CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Imagine you have a curved shape like the edge of a hill or a wave, and you want to find out how much space it takes up between the curve and the ground (x-axis). That space under the curve is called the area, and to calculate this area, we use integration. Integrals are the functions that satisfy a given differential equation for finding the area of a curvy region y = f (x), the x-axis, and the lines x = a and x = b (b>a). Therefore, finding the integral of a function with respect to x means finding the area above the x-axis from the curve. The integral is also called an anti-derivative, as it is the reverse process of differentiation. The main objective of these NCERT Solutions for class 12, the application of integrals, is to provide students with a clear understanding of how integration is used to calculate areas bounded by curves and to strengthen their problem-solving skills in real-life applications.
This Story also Contains
Integration teaches us how small changes add up to make a measurable difference. These NCERT Solutions for Class 12 are trustworthy and reliable, as they are created by subject matter experts at Careers360, making them an essential resource for exam preparation. NCERT Solutions are trusted by teachers for building a strong foundation in concepts. Students can additionally refer to the NCERT exemplar and notes for better practice and understanding of the topic. Find everything in one place – NCERT Books, Solutions, Syllabus, and Exemplar Problems with Solutions – in this NCERT article.
The NCERT Solutions for Class 12 Maths Chapter 8 have been prepared by Careers360 experts to make learning simpler and to help you score better in exams. A downloadable PDF is available — click the link below to access it.
NCERT Class 12 Maths Chapter 6 Application of Integrals question answers with detailed explanations are provided below.
|
Application of Integrals Class 12 Question Answers Exercise: 8.1 Page number: 296 Total questions: 4 |
Question 1: Find the area of the region bounded by the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1.$
Answer:
The area bounded by the ellipse : $\frac{x^2}{16}+\frac{y^2}{9}=1$

The area will be 4 times the area of EAB.
Therefore, $Area\ of\ EAB= \int^4_{0} y dx$
$= \int^4_{0}3\sqrt{1-\frac{x^2}{16}} dx$
$= \frac{3}{4}\int^4_{0}\sqrt{16-x^2} dx$
$= \frac{3}{4}\left [ \frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4} \right ]^4_{0}$
$= \frac{3}{4}\left [ 2\sqrt{16-16} +8\sin^{-1}(1)-0-8\sin^{-1}(0)\right ]$
$= \frac{3}{4}\left [ \frac{8\pi}{2} \right ]$
$= \frac{3}{4}\left [ 4\pi \right ] =3\pi$
Therefore, the area bounded by the ellipse will be $= 4\times {3\pi} = 12\pi\ units.$
Question 2: Find the area of the region bounded by the ellipse $\small \frac{x^2}{4}+\frac{y^2}{9}=1$
Answer:
The area bounded by the ellipse : $\small \frac{x^2}{4}+\frac{y^2}{9}=1$

The area will be 4 times the area of EAB.
Therefore, $Area\ of\ EAB= \int^2_{0} y dx$
$= \int^2_{0}3\sqrt{1-\frac{x^2}{4}} dx$
$= \frac{3}{2}\int^2_{0}\sqrt{4-x^2} dx$
$= \frac{3}{2}\left [ \frac{x}{2}\sqrt4-x^2 +\frac{4}{2}\sin^{-1}\frac{x}{2} \right ]^2_{0}$
$= \frac{3}{2}\left [ \frac{2\pi}{2} \right ]$
$= \frac{3\pi}{2}$
Therefore, the area bounded by the ellipse will be $= 4\times \frac{3\pi}{2} = 6\pi\ units.$
Question 3: Choose the correct answer in the following
Answer:
The correct answer is A
The area bounded by circle C(0,0,4) and the line x=2 is

The required area = area of OAB
$\int^2_0ydx = \int^2_0\sqrt{4-x^2}dx$
$\\=[\frac{x}{2}\sqrt{4-x^2}+\frac{4}{2}\sin^{-1}\frac{x}{2}]^2_0\\ =2(\pi/2)\\ =\pi$
Question 4: Choose the correct answer in the following.
(A) $\small 2$ (B) $\small \frac{9}{4}$ (C) $\small \frac{9}{3}$ (D) $\small \frac{9}{2}$
Answer:
The area bounded by the curve $y^2=4x$ and y =3

The required area = OAB =
$\\\int ^3_0xdy\\ =\int ^3_0\frac{y^2}{4}dy\\ =\frac{1}{4}.[\frac{y^3}{3}]^3_0\\ =\frac{9}{4}$
|
Application of Integrals Class 12 Question Answers Page Number: 298 Total Questions: 5 |
Question 1: Find the area under the given curves and given lines:
(i) $\small y=x^2,x=1,x=2$ and $\small x$ -axis
Answer:
The area bounded by the curve $\small y=x^2,x=1,x=2$ and $\small x$ -axis

The area of the required region = area of ABCD
$\\=\int_{1}^{2}ydx\\ =\int_{1}^{2}x^2dx\\ =[\frac{x^3}{3}]_1^2\\ =\frac{7}{3}$
Hence, the area of the shaded region is 7/3 units.
Question 1: Find the area under the given curves and given lines:
(ii) $\small y=x^4,x=1,x=5$ and $\small x$ -axis
Answer:
The area bounded by the curev $\small y=x^4,x=1,x=5$ and $\small x$ -axis

The area of the required region = area of ABCD
$\\=\int_{1}^{5}ydx\\ =\int_{1}^{2}x^4dx\\ =[\frac{x^5}{5}]_1^2\\ =625-\frac{1}{5}\\ =624.8$
Hence, the area of the shaded region is 624.8 units.
Question 2: Sketch the graph of $\small y=|x+3|$ and evaluate $\small \int_{-6}^{0}|x+3|dx.$
Answer:
y=|x+3|
The given modulus function can be written as
x+3>0
x>-3
for x>-3
y=|x+3|=x+3
x+3<0
x<-3
For x<-3
y=|x+3|=-(x+3)

The integral to be evaluated is
$\\\int_{-6}^{0}|x+3|dx$
$=\int_{-6}^{-3}(-x-3)dx+\int_{-3}^{0}(x+3)dx$
$ =[-\frac{x^{2}}{2}-3x]_{-6}^{-3}+[\frac{x^{2}}{2}+3x]_{-3}^{0}$
$=(-\frac{9}{2}+9)-(-18+18)+0-(\frac{9}{2}-9)\\ =9$
Question 3: Find the area bounded by the curve $\small y=\sin x$ between $\small x=0$ and $\small x=2\pi$.
Answer:
The graph of y=sinx is as follows

We need to find the area of the shaded region.
ar(OAB)+ar(BCD)
=2ar(OAB)
$\\=2\times \int_{0}^{\pi }sinxdx\\ =2\times [-cosx]_{0}^{\pi }\\ =2\times [-(-1)-(-1)]\\ =4$
The bounded area is 4 units.
Question 4: Choose the correct answer.
(A) $\small -9$ (B) $\small \frac{-15}{4}$ (C) $\small \frac{15}{4}$ (D) $\small \frac{17}{4}$
Answer:

Hence, the required area
$=\int_{-2}^1 ydx$
$=\int_{-2}^1 x^3dx = \left [ \frac{x^4}{4} \right ]_{-2}^1$
$= \left [ \frac{x^4}{4} \right ]^0_{-2} + \left [ \frac{x^4}{4} \right ]^1_{0}$
$= \left [ 0-\frac{(-2)^4}{4} \right ] + \left [ \frac{1}{4} - 0 \right ]$
$= -4+\frac{1}{4} = \frac{-15}{4}$
Therefore, the correct answer is B.
Question 5: Choose the correct answer.
(A) $\small 0$ (B) $\small \frac{1}{3}$ (C) $\small \frac{2}{3}$ (D) $\small \frac{4}{3}$
[ Hint : $y=x^2$ if $x> 0$ and $y=-x^2$ if $x<0$ . ]
Answer:
The required area is
$\\2\int_{0}^{1}x^{2}dx\\ =2\left [ \frac{x^{3}}{3} \right ]_{0}^{1}\\ =\frac{2}{3}\ units$
Exercise-wise NCERT Solutions of Application of Integrals Class 12 Maths Chapter 8 are provided in the links below.
Topics you will learn in NCERT Class 12 Maths Chapter 8 Application of Integrals include:
The area enclosed by the curve $y=f(x)$, the $x$-axis, and the lines $x=a$ and $x=b$ (where $b>a$ ) is given by the formula:
Area $=\int_a^b y d x=\int_a^b f(x) d x$
The area of the region bounded by the curve $x=\phi(y)$ as its $y$-axis and the lines $y=c$ and $y=d$ is given by the formula:
Area $=\int_c^d x d y=\int_c^d \phi(y) d y$
The area enclosed between two given curves $y=f(x)$ and $y=g(x)$, and the lines $x=a$ and $x=b$, is given by the formula:
Area $=\int_a^b[f(x)-g(x)] d x \quad($ Where $f(x) \geq g(x)$ in $[a, b])$
If $f(x) \geq g(x)$ in $[a, c]$ and $f(x) \leq g(x)$ in $[c, b]$, where $a<c<b$, then the resultant area between the curves is given as:
Area $=\int_a^c[f(x)-g(x)] d x+\int_c^b[g(x)-f(x)] d x$
Here is a comparison list of the concepts in Application of Integrals that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:
Given below is the chapter-wise list of the NCERT Class 12 Maths solutions with their respective links:
Also read,
Students can check the following links for more in-depth learning.
Students can check the following links for more in-depth learning.
Students can check the following links for more in-depth learning.
Frequently Asked Questions (FAQs)
In Class 12 Chapter 8 - Application of Integrals, the key formulas include:
1. Area under a curve:
$
\text { Area }=\int_a^b y d x=\int_a^b f(x) d x
$
2. Area between two curves:
$ \text{Area} = \int_a^b [f(x) - g(x)] ,dx, \quad \text{where } f(x) \geq g(x) \text{ in } [a, b]. $
3. For vertical strips (in terms of $y$ ):
$\text { Area }=\int_c^d[f(y)-g(y)] d y$
NCERT Solutions for Class 12 Maths Chapter 8 – Application of Integrals – covers key topics like calculating the area under curves, the area between two curves, and the area bounded by lines and curves. It focuses on using definite integrals to find areas in both standard and complex geometrical situations. The chapter also includes a graphical representation of functions and the use of integration in real-life applications.
To find the area under curves using integrals in Class 12 Maths, we use definite integrals. If a curve is defined by $y=f(x)$ between $x=a$ and $x=b$, the area under the curve is:
$\text { Area }=\int_a^b f(x) d x$
This formula calculates the total area between the curve and the x-axis from $x=a$ to $x=b$. If the curve lies below the $x$-axis, take the absolute value of the integral to get a positive area.
To solve area between two curves problems in NCERT Class 12 Maths, identify the two functions: y = f(x) and y = g(x), where f(x) >= g(x) in the interval [a, b]. The area between the curves from x = a to x = b is:
$\text { Area }=\int_a^b[f(x)-g(x)] d x$
This gives the vertical distance between the curves integrated over the interval. Sketching the curves helps visualize the region. Always check which function is on top within the limits.
Yes, NCERT Solutions are usually enough for Class 12 Maths Chapter 8 – Application of Integrals for the board exams. The NCERT book covers all important concepts, formulas, and types of questions likely to appear in exams. It provides step-by-step solutions that help build a strong foundation. However, for better practice and confidence, solving additional problems from sample papers, previous years' questions, and reference books like RD Sharma can help master the topic thoroughly.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters