} \right ).\left ({p}'\hat{i}+\hat{j}+{r}'\hat{k} \right )\\ \Rightarrow p{p}'+1+r{r}'=0$
(since, in vector dot product, $\left (x\hat{i}+y\hat{j}+z\hat{k} \right )\left ({x}'\hat{i}+{y}'\hat{j}+{z}'\hat{k} \right )= x{x}'+y{y}'+z{z}'=0$
Or,
$p{p}'+r{r}'+1=0$
Therefore, the lines are perpendicular if pp’ + rr’ + 1 = 0.
Question:7
Answer:
Given, there exists a plane which perpendicularly bisects the line joining A (2, 3, 4) and B (4, 5, 8) at right angles. We must find the equation of this plane.
First, let us find the midpoint of AB.
Since the midpoint of any line is halfway between the two end points,
$Midpoint \: of \: AB=\left ( \frac{2+4}{2},\frac{3+5}{2},\frac{4+8}{2} \right )$
$Midpoint \: of \: AB=\left ( \frac{6}{2},\frac{8}{2},\frac{12}{2} \right )$
= (3, 4, 6).
We can represent this as a position vector, $\vec{a}=3\hat{i}+4\hat{j}+6\hat{k}$
Next, we must find the normal of the plane, $\vec{n}$
$\vec{n}=\left ( 4-2 \right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 8-4 \right )\hat{k}\\ \Rightarrow \vec{n}=2\hat{i}+2\hat{j}+4\hat{k}$
We know, the equation of the plane which perpendicularly bisects the line joining two given points is
$\left ( \vec{r}-\vec{a} \right )\vec{n}=0$
Where,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$
Substituting the values in the above equation,
$\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right ) -\left (3\hat{i}+4\hat{j}+6\hat{k} \right ) \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0$
$ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-4\hat{j}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0$
$\Rightarrow \left ( x\hat{i}-3\hat{i}+y\hat{j}-4\hat{j}+z\hat{k}-6\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0$
$\Rightarrow \left ( (x-3)\hat{i}+(y-4)\hat{j}+(z-6)\hat{k} \right ).\left (2\hat{i}+2\hat{j}+4\hat{k} \right )=0$
$\Rightarrow 2\left ( x-3 \right )+2(y-4)+4(z-6)=0$
Upon further simplification,
$\Rightarrow 2x-6+2y-8+4z-24=0$
$\Rightarrow 2x+2y+4z-6-8-24=0$
$\Rightarrow 2x+2y+4z-38=0$
$\Rightarrow 2\left ( x+y+2z-19 \right )=0$
$\Rightarrow x+y+2z-19=0\\ \Rightarrow x+y+2z=19$
Therefore, the required equation of the plane is x + y + 2z = 19.
Question:8
Answer:
Given, the plane is at a distance of $3\sqrt{3}$ from the origin, and the normal is equally inclined to coordinate axes.
We need to find the equation of this plane.
We know, the vector equation of a plane located at a distance d from the origin is represented by:
$\vec{r}.\hat{n}=d\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( l\hat{i}+m\hat{j}+n\hat{k} \right )=d$
lx + my + nz = d ….(i) , where l, m and n are the direction cosines of the normal of the plane.
Since the normal is equally inclined to the coordinate axes,
$l = m = n \\ \cos \alpha =\cos\beta =\cos \gamma(ii)$
Also, we know,
$\cos^{2} \alpha =\cos^{2}\beta =\cos^{2} \gamma=1$
$\Rightarrow \cos^{2} \alpha =\cos^{2}\alpha =\cos^{2} \alpha =1 \: \: \left ( from(ii) \right )$
$\Rightarrow 3\cos^{2}\alpha=1$
$\Rightarrow \cos^{2}\alpha=\frac{1}{3}$
$\Rightarrow \cos \alpha =\frac{1}{\sqrt{3}}$
This means, $l=m=n =\frac{1}{\sqrt{3}}$
if we substitute the values of l, m and n in equation (i),
$\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=d\: \: \left [where\: d=3\sqrt{3} \right ]$
So,
$\left (\frac{1}{\sqrt{3}} \right )x+\left (\frac{1}{\sqrt{3}} \right )y+\left (\frac{1}{\sqrt{3}} \right )z=3\sqrt{3}$
$ \Rightarrow \frac{x+y+z}{\sqrt{3}}=3\sqrt{3}$
$\Rightarrow x+y+z=3\sqrt{3}\times \sqrt{3}$
$\Rightarrow x+y+z=3 \times 3=9$
Therefore, the required equation of the plane is x + y + z = 9.
Question:9
Answer:
Given: the line drawn from point (-2, -1, -3) meets a plane at 900 at the point (1, -3, 3). We must find the equation of the plane.
Any line perpendicular to the plane is the normal.
Let the points be P (-2, -1, -3) and Q (1, -3, 3), then the line PQ is a normal to the plane.
Hence, PQ = (1 + 2, -3 + 1, 3 + 3)=> PQ = (3, -2, 6)
=> Normal to the plane = $\vec{PQ}$
$\vec{PQ}=3\hat{i}-2\hat{j}+6\hat{k}$
The vector equation of a plane is represented by $\left (\vec{r}-\vec{a} \right ).\vec{n}=0$
Putting the obtained values in this equation,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=\hat{i}-3\hat{j}+3\hat{k}\\ \vec{n}=3\hat{i}-2\hat{j}+6\hat{k}$
We get,
$\Rightarrow \left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (\hat{i}-3\hat{j}+3\hat{k} \right ) \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0$
$\Rightarrow \left ( x\hat{i}-y\hat{j}+z\hat{k}-\hat{i}+3\hat{j}-3\hat{k} \right ).\left ( 3\hat{i}-2\hat{j}+6\hat{k} \right )=0$
$ \Rightarrow \left ( x\hat{i}-\hat{i}+y\hat{j}+3\hat{j}+z\hat{k}-3\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0$
$\Rightarrow \left ((x-1)\hat{i}+(y+3)\hat{j}+(z-3)\hat{k} \right ).\left (3\hat{i}-2\hat{j}+6\hat{k} \right )=0$
$\Rightarrow 3(x - 1) + (-2)(y + 3) + 6(z - 3) = 0$
$ \Rightarrow3(x - 1) - 2(y + 3) + 6(z - 3) = 0\\ \Rightarrow 3x- 3 -2y - 6 + 6z - 18 = 0$
$ \Rightarrow 3x - 2y +6z - 3 - 6 - 18 = 0$
$ \Rightarrow 3x - 2y + 6z - 9 - 18 = 0\\ \Rightarrow 3x - 2y + 6z - 27 = 0$
$ \Rightarrow 3x - 2y + 6z = 27$
Therefore, the required equation of the plane is 3x - 2y + 6z = 27.
Question:10
Find the equation of the plane through the points (2, 1, 0), (3, -2, -2) and (3, 1, 7).
Answer:
Given points are (2, 1, 0), (3, -2, -2), and (3, 1, 7).
We know, equation of a line passing through 3 non-collinear points (x1 , y1 , z1 ), (x2 , y2 , z2 ) and (x3 , y3 , z3 ) is given as:
$\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}=0$
Where, (x1 , y1 , z1 ) = (2, 1, 0)
(x2 , y2 , z2 ) = (3, -2, -2)
(x3 , y3 , z3 ) = (3, 1, 7)
Therefore, x1 = 2, y1 = 1, z1 = 0; x2 = 3, y2 = -2, z2 = -2; x3 = 3, y3 = 1, z3 = 7
Substituting these values in the line equation,
$\begin{vmatrix} x-2 &y-1 &z-0 \\ 3-2&-2-1 &-2-0 \\ 3-2&1-1 &7-0 \end{vmatrix}=0\\ \\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=0$
$\\ \\ \begin{vmatrix} x-2 &y-1 &z-0 \\ 1&-3 &-2 \\ 1&0 &7 \end{vmatrix}=\left ( x-2 \right )\left ( \left ( -3 \times 7 \right )-\left ( -2 \times 0 \right ) \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21-0 \right )-\left ( y-1 \right )\left ( 7-(-2) \right )+z\left ( 0-(-3) \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=\left ( x-2 \right )\left ( -21 \right )-\left ( y-1 \right )\left ( 7+2 \right )+z\left ( 0+3 \right )$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21\left ( x-2 \right )-9\left ( y-1 \right )+3z$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x+42-9y+9+3z$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+42+9$
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=-21x-9y+3z+51$
Now, since
$\begin{vmatrix} x-2 & y-1 &z \\ 1& -3& -2\\ 1& 0& 7 \end{vmatrix}=0$
$\Rightarrow -21x -9y + 3z + 51 = 0$
$\Rightarrow -21x - 9y + 3z = -51$
$\Rightarrow -3(7x + 3y - z) = -3 \times 17$
$\Rightarrow 7x + 3y - z = 17$
Hence, the required equation of the plane is 7x + 3y - z = 17.
Question:11
Answer:
Given the equation of the line, we need to find the equations of two lines through the origin which intersect the given line.
According to the theorem, equation of a line with direction ratios d1 = (b1 , b2 , b3 ) that passes through the point (x1 , y1 , z1 ) is expressed as:
$\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}$
We also know, the angle between two lines with direction ratios d1 and d2 respectively is given by:
$\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )$
We use these theorems to find the equations of the two lines.
Let the equation of a line be:
$\theta = \cos^{-1}\left ( \frac{d_{1}d_{2}}{\left |d_{1} \right |\left |d_{2} \right |} \right )$
Given that it passes through the origin, (0, 0, 0)
Therefore, equation of both lines passing through the origin will be :
$\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda \, \, .....(i)$
Let,
$\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}=\mu \, \, .....(ii)$
Direction ratio of the line = (2, 1, 1)
$\Rightarrow d_{1} = (2, 1, 1).... (iii)$
If we represent the direction ratio in terms of a position vector,
$d_{1}=2\hat{i}+\hat{j}+\hat{k} .....(iv)$
Any point on the line is given by (x, y, z). From (ii),
$\frac{x-3}{2}=\mu, \frac{y-3}{1}=\mu ,\frac{z}{1}=\mu$
$\\\text{take} \ \frac{x-3}{2}=\mu\\ \Rightarrow x-3=2\mu$
$\Rightarrow x=2\mu+3\\ \\ take \frac{y-3}{1}=\mu $
$ \Rightarrow y-3=\mu\\ \Rightarrow y=\mu+3\\ \\ take \frac{z}{1}=\mu$
$\Rightarrow z=\mu$
Hence, any point on line (ii) is $P(2\mu + 3, \mu + 3, \mu)$
Since line (i) passes through the origin, we can say
$\left ( b_{1},b_{2},b_{3} \right )\equiv (2\mu + 3, \mu + 3, \mu)$
$\Rightarrow \: direction\: \: ratio\: of\; line(i)= (2\mu + 3, \mu + 3, \mu)$
$ \Rightarrow d_{2}= (2\mu + 3, \mu + 3, \mu)....(v)$
We can represent the direction ratio in terms of position vector like:
$d_{2}= \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \: \: ....(vi)$
From the theorem, we know
$\cos \theta=\frac{d_{1}.d_{2}}{\left |d_{1} \right |\left |d_{2} \right |}$
If we substitute the values of d? and d? from (iv) and (vi) in the above equation, and putting $\theta=\frac{\pi}{3}$ from the question:
$\Rightarrow \cos \frac{\pi}{3}=\frac{\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )}{\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |}$
Solving the numerator,
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 2\left (2\mu + 3 \right )+1\left ( \mu + 3 \right )+1. \mu$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu + 6+\mu + 3+ \mu$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 4\mu +\mu + \mu+6+3$
$\left ( 2\hat{i}+\hat{j}+\hat{k} \right )\left ( \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right )= 6\mu+9$
Solving the denominator,
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{2^{2}+1^{2}+1^{2}}\sqrt{ \left (2\mu + 3 \right )^{2}+\left ( \mu + 3 \right )^{2}+ \mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{4+1+1}\sqrt{ \left (2\mu \right )^{2}+ 3^{2}+2\left ( 2\mu \right )\left ( 3 \right )+\left ( \mu \right )^{2}+3^{2}+ 2(\mu)(3)+\mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{6}\sqrt{4\mu^{2}+9+12\mu+u^{2}+9+6\mu+\mu^{2}}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{6}\sqrt{4\mu^{2}+u^{2}+\mu^{2}+12\mu+6\mu+9+9}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{6}\sqrt{6\mu^{2}+18\mu+18}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{6}\sqrt{6\left (\mu^{2}+3\mu+3 \right )}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |$
$=\sqrt{6}\sqrt{6}\sqrt{\mu^{2}+3\mu+3}$
$\left | 2\hat{i}+\hat{j}+\hat{k} \right |\left | \left (2\mu + 3 \right )\hat{i}+\left ( \mu + 3 \right )\hat{j}+ \mu\hat{k} \right |=6\sqrt{\mu^{2}+3\mu+3 }$
And cos π/3 = 1/2
Substituting the values, we get
$\Rightarrow \frac{1}{2}=\frac{6\mu+9}{6\sqrt{\mu^{2}+3\mu+3}}$
Performing cross multiplication,
$\Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2\left (6\mu+9 \right )$
$\Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=2 \times 3\left (2\mu+3 \right )$
$\Rightarrow 6\sqrt{\mu^{2}+3\mu+3}=6\left (2\mu+3 \right )$
$\Rightarrow \sqrt{\mu^{2}+3\mu+3}=2\mu+3$
Squaring both sides,
$\Rightarrow \left (\sqrt{\mu^{2}+3\mu+3} \right )^{2}=\left (2\mu+3 \right )^{2}$
$\Rightarrow \mu^{2}+3\mu+3=(2\mu)^{2}+3^{2}+2(2\mu)(3)\left [ \because (a+b)^{2}=a^{2}+b^{2}+2ab \right ]$
$\Rightarrow \mu^{2}+3\mu+3=4\mu^{2}+9+12\mu$
$\Rightarrow 4\mu^{2}-\mu^{2}+12\mu-3\mu+9-3=0$
$\Rightarrow 3\mu^{2}+9\mu+6=0$
$\Rightarrow 3\left ( \mu^{2}+3\mu+2 \right ) =0$
$\Rightarrow \mu^{2}+3\mu+2=0\\ \Rightarrow\mu^{2}+2\mu+\mu+2=0$
$\Rightarrow \mu\left ( \mu+2 \right )+\left ( \mu+2 \right )=0$
$\Rightarrow \left ( \mu+1 \right )+\left ( \mu+2 \right )=0\\$
$\Rightarrow \left ( \mu+1 \right )=0 \: \: or\: \left ( \mu+2 \right )=0$
$\Rightarrow \mu=-1 \: \: \: or\: \: \: \mu=-2$
Therefore, from equation (v)
Direction ratio =$(2\mu+ 3, \mu + 3, \mu)$
Putting μ = -1:
Direction Ratio = (2(-1) + 3, (-1) + 3, -1)
⇒ Direction Ratio = (-2 + 3, -1 + 3, -1)
⇒ Direction Ratio = (1, 2, -1) …(vi)
Now putting μ = -2:
Direction Ratio = (2(-2) + 3, (-2) + 3, -2)
⇒ Direction Ratio = (-4 + 3, -2 + 3, -2)
⇒ Direction Ratio = (-1, 1, -2) …(vii)
Using the direction ratios in (vi) and (vii) in equation (i);
$\frac{x}{b_{1}}=\frac{y}{b_{2}}=\frac{z}{b_{3}}=\lambda\\ \\ \\ \frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda$
And,
$\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda$
Therefore, the two required lines are $\frac{x}{1}=\frac{y}{2}=\frac{z}{-1}=\lambda$ and $\frac{x}{-1}=\frac{y}{1}=\frac{z}{-2}=\lambda$
Question:12
Answer:
Given, two lines whose direction cosines are l + m + n = 0 - (i); and l² + m² - n² = 0 - (ii). We need to find the angle between these lines.
First, we must find the values of l, m and n.
From equation (i), l + m + n = 0
=> n = - l - m
=> n = -(l + m) …(iii)
If we substitute the value of n from (i) in (ii),
$l^{2}+m^{2}-n^{2}=0\\ \Rightarrow l^{2}+m^{2}-\left (-\left ( l+m \right ) \right )^{2}=0$
$ \Rightarrow l^{2}+m^{2}-\left ( l+m \right ) ^{2}=0$
$ \Rightarrow l^{2}+m^{2}-\left ( l^{2}+m^{2}+2lm \right )=0\\ \Rightarrow l^{2}+m^{2} -l^{2}-m^{2}-2lm=0$
$ \Rightarrow l^{2}-l^{2}+m^{2}-m^{2}-2lm=0$
$ \Rightarrow -2lm=0\\ \Rightarrow lm=0$
⇒ l = 0 or m = 0
Putting l = 0 in equation (i),
=> 0 + m + n = 0
=> m + n = 0
=> m = -n
If m = $\lambda$, then
n = -m = -$\lambda$
Hence, direction ratios (l, m, n) = (0, $\lambda$, -$\lambda$)
=> Position vector parallel to these given lines = $0\hat{i}+\lambda\hat{j}-\lambda \hat{k}$
$\Rightarrow d_{1}=\lambda\hat{j}-\lambda \hat{k}$
Now, putting m = 0 in equation (i),
=> l + 0 + n = 0
=> l + n = 0
=> l = -n
If n = $\lambda$, then
l = -n = -$\lambda$
Hence, direction ratios (l, m, n) = (-$\lambda$, 0, $\lambda$)
=> Position vector parallel to these given lines = $-\lambda \hat{i}+0\hat{j}+\lambda \hat{k}$
$\Rightarrow d_{2}=-\lambda\hat{i}+\lambda \hat{k}$
From the theorem, we get the angle between the two lines whose direction ratios are d1 and d2 as:
$\theta=\cos^{-1}\left ( \frac{\left | d_{1}.d_{2} \right |}{\left | d_{1}\right |\left |d_{2} \right |} \right )$
If we substitute the values of d1 and d2, we get
$\theta=\cos^{-1}\left ( \frac{\left| \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |}{\left | \left ( \lambda \hat{j}-\lambda \hat{k} \right )\right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |} \right )$
Solving the numerator,
$\left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right ) =0+0+\left ( -\lambda \right )\left ( \lambda \right )\\ \Rightarrow \left ( \lambda \hat{j}-\lambda \hat{k} \right )\left (- \lambda \hat{i}+\lambda \hat{k} \right )= -\lambda^{2}$
Solving the denominator,
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}\left (-\lambda \right )^{2}} \sqrt{\left (- \lambda \right )^{2}+\lambda ^{2}}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=\sqrt{ \lambda ^{2}+\lambda^{2}} \sqrt{ \lambda^{2}+\lambda ^{2}}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |= \lambda ^{2}+\lambda^{2}$
$\left |\left ( \lambda \hat{j}-\lambda \hat{k} \right ) \right |\left |\left (- \lambda \hat{i}+\lambda \hat{k} \right ) \right |=2 \lambda ^{2}$
Substituting the values in θ,
$\theta=\cos^{-1}\left ( \frac{\left | -\lambda^{2} \right |}{\lambda^{2}} \right )\\ \Rightarrow \theta=\cos^{-1}=\frac{1}{2}\\ \Rightarrow \theta=\frac{\pi}{3}\left [ \because \cos\frac{\pi}{3}=\frac{1}{2} \right ]$
Therefore, the required angle between the lines is π/3.
Question:13
Answer:
Given: direction cosines of a variable line in two adjacent positions are l, m, n and $l+\delta l, m+\delta m,n+\delta n,$
We have to prove that the small angle $\delta \theta$ between the two positions is given by $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$
We know, the relationships between direction cosines is given as
$l^{2}+ m^{2}+ n^{2}=1 ....(1)$
Also, $\left (l+\delta l \right )^{2}+ \left (m+\delta m \right )^{2}+ \left (n+\delta n \right )^{2}=1$
$\Rightarrow l^{2}+(\delta l)^{2}+2(l)(\delta l)+m^{2}+(\delta m)^{2}+2(m)(\delta m)+n^{2}+(\delta n)^{2}+2(n)(\delta n)=1$
$ \Rightarrow l^{2}+m^{2}+n^{2}+\left (\delta l \right )^{2}+\left (\delta m \right )^{2}+\left (\delta n \right )^{2}+2l\delta l+2m\delta m+2n\delta n=1$
$\Rightarrow 1+\delta l^{2}+\delta m^{2}+ \delta n^{2}+2l\delta l+2m\delta m+2n\delta n=1\: \: \: \left [ from (i) \right ] $
$ \Rightarrow 2l\delta l+2m\delta m+2n\delta n+\delta l^{2}+\delta m^{2}+ \delta n^{2}=1-1 $
$ \Rightarrow 2 \left (l\delta l+m\delta m+n\delta n \right )=-\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right )$
$ \Rightarrow l\delta l+m\delta m+n\delta n =-\frac{1}{2}\left (\delta l^{2}+\delta m^{2}+ \delta n^{2} \right ).......(iii)$
Let
$\vec{a}=l\hat{i}+m\hat{j}+n\hat{k}$
$ \Rightarrow \vec{b}=\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k}$
We know, angle between two lines = $\cos \theta=\vec{a}. \vec{b}$
Here, the angle is very small because the line is variable in different although adjacent positions. According to the question, this small angle is $\delta \theta$
Therefore,
$\cos \delta \theta=\vec{a}. \vec{b}$
Substituting the values of the two vectors, we get
$\Rightarrow \cos \delta \theta = \left (l\hat{i}+m\hat{j}+n\hat{k} \right ).\left (\left ( l+\delta l \right )\hat{i}+\left ( m+\delta m \right )\hat{j}+\left ( n+\delta n \right )\hat{k} \right )$
The dot product of 2 vectors is calculated by obtaining the sum of the product of the coefficients of $\hat{i},\hat{j}\; and \; \hat{k}$
$\Rightarrow \cos \delta \theta =l \left ( l+\delta l \right )+m \left ( m+\delta m \right )+n \left ( n+\delta n \right )$
$ \Rightarrow \cos \delta \theta = l^{2}+l \delta l+m^{2}+m \delta m+n^{2}+n \delta n$
$ \Rightarrow \cos \delta \theta =l^{2}+m^{2}+n^{2}+l \delta l+m \delta m+n \delta n$
$ \Rightarrow \cos \delta \theta =1+l \delta l+m \delta m+n \delta n\: \: \left [ from(i) \right ]$
$\Rightarrow \cos \delta \theta=1-\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )\: \: \: \: \left [ \because from(ii) \right ]$
$ \Rightarrow \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )=1-\cos \delta \theta$
Or,
$\Rightarrow 1-\cos \delta \theta= \frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )$
We know, $1 -\cos 2 \theta = 2\sin^{2} \theta$
On the left-hand side, the angle is $2 \theta$. On the right hand side, it becomes half, that is, $\frac{ 2 \theta}{2} =\theta$.
Similarly replacing $2 \theta$ by $\delta \theta$ in LHS, then making the angle on the RHS half,
We get:
$1 -\cos \delta \theta = 2\sin^{2} \frac{\delta \theta}{2}$
$\Rightarrow 2\sin^{2} \frac{\delta \theta}{2}=\frac{1}{2}\left ( \delta l^{2}+\delta m^{2}+\delta n^{2} \right )$
$ \Rightarrow 2 \times 2\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} $
$\Rightarrow 4\sin^{2} \frac{\delta \theta}{2}= \delta l^{2}+\delta m^{2}+\delta n^{2} $
$ \Rightarrow 4\left ( \sin \frac{\delta \theta}{2} \right )^{2}= \delta l^{2}+\delta m^{2}+\delta n^{2}$
Since $\delta \theta$ is a very small angle, $\frac{\delta \theta}{2}$ will be much smaller. Hence $\sin \frac{\delta \theta}{2}$ will also be very small in value.
$\Rightarrow \sin \frac{\delta \theta}{2}=\frac{\delta \theta}{2}$
$ \Rightarrow 4\left ( \frac{\delta \theta}{2} \right )^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}\\ \Rightarrow 4 \frac{\delta \theta^{2}}{4} =\delta l^{2}+\delta m^{2}+\delta n^{2}$
$ \Rightarrow \delta \theta^{2} =\delta l^{2}+\delta m^{2}+\delta n^{2}\\$
Hence, proved.
Question:14
Answer:
We have the points O (0, 0, 0) and A (a, b, c) where a, b, and c are direction ratios. We need to find the direction cosines of line OA and the equation of the plane through A at right angle to OA.
To begin with,
$\vec{OA}=Position\: vector\: of\: A-Position\: vector\: of\:O$
$ \Rightarrow \vec{OA}=\left ( a\hat{i}+b\hat{j}+c\hat{k} \right )-\left ( 0\hat{i}+0\hat{j}+0\hat{k} \right ) $
$\Rightarrow \vec{OA}= a\hat{i}-0\hat{i}+b\hat{j}-0\hat{j}+c\hat{k}-0\hat{k}$
$ \Rightarrow \vec{OA}= a\hat{i}+b\hat{j}+c\hat{k}$
We know, if (a, b, c) are the direction ratios of a given vector, then its direction cosines will be:
$\left( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )$
According to the question, the direction ratios are (a, b, c), therefore the direction cosines of the vector OA are the same as the above formula, that is,
$\left ( \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \right )$
Given, the plane is perpendicular to OA. We know, a normal is a line or vector which is perpendicular to a given object. Therefore, we can say:
$\vec{n}=\vec{OA}\\ \Rightarrow \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\ \left [ \because \vec{OA}=a\hat{i}+b\hat{j}+c\hat{k} \right ]$
Also, the vector equation of a plane where the normal is passing through the plane and passing through is,
$\left ( \vec{r}-\vec{a} \right ).\vec{n}=0$
Where
$\vec{r}-\vec{a} = vector\: from\: \vec{A}\: to\: \vec{R} \\ \vec{a}=Position\: vector\: of\: the\: given\: point\: in\: the\: plane\\ \vec{n}$
$=normal\: vector\: to\: the\: plane$
Here, the given point in the plane is A (a, b, c).
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\ \vec{a}=a\hat{i}+b\hat{j}+c\hat{k}\\ \vec{n}=a\hat{i}+b\hat{j}+c\hat{k}\\$
Substituting the vectors respectively, we get:
$\left (\left (x\hat{i}+y\hat{j}+z\hat{k} \right )-\left (a\hat{i}+b\hat{j}+c\hat{k} \right ) \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0$
$\Rightarrow \left (x\hat{i}+y\hat{j}+z\hat{k} -a\hat{i}-b\hat{j}-c\hat{k} \right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0$
$ \Rightarrow \left (\left (x-a \right )\hat{i}+\left (y-b \right )\hat{j}+\left (z-c \right )\hat{k}\right ).\left (a\hat{i}+b\hat{j}+c\hat{k} \right )=0$
$\Rightarrow a\left (x-a \right )+b\left (y-b \right )+c\left (z-c \right )=0\\$
Upon simplifying this, we get:
$\Rightarrow ax - a^{2} + by-b^{2} + cz - c^{2} =0$
$\Rightarrow ax + by + cz - a^{2}-b^{2}- c^{2} =0$
$ \Rightarrow a^{2}+b^{2}+ c^{2} =ax + by + cz$
Hence, the required equation of the plane is a² + b² + c² = ax + by + cz.
Question:15
Answer:
Given, we have 2 systems of rectangular axes. Both the systems have the same origin, and there is a plane that cuts both systems.
One system is cut at a distance of a, b, c.
The other system is cut at a distance of a’, b’, c’.
To prove:
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}$
Proof: Since a plane intersects both the systems at distances a, b, c, and a’, b’, c’ respectively, this plane will have different equations in the two different systems.
Let us consider the equation of the plane in the system with distances a, b, c to be:
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Let us consider the equation of the plane in the system with distances a’, b’, c’ be:
$\frac{x}{a'}+\frac{y}{b'}+\frac{z}{c'}=1$
According to the question, the plane cuts both the systems from the origin. We know, the perpendicular distance of a plane $ax + by + cz + d =0$ from the origin is given by:
$\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |$
(where not all a, b, and c are zero)
Therefore, the perpendicular distance from the origin of the first plane is:
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |$
And, the perpendicular distance from the origin of the second plane:
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |$
We also know, if two systems of lines have the same origin, their perpendicular distances from the origin to the plane in both systems are equal.
Therefore,
$\left | \frac{-1}{\sqrt{\left (\frac{1}{a} \right )^{2}+\left (\frac{1}{b} \right )^{2}+\left (\frac{1}{c} \right )^{2}}} \right |=\left | \frac{-1}{\sqrt{\left (\frac{1}{a'} \right )^{2}+\left (\frac{1}{b'} \right )^{2}+\left (\frac{1}{c'} \right )^{2}}} \right |$
$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} =\frac{1}{\sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}}$
Cross-multiplying,
$\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
Squaring both sides,
$\Rightarrow \sqrt{\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}$
$\Rightarrow \frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$
Or
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}+\frac{1}{c'^{2}}$
Hence, proved.
Answer:
Given, the perpendicular from the point (let) C (2, 3, -8) to the line of which the equation is,
$\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$
This can be re-written as,
$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}$
Hence, the vector equation of the line is, $-2\hat{i}+6\hat{j}-3\hat{k}$
We must find the foot of the perpendicular from the point C (2, 3, -8) to given line, as well as the perpendicular distance from the given point C to the line.
To start with, let us locate the point of intersection between the point and the line.
Let us take,
$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}=\lambda$
$\frac{x-4}{-2}=\lambda,\frac{y}{6}=\lambda,\frac{z-1}{-3}=\lambda$
$from\frac{x-4}{-2}=\lambda\\\Rightarrow x-4=-2\lambda $
$\Rightarrow x=4-2\lambda\\ \\ from \frac{y}{6}=\lambda\\ \Rightarrow y=6\lambda\\ \\ from \frac{z-1}{-3}=\lambda$
$ \Rightarrow z-1=-3\lambda\\\Rightarrow z=1-3\lambda$
We have,$x = 4 - 2\lambda , y = 6\lambda, z = 1 - 3\lambda$
Therefore, the coordinates of any point on the given line is $\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$
Let us consider the foot of the perpendicular from C(2, 3, -8) on line to be$L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$
Therefore, the direction ratios of $CL\left ( 4 - 2\lambda-2 , 6\lambda-3, 1 - 3\lambda-(-8) \right )$
$=\left ( 4 - 2\lambda-2 , 6\lambda-3, 1+8 - 3\lambda \right )\\ =\left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right )$
Also, the direction ratio of the line is,$\frac{x-4}{-2}=\frac{y}{6}=\frac{z-1}{-3}$ (-2, 6, -3).
Since L is the foot of the perpendicular on the line,
Sum of the product of these direction ratios $\left ( 2-2\lambda , 6\lambda-3, 9 - 3\lambda \right )$ and (-2, 6, -3) = 0.
$-2\left ( 2-2\lambda\right ) +6\left (6\lambda-3 \right )+(-3)\left ( 9 - 3\lambda \right )$
$\Rightarrow -4+4\lambda+36\lambda-18-27+9\lambda=0\\ \Rightarrow \left ( 4\lambda+36\lambda+9\lambda \right )+\left ( -4-18-27 \right )=0$
$\Rightarrow 49\lambda-49=0\\ \Rightarrow 49\lambda=49$
$\Rightarrow \lambda= \frac{49}{49}\\Hence \: \: \lambda=1$
If we substitute this value of λ in $L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )$, we get
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2(1), 6(1), 1 - 3(1))$
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(4 - 2, 6, 1 - 3)$
$\Rightarrow L\left ( 4 - 2\lambda , 6\lambda, 1 - 3\lambda \right )=L(2, 6, -2)$
Now, we must calculate the perpendicular distance of point C from the line, that is point L.
In other words, we need to find $\left | \vec{CL} \right |$
We know, $\vec{CL} =\left ( 2-2\lambda,6\lambda-3,9-3\lambda \right )$
Substituting λ = 1,
$\vec{CL} =\left ( 2-2(1),6(1)-3,9-3(1) \right )\\ \Rightarrow \vec{CL} =\left ( 2-2,6-3,9-3 \right )$
$\Rightarrow \vec{CL} =\left ( 0,3,6 \right )$
To find $\left | \vec{CL} \right |$
$\left | \vec{CL} \right |=\sqrt{0^{2}+3^{2}+6^{2}}$
$ \Rightarrow \left | \vec{CL} \right |=\sqrt{0+9+36} \Rightarrow \left | \vec{CL} \right |=\sqrt{45}$
$ \Rightarrow \left | \vec{CL} \right |=3\sqrt{5}$
Therefore, the foot of the perpendicular from the point C to the given line is (2, 6, -2) and the perpendicular distance is $3\sqrt{5}$ units.
Question: 17 Find the distance of a point (2, 4, -1) from the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$
Answer:
Given, the point P (2, 4, -1), the equation of the line is $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$
We must find the distance of point P from this line.
Note, to find the distance between a point and a line, we should get foot of the perpendicular from the point on the line.
Let, P(2, 4, -1) be the given point and be $L:\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda$ the given line.
Direction ratio of the line L is (1, 4, -9) …(i)
Let us find any point on this line.
Taking L,
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}=\lambda$
$\frac{x+5}{1}=\lambda,\frac{y+3}{4}=\lambda,\frac{z-6}{-9}=\lambda$
$Take \frac{x+5}{1}=\lambda\\ \Rightarrow x+5=\lambda$
$ \Rightarrow x=\lambda - 5\\\\ Take \frac{y+3}{4}=\lambda\\ \Rightarrow y+3=4\lambda$
$ \Rightarrow y=4\lambda-3\\ \\ Take \frac{z-6}{-9}=\lambda$
$ \Rightarrow z-6=-9\lambda\\ \Rightarrow z=6-9\lambda$
Therefore, any point on the line L is $(\lambda - 5, 4\lambda - 3, 6 - 9\lambda)$
Let this point be $Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda)$, the foot of the perpendicular from the point P (2, 4, -1) on the line L.
Hence, the direction ratio of PQ is given by
$(\lambda - 5-2, 4\lambda - 3-4, 6 - 9\lambda-(-1))$
=> Direction ratio of PQ= $(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$ …(ii)
Also, we know, if two lines are perpendicular to each other, then the dot product of their direction ratios should be 0.
Here, PQ is perpendicular to L. We have, from (i) and (ii),
Direction ratio of L = (1, 4, -9)
Direction ratio of PQ = $(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$
Therefore,
$(1, 4, -9).(\lambda - 7, 4\lambda - 7, 7 - 9\lambda) = 0\\ \Rightarrow 1 (\lambda- 7) + 4 (4\lambda - 7) + (-9) (7 - 9\lambda) = 0$
$ \Rightarrow \lambda - 7 + 16\lambda - 28 -63 + 81\lambda = 0\\ \Rightarrow \lambda + 16\lambda + 81\lambda - 7 - 28- 63 = 0$
$ \Rightarrow 98\lambda - 98 = 0\\ \Rightarrow 98\lambda = 98\\ \Rightarrow \lambda = 1$
Hence, the coordinate of Q, i.e. the foot of the perpendicular from the point on the given line is,
$Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4(1) - 3, 6 - 9)$
$ \Rightarrow Q (\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = Q (1 - 5, 4 - 3, 6 - 9)$
$ \Rightarrow Q(\lambda - 5, 4\lambda - 3, 6 - 9\lambda) = (-4, 1, -3)$
Now, to find the perpendicular distance from P to the line, that is point Q,
That is, to find $\left | \vec{PQ} \right |$
We know,
$\left | \vec{PQ} \right |=(\lambda - 7, 4\lambda - 7, 7 - 9\lambda)$
Substituting $\lambda=1$
$\vec{PQ}=(1 - 7, 4(1)- 7, 7 - 9(1))\\ \Rightarrow \vec{PQ}=\left ( -6,4-7,7-9 \right )$
$ \Rightarrow \vec{PQ}=\left ( -6,-3,-9 \right )$
Now, to find
$\left | \vec{PQ} \right |= \sqrt{(-6)^{2}+(-3)^{2}+(-2)^{2} }\\ \Rightarrow \left | \vec{PQ} \right |= \sqrt{36+9+4}$
$ \Rightarrow \left | \vec{PQ} \right |= \sqrt{49}\\ \Rightarrow \left | \vec{PQ} \right |= 7$
Therefore, the distance from the given point to the given line = 7 units.
Question:18
Answer:
Given, point P (1, 3/2, 2)
The plane is 2x - 2y + 4z + 5 = 0
We must find the foot of the perpendicular from the point P to the equation of the given plane.
Also, we must find the distance from the point P to the plane.
Let us consider the foot of the perpendicular from point P to be Q.
Let Q be Q (x1 , y1 , z1)
So, the direction ratio of PQ is given by
(x1 - 1, y1 - 3/2, z1 - 2)
Now, let us consider the normal to the plane 2x - 2y + 4z + 5 = 0:
It is obviously parallel to PQ, since a normal is a line or vector that is perpendicular to a given object. The direction ratio simply states the number of units to move along each axis.
For any plane, ax + by + cz = d, where, a, b, and c are normal vectors to the plane.
Hence, the direction ratios are (a, b, c).
Therefore, the direction ratio of the normal = (2, -2, 4) for plane 2x - 2y + 4z + 5 = 0.
The Cartesian equation of the line PQ, where P(1, 3/2, 2) and Q (x1 , y1 , z1) is:
$\frac{x_{1}-1}{2}=\frac{y_{1}-\frac{3}{2}}{-2}=\frac{z_{1}-2}{4}=\lambda(say)$
To find any point on this line,
$\frac{x_{1}-1}{2}=\lambda,\frac{y_{1}-\frac{3}{2}}{-2}=\lambda,\frac{z_{1}-2}{4}=\lambda$
$from \frac{x_{1}-1}{2}=\lambda\\\Rightarrow x_{1}-1=2\lambda\\\Rightarrow x_{1}=2\lambda+1\\ \\ \\ from \frac{y_{1}-\frac{3}{2}}{-2}=\lambda$
$\Rightarrow y_{1}-\frac{3}{2}=-2\lambda\\\Rightarrow y_{1}=\frac{3}{2}-2\lambda\\ \\ \\ from \frac{z_{1}-2}{4}=\lambda$
$\Rightarrow z_{1}-2=4\lambda \\\Rightarrow z_{1}=4\lambda+2$
Any point on the line is $(2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2).$
This point is Q.
$Q\left ( x_{1},y_{1},z_{1} \right )=Q(2\lambda+ 1, \frac{3}{2} - 2\lambda, 4\lambda + 2)....(i)$
And, it was assumed that is lies on the given plane. Substituting x1, y1, and z1 in the plane equation, we get:
2x1 - 2y1 + 4z1 + 5 = 0
$\Rightarrow 2\left (2\lambda+ 1 \right )-2\left ( \frac{3}{2} - 2\lambda \right )+4\left (4\lambda + 2 \right )+5=0$
Simplifying to find the value of $\lambda$
$\Rightarrow 4\lambda + 2 - 3 + 4\lambda + 16\lambda + 8 + 5 = 0\\ \Rightarrow 4\lambda + 4\lambda + 16\lambda + 2 - 3 + 8 + 5 = 0$
$ \Rightarrow 24\lambda + 12 = 0\\ \Rightarrow 24\lambda = -12$
$\Rightarrow \lambda =-\frac{12}{24}\\ \Rightarrow \lambda =-\frac{1}{2}$
Since Q is the foot of the perpendicular from the point P,
We substitute the value of $\lambda$ in equation (i) to get:
$Q\left ( x_{1},y_{1},z_{1} \right )=Q(2(-\frac{1}{2})+ 1, \frac{3}{2} - 2(-\frac{1}{2}), 4(-\frac{1}{2}) + 2)$
$ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( -1+1,\frac{3}{2}+1,-2+2 \right )$
$ \Rightarrow Q\left ( x_{1},y_{1},z_{1} \right )=Q\left ( 0,\frac{5}{2},0 \right )$
Then, to find $\left | \vec{PQ} \right |$
Where, P = (1, 3/2, 2) and Q = (0, 5/2, 0)
$\left | \vec{PQ} \right |=\sqrt{\left (0-1 \right )^{2}+\left ( \frac{5}{2}-\frac{3}{2} \right )^{2}+\left ( 0-1 \right )^{2}}$
$ \Rightarrow \left | \vec{PQ} \right |=\sqrt{(-1)^{2}+(1)^{2}+(-2)^{2}}$
$ \Rightarrow \left | \vec{PQ} \right |=\sqrt{1+1+4}\\ \Rightarrow \left | \vec{PQ} \right |=\sqrt{6}$
Thus, the foot of the perpendicular from the given point to the plane is (0, 5/2, 0) and the distance is $\sqrt{6}$ units.
Question:19
Answer:
Given, a line passes through a point P (3, 0, 1) and is parallel to the planes x + 2y = 0 and 3y - z = 0.
We must find the equation of this line.
Let the position vector of point P be
$\vec{a}=3\hat{i}+0\hat{j}+\hat{k}$
Or,
$\vec{a}=3\hat{i}+\hat{k}.....(i)$
Let us consider the normal to the given planes, that is, perpendicular to the normal of the plane x + 2y = 0 and 3y - z = 0
Normal to the plane x + 2y = 0 can be given as $\vec{n_{1}}=\hat{i}+2\hat{j}$
Normal to the plane 3y - z = 0 can be given as $\vec{n_{2}}=3\hat{j}-\hat{k}$
So, $\vec{n}$ is perpendicular to both these normals.
So,
$\vec{n}=\vec{n_{1}}\times \vec{n_{2}}$
$\Rightarrow \vec{n}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 0 \\ 0 & 3 & -1 \end{vmatrix}$
Taking the 1st row and the 1st column, we multiply the 1st element of the row $\left (a_{11} \right )$ with the difference of products of the opposite elements $\left (a_{22}\times a_{33}-a_{23} \times a_{32} \right )$, excluding 1st row and 1st column
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )$
Here,
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )$
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements $\left (a_{21}\times a_{33}-a_{23} \times a_{31} \right )$
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )$
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements $\left (a_{22}\times a_{33}-a_{23} \times a_{32} \right )$ excluding the 1st row and 3rd column.
$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21}& a_{22} & a_{23} \\ a_{31}& a_{32} & a_{33} \end{vmatrix}$
$=a_{11}\left ( a_{22} \times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21} \times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21} \times a_{32}-a_{22} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( \left ( 2 \times -1 \right )-\left (0 \times 3 \right ) \right )-\hat{j}\left (\left ( 1 \times -1 \right )-\left ( 0 \times 0 \right ) \right )+\hat{k}\left ( \left ( 1 \times 3 \right )-\left ( 2 \times 0 \right ) \right )$
Futher simplifying it,
$\Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=\hat{i}\left ( -2-0 \right )-\hat{j}\left ( -1-0 \right )+\hat{k}\left ( 3-0 \right )$
$ \Rightarrow \begin{vmatrix} \hat{i}& \hat{j} & \hat{j} \\ 1& 2 & 0 \\ 0& 3 & -1 \end{vmatrix}=-2\hat{i}+\hat{j}+3\hat{k}\\ \\ \\ \rightarrow \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}$
Therefore, the direction ratio is (-2, 1, 3) …(iii)
We know, vector equation of any line passing through a point and parallel to a vector is $\vec{r}=\vec{a}+\lambda \vec{b}$ where $\lambda \epsilon \mathbb{R}$
Hence, from (i) and (ii),
$\vec{a}=3\hat{i}+\hat{k}\\ \vec{n}=-2\hat{i}+\hat{j}+3\hat{k}$
Putting these vectors in the equation $\hat{r}=\hat{a}+\lambda \hat{n}\\$
We get
$\hat{r}=\left ( 3\vec{i}+\vec{k} \right )+\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )$
But we know,
$\hat{r}=x\vec{i}+y\hat{j}+z\vec{k}$
Substituting this,
$\left (x\vec{i}+y\hat{j}+z\vec{k} \right )=\left ( 3\hat{i}+\hat{k} \right )+\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )$
$ \Rightarrow \left (x\vec{i}+y\hat{j}+z\vec{k} \right )-\left ( 3\hat{i}+\hat{k} \right )=\lambda\left ( -2\hat{i}+\hat{j}+3\hat{k} \right )$
$ \Rightarrow x\hat{i}+y\hat{j}+z\hat{k}-3\hat{i}-\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )$
$ \Rightarrow \left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\$
Thus, the required equation of the line is $\left ( x-3 \right )\hat{i}+y\hat{j}+\left ( z-1 \right )\hat{k}=\lambda \left ( -2\hat{i}+\hat{j}+3\hat{k} \right )\\ \\$
Question:20
Answer:
Given, a plane passes through the points (2, 1, -1) and (-1, 3, 4) and is perpendicular to the plane x - 2y + 4z = 10.
We want to find the equation of this plane.
We know, the Cartesian equation of a plane passing through (x1, y1, z1)
with direction ratios perpendicular to a, b, c for its normal is given as:
a (x - x1) +b (y - y1) + c (z - z1) = 0
Hence,
Let us consider the equation of the plane passing through (2, 1, -1) to be
a(x – 2) + b(y – 1) + c(z – (-1)) = 0
⇒ a(x – 2) + b(y – 1) + c(z + 1) = 0 …(i)
Since it also passes through point (-1, 3, 4) we just replace x, y, z by -1, 3, and 4 respectively.
⇒ a(-1 – 2) + b(3 – 1) + c(4 + 1) = 0
⇒ -3a + 2b + 5c = 0 …(ii)
Since a, b, and c are direction ratios and this plane is perpendicular to the plane x - 2y + 4z = 10, we just replace x, y, and z with a, b, and c respectively (neglecting 10) and we equate this to 0.
=> a - 2b + 4c = 0 …(iii)
To solve two equations x1a + y1b + z1c = 0 and x2a + y2b + z2c = 0, we use the formula
$\frac{a}{\begin{vmatrix} y_{1} &z_{1} \\ y_{2}&z_{2} \end{vmatrix}}=\frac{b}{\begin{vmatrix} z_{1} &x_{1} \\ z_{2}&x_{2} \end{vmatrix}}=\frac{c}{\begin{vmatrix} x_{1} &y_{1} \\ x_{2}&y_{2} \end{vmatrix}}$
Similarly, to solve for equations (ii) and (iii):
$\frac{a}{\begin{vmatrix}2 &5 \\ -2&4 \end{vmatrix}}=\frac{b}{\begin{vmatrix} 5 &-3 \\ 4&1 \end{vmatrix}}=\frac{c}{\begin{vmatrix}-3 & 2 \\ 1&-2 \end{vmatrix}}$
$\Rightarrow \frac{a}{\left ( 2 \times 4 \right )-\left ( 5 \times -2 \right )}=\frac{b}{\left ( 5 \times 1 \right )-\left ( -3 \times 4 \right )}=\frac{c}{\left ( -3 \times -2 \right )-\left ( 2 \times 1 \right )}$
$\Rightarrow \frac{a}{8+10}=\frac{b}{5+12}=\frac{c}{6-2}$
$\Rightarrow \frac{a}{18}=\frac{b}{17}=\frac{c}{4}=\lambda$
$\Rightarrow \frac{a}{18}=\lambda, \frac{b}{17}=\lambda, \frac{c}{4}=\lambda$
That is,
$\Rightarrow \frac{a}{18}=\lambda\\ \Rightarrow a=18 \lambda$
$ \Rightarrow \frac{b}{17}=\lambda\\ \Rightarrow b=17 \lambda$
$ \Rightarrow \frac{c}{4}=\lambda\\ \Rightarrow c=4 \lambda\\ \\$
Substituting these values of a, b, and c in equation (i), we get
$a(x - 2) + b(y - 1) + c(z + 1) = 0\\ \Rightarrow 18\lambda(x - 2) + 17\lambda(y - 1) + 4\lambda(z + 1) = 0$
$ \Rightarrow \lambda[18(x - 2) + 17(y - 1) + 4(z + 1)] = 0\\ \Rightarrow 18(x - 2) + 17(y - 1) + 4(z + 1) = 0$
$ \Rightarrow 18x - 36 + 17y - 17 + 4z + 4 = 0\\ \Rightarrow 18x + 17y + 4z - 36 - 17 + 4 = 0$
$ \Rightarrow 18x + 17y + 4z - 49 = 0\\ \Rightarrow 18x + 17y + 4z = 49\\$
Therefore, the required equation of the plane is 18x + 17y + 4z = 49.
Question:21
Answer:
Given two lines,
$\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k}...........(i)$
$\vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )...........(ii)$
Taking equation (i),
$\vec{r}=\left ( 8+3\lambda \right )\hat{i}-\left ( 9+16\lambda \right )\hat{j}+\left ( 10+7\lambda \right )\hat{k}$
$ \Rightarrow \vec{r}= 8\hat{i}+3\lambda \hat{i}- 9\hat{j}+16\lambda \hat{j})+ 10 \hat{k}+7\lambda \hat{k}$
$ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+3 \lambda \hat{i}-16 \lambda \hat{j}+7 \lambda \hat{k}$
$ \Rightarrow \vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda \left(3 \hat{i}-16 \hat{j}+7 \hat{k} \right ).............(iii)$
We know, the vector equation of a line passing through a point and parallel to a vector is where $\lambda\epsilon \mathbb{R}$
$\vec{a}$ = Position vector of the point through which line passes
$\vec{b}$ = Normal to the line
Comparing this with equation (iii), we get
$\vec{a_{1}}=8\hat{i}-9\hat{j}+10\hat{k}\\ \vec{b_{1}}=3\hat{i}-16\hat{j}+7\hat{k}\\$
Now take equation (ii)
$\vec{r}=15\hat{i}+29\hat{i}+5\hat{k}+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right ) \\ \vec{r}$
$=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )+\mu\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )..........(iv)$
Similarly from (iv)
$\vec{a_{2}}=\left (15\hat{i}+29\hat{i}+5\hat{k} \right )\\ \vec{b_{2}}=\left ( 3\hat{i}+8\hat{j}-5\hat{k} \right )$
So, the shortest distance between two lines can be represented as:
$d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |$
solve $\vec{b_{1}} \times \vec{b_{2}}$
$\vec{b_{1}} \times \vec{b_{2}}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$
Taking 1st row and 1st column, we multiply the 1st element of the row (a??) with the difference of the product of the opposite elements $\left ( a_{22}\times a_{33}-a_{23} \times a_{32}\right )$, excluding the 1st row and the 1st column;
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )$
Now, we take the 2nd column and 1st row, and multiply the 2nd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??)
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )$
Finally, taking the 1st row and 3rd column , we multiply the 3rd element of the row (a??) with the difference of the product of opposite elements (a?? x a?? - a?? x a??), excluding the 1st row and 3rd column.
$\begin{vmatrix} a_{11} &a_{12} & a_{13} \\ a_{21} &a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$
$=a_{11}\left ( a_{22}\times a_{33}-a_{23} \times a_{32} \right )-a_{12}\left ( a_{21}\times a_{33}-a_{23} \times a_{31} \right )+a_{13}\left ( a_{21}\times a_{32}-a_{22} \times a_{31} \right )$
Here
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$
$=\hat{i}\left (\left ( -16 \times -5 \right )-\left ( 7 \times 8 \right ) \right )-\hat{j}\left (\left ( 3 \times -5 \right )-\left ( 7 \times 3 \right ) \right )+\hat{k}\left ( \left ( 3 \times 8 \right )-\left ( -16 \times 3 \right ) \right )$
Further simplifying it.
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=\hat{i}\left (80-56 \right )-\hat{j}\left (-15-21 \right )+\hat{k}\left (24+48 \right )$
$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}=24\hat{i}+36\hat{j}+72\hat{k}\\ \\ \\ \Rightarrow \vec{b}\times \vec{b}= 24\hat{i}+36\hat{j}+72\hat{k}........(v)$
And,
$\left | \vec{b}\times \vec{b} \right |= \left |24\hat{i}+36\hat{j}+72\hat{k} \right |\\ \\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=\sqrt{24^{2}+36^{2}+72^{2}} $
$\Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{2^{2}+3^{2}+6^{2}} $
$\Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \sqrt{4+9+36}\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=12\sqrt{49}$
$\Rightarrow \left | \vec{b}\times \vec{b} \right |=12 \times 7\\ \Rightarrow \left | \vec{b}\times \vec{b} \right |=84...........(vi)$
$Now \; \; solving \: \: \vec{a_{2}}- \vec{a_{1}}\\ \\ \vec{a_{2}}- \vec{a_{1}} =\left (15\hat{i}+29\hat{i}+5\hat{k} \right )-\left ( 8\hat{i}-9\hat{j}+10\hat{k} \right )$
$\Rightarrow \vec{a_{2}}- \vec{a_{1}} = 15\hat{i}-8\hat{i}+29\hat{j}+9\hat{j}+5\hat{k}-10\hat{k}$
$\Rightarrow \vec{a_{2}}- \vec{a_{1}} = 7\hat{i}+38\hat{j}-5\hat{k}.....(vii)$
Substituting the values from (v), (vi) and (vii) in d, we get
$d=\left |\frac{\left ( \vec{b_{1}} \times \vec{b_{2}} \right ).\left ( \vec{a_{2}} - \vec{a_{1} }\right ) } {\left | \vec{b_{1}} \times \vec{b_{2}} \right |}\right |$
$\Rightarrow d =\left | \frac{\left ( 24\hat{i}+36\hat{j}+72\hat{k} \right ).\left ( 7\hat{i}+38\hat{j}-5\hat{k} \right )}{84} \right |$
$ \Rightarrow d =\left | \frac{24 \times 7 +36 \times 38+72 \times -5}{84} \right |$
$ \Rightarrow d =\left | \frac{168+1368-360}{84} \right |\\ \Rightarrow d =\left | \frac{1176}{84} \right |\\ \Rightarrow d =14\\$
Thus, the shortest distance between the lines is 14 units.
Question:22
Answer:
Given, a plane is perpendicular to another plane 5x + 3y + 6z + 8 = 0,and also contains line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0.
We must find the equation of this plane.
We know, the equation of a plane passing through the line of intersection of the planes a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z + d2 = 0 is given as,
$( a_{1}x + b_{1}y + c_{1}z + d_{1}) +\lambda(a_{2}x + b_{2}y + c_{2}z + d_{2}) = 0$
Similarly, the equation of a plane through the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x + y -z + 5 = 0. is given by,
$(x + 2y + 3z - 4) + \lambda(2x + y - z + 5) = 0 \\ \Rightarrow x + 2y + 3z - 4 + 2\lambda x + \lambda - \lambda z + 5\lambda = 0$
$ \Rightarrow x + 2 \lambda x + 2y + \lambda y + 3z - \lambda z - 4 + 5 \lambda = 0$
$ \Rightarrow (1 + 2 \lambda)x + (2 + \lambda)y + (3 - \lambda)z - 4 + 5 \lambda = 0 ....(i)$
Thus, the direction ratio of plane in (i) is,
$(1 + 2\lambda, 2 + \lambda, 3 - \lambda)$
Since the plane in equation (i) is perpendicular to the plane 5x + 3y + 6z + 8 = 0;
we can replace x, y, z with (1 + 2λ), (2 + λ) and (3 - λ) respectively in the plane 5x + 3y + 6z + 8 = 0 (neglecting 8) and equating to 0.
This gives us,
$5(1 + 2\lambda) + 3(2 + \lambda) + 6(3 - \lambda) = 0$
$ \Rightarrow 5 + 10\lambda + 6 + 3\lambda + 18 - 6\lambda = 0$
$\Rightarrow 10\lambda + 3\lambda- 6\lambda + 5 + 6 + 18 = 0$
$ \Rightarrow 7\lambda + 29 = 0\\ \Rightarrow 7\lambda = -29$
$\Rightarrow \lambda=- \frac{29}{7}$
Substituting this value of $\lambda$ in equation (i) we get
$\left ( 1+2\left (-\frac{29}{7} \right ) \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4+5\left (-\frac{29}{7} \right )=0$
$ \Rightarrow \left ( 1+\frac{58}{7} \right )x+\left ( 2-\frac{29}{7} \right )y+\left ( 3+\frac{29}{7} \right )z-4-\frac{145}{7}=0$
$\Rightarrow \left ( \frac{7-58}{7} \right )x+\left ( \frac{14-29}{7} \right )y+\left ( \frac{21+29}{7} \right )z+\left ( \frac{-28-145}{7} \right )=0 $
$ \Rightarrow -\frac{51}{7}x-\frac{15}{7}y+\frac{50}{7}z-\frac{173}{7}=0$
$ \Rightarrow -51x - 15y + 50z - 173 = 0 \\ \\ \Rightarrow 51x + 15y - 50z + 173 = 0$
Thus, the required equation of the plane is 51x + 15y - 50z + 173 = 0.
Question:23
Answer:
Given, the plane ax + by = 0 is rotated about its line of intersection with z = 0 by an angle $\alpha$
To prove: equation of the plane in its new position is
$ax+by\pm z\sqrt{a^{2}+b^{2}}\tan \alpha=0$
Proof: Two planes are given, ax + by = 0 …(i) and z = 0 …(ii)
We know, the equation of the plane passing through the line of intersection of the planes (i) and (ii) is
$ax + by + \lambda z = 0...(iii)$
where, $\lambda \epsilon \mathbb{R}$
The angle between the new plane and plane (i) is given as $\alpha$
Since the angle between two planes is equivalent to the angle between their normals, the direction ratio of normal to ax + by = 0 or ax + by +0z = 0 is (a, b, 0).
$\Rightarrow \vec{l}=a\hat{i}+b\hat{j}$
And, the direction ratio of normal to $ax + by + \lambda z = 0$ is (a, b, λ).
$\Rightarrow \vec{m}=a\hat{i}+b\hat{j}+\lambda \hat{k}$
Also, we know, angle between 2 normal vectors of the two given planes can be given as;
$\cos \alpha=\frac{\vec{l}\vec{m}}{\left |\vec{l} \right |\left |\vec{m} \right |}$
If we substitute the values of these vectors, we get
$\cos \alpha=\frac{\left (a\hat{i}+b\hat{j} \right )\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right )}{\left |\left (a\hat{i}+b\hat{j} \right ) \right |\left |\left ( a\hat{i}+b\hat{j}+\lambda \hat{k} \right ) \right |}\\$
$\Rightarrow \cos \alpha=\frac{a.a+b.b+0.\lambda}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}$
$ \Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}$
We then multiply $\sqrt{a^{2}+b^{2}}$ by the numerator and denominator on the right hand side of the equation to get
$\Rightarrow \cos \alpha=\frac{a^{2}+b^{2}}{\sqrt{a^{2}+b^{2}}\sqrt{a^{2}+b^{2}+\lambda^{2}}}\times \frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}}}$
$\Rightarrow \cos \alpha=\frac{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}}}{\left (a^{2}+b^{2} \right )\sqrt{a^{2}+b^{2}+\lambda^{2}}}$
$\Rightarrow \cos \alpha=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}}\\ \\$
Applying square on both sides,
$\Rightarrow \cos^{2} \alpha=\left (\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{a^{2}+b^{2}+\lambda^{2}}} \right )^{2}$
$ \Rightarrow \cos^{2} \alpha=\frac{a^{2}+b^{2}}{a^{2}+b^{2}+\lambda ^{2}}$
$\Rightarrow (a^{2} + b^{2} + \lambda^{2}) cos^{2} \alpha = a^{2} + b^{2}$
$\Rightarrow a^{2} \cos^{2} \alpha + b^{2} \cos^{2} \alpha + \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2}$
$ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} + b^{2} - a^{2} \cos^{2} \alpha -b^{2}\cos^{2} \alpha$
$ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2} - a^{2} \cos^{2} \alpha + b^{2} -b^{2} \cos^{2} \alpha$
$ \Rightarrow \lambda^{2} \cos^{2} \alpha = a^{2}(1 -\cos^{2} \alpha) + b^{2}(1 - \cos^{2} \alpha)$
$\Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2})(1 - \cos^{2} \alpha)$
$ \Rightarrow \lambda^{2} \cos^{2} \alpha = (a^{2} + b^{2}) \sin^{2} \alpha [since, \sin^{2} \alpha + \cos^{2} \alpha = 1]$
$\Rightarrow \lambda^{2} = \frac{(a^{2} + b^{2}) \sin^{2} \alpha }{\cos^{2} \alpha}$ Since $\frac{sin^{2}\alpha}{\cos^{2}\alpha}=\tan^{2}\alpha$
$ \Rightarrow \lambda^{2}=\left ( a^{2}+b^{2} \right )tan^{2}\alpha$
$ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )tan^{2}\alpha}\\ \Rightarrow \lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\$
Substituting the value of $\lambda$ in equation (iii) to find the plane equation,
ax + by + λz = 0
$\lambda =\pm \sqrt{\left ( a^{2}+b^{2} \right )}tan^{2}\alpha\\$
Hence proved.
Question:24
Answer:
Given two planes,
$\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0\\ \vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0$
Also given, the perpendicular distance of the plane from the origin = 1.
We must find the equation of this plane.
We know,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$
Simplifying the planes,
$\vec{r}.\left ( \hat{i}+3\hat{j} \right )-6=0$
$ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left ( \hat{i}+3\hat{j} \right )-6=0\\ \Rightarrow x+3y-6=0........(i)$
Also, for
$\vec{r}.\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right ).\left(3\hat{i}-\hat{j}-4\hat{k} \right )=0\\ \Rightarrow 3x-y-4z=0$
The equation of a plane through the line of intersection of x + 3y - 6 = 0 and 3x - y - 4z = 0 can be given as
$(x + 3y - 6) + \lambda(3x - y - 4z) = 0\\ \Rightarrow x + 3y - 6 + 3\lambda x - \lambda y - 4\lambda z = 0$
$ \Rightarrow x + 3\lambda x + 3y - \lambda y - 6 - 4\lambda z = 0$
$\Rightarrow (1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = 0 (iii)$
Also, we know, the perpendicular distance of a plane, ax + by + cz + d = 0 from the origin, let’s say P, is given by
$P=\left | \frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}} \right |$
Similarly, the perpendicular distance of the plane in equation (iii) from the origin (=1 according to the question) is:
$1=\left | \frac{-6}{\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}} \right |$
$\Rightarrow \sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}}=6$
Taking the square of both sides,
$\Rightarrow \left (\sqrt{\left ( 1+3 \lambda \right )^{2}+\left ( 3-\lambda \right )^{2}+\left ( -4\lambda \right )^{2}} \right )^{2}=6^{2}$
$\Rightarrow (1 + 3\lambda)^{2} + (3 - \lambda)^{2} + (-4\lambda)^{2} = 36$
$ \Rightarrow 1 + (3\lambda)^{2} + 2(1)(3\lambda) + (3)^{2} + \lambda^2 - 2(3)(\lambda) + 16\lambda^{2} = 36$
$\Rightarrow 1 + 9\lambda^{2} + 6\lambda + 9 + \lambda^{2} - 6\lambda + 16\lambda^{2} = 36$
$ \Rightarrow 9\lambda^{2} + 16\lambda^{2} + \lambda^{2} + 6\lambda - 6\lambda = 36 - 1 - 9$
$\Rightarrow 26\lambda^{2} + 0 = 26\\ => \lambda^{2} = 26/26\\ => \lambda^{2} = 1\\ => \lambda = \pm 1$
First, we subsitute $\lambda=1$ in eq (iii) to find the plane equation
$(1 + 3\lambda)x + (3 - \lambda)y - 4\lambda z - 6 = `0$
$ \Rightarrow (1 + 3(1))x - (3 - 1)y - 4(1)z - 6 = 0\\ \Rightarrow 4x - 2y - 4z- 6 = 0$
Now, we substitute λ= -1 in eq (iii) to find the plane equation
$(1 + 3\lambda)x + (3 - \lambda)y - 4 \lambda z - 6 = 0\\ \Rightarrow (1 + 3(-1))x + (3 - (-1))y - 4(-1)z - 6 = 0$
$ \Rightarrow (1 - 3)x + (3 + 1)y + 4z - 6 = 0\\ \Rightarrow -2x + 4y + 4z - 6 = 0$
Therefore, the equation of the required plane is -2x + 4y + 4z – 6 = 0 and 4x – 2y – 4z – 6 = 0.
Question:25
Answer:
Given two points,
$\\\vec{A}=\hat{i}-\hat{j}+3\hat{k}\\ \vec{B}=3\left ( \hat{i}+\hat{j}+\hat{k} \right )=3\hat{i}+3\hat{j}+\hat{k}\\ \vec{r}.\left ( 5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0$
Also,
$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}\\\\$
Where,
Therefore,
$\left (x\hat{i}+y\hat{j}+z\hat{k} \right ).\left (5\hat{i}+2\hat{j}-7\hat{k} \right )+9=0$
$ \Rightarrow 5x + 2y - 7z + 9 = 0$
We must show that the points A and B are equidistant from the plane
5x + 2y - 7z + 9 = 0
We also need to show that the points lie on the opposite side of the plane.
Normal of the plane is, $\vec{N=} 5{i} + 2\hat{j} - 7\hat{k}$
We know, the perpendicular distance of the position vector of a point to the plane, p: ax + by + cz + d = 0 is given as:$D=\left | \frac{p(l,m,n)}{\left |\vec{N} \right |} \right |$
Where $\left |\vec{N} \right |=Normal \: vector\: of\: the\: plane$
$\vec{N} =a\vec{i}+b\vec{j}+c\vec{k}$
Thus, the perpendicular distance of the point $\vec{A} =\vec{i}-\vec{j}+3\vec{k}=A(1,-1,3)$ to the plane 5x + 2y - 7z + 9 = 0 having normal $\vec{N} =5\vec{i}+2\vec{j}-7\vec{k}$ is given by,
$\left | D_{1} \right |=\left |\frac{5(1)+2(-1)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |$
$\Rightarrow \left | D_{1} \right |=\left |\frac{5-2-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |\\ \Rightarrow \left | D_{1} \right |=\left |\frac{-9}{\sqrt{25+4+49}} \right |$
$ \Rightarrow \left | D_{1} \right |=\left |\frac{9}{\sqrt{78}} \right |\\$
Hence, the perpendicular distance of the point $\vec{B}=3\hat{i}+3\hat{j}+3\hat{k}=B(3,3,3)$ to the plane 5x + 2y - 7z + 9 = 0 having normal $\vec{N}=5\hat{i}+2\hat{j}-7\hat{k}$
$\left | D_{2} \right |=\left |\frac{5(3)+2(3)-7(3)+9}{|5\hat{i}+2\hat{j}-7\hat{k}|} \right |\\ \Rightarrow \left | D_{2} \right |=\left |\frac{15+6-21+9}{\sqrt{5^{2}+2^{2}+(-7)^{2}}} \right |$
$\Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{25+4+49}} \right |$
$\Rightarrow \left | D_{2} \right |=\left |\frac{9}{\sqrt{78}} \right |\\$
Therefore, |D1| = |D2|
However, D1 and D2 have different signs.
Therefore, the points A and B will lie on opposite sides of the plane.
Hence, we have successfully shown that the points are equidistant from the plane and lie on opposite sides of the plane.
Question:26
Answer:
Given,
$\vec{AB}=3\hat{i}-\hat{j}+\hat{k}\\ \vec{CD}=-3\hat{i}+2\hat{j}+4\hat{k}$
And the position vectors
$\vec{OA}=6\hat{i}+7\hat{j}+4\hat{k}\\ \vec{OC}=-9\hat{j}+2\hat{k}$
Therefore, the line passing through A and along AB will have the equation:
$\vec{r}=6\hat{i}+7\hat{j}+4\hat{k}+\lambda\left ( 3\hat{i}-\hat{j}+\hat{k} \right )$
$\Rightarrow \vec{r}=\left ( 6+3\lambda \right )\hat{i}+\left ( 7-\lambda \right )\hat{j}+\left ( 4+\lambda \right )\hat{k}$
and the line passing through C and along CD will have equation
$\vec{r}=-9\hat{j}+2\hat{k}+\mu \left ( -3\hat{i}+2\hat{j}+4\hat{k} \right )\\ \Rightarrow \vec{r}=-3\mu \hat{i}+\left ( 2\mu-9 \right )\hat{j}+\left ( 2+4\mu \right )\hat{k}$
Now, PQ is a vector perpendicular to both AB and CD, such that Q lies on CD and P lies on AB. Thus, coordinates of P and Q will be of the form
$P (6 + 3\lambda, 7 - \lambda, 4 + \lambda)....(i)\\ Q (-3\mu, 2\mu - 9, 2 + 4\mu) .....(ii)$
Hence, the vector PQ will be given as
$\vec{PQ}=\left ( -3\mu-6-3\lambda \right )\hat{i}+\left ( 2\mu-16+\lambda \right )\hat{j}+\left ( 4\mu-2-\lambda \right )\hat{k}$
Now, since PQ is perpendicular to both, hence the dot products of AB.PQ and CD.PQ will be equal to 0.
AB. PQ = 0 and CD. PQ = 0
$AB. PQ = 3(-3\mu - 6 - 3\lambda) - (2\mu - 16 + \lambda) + (4\mu - 2 - \lambda)$
$\Rightarrow 0 = -9\mu - 18 - 9\lambda - 2\mu + 16 - \lambda + 4\mu - 2 - \lambda\\ \Rightarrow -7\mu - 11\lambda - 4 = 0.....(iii)$
$ CD.PQ = 3(-3\mu - 6 - 3\lambda) + 2(2\mu - 16 + \lambda) + 4(4\mu - 2 - \lambda)$
$\Rightarrow 0 = -9\mu - 18 -9\lambda + 4\mu - 32 + 2\lambda +16 \mu -8 - 4\lambda$
$ \Rightarrow 29\mu + 7\lambda - 22 = 0 ....(iv)$
Solving (iii) and (iv), we get
$\lambda = -1\; \; and \: \: \mu = 1$
Putting the value of $\lambda$ in (i) we get,
$P (6 + 3(-1), 7 - (-1), 4 + (-1))\\ P (6-3,7+1,4-1)\\ P (3,8,3)$
Putting the value of $\mu$ in (ii) we get,
$Q (-3(1), 2(1) - 9, 2 + 4(1))\\ Q (-3, 2 - 9, 2 +4)\\ Q (-3, -7, 6)$
Hence, position vector of P and Q will be
$\\\vec{OP}=3\hat{i}+8\hat{j}+3\hat{k}\\ \vec{OQ}=-3\hat{i}-7\hat{j}+6\hat{k}$
Question:27
Answer:
We have given
$2l + 2m - n = 0...(i)\\ \Rightarrow n = 2(l + m)...(ii)$
, and
$mn + nl + lm = 0\\ \Rightarrow 2m(l + m) + 2(l + m)l + lm = 0$
$ \Rightarrow 2lm + 2m^{2} + 2l^{2} + 2lm + lm = 0$
$ \Rightarrow 2m^{2} + 5lm + 2l^{2} = 0\\ \Rightarrow 2m^{2} + 4lm + lm + 2l^{2} = 0$
$ \Rightarrow (2m + l)(m + 2l) = 0$
Thus, we get two cases:
$l = -2m$
=> -4m + 2m - n = 0 [from (i)]
=> n = 2m
, and
m = -2l
=> 2l + 2(-2l) - n = 0
=> 2l - 4l = n
=> n = -2l
Hence, the direction ratios of one line is proportional to -2m, m or -2m or direction ratios are (-2, 1, -2) and the direction ratios of another line is proportional to l, -2l, -2l, or direction ratios are (1, -2, -2)
Thus, the direction vectors of two lines are $b_{1}=-2\hat{i}+\hat{j}-2\hat{k} \: and \: b_{2}=\hat{i}-2\hat{j}-2\hat{k}$
Also, the angle between the two lines $\vec{r}=\vec{a_{1}}+\lambda \vec{b_{1}} \: and \: \vec{r}=\vec{a_{2}}+\mu \vec{b_{2}}$ is given by:
$\cos \theta=\left |\frac{\vec{b_{1}}.\vec{b_{2}}}{\left |\vec{b_{1}} \right |\left |\vec{b_{2}} \right |} \right |$
Now,
$\vec{b_{1}}.\vec{b_{2}}=2(1)+1(-2)+(-2)(-2)\\ =2-2+4\\=0$
$\Rightarrow \cos\theta=0\\ \Rightarrow \theta=90^{\circ}$
Therefore, the lines have a 900 angle between them.
Question:28
Answer:
Let the direction vector of the 3 mutually perpendicular lines be
$\vec{a}=l_{1}\hat{i}+m_{1}\hat{j}+n_{1}\hat{k}\\ \\ \vec{b}=l_{2}\hat{i}+m_{2}\hat{j}+n_{2}\hat{k}\\ \\ \vec{c}=l_{3}\hat{i}+m_{3}\hat{j}+n_{3}\hat{k}$
Let the direction vectors associated with direction cosines $l_{1} + l_{2} + l_{3} , m_{1} + m_{2} + m_{3} , n_{1} + n_{2} + n_{3}$ be
$\vec{p}=\left (l_{1} + l_{2} + l_{3} \right )\hat{i}+\left (m_{1} + m_{2} + m_{3} \right )\hat{j}+\left ( n_{1} + n_{2} + n_{3} \right )\hat{k}$
Since the lines associated with the direction vectors a, b, and c are mutually perpendicular, we get
$\vec{a}.\vec{b}=0$ (Since the dot product of two perpendicular vectors is 0)
=>$l_{1}l_{2} + m_{1}m_{2}+n_{1}n_{2}=0$ …(1)
Similarly,
$l_{1}l_{3} + m_{1}m_{3}+n_{1}n_{3}=0$ …(2)
Finally, $\vec{b}.\vec{c}=0$
=>$l_{2}l_{3} + m_{2}m_{3}+n_{2}n_{3}=0$ …(3)
Now, let us consider x, y and z as the angles made by direction vectors a, b, and c respectively with p.
Then,
$\cos x=\vec{a}.\vec{p}$
$\Rightarrow \cos x =l_{1}\left ( l_{1}+l_{2}+l_{3} \right )+m_{1}\left ( m_{1}+m_{2}+m_{3} \right )+n_{1}\left ( n_{1}+n_{2}+n_{3} \right )$
$\Rightarrow\cos x=l_{1}^{2}+l_{1}l_{2}+l_{1}l_{3}+m_{1}^{2}+m_{1}m_{2}+m_{1}m_{3}+n_{1}^{2}+n_{1}n_{2}+n_{1}n_{3}$
$ \Rightarrow cos x= l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+\left ( l_{1}l_{2}+m_{1}m_{2}+ n_{1}n_{2} \right )+\left ( l_{1}l_{3}+m_{1}m_{3}+ n_{1}n_{3} \right )\\$
We know, $l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1$ [since the sum of squares of direction cosines of a line = 1]
$\Rightarrow \cos x=1+0=1$ [from (1) and (2)]
Then, $\cos y=1$ and $\cos z=1$
=> x = y = z = 0.
Therefore, the vector p makes equal angles with the vectors a, b and c.
Question:29
Distance of the point (α, β, y) is:
A. β B. |β| C. |β| + |y| D. √(α² + y²)
Answer:
Drawing a perpendicular from (α, β, y) to the y-axis gives us a foot of $\left ( \alpha ,\beta ,\gamma \right )$ perpendicular with coordinates (0, β, 0).
Also, using the distance formula, we can calculate the distance between two points as:
$AB=\sqrt{\left ( x_{2}-x_{1} \right )^{2}+\left ( y_{2}-y_{1} \right )^{2}+\left ( z_{2}-z_{1} \right )^{2}}$
Thus, the required distance $=\sqrt{\left ( \alpha-0 \right )^{2}+\left ( \beta-\beta \right )^{2}+\left(\gamma-0 \right )^{2}}=\sqrt{\alpha^{2}+\gamma^{2}}$
(Option D)
Question:30
If the direction cosines of a line are k, k, k, then:
A. k > 0
B. 0 < k < 1
C. k = 1
D. k = 1/√3 or -1/√3
Answer:
We know that the sum of squares of the direction cosines of a line = 1
=> k² + k² + k² = 1
=> 3k² = 1
$\Rightarrow k=\pm\frac{1}{\sqrt{3}}$ (Option D).
Question:31
The distance of the plane $\vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1$ from the origin is:
A. 1
B. 7
C. 1/7
D. None of these
Answer:
Given plane is
$\vec{r}.\left ( \frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} \right )=1$
Let
$\vec{n}=\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k}$
$\left |\vec{n} \right |=\sqrt{\frac{2}{7}\hat{i}+\frac{3}{7}\hat{j}-\frac{6}{7}\hat{k} }=1$
=> n is a unit vector
Thus, the equation of the plane is of the form $\vec{r}.\hat{n} =d$, where n is
the unit vector and d is the distance from the origin.
Comparing, we get d =1, hence the distance of the plane from origin is 1
(Option A)
Question:32
The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and
The plane 2x - 2y + z = 5 is:
A. 10/6√5
B. 4/5√2
C. 2√3/5
D. √2/10
Answer:
The equation of the line is given as
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
The direction vector of this line can be represented as $\vec{b}=3\hat{i}+4 \hat{j}+5\hat{k}$
Also given is the equation of the plane 2x - 2y + z = 5
The normal to this plane is,$\vec{n}=2\hat{i}-2 \hat{j}+\hat{k}$
We also know that the angle $\phi$ between the line with the direction
vector b and the plane with the normal vector n is,
$\sin \phi =\left | \frac{\vec{b}.\vec{n}}{\left | \vec{b} \right |\left | \vec{n} \right |} \right |$
$\Rightarrow \sin \phi =\left |\frac{3(2)+4(-2)+5(1)}{\sqrt{3^{2}+4^{2}+5^{2}}\sqrt{2^{2}+(-2)^{2}+1^{2}}} \right |$
$\Rightarrow \sin \phi =\left |\frac{3}{3\sqrt{50}} \right |$
$=\frac{1}{5\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}$
$=\frac{\sqrt{2}}{10}$
(Option D)
Question:33
The reflection of the point (α, β, γ) in the xy- plane is:
A. (α, β, 0)
B. (0, 0, γ)
C. (-α, -β, -γ)
D. (α, β, -γ)
Answer:
The equation of the XY plane is Z = 0
Given point (α, β, γ); if we draw a perpendicular from this point in the XY plane, the coordinates of the plane will be
(α, β, 0).
Let the reflection be (x, y, z)
So, $\alpha=\frac{\alpha+x}{2}$
=> x = α
$\beta=\frac{\beta+y}{2}$
=> y = β
$0=\frac{\gamma+z}{2}$
=> z = -γ
The reflection is: (α, β, -γ). (option D)
Question:34
The area of the quadrilateral ABCD, where A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2) is equal to:
A. 9 square units
B. 18 square units
C. 27 square units
D. 81 square units
Answer:
Given, A (0, 4, 1), B (2, 3, -1), C (4, 5, 0) and D (2, 6, 2);
$\vec{AB}=\left ( 2-0 \right )\hat{i}+\left ( 3-4 \right )\hat{j}+\left ( -1-1 \right )\hat{k}=2\hat{i}-\hat{j}-2\hat{k}$
$\vec{BC}=\left ( 4-2\right )\hat{i}+\left ( 5-3 \right )\hat{j}+\left ( 0-(-1) \right )\hat{k}=2\hat{i}+2\hat{j}+\hat{k}$
$\vec{CD}=\left ( 2-4\right )\hat{i}+\left ( 6-5 \right )\hat{j}+\left ( 2-0 \right )\hat{k}=-2\hat{i}+\hat{j}+2\hat{k}=-\vec{AB}$
$\vec{DA}=\left ( 0-2\right )\hat{i}+\left ( 4-6 \right )\hat{j}+\left ( 1-2 \right )\hat{k}=-2\hat{i}-2\hat{j}-1\hat{k}=-\vec{BC}$
Since opposite vectors of this parallelogram are equal and opposite, ABCD is a parallelogram and we know the area of a parallelogram is | AB x CD|
$=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{vmatrix}$
$=\left | \hat{i}\left ( -1+4 \right )+\hat{j}\left ( -4-2 \right )+\hat{k}\left ( 4+2 \right ) \right |$
$=\left | 3\hat{i}-6\hat{j}+6\hat{k} \right |$
$=\sqrt{3^{2}+(-6)^{2}+6^{2}}=\sqrt{81}$
= 9 square units (Option A).
Question:35
The locus represented by xy + yz = 0 is:
A. A pair of perpendicular lines
B. A pair of parallel lines
C. A pair of parallel planes
D. A pair of perpendicular planes
Answer:
Given, xy + yz = 0
=> x (y + z) = 0
=> x = 0 and y + z = 0
Clearly, the above equations are the equations of planes [of the form ax + by + cz + d = 0]
Also, x = 0 has the normal vector $\hat{i}$
And y + z = 0 has the normal vector $\hat{j}+\hat{k}$
And the dot product of these two is
$\hat{i}\left (\hat{j}+\hat{k} \right )=\hat{i}.\hat{j}+\hat{i}.\hat{k}$
= 0
Hence, the planes are perpendicular (Option D).
Question:36
The plane 2x - 3y + 6z - 11 = 0 makes an angle $\sin^{-1}(\alpha)$ with the x-axis. The value of α is:
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$
Answer:
Given, the equation of the plane is 2x - 3y + 6z - 11 = 0.
The normal to this plane is,
$\vec{n}=2\hat{i}-3\hat{j}+6\hat{k}$
Also, the x-axis has the direction vector $\vec{b}=\hat{i}$
Also, we know that the angle $\varphi$ between the line with direction vector b and the plane having the normal vector n is:
$\\ \sin \varphi =\left | \frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |} \right |\\ \Rightarrow \sin \varphi=\left | \frac{1(2)+0(-3)+0(6)}{\sqrt{2^{2}+3^{2}+6^{2}}\sqrt{1^{2}+0^{2}+0^{2}}} \right |\\ \Rightarrow \sin \varphi = \left | \frac{2}{\sqrt{49}} \right |=\frac{2}{7}\\\Rightarrow \varphi =\sin^{-1}\left ( \frac{2}{7} \right )$
On comparing, we find$\alpha =\frac{2}{7}$ (Option C)
Question:37
Answer:
We know, the equation of a plane cutting the coordinate axes at (a, 0, 0), (0, b, 0) and (0, 0, c) is given as
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
In this case, a = 2, b = 3, and c = 4.
Therefore, putting these values in the equation of the plane, we get
$\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$
Question:38
Answer:
If l, m, and n are the direction cosines and the direction ratios of a line are a, b, and c, then we know:
$\\l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}\\l=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
According to the question,
a = 2, b = 2, c = -1
Then
$\sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3$
Thus, the direction cosines are
l = 2/3, b = 2/3, c = -1/3
Question:39
Answer:
The equation of the line is given as
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
Clearly, the line passes through A (5, -4, 6) and has the direction ratios 3, 7, and 2.
Also, the position vector of A is $\vec{a}=5\hat{i}-4\hat{j}+6\hat{k}$
The direction vector of the given line will be:
$\vec{b}=3\hat{i}+7\hat{j}+2\hat{k}$
Also, the vector equation of a line passing through the given point whose position vector is a and b is:
$\vec{r}=\vec{a}+\lambda \vec{b}$
Hence, the required equation of the line will be:
$\vec{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k} \right )+\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k}\right )$
Question:40
Answer:
By expanding the dot product given in the question, we can get the Cartesian equation of the plane.
Given: $\vec{r}.\left ( \hat{i}+\hat{j}-\hat{k} \right )=2$
$\vec{r}=x\hat{i}+y\hat{j}-z\hat{k}$
Putting
$\Rightarrow \left ( x\hat{i}+y\hat{j}+z\hat{k} \right )\left ( \hat{i}+\hat{j}-\hat{k} \right )=2$
$\Rightarrow x + y - z = 2$
Thus, the required Cartesian equation is x + y - z = 2.
Question:41
Answer:
Given, the equation of the plane is x + 2y + 3z - 6 = 0
The normal to this plane will be The unit vector of this normal is:
$\\ \vec{n}=\frac{\vec{n}}{\left |\vec{n} \right |}\\ \vec{n}=\frac{\hat{i}+2\hat{j}+3\hat{k}}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{1}{\sqrt{14}}\hat{i}+\frac{2}{\sqrt{14}}\hat{j}+\frac{3}{\sqrt{14}}\hat{k}$
Therefore, the statement is True
Question:42
Answer:
The position vector of the first point (3, 4, -7) is $\vec{a}=3\hat{i}+4\hat{j}-7\hat{k}$
And the position vector of the second point(1, -1, 6): $\vec{b}=\hat{i}-\hat{j}+6\hat{k}$
Also, the vector equation of a line passing through two points with position vectors a and b is given by:
$\vec{r}=\vec{a}+\lambda\left ( \vec{b}-\vec{a} \right )$
Thus, the required line equation is
$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( \hat{i}-\hat{j}+6\hat{k}-\left ( 3\hat{i}+4\hat{j}-7\hat{k} \right ) \right )$
$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda\left ( -2\hat{i}-5\hat{j}+13\hat{k} \right )$
Question:43
Answer:
To begin with, we convert the given plane equation to intercept form:
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$where a, b, and c are the intercepts on x, y, and z, axes respectively.
Given, $2x - 3y + 5z + 4 = 0$
$\Rightarrow -2x + 3y - 5z = 4$
Dividing this equation on both sides by 4,
$\Rightarrow \frac{-1}{2}x + \frac{3}{4}y - \frac{5}{4}z = 1$
On comparison, we get the intercepts -2, 4/3, and -4/5 respectively.
Therefore, the statement is True.
Question:44
Answer:
We know, the angle $\phi$ between the plane with normal vector n and the line with direction vector b is denoted by:
$\sin\varphi\frac{\vec{b}.\vec{n}}{\left |\vec{b} \right |.\left |\vec{n} \right |}$
Given equation of the line is $r=\left ( 5 \hat{i}-\hat{j}-4\hat{k} \right )+\lambda\left ( 2 \hat{i}-\hat{j}+k \right )$
Hence, its direction vector will be:
$\vec{b}=2\hat{i}-\hat{j}+\hat{k}$
Given equation of the plane is $\vec{r}.\left (3\hat{i}-4\hat{j}-\hat{k} \right )+5=0$
Hence, its normal vector will be:
$\vec{n}=3\hat{i}-4\hat{j}-\hat{k}$
Thus, we have:
$\sin\varphi =\left | \frac{\left ( 2\hat{i}-\hat{j}+\hat{k} \right )\left ( 3\hat{i}-4\hat{j}-\hat{k} \right )}{\sqrt{2^{2}+(-1)^{2}+1^{2}}\sqrt{3^{2}+(-4)^{2}+(-1)^{2}}} \right |\\ \Rightarrow \sin \varphi=\frac{2(3)-1(-4)+1(-1)}{\sqrt{6}\sqrt{26}}=\frac{9}{\sqrt{156}}=\frac{9}{2\sqrt{39}}$
$\varphi =\sin^{-1}\frac{9}{2\sqrt{39}}$
Therefore, the given statement is False.
Question:45
Answer:
In vector form, if we take θ as the angle between the two planes
$\vec{r}.\vec{n_{1}}=\vec{d_{1}}$ and $\vec{r}.\vec{n_{2}}=\vec{d_{2}}$
Then
$\theta=\frac{\left | \vec{n_{1}}.\vec{n_{2}} \right |}{\left | \vec{n_{1}} \right |\left | \vec{n_{2}} \right |}$
Now, the given planes are $\vec{r}.\left ( 2\hat{i}-3\hat{j}+\hat{k} \right )=1$ and $\vec{r}.\left ( \hat{i}-\hat{j}\right )=4$
Here, $\vec{n_{1}}=2 \hat{i}-3\hat{j}+\hat{k}$ and $\vec{n_{2}}=\hat{i}-\hat{j}$
Therefore,
$\theta =\cos^{-1}\frac{2(1)+3(1)+1(0)}{\sqrt{2^{2}+(-3)^{2}+1^{2}}\sqrt{1^{2}+(-1)^{2}+0^{2}}}$
$=\cos^{-1}\frac{5}{\sqrt{2}\sqrt{14}}\\=\cos^{-1}\frac{5}{2\sqrt{7}}$
The statement is False.
Question:46
Answer:
The equation of the line is given as
$\Rightarrow \vec{r}=2\hat{i}-3\hat{j}-\hat{k}+\lambda \left ( \hat{i}-\hat{j}+2\hat{k} \right )$
$\Rightarrow \vec{r}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}$
Any point lying on this line will satisfy the plane equation if the line itself lies in the plane. Also, any point on this line will have a position vector:
$\vec{a}=\left ( 2+\lambda \right )\hat{i}+\left ( -3-\lambda \right )\hat{j}+\left ( -1+2\lambda \right )\hat{k}$
Given equation of the plane $\vec{r}.\left ( 3\hat{i}+\hat{j}-\hat{k} \right )+2=0$
If we put a in the above equation,
$\left (\left (2 + \lambda \right )\hat{i}+ \left(-3 - \lambda \right) \hat{j} + \left (-1 + 2\lambda \right)\hat{k} \right ).\left ( 3\hat{i}+\hat{j}-\hat{k} \right ) + 2$
$= \left (2 + \lambda \right ) \left(3\right) + \left(-3 - \lambda \right) \left(1\right) + \left (-1 + 2\lambda \right)\left(-1 \right) + 2$
$ = 6 - 3\lambda - 3 - \lambda + 1 - 2\lambda + 2 \\ = 5 - 6\lambda \neq R.H.S$
Thus, the line does not lie in the given plane.
Therefore, the given statement is False.
Question:47
Answer:
The given equation of the line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$
It is clear from the equation that this line passes through A (5, -4, 6) and has the direction ratios 3, 7 and 2.
The position vector of A is $\vec{a}=5\hat{i}-4\hat{j}+6\hat{k}$
And the direction vector of the line will be
We know, the vector equation of a line that passes through a given point with position vector a and b is given as
$\vec{r}=3\hat{i}+7\hat{j}+2\hat{k}$
Hence, the required line equation will be:
$\hat{r}=\left ( 5\hat{i}-4\hat{j}+6\hat{k}\right )\lambda\left ( 3\hat{i}+7\hat{j}+2\hat{k} \right )$
Thus, the statement is True.
Question:48
Answer:
We know, the equation of a line in Cartesian form is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
, where a, b and c are the direction ratios and (x1, y1, z1) is a particular point on the line.
The given line is parallel to therefore it has 2, 1, 3 as direction ratios.
(a = 2, b = 1, c = 3)
The line passes through (5, -2, 4)
Substituting these values, we get the equation of line:
$\frac{x-5}{2}=\frac{y+2}{1}=\frac{z-4}{3}$
Thus, the given statement is False.
Question:49
Answer:
Let us take O as the origin, P as the foot of the perpendicular drawn from origin to the plane.
Then the position vector OP is:
$\vec{n}=\vec{OP}=5\hat{i}-3\hat{j}-2\hat{k}$
The unit vector of n is:
$\vec{n}=\frac{\vec{n}}{\left | \vec{n} \right |}\\ \hat{n}=\frac{5\hat{i}-3\hat{j}-2\hat{k}}{\sqrt{5^{2}+(-3)^{2}+(-2)^{2}}}=\frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k}$
$OP =\sqrt{\left ( 5-0 \right )^{2}+\left ( -3-0 \right )^{2}+\left (-2-0 \right )^{2}} \\ =\sqrt{25+9+4}\\ =\sqrt{38}$
Now, the equation of the plane with unit normal vector n and having a perpendicular drawn from the origin d is:
$\vec{r}.\hat{n}=d$
Therefore,
The equation of the given plane will be,
$\vec{r}.\left ( \frac{5}{\sqrt{38}}\hat{i}-\frac{3}{\sqrt{38}}\hat{j}-\frac{2}{\sqrt{4}}\hat{k} \right )=\sqrt{38}\\ \Rightarrow \vec{r}.\left ( 5\hat{i}-3\hat{j}-2\hat{k} \right )=38$
=> The given statement is True.
The main topics and subtopics covered in this chapter of are as follows:
CBSE Class 12th Syllabus: Subjects & Chapters Select your preferred subject to view the chapters |
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions
NCERT solutions for class 12 maths chapter 2 Inverse Trigonometric Functions
NCERT solutions for class 12 maths chapter 5 Continuity and Differentiability
NCERT solutions for class 12 maths chapter 6 Application of Derivatives
NCERT solutions for class 12 maths chapter 8 Application of Integrals
NCERT solutions for class 12 maths chapter 9 Differential Equations
NCERT solutions for class 12 maths chapter 10 Vector Algebra
NCERT solutions for class 12 maths chapter 11 Three Dimensional Geometry
NCERT solutions for class 12 maths chapter 12 Linear Programming
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the subject-wise NCERT Notes of class 12 :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Frequently Asked Questions (FAQs)
This entire chapter talks about the dimensional geometry which covered vector usage to measure and determine line, planes and angles.
Yes, for those who want a clear picture of how to solve questions in three-dimensional geometry, our NCERT exemplar Class 12 Maths solutions chapter 11 can be highly supportive.
The best way is to use these solutions as reference, while one is solving the questions for practicing.
Yes, these questions and NCERT exemplar Class 12 Maths solutions chapter 11 can be downloaded by using the webpage to PDF tool available online.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters