Think of a rocket travelling through the air, a drug breaking down in the blood, or the cooling of a cup of hot coffee. What makes them change with time? The Answer is Differential Equations! This chapter explains to students how equations are used to describe how things change and how they lay the base for the study of physics, engineering, and economics. From realising the order and degree to finding solutions to first-order differential equations, this chapter serves a critical role in representing natural and manmade processes. In Chapter 9 of Class 12, we will study some basic concepts related to differential equations, general and particular solutions of a differential equation, formation of differential equations, and some applications of differential equations in different areas. The purpose of these NCERT Solutions for Class 12 Maths is to provide students with a study material that they can use after completing the exercise to compare their answers to and whenever they get stuck.
This Story also Contains
Differential equations are the heartbeat of the physical world; they describe how everything changes. These NCERT solutions for class 12 provide step-by-step explanations of all the questions and every important concept with examples, making it easy to learn. Students prefer NCERT Solutions as they make revision easier and more effective. Careers360 teachers who have many years of experience in this field curated these solutions following the latest NCERT syllabus. Refer to the NCERT for the up-to-date NCERT syllabus, notes, and PDF resources.
Students who wish to access the NCERT class 12 Maths chapter 9 solutions can click on the given link below to download the complete solution in PDF.
Class 12 Maths chapter 9 solutions Exercise 9.1 Page number: 303-304 Total questions: 12 |
Question: Determine the order and degree (if defined) of the differential equation
1.$\frac{\mathrm{d}^4 y}{\mathrm{~d} x^4}+\sin \left(y^{\prime \prime \prime}\right)=0$
3.$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
4. $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
5. $\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
6. $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$
Answer(1):
The given function is
$\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
We can rewrite it as
$y^{''''}+\sin(y''') =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''''}$
Therefore, the order of the given differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$ is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined
Answer(2):
Given function is
$y' + 5y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$
Therefore, the order of the given differential equation $y' + 5y = 0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives, and its highest power raised to y ' is 1
Therefore, its degree is 1.
Answer(3):
Given function is
$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
We can rewrite it as
$(s^{'})^4+3s.s^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $s^{''}$
Therefore, the order of the given differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives, and power raised to s '' is 1
Therefore, its degree is 1
Answer(4):
Given function is
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
We can rewrite it as
$(y^{''})^2+\cos y^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $y^{''}$
Therefore, the order of the given differential equation $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$ is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined
Answer(5):
Given function is
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
$\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{''}\left ( \frac{d^2y}{dx^2} \right )$
Therefore, order of given differential equation $\frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives,
$ \frac {d^2y}{dx^2}$ and power raised to $\frac{d^2y}{dx^2}$ is 1
Therefore, its degree is 1.
Answer(6):
$
\text{Given function is}
\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{\prime \prime \prime}.$
Therefore, the order of the given differential equation
$\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
\text{ is } 3.
$
Now, the given differential equation is a polynomial equation in its derivatives
$y^{\prime \prime \prime}, y^{\prime \prime}, y^{\prime},
\text{ and the power raised to } y^{\prime \prime \prime} \text{ is } 2.
$
$
\text{Therefore, its degree is } 2.
$
Answer(7):
$
\text{Given function is }
y''' + 2y'' + y' = 0
$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{'''}.
$
Therefore, the order of the given differential equation
$y''' + 2y'' + y' = 0 \text{ is } 3.
$
Now, the given differential equation is a polynomial equation in its derivatives
$y^{'''}, y^{''}, \text{ and } y^{'},
\text{ and the power raised to } y^{'''} \text{ is } 1.
$
$
\text{Therefore, its degree is } 1.
$
Answer(8):
Given function is
$y' + y = e^x$
$\Rightarrow$ $y^{'}+y-e^x=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$
Therefore, order of given differential equation $y^{'}+y-e^x=0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives} and power raised to $y^{'}$ is 1
Therefore, the issue is 1
Answer(9):
Given function is
$y'' + (y')^2 + 2y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + (y')^2 + 2y = 0$ is 2
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.
$
Therefore, its degree is 1
Answer(10):
Given function is
$y'' + 2y' + \sin y = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + 2y' + \sin y = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives
$y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.$
Therefore, its degree is 1.
Answer:
Given function is
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$
We can rewrite it as
$(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is 2.
Now, the given differential equation is not a polynomial derivatives
Therefore, its degree is not defined.
Therefore, the answer is (D)
Question 12: The order of the differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is
Answer:
Given function is
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
We can rewrite it as
$2x.y^{''}-3y^{'}+y=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is 2.
Therefore, the answer is (A)
Class 12 Maths chapter 9 solutions Exercise 9.2 Page number: 306 Total questions: 12 |
1. $y = e^x + 1 \qquad :\ y'' -y'=0$
2. $y = x^2 + 2x + C\qquad:\ y' -2x - 2 =0$
3. $y = \cos x + C\qquad :\ y' + \sin x = 0$
4. $y = \sqrt{1 + x^2}\qquad :\ y' = \frac{xy}{1 + x^2}$
5. $y = Ax\qquad :\ xy' = y\;(x\neq 0)$
6. $y = x\sin x\qquad :\ xy' = y + x\sqrt{x^2 - y^2}\ (x\neq 0\ \textup{and} \ x > y\ or \ x < -y)$
7. $xy = \log y + C\qquad :\ y' = \frac{y^2}{1 - xy}\ (xy\neq 1)$
8. $y - cos y = x \qquad :(\ y\sin y + \cos y + x) y' = y$
9. $x + y = \tan^{-1}y\qquad :\ y^2y' + y^2 + 1 = 0$
10. $y = \sqrt{a^2 - x^2}\ x\in (-a,a)\qquad : \ x + y \frac{dy}{dx} = 0\ (y\neq 0)$
Answer(1):
Given,
$y = e^x + 1$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$
Again, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y' }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$
$\implies y'' = e^x$
Substituting the values of y’ and y'' in the given differential equations,
$y'' - y' = e^x - e^x = 0 =$ RHS.
Therefore, the given function is the solution of the corresponding differential equation.
Answer(2):
Given,
$y = x^2 + 2x + C$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x^2 + 2x + C) = 2x + 2$
Substituting the values of y’ in the given differential equations,
$y' -2x - 2 =2x + 2 - 2x - 2 = 0= RHS$ .
Therefore, the given function is the solution of the corresponding differential equation.
Answer(3):
Given,
$y = \cos x + C$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(cost + C) = -sinx$
Substituting the values of y’ in the given differential equations,
$y' - \sin x = -sinx -sinx = -2sinx \neq RHS$ .
Therefore, the given function is not the solution of the corresponding differential equation.
Answer(4):
Given,
$y = \sqrt{1 + x^2}$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(\sqrt{1 + x^2}) = \frac{2x}{2\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$
Substituting the values of y in the RHS.
$\frac{x\sqrt{1+x^2}}{1 + x^2} = \frac{x}{\sqrt{1+x^2}} = LHS$ .
Therefore, the given function is a solution of the corresponding differential equation.
Answer(5):
Given,
$y = Ax$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(Ax) = A$
Substituting the values of y' in LHS,
$xy' = x(A) = Ax = y = RHS$ .
Therefore, the given function is a solution of the corresponding differential equation.
Answer(6):
Given,
$y = x\sin x$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(xix) = six + xcosx$
Substituting the values of y' in LHS,
$xy' = x(ssix+ xcosx)$
Substituting the values of y in RHS.
$\\xsinx + x\sqrt{x^2 - x^2sin^2x} = xix + x^2\sqrt{1-sinx^2} = x(sinx+xcosx) = LHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(7):
Given,
$xy = \log y + C$
Now, differentiating both sides w.r.t. x,
$\\ y + x\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(logy) = \frac{1}{y}\frac{\mathrm{d}y }{\mathrm{d} x}$
$ \\ \implies y^2 + xyy' = y' $
$\\ \implies y^2 = y'(1-xy) $
$ \\ \implies y' = \frac{y^2}{1-xy}$
Substituting the values of y' in LHS,
$y' = \frac{y^2}{1-xy} = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(8):
Given,
$y - cos y = x$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} +siny\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x) = 1$
$\implies$ y' + siny.y' = 1
$\implies$ y'(1 + siny) = 1
$\implies y' = \frac{1}{1+siny}$
Substituting the values of y and y' in LHS,
$(\ (x+cosy)\sin y + \cos y + x) (\frac{1}{1+siny})$
$= [x(1+siny) + cosy(1+siny)]\frac{1}{1+siny}$
= (x + cosy) = y = RHS
Therefore, the given function is a solution of the corresponding differential equation.
Answer(9):
Given,
$x + y = \tan^{-1}y$
Now, differentiating both sides w.r.t. x,
$\\ 1 + \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{1 + y^2}\frac{\mathrm{d} y}{\mathrm{d} x}\\ $
$\\ \implies1+y^2 = y'(1-(1+y^2)) = -y^2y'$
$ \\ \implies y' = -\frac{1+y^2}{y^2}$
Substituting the values of y' in LHS,
$y^2(-\frac{1+y^2}{y^2}) + y^2 + 1 = -1- y^2+ y^2 +1 = 0 = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(10):
Given,
$y = \sqrt{a^2 - x^2}$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d} y}{\mathrm{d} x} =\frac{\mathrm{d}}{\mathrm{d} x}(\sqrt{a^2 - x^2}) = \frac{-2x}{2\sqrt{a^2 - x^2}} = \frac{-x}{\sqrt{a^2 - x^2}}$
Substituting the values of y and y' in LHS,
$x + y \frac{dy}{dx} = x + (\sqrt{a^2 - x^2})(\frac{-x}{\sqrt{a^2 - x^2}}) = 0 = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer:
(D) 4
The number of constants in the general solution of a differential equation of order n is equal to its order.
Answer:
(D) 0
In a particular solution of a differential equation, there is no arbitrary constant
Class 12 Maths chapter 9 solutions Exercise 9.3 Page number: 310-312 Total questions: 23 |
Question 1: Find the general solution: $\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$
Answer:
Given,
$\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$
$\\ \implies\frac{dy}{dx} = \frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}} = tan^2\frac{x}{2}$
$ \implies dy = (sec^2\frac{x}{2} - 1)dx$
$\\ \implies \int dy = \int sec^2\frac{x}{2}dx - \int dx $
$ \implies y = 2tan^{-1}\frac{x}{2} - x + C$
Question 2: Find the general solution: $\frac{dy}{dx} = \sqrt{4-y^2}\ (-2 < y < 2)$
Answer:
Given,the question
$\frac{dy}{dx} = \sqrt{4-y^2}$
$\\ \implies \frac{dy}{\sqrt{4-y^2}} = dx $
$ \implies \int \frac{dy}{\sqrt{4-y^2}} = \int dx$
$\\ (\int \frac{dy}{\sqrt{a^2-y^2}} = sin^{-1}\frac{y}{a})\\$
The required general solution:
$\\ \implies sin^{-1}\frac{y}{2} = x + C$
Question 3: Find the general solution: $\frac{dy}{dx} + y = 1 (y\neq 1)$
Answer:
Given, the question
$\frac{dy}{dx} + y = 1$
$\\ \implies \frac{dy}{dx} = 1- y $
$ \implies \int\frac{dy}{1-y} = \int dx$
$(\int\frac{dx}{x} = lnx)$
$\\ \implies -log(1-y) = x + C\ \ (We\ can\ write\ C= log k) \\ \implies log k(1-y) = -x $
$ \implies 1- y = \frac{1}{k}e^{-x} \\$
The required general equation
$\implies y = 1 -\frac{1}{k}e^{-x}$
Question:4 Find the general solution: $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
Answer:
Given,
$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
$\\ \implies \frac{sec^2 y}{tan y}dy = -\frac{sec^2 x}{tan x}dx $
$ \implies \int \frac{sec^2 y}{tan y}dy = - \int \frac{sec^2 x}{tan x}dx$
Now, let tany = t and tax = u
$sec^2 y dy = dt\ and\ sec^2 x dx = du$
$\\ \implies \int \frac{dt}{t} = -\int \frac{du}{u} $
$ \implies log t = -log u +logk $
$ \implies t = \frac{1}{ku} $
$ \implies tany = \frac{1}{ktanx}$
Question:5 Find the general solution:
$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$
Answer:
Given, the question
$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$
$\\ \implies dy = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}dx$
Let,
$\\ (e^x + e^{-x}) = t \\ \implies (e^x - e^{-x})dx = dt$
$\\ \implies \int dy = \int \frac{dt}{t} $
$\implies y = log t + C $
$ \implies y = log(e^x + e^{-x}) + C$
This is the general solution
Question 6: Find the general solution: $\frac{dy}{dx} = (1+x^2)(1+y^2)$
Answer:
Given, the question
$\frac{dy}{dx} = (1+x^2)(1+y^2)$
$\\ \implies \int \frac{dy}{(1+y^2)} = \int (1+x^2)dx$
$(\int \frac{dx}{(1+x^2)} =tan^{-1}x +c)$
$\\ \implies tan^{-1}y = x+\frac{x^3}{3} + C$
Question:7 Find the general solution: $y\log y dx - x dy = 0$
Answer:
Given,
$y\log y dx - x dy = 0$
$\\ \implies \frac{1}{ylog y}dy = \frac{1}{x}dx$
let logy = t
=> 1/ydy = dt
$\\ \implies \int \frac{dt}{t} = \int \frac{1}{x}dx $
$ \implies \log t = \log x + \log k $
$\implies t = kx \\ \implies \log y = kx$
This is the general solution
Question 8: Find the general solution: $x^5\frac{dy}{dx} = - y^5$
Answer:
Given, the question
$x^5\frac{dy}{dx} = - y^5$
$\\ \implies \int \frac{dy}{y^5} = - \int \frac{dx}{x^5} $
$ \implies \frac{y^{-4}}{-4} = -\frac{x^{-4}}{-4} + C $
$ \implies \frac{1}{y^4} + \frac{1}{x^4} = C$
This is the required general equation.
Question 9: Find the general solution: $\frac{dy}{dx} = \sin^{-1}x$
Answer:
Given, the question
$\frac{dy}{dx} = \sin^{-1}x$
$\implies \int dy = \int \sin^{-1}xdx$
Now,
$\int (u.v)dx = u\int vdx - \int(\frac{du}{dx}.\int vdx)dx$
Here, u = $\sin^{-1}x$ and v = 1
$\implies y = \sin^{-1}x .x - \int(\frac{1}{\sqrt{1-x^2}}.x)dx$
$\\ Let\ 1- x^2 = t $
$ \implies -2xdx = dt $
$\implies xdx = -dt/2$
$\\ \implies y = x\sin^{-1}x+ \int(\frac{dt}{2\sqrt{t}}) $
$ \implies y = x\sin^{-1}x + \frac{1}{2}.2\sqrt{t} + C $
$\implies y = x\sin^{-1}x + \sqrt{1-x^2} + C$
Question 10: Find the general solution $e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$
Answer:
Given,
$e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$
$\\ \implies e^x\tan y dx = - (1-e^x)\sec^2 y dy $
$ \implies \int \frac{\sec^2 y }{\tan y}dy = -\int \frac{e^x }{(1-e^x)}dx$
$\\ let\ tany = t \ and \ 1-e^x = u $
$\implies \sec^2 ydy = dt\ and \ -e^xdx = du$
$\\ \therefore \int \frac{dt }{t} = \int \frac{du }{u} $
$ \implies \log t = \log u + \log k $
$ \implies t = ku$
$\implies \tan y= k (1-e^x)$
Question 11: Find a particular solution satisfying the given condition:
$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x; \ y = 1\ \textup{when}\ x = 0$
Answer:
Given, the question
$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$
$\\ \implies \int dy = \int\frac{2x^2 + x}{(x^3 + x^2 + x + 1)}dx$
$(x^3 + x^2 + x + 1) = (x +1)(x^2+1)$
Now,
$\begin{aligned} & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^2+1} \\ & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A x^2+A(B x+C)(x+1)}{(x+1)\left(x^2+1\right)} \\ & \Rightarrow 2 x^2+x=A x^2+A+B x+C x+C \\ & \Rightarrow 2 x^2+x=(A+B) x^2+(B+C) x+A+C\end{aligned}$
Now, comparing the coefficients.
A + B = 2; B + C = 1; A + C = 0
Solving these:
$\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{3}{2}, \mathrm{C}=-\frac{1}{2}$
Putting the values of A, B, and C:
$\Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{1}{2} \frac{1}{(x+1)}+\frac{1}{2} \frac{3 x-1}{x^2+1}$
Therefore,
$\begin{aligned} & \Rightarrow \int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^2+1} d x \\ & \Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{\mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\mathrm{x}^2+1} \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \tan ^{-1} \mathrm{x} \\ & \text { let } \mathrm{x}^2+1=\mathrm{t}\end{aligned}$
$\begin{aligned} & \therefore \frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}=\frac{3}{4} \int \frac{\mathrm{dt}}{\mathrm{t}} \\ & \text { so, } \mathrm{I}=\frac{3}{4} \log \mathrm{t} \\ & \mathrm{I}=\frac{3}{4} \log \left(\mathrm{x}^2+1\right) \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \log \left(\mathrm{x}^2+1\right)-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$
$\begin{aligned} & \Rightarrow \mathrm{y}=\frac{1}{4}\left[2 \log (\mathrm{x}+1)+3 \log \left(\mathrm{x}^2+1\right)\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c} \\ & \Rightarrow \mathrm{y}=\frac{1}{4}\left[\log (\mathrm{x}+1)^2+\log \left(\mathrm{x}^2+1\right)^3\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$
Now, y= 1 when x = 0
$1=\frac{1}{4} \times 0-\frac{1}{2} \times 0+c$
c = 1
Putting the value of c, we get:
$y=\frac{1}{4}\left[\log \left\{(x+1)^2\left(x^2+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$
Question 12: Find a particular solution satisfying the given condition:
$x(x^2 -1)\frac{dy}{dx} =1;\ y = 0\ \textup{when} \ x = 2$
Answer:
Given, the question
$x(x^2 -1)\frac{dy}{dx} =1$
$\\ \implies \int dy=\int \frac{dx}{x(x^2 -1)} \\ \implies \int dy=\int \frac{dx}{x(x -1)(x+1)}$
Let,
$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{c}{x-1} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A(x-1)(x+1)+B(x)(x-1)+C(x)(x+1)}{x(x+1)(x-1)} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{(A+B+C) x^2+(B-C) x-A}{x(x+1)(x-1)}\end{aligned}$
Now, comparing the values of A, B, C
A + B + C = 0; B-C = 0; A = -1
Solving these:
$B=\frac{1}{2}$ and $C=\frac{1}{2}$
Now, putting the values of A, B, C
$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=-\frac{1}{x}+\frac{1}{2}\left(\frac{1}{x+1}\right)+\frac{1}{2}\left(\frac{1}{x-1}\right) \\ & \Rightarrow \int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int\left(\frac{1}{x+1}\right) d x+\frac{1}{2} \int\left(\frac{1}{x-1}\right) d x \\ & \Rightarrow y=-\log x+\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)+\log c \\ & \left.\Rightarrow y=\frac{1}{2} \log \left[\frac{c^2(x-1)(x+1)}{x^2}\right\}-\text { iii }\right)\end{aligned}$
Given, y =0 when x =2
$\begin{aligned} & 0=\frac{1}{2} \log \left[\frac{c^2(2-1)(2+1)}{4}\right\} \\ & \Rightarrow \log \frac{3 c^2}{4}=0 \\ & \Rightarrow 3 c^2=4\end{aligned}$
Therefore,
$\\ \implies y = \frac{1}{2}\log[\frac{4(x-1)(x+1)}{3x^2}]$
$\\ \implies y = \frac{1}{2}\log[\frac{4(x^2-1)}{3x^2}]$
Question 13: Find a particular solution satisfying the given condition:
$\cos\left(\frac{dy}{dx} \right ) = a\ (a\in R);\ y = 1\ \textup{when}\ x = 0$
Answer:
Given,
$\cos\left(\frac{dy}{dx} \right ) = a$
$\\ \implies \frac{dy}{dx} = \cos^{-1}a $
$ \implies \int dy = \int\cos^{-1}a\ dx $
$ \implies y = x\cos^{-1}a + c$
Now, y =1 when x =0
1 = 0 + c
Therefore, c = 1
Putting the value of c:
$\implies y = x\cos^{-1}a + 1$
Question 14: Find a particular solution satisfying the given condition:
$\frac{dy}{dx} = y\tan x; \ y =1\ \textup{when}\ x = 0$
Answer:
Given,
$\frac{dy}{dx} = y\tan x$
$\\ \implies \int \frac{dy}{y} = \int \tan x\ dx $
$ \implies \log y = \log \sec x + \log k $
$ \implies y = k\sec x$
Now, y=1 when x =0
1 = ksec0
$\implies$ k = 1
Putting the value of k:
y = sec x
Question 15: Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x \sin x $.
Answer:
We first find the general solution of the given differential equation
Given,
$y' = e^x\sin x$
$\\ \implies \int dy = \int e^x\sin xdx$
$\\ Let I = \int e^x\sin xdx $
$ \implies I = \sin x.e^x - \int(\cos x. e^x)dx $
$\implies I = e^x\sin x - [e^x\cos x - \int(-\sin x.e^x)dx] $
$ \implies 2I = e^x(\sin x - \cos x) $
$ \implies I = \frac{1}{2}e^x(\sin x - \cos x)$
$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + c$
Now, since the curve passes through (0,0)
y = 0 when x =0
$\\ \therefore 0 = \frac{1}{2}e^0(\sin 0 - \cos 0) + c \\ \implies c = \frac{1}{2}$
Putting the value of c, we get:
$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + \frac{1}{2} $
$ \implies 2y -1 = e^x(\sin x - \cos x)$
Answer:
We first find the general solution of the given differential equation
Given,
$xy\frac{dy}{dx} = (x+2)(y+2)$
$\\ \implies \int \frac{y}{y+2}dy = \int \frac{x+2}{x}dx $
$ \implies \int \frac{(y+2)-2}{y+2}dy = \int (1 + \frac{2}{x})dx $
$ \implies \int (1 - \frac{2}{y+2})dy = \int (1 + \frac{2}{x})dx $
$ \implies y - 2\log (y+2) = x + 2\log x + C$
Now, since the curve passes through (1,-1)
y = -1 when x = 1
$\\ \therefore -1 - 2\log (-1+2) = 1 + 2\log 1 + C $
$ \implies -1 -0 = 1 + 0 +C \\ \implies C = -2$
Putting the value of C:
$\\ y - 2\log (y+2) = x + 2\log x + -2 $
$ \implies y -x + 2 = 2\log x(y+2)$
Answer:
According to the question,
$y\frac{dy}{dx} =x$
$\\ \implies \int ydy =\int dx $
$ \implies \frac{y^2}{2} = \frac{x^2}{2} + c$
Now, since the curve passes through (0,-2).
x =0 and y = -2
$\\ \implies \frac{(-2)^2}{2} = \frac{0^2}{2} + c \\ \implies c = 2$
Putting the value of c, we get
$\\ \frac{y^2}{2} = \frac{x^2}{2} + 2 \\ \implies y^2 = x^2 + 4$
Answer:
Slope m of line joining (x,y) and (-4,-3) is $\frac{y+3}{x+4}$
According to the question,
$\\ \frac{dy}{dx} = 2(\frac{y+3}{x+4}) $
$\implies \int \frac{dy}{y+3} = 2\int \frac{dx}{x+4} $
$ \implies \log (y+3) = 2\log (x+4) + \log k $
$ \implies (y+3) = k(x+4)^2$
Now, since the curve passes through (-2,1)
x = -2 , y =1
$\\ \implies (1+3) = k(-2+4)^2 \\ \implies k =1$
Putting the value of k, we get
$\\ \implies y+3 = (x+4)^2$
Answer:
Volume of a sphere, $V = \frac{4}{3}\pi r ^3$
Given that the rate of change is constant.
$\\ \therefore \frac{dV}{dt} = c $
$ \implies \frac{d}{dt} (\frac{4}{3}\pi r ^3) = c $
$ \implies \int d(\frac{4}{3}\pi r ^3) = c\int dt $
$\implies \frac{4}{3}\pi r ^3 = ct + k$
Now, at t=0, r=3 and at t=3 , r =6
Putting these values:
$\frac{4}{3}\pi (3) ^3 = c(0) + k $
$\implies k = 36\pi$
Also,
$\frac{4}{3}\pi (6) ^3 = c(3) + 36\pi $
$ \implies 3c = 252\pi $
$ \implies c = 84\pi$
Putting the value of c and k:
$\\ \frac{4}{3}\pi r ^3 = 84\pi t + 36\pi $
$ \implies r ^3 = (21 t + 9)(3) = 62t + 27 $
$ \implies r = \sqrt[3]{62t + 27}$
Question 20: In a bank, the principal increases continuously at the rate of r % per year. Find the value of r if Rs 100 doubles itself in 10 years (log e 2 = 0.6931).
Answer:
Let p be the principal amount and t be the time.
According to the question,
$\frac{dp}{dt} = (\frac{r}{100})p$
$\\ \implies \int\frac{dp}{p} = \int (\frac{r}{100})dt $
$ \implies \log p = \frac{r}{100}t + C$
$\\ \implies p = e^{\frac{rt}{100} + C}$
Now, at t =0 , p = 100
and at t =10, p = 200
Putting these values,
$\\ \implies 100 = e^{\frac{r(0)}{100} + C} = e^C$
Also,
$\\ \implies 200 = e^{\frac{r(10)}{100} + C} = e^{\frac{r}{10}}.e^C = e^{\frac{r}{10}}.100 \\ \implies e^{\frac{r}{10}} = 2$
$ \implies \frac{r}{10} = \ln 2 = 0.6931 $
$ \implies r = 6.93$
So value of r = 6.93%
Answer:
Let p be the principal amount and t be the time.
According to the question,
$\frac{dp}{dt} = (\frac{5}{100})p$
$\\ \implies \int\frac{dp}{p} = \int (\frac{1}{20})dt$
$ \implies \log p = \frac{1}{20}t + C$
$\\ \implies p = e^{\frac{t}{20} + C}$
Now, at t =0 , p = 1000
Putting these values,
$\\ \implies 1000 = e^{\frac{(0)}{20} + C} = e^C$
Also, at t=10
$\\ \implies p = e^{\frac{(10)}{20} + C} = e^{\frac{1}{2}}.e^C = e^{\frac{1}{2}}.1000 $
$ \implies p =(1.648)(1000) = 1648$
After 10 years, the total amount would be Rs. 1648.
Answer:
Let n be the number of bacteria at any time t.
According to the question,
$\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)$
$\\ \implies \int \frac{dn}{n} = \int kdt $
$ \implies \log n = kt + C$
Now, at t=0, n = 100000
$\\ \implies \log (100000) = k(0) + C \\ \implies C = 5$
Again, at t=2, n= 110000
$\\ \implies \log (110000) = k(2) + 5 $
$ \implies \log 11 + 4 = 2k + 5 $
$ \implies 2k = \log 11 -1 =\log \frac{11}{10} $
$ \implies k = \frac{1}{2}\log \frac{11}{10}$
Using these values, for n= 200000
$\\ \implies \log (200000) = kt + C $
$ \implies \log 2 +5 = kt + 5 $
$ \implies (\frac{1}{2}\log \frac{11}{10})t = \log 2 $
$ \implies t = \frac{2\log 2}{ \log \frac{11}{10}}$
Question 23: The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is
Answer:
Given,
$\frac{dy}{dx} = e^{x+y}$
$\\ \implies\frac{dy}{dx} = e^x.e^y $
$ \implies\int \frac{dy}{e^y} = \int e^x.dx $
$\implies -e^{-y} = e^x + C $
$\implies e^x + e^{-y} = K$ (Option A)
Class 12 Maths chapter 9 solutions Exercise 9.4 Page number: 321-322 Total questions: 17 |
Answer:
The given differential equation can be written as
$\frac{dy}{dx}=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Let $F(x,y)=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Now, $F(\lambda x,\lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}$
$=\frac{x^{2}+y^{2}}{x^{2}+xy} = \lambda ^{0}F(x,y)$ Hence, it is a homogeneous equation.
To solve it, put y = vx
differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v +x\frac{dv}{dx} = \frac{x^{2}+(vx)^{2}}{x^{2}+x(vx)}\\ v +x\frac{dv}{dx} = \frac{1+v^{2}}{1+v}$
$x\frac{dv}{dx} = \frac{(1+v^{2})-v(1+v)}{1+v} = \frac{1-v}{1+v}$
$( \frac{1+v}{1-v})dv = \frac{dx}{x}$
$( \frac{2}{1-v}-1)dv = \frac{dx}{x}$
Integrating on both sides, we get;
$\\-2\log(1-v)-v=\log x -\log k$
$ v= -2\log (1-v)-\log x+\log k$
$ v= \log\frac{k}{x(1-v)^{2}}\\$
Again substitute the value $y = \frac{v}{x}$ ,we get;
$\\\frac{y}{x}= \log\frac{kx}{(x-y)^{2}}\\ \frac{kx}{(x-y)^{2}}=e^{y/x}\\ (x-y)^{2}=kxe^{-y/x}$
This is the required solution for the given diff. equation
Question 2: Show that the given differential equation is homogeneous and solves each of them. $y' = \frac{x+y}{x}$
Answer:
The above differential equation can be written as,
$\frac{dy}{dx} = F(x,y)=\frac{x+y}{x}$ ............................(i)
Now, $F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x} = \lambda ^{0}F(x,y)$
Thus the given differential equation is a homogeneous equaion
Now, to solve, substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= \frac{x+vx}{x} = 1+v$
$\\x\frac{dv}{dx}= 1\\ dv = \frac{dx}{x}$
Integrating on both sides, we get; (and substitute the value of $v =\frac{y}{x}$ )
$\\v =\log x+C\\ \frac{y}{x}=\log x+C\\ y = x\log x +Cx$
This is the required solution
Question 3: Show that the given differential equation is homogeneous and solves each of them.
Answer:
The given differential eq can be written as;
$\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)$ ....................................(i)
$F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)$
Hence, it is a homogeneous equation.
Now, to solve e substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}$
$ x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}$
$\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}$
Integrating on both sides, we get;
$\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C$
again substitute the value of $v=y/x$
$\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C$
$ \tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C$
$ tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C$ This is the required solution.
Question 4: Show that the given differential equation is homogeneous and solve each of them.
Answer:
we can write it as;
$\frac{dy}{dx}= -\frac{(x^{2}-y^{2})}{2xy} = F(x,y)\ (let\ say)$ ...................................(i)
$F(\lambda x,\lambda y) = \frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)} = \lambda ^{0}.F(x,y)$
Hence it is a homogeneous equation
Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx} = \frac{ x^{2}-(vx)^{2}}{2x(vx)} =\frac{v^{2}-1}{2v}$
$\\x\frac{dv}{dx} =\frac{v^{2}+1}{2v}\\ \frac{2v}{1+v^{2}}dv=\frac{dx}{x}$
integrating on both sides, we get
$\log (1+v^{2})= -\log x +\log C = \log C/x$
$\\= 1+v^{2} = C/x\\ = x^2+y^{2}=Cx$ .............[ $v =y/x$ ]
This is the required solution.
Question:5 Show that the given differential equation is homogeneous and solve it.
$x^2\frac{dy}{dx} = x^2 - 2y^2 +xy$
Answer:
$\frac{dy}{dx}= \frac{x^{2}-2y^{2}+xy}{x^{2}} = F(x,y)\ (let\ say)$
$F(\lambda x,\lambda y)= \frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda .\lambda )xy}{(\lambda x)^{2}} = \lambda ^{0}.F(x,y)$ ............(i)
Hence, it is a homogeneous equation
Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= 1-2v^{2}+v$
$ x\frac{dv}{dx} = 1-2v^{2}$
$\frac{dv}{1-2v^{2}}=\frac{dx}{x}$
$1/2[\frac{dv}{(1/\sqrt{2})^{2}-v^{2}}] = \frac{dx}{x}$
On integrating both sides, we get;
$\frac{1}{2\sqrt{2}}\log (\frac{1/\sqrt{2}+v}{1/\sqrt{2}-v}) = \log x +C$
after substituting the value of $v= y/x$
$\frac{1}{2\sqrt{2}}\log (\frac{x+\sqrt{2}y}{x-\sqrt{2}y}) = \log \left | x \right | +C$
This is the required solution
Question 6: Show that the given differential equation is homogeneous and solve it.
$xdy - yd= \sqrt{x^2 + y^2}dx$
Answer:
$\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y)$ .................................(i)
$F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)$
Hence is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}$
$=\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}$
On integrating both sides,
$\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C$
Substitute the value of v=y/x, we get
$\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\ y+\sqrt{x^{2}+y^{2}} = Cx^{2}$
Required solution
Question 7: Solve.
Answer:
$\frac{dy}{dx} =\frac{x \cos(y/x)+y\sin(y/x)}{y\sin(y/x)-x\cos(y/x)}.\frac{y}{x} = F(x,y)$ ......................(i)
By looking at the equation we can directly say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx} =\frac{v \cos v+v^{2}\sin v}{v\sin v-\cos v}$
$ =x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v-\cos v}$
$ =(\tan v-1/v)dv = \frac{2dx}{x}$
integrating on both sides, we get
$\\=\log(\frac{\sec v}{v})= \log (Cx^{2})$
$=\sec v/v =Cx^{2}$
substitute the value of v= y/x , we get
$\\\sec(y/x) =Cxy \\ xy \cos (y/x) = k$
Required solution
Question 8: Solve.
$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right ) = 0$
Answer:
$\frac{dy}{dx}=\frac{y-x \sin(y/x)}{x} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{\mu y-\mu x \sin(\mu y/\mu x)}{\mu x} = \mu^{0}.F(x,y)$
it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v- \sin v = -\sin v$
$\Rightarrow -\frac{dv}{\sin v} = -(cosec\ v)dv=\frac{dx}{x}$
On integrating both sides we get;
$\\\Rightarrow \log \left | cosec\ v-\cot v \right |=-\log x+ \log C$
$ \Rightarrow cosec (y/x) - \cot (y/x) = C/x$
$= x[1-\cos (y/x)] = C \sin (y/x)$ Required solution
Question 9: Solve.
$ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0$
Answer:
$\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)$ ..................(i)
$\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)$
Hence, it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}$
$=x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}$
$ =[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}$
integrating on both sides, we get: ( substituting v =y/x)
$\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)$
$\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\$
$ \Rightarrow \log (y/x)-1=Cy$
This is the required solution of the given differential equation
Question 10: Solve.
$\left(1 + e^{\frac{x}{y}} \right )dx + e^\frac{x}{y}\left(1-\frac{x}{y}\right )dy = 0$
Answer:
$\frac{dx}{dy}=\frac{-e^{x/y}(1-x/y)}{1+e^{x/y}} = F(x,y)$ .......................................(i)
$= F(\mu x,\mu y)=\frac{-e^{\mu x/\mu y}(1-\mu x/\mu y)}{1+e^{\mu x/\mu y}} =\mu^{0}.F(x,y)$
Hence, it is a homogeneous equation.
Now, to solve use substitution x = yv
Differentiating on both sides wrt $x$
$\frac{dx}{dy}= v +y\frac{dv}{dy}$
Substitute this value in equation (i)
$\\=v+y\frac{dv}{dy} = \frac{-e^{v}(1-v)}{1+e^{v}} $
$ =y\frac{dv}{dy} = -\frac{v+e^{v}}{1+e^{v}}$
$ =\frac{1+e^{v}}{v+e^{v}}dv=-\frac{dy}{y}$
Integrating on both sides, we get;
${100} \log(v+e^{v})=-\log y+ \log c =\log (c/y)\\ =[\frac{x}{y}+e^{x/y}]= \frac{c}{y}$
$\Rightarrow x+ye^{x/y}=c$
This is the required solution of the diff equation.
Question 11: Solve for a particular solution.
$(x + y)dy + (x -y)dx = 0;\ y =1\ when \ x =1$
Answer:
$\frac{dy}{dx}=\frac{-(x-y)}{x+y} =F(x,y)$ ..........................(i)
We can clearly say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}=\frac{v-1}{v+1}$
$\Rightarrow x\frac{dv}{dx} = -\frac{(1+v^{2})}{1+v}$
$\frac{1+v}{1+v^{2}}dv = [\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}]dv=-\frac{dx}{x}$
On integrating both sides
$⇒\frac{1}{2}[\log (1+v^{2})]+\tan^{-1}v = -\log x +k$
$ ⇒\log(1+v^{2})+2\tan^{-1}v=-2\log x +2k$
$⇒\log[(1+(y/x)^{2}).x^{2}]+2\tan^{-1}(y/x)=2k$
$ ⇒\log(x^{2}+y^{2})+2\tan^{-1}(y/x) = 2k$ ......................(ii)
Now, y=1 and x= 1
$\\=\log 2 +2\tan^{-1}1=2k\\ =\pi/2+\log 2 = 2k\\$
After substituting the value of 2k in the equation. (ii)
$\log(x^{2}+y^2)+2\tan^{-1}(y/x)=\pi/2+\log 2$
This is the required solution.
Question 12 Solve for a particular solution.
$x^2dy + (xy + y^2)dx = 0; y =1\ \textup{when}\ x = 1$
Answer:
$\frac{dy}{dx}= \frac{-(xy+y^{2})}{x^{2}} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{-\mu^{2}(xy+(\mu y)^{2})}{(\mu x)^{2}} =\mu ^{0}. F(x,y)$
Hence, it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i), we get
$⇒v+\frac{xdv}{dx}= -v- v^{2}$
$⇒\frac{xdv}{dx}=-v(v+2)$
$ ⇒\frac{dv}{v+2}=-\frac{dx}{x}$
$ ⇒\frac12[\frac{1}{v}-\frac{1}{v+2}]dv=-\frac{dx}{x}$
Integrating on both sides, we get;
$\\=\frac{1}{2}[\log v -\log(v+2)]= -\log x+\log C\\ =\frac{v}{v+2}=(C/x)^{2}$
replace the value of v=y/x
$\frac{x^{2}y}{y+2x}=C^{2}$ .............................(ii)
Now y =1 and x = 1
$C = 1/\sqrt{3}$
therefore,
$\frac{x^{2}y}{y+2x}=1/3$
Required solution
Question:13 Solve for a particular solution.
$\left [x\sin^2\left(\frac{y}{x} \right ) - y \right ]dx + xdy = 0;\ y =\frac{\pi}{4}\ when \ x = 1$
Answer:
$\frac{dy}{dx}=\frac{-[x\sin^{2}(y/x)-y]}{x} = F(x,y)$ ..................(i)
$F(\mu x,\mu y)=\frac{-[\mu x\sin^{2}(\mu y/\mu x)-\mu y]}{\mu x}=\mu ^{0}.F(x,y)$
Hence, it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
On integrating both sides, we get;
$\\-\cot v =\log\left | x \right | -C\\ =\cot v = \log\left | x \right |+\log C$
On substituting v =y/x
$=\cot (y/x) = \log\left | Cx \right |$ ............................(ii)
Now, $y = \pi/4\ @ x=1$
$\\\cot (\pi/4) = \log C \\ =C=e^{1}$
Put this value of C in Eq. (ii)
$\cot (y/x)=\log\left | ex \right |$
Required solution.
Question 14: Solve for a particular solution.
Answer:
$\frac{dy}{dx} = \frac{y}{x} -cosec(y/x) =F(x,y)$ ....................................(i)
The above equation is homogeneous. So,
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}=v- cosec\ v\\ =x\frac{dv}{dx} = -cosec\ v\\ =-\frac{dv}{cosec\ v}= \frac{dx}{x}\\ =-\sin v dv = \frac{dx}{x}$
On integrating both sides, we get;
$\\=cos\ v = \log x +\log C =\log Cx\\ =\cos(y/x)= \log Cx$ .................................(ii)
now y = 0 and x =1 , we get
$C =e^{1}$
Put the value of C in Eq. 2
$\cos(y/x)=\log \left | ex \right |$
Question:15 Solve for a particular solution.
$2xy + y^2 - 2x^2\frac{dy}{dx} = 0 ;\ y = 2\ \textup{when}\ x = 1$
Answer:
The above equation can be written as:
$\frac{dy}{dx}=\frac{2xy+y^{2}}{2x^{2}} = F(x,y)$
By looking, we can say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{2v+v^{2}}{2}\\ =x\frac{dv}{dx} = v^{2}/2\\ = \frac{2dv}{v^{2}}=\frac{dx}{x}$
integrating on both sides, we get;
$\\=-2/v=\log \left | x \right |+C\\ =-\frac{2x}{y}=\log \left | x \right |+C$ .............................(ii)
Now, y = 2 and x =1, we get
C =-1
Put this value in equation(ii)
$\\=-\frac{2x}{y}=\log \left | x \right |-1\\ \Rightarrow y = \frac{2x}{1- \log x}$
Answer:
$\frac{dx}{dy}= h\left(\frac{x}{y} \right )$
To solve this type of equation, put x/y = v
x = vy
option C is correct
Question 17 Which of the following is a homogeneous differential equation?
(A) $(4x + 6x +5)dy - (3y + 2x +4)dx = 0$
(B) $(xy)dx - (x^3 + y^3)dy = 0$
(C) $(x^3 +2y^2)dx + 2xydy =0$
(D) $y^2dx + (x^2 -xy -y^2)dy = 0$
Answer:
Option D is the right answer.
$y^2dx + (x^2 -xy -y^2)dy = 0$
$\frac{dy}{dx}=\frac{y^{2}}{x^{2}-xy-y^{2}} = F(x,y)$
We can take out lambda as a common factor, and it can be cancelled out
Class 12 Maths chapter 9 solutions Exercise 9.5 Page number: 328-329 Total questions: 19 |
Question:1 Find the general solution:
Answer:
The given equation is
$\frac{dy}{dx} + 2y = \sin x$
This is $\frac{dy}{dx} + py = Q$ type where p = 2 and Q = sin x
Now,
$I.F. = e^{\int pdx}= e^{\int 2dx}= e^{2x}$
Now, the solution of a given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{\int 2x }) =\int (\sin x\times e^{\int 2x })dx +C$
Let $I =\int (\sin x\times e^{\int 2x })$
$I = \sin x \int e^{2x}dx- \int \left ( \frac{d(\sin x)}{dx}.\int e^{2x}dx \right )dx$
$ I = \sin x.\frac{e^{2x}}{2}- \int \left ( \cos x.\frac{e^{2x}}{2} \right )$
$ I = \sin x. \frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x\int e^{2x}dx- \left ( \frac{d(\cos x)}{dx}.\int e^{2x}dx \right ) \right )dx$
$ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+ \int \left ( \sin x.\frac{e^{2x}}{2} \right ) \right )$
$ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+\frac{I}{2} \right ) $
$ (\because I = \int \sin xe^{2x})$
$\frac{5I}{4}= \frac{e^{2x}}{4}\left ( 2\sin x-\cos x \right )$
$ I = \frac{e^{2x}}{5}\left ( 2\sin x-\cos x \right )$
Put the value of I in our equation
Now, our equation becomes
$Y.e^{x^2 }= \frac{e^{2x}}{5}\left (2 \sin x-\cos x \right )+C$
$Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$
Therefore, the general solution is $Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$
Question:2 Solve for general solution:
$\frac{dy}{dx} + 3y = e^{-2x}$
Answer:
The given equation is
$\frac{dy}{dx} + 3y = e^{-2x}$
This is $\frac{dy}{dx} + py = Q$ type where p = 3 and $Q = e^{-2x}$
Now,
$I.F. = e^{\int pdx}= e^{\int 3dx}= e^{3x}$
Now, the solution of the given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{ 3x }) =\int (e^{-2x}\times e^{ 3x })dx +C$
$Y(e^{ 3x }) =\int (e^{x})dx +C\\ Y(e^{3x})= e^x+C\\ Y = e^{-2x}+Ce^{-3x}$
Therefore, the general solution is $Y = e^{-2x}+Ce^{-3x}$
Question:3 Find the general solution
$\frac{dy}{dx} + \frac{y}{x} = x^2$
Answer:
The given equation is
$\frac{dy}{dx} + \frac{y}{x} = x^2$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x}$ and $Q = x^2$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x}dx}= e^{\log x}= x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x) =\int (x^2\times x)dx +C$
$y(x) =\int (x^3)dx +C\\ y.x= \frac{x^4}{4}+C\\$
Therefore, the general solution is $yx =\frac{x^4}{4}+C$
Question 4: Solve for General Solution.
$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$
Answer:
The given equation is
$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$
This is $\frac{dy}{dx} + py = Q$ type where $p = \sec x$ and $Q = \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec xdx}= e^{\log |\sec x+ \tan x|}= \sec x+\tan x$
$(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec x+\tan x) =\int ((\sec x+\tan x)\times \tan x)dx +C$
$y(\sec x+ \tan x) =\int (\sec x\tan x+\tan^2 x)dx +C$
$y(\sec x+ \tan x) =\sec x+\int (\sec^2x-1)dx +C$
$ y(\sec x+ \tan x) = \sec x +\tan x - x+C$
Therefore, the general solution is $y(\sec x+ \tan x) = \sec x +\tan x - x+C$
Question:5 Find the general solution.
$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$
Answer:
The given equation is
$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$
We can rewrite it as
$\frac{dy}{dx}+\sec^2x y= \sec^2x\tan x$
This is $\frac{dy}{dx} + py = Q$ where $p = \sec ^2x$ and $Q =\sec^2x \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec^2 xdx}= e^{\tan x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(e^{\tan x}) =\int ((\sec^2 x\tan x)\times e^{\tan x})dx +C$
$ye^{\tan x} =\int \sec^2 x\tan xe^{\tan x}dx+C\\$
take
$e^{\tan x } = t\\ \Rightarrow \sec^2x.e^{\tan x}dx = dt$
$\int t.\log t dt = \log t.\int tdt-\int \left ( \frac{d(\log t)}{dt}.\int tdt \right )dt $
$ \int t.\log t dt = \log t . \frac{t^2}{2}- \int (\frac{1}{t}.\frac{t^2}{2})dt$
$ \int t.\log t dt = \log t.\frac{t^2}{2}- \int \frac{t}{2}dt$
$ \int t.\log t dt = \log t.\frac{t^2}{2}- \frac{t^2}{4}$
$ \int t.\log t dt = \frac{t^2}{4}(2\log t -1)$
Now put again $t = e^{\tan x}$
$\int \sec^2x\tan xe^{\tan x}dx = \frac{e^{2\tan x}}{4}(2\tan x-1)$
Put this value in our equation
$ye^{\tan x} =\frac{e^{2\tan x}}{4}(2\tan x-1)+C$
Therefore, the general solution is $y =\frac{e^{\tan x}}{4}(2\tan x-1)+Ce^{-\tan x }\\$
Question:6 Solve for General Solution.
$x\frac{dy}{dx} + 2y = x^2\log x$
Answer:
The given equation is
$x\frac{dy}{dx} + 2y = x^2\log x$
We can rewrite it as
$\frac{dy}{dx} +2.\frac{y}{x}= x\log x$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{2}{x}$ and $Q = x\log x$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2}{x}dx}= e^{2\log x}=e^{\log x^2} = x^2$
$(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x^2) =\int (x\log x\times x^2)dx +C$
$x^2y = \int x^3\log x+ C$
Let
$I = \int x^3\log x$
$ I = \log x\int x^3dx-\int \left ( \frac{d(\log x)}{dx}.\int x^3dx \right )dx$
$ I = \log x.\frac{x^4}{4}- \int \left ( \frac{1}{x}.\frac{x^4}{4} \right )dx$
$I = \log x.\frac{x^4}{4}- \int \left ( \frac{x^3}{4} \right )dx$
$I = \log x.\frac{x^4}{4}-\frac{x^4}{16}$
Put this value in our equation
$x^2y =\log x.\frac{x^4}{4}-\frac{x^4}{16}+ C$
$y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$
Therefore, the general solution is $y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$
Question Solve for general solutions.
$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
Answer:
The given equation is
$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
We can rewrite it as
$\frac{dy}{dx}+\frac{y}{x\log x}= \frac{2}{x^2}$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x\log x}$ and $Q =\frac{2}{x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x\log x} dx}= e^{\log(\log x)} = \log x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\log x) =\int ((\frac{2}{x^2})\times \log x)dx +C$
take
$I=\int ((\frac{2}{x^2})\times \log x)dx$
$I = \log x.\int \frac{2}{x^2}dx-\int \left ( \frac{d(\log x)}{dt}.\int \frac{x^2}{2}dx \right )dx $
$ I= -\log x . \frac{2}{x}+ \int (\frac{1}{x}.\frac{2}{x})dx$
$ I = -\log x.\frac{2}{x}+ \int \frac{2}{x^2}dx$
$I = -\log x.\frac{2}{x}- \frac{2}{x}\\ \\$
Put this value in our equation
$y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$
Therefore, the general solution is $y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$
Question:8 Find the general solution.
$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$
Answer:
The given equation is
$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{(1+x^2)}= \frac{\cot x}{1+x^2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p = \frac{2x}{1+ x^2}$ and $Q =\frac{\cot x}{1+x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+ x^2} dx}= e^{\log(1+ x^2)} = 1+x^2$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+x^2) =\int ((\frac{\cot x}{1+x^2})\times (1+ x^2))dx +C$
$y(1+x^2) =\int \cot x dx+C$
$ y(1+x^2)= \log |\sin x|+ C$
$ y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$
Therefore, the general solution is $y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$
Question 9: Solve for a general solution.
$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$
Answer:
The given equation is
$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$
We can rewrite it as
$\frac{dy}{dx}+y.\left ( \frac{1}{x}+\cot x \right )= 1$
This is $\frac{dy}{dx} + py = Q$ type
where $p =\left ( \frac{1}{x}+\cot x \right )$ and $Q =1$
Now,
$I.F. = e^{\int pdx}= e^{\int \left ( \frac{1}{x}+\cot x \right ) dx}= e^{\log x +\log |\sin x|} = x.\sin x$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x.\sin x) =\int 1\times x\sin xdx +C$
$y(x.\sin x) =\int x\sin xdx +C$
Let's take
$I=\int x\sin xdx$
$ I = x .\int \sin xdx-\int \left ( \frac{d(x)}{dx}.\int \sin xdx \right )dx$
$ I =- x.\cos x+ \int (\cos x)dx$
$I = -x\cos x+\sin x$
Put this value in our equation
$y(x.\sin x)= -x\cos x+\sin x + C\\ y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$
Therefore, the general solution is $y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$
Question 10: Find the general solution.
Answer:
The given equation is
$(x+y)\frac{dy}{dx} = 1$
We can rewrite it as
$\frac{dy}{dx} = \frac{1}{x+y}$
$x+ y =\frac{dx}{dy}$
$ \frac{dx}{dy}-x=y$
This is $\frac{dx}{dy} + px = Q$ type
where $p =-1$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int -1 dy}= e^{-y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(e^{-y}) =\int y\times e^{-y}dy +C$
$xe^{-y}= \int y.e^{-y}dy + C$
Let's take
$I=\int ye^{-y}dy $
$ I = y .\int e^{-y}dy-\int \left ( \frac{d(y)}{dy}.\int e^{-y}dy \right )dy$
$I =- y.e^{-y}+ \int e^{-y}dy$
$ I = - ye^{-y}-e^{-y}$
Put this value in our equation
$x.e^{-y} = -e^{-y}(y+1)+C$
$ x = -(y+1)+Ce^{y}\\ x+y+1=Ce^y$
Therefore, the general solution is $x+y+1=Ce^y$
Question 11: Solve for a general solution.
Answer:
The given equation is
$y dx + (x - y^2)dy = 0$
We can rewrite it as
$\frac{dx}{dy}+\frac{x}{y}=y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{1}{y}$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{1}{y} dy}= e^{\log y } = y$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(y) =\int y\times ydy +C$
$xy= \int y^2dy + C$
$xy = \frac{y^3}{3}+C$
$x = \frac{y^2}{3}+\frac{C}{y}$
Therefore, the general solution is $x = \frac{y^2}{3}+\frac{C}{y}$
Question 12: Find the general solution.
$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$
Answer:
The given equation is
$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$
We can rewrite it as
$\frac{dx}{dy}-\frac{x}{y}= 3y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{-1}{y}$ and $Q =3y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{-1}{y} dy}= e^{-\log y } =y^{-1}= \frac{1}{y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(\frac{1}{y}) =\int 3y\times \frac{1}{y}dy +C$
$\frac{x}{y}= \int 3dy + C$
$\frac{x}{y}= 3y+ C$
$x = 3y^2+Cy$
Therefore, the general solution is $x = 3y^2 + Cy$
Question 13: Solve for a particular solution.
$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$
Answer:
The given equation is
$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$
This is $\frac{dy}{dx} + py = Q$ type
where $p = 2\tan x$ and $Q = \sin x$
Now,
$I.F. = e^{\int pdx}= e^{\int 2\tan xdx}= e^{2\log |\sec x|}= \sec^2 x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec^2 x) =\int ((\sin x)\times \sec^2 x)dx +C$
$y(\sec^2 x) =\int (\sin \times \frac{1}{\cos x}\times \sec x)dx +C$
$y(\sec^2 x) = \int \tan x\sec xdx+ C$
$ y.\sec^2 x= \sec x+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{3}$
at $x= \frac{\pi}{3}$
$0.\sec \frac{\pi}{3} = \sec \frac{\pi}{3}+C$
$ C = - 2$
Now,
$y.\sec^2 x= \sec x - 2\\ \frac{y}{\cos ^2x}= \frac{1}{\cos x}- 2\\ y = \cos x- 2\cos ^2 x$
Therefore, the particular solution is $y = \cos x- 2\cos ^2 x$
Question 14: Solve for a particular solution.
$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$
Answer:
The given equation is
$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{1+x^2}=\frac{1}{(1+x^2)^2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p =\frac{2x}{1+x^2}$
and $Q = \frac{1}{(1+x^2)^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+x^2}dx}= e^{\log |1+x^2|}= 1+x^2$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+ x^2) =\int (\frac{1}{(1+x^2)^2}\times (1+x^2))dx +C$
$y(1+x^2) =\int \frac{1}{(1+x^2)}dx +C$
$ \\ y(1+x^2) = \tan^{-1}x+ C\\ \\$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 1
at x = 1
$0.(1+1^2) = \tan^{-1}1+ C$
$C =- \frac{\pi}{4}$
Now,
$y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$
Therefore, the particular solution is $y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$
Question 15: Find the particular solution.
$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$
Answer:
The given equation is
$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p =-3\cot x$ and $Q =\sin 2x$
Now,
$I.F. = e^{\int pdx}= e^{-3\cot xdx}= e^{-3\log|\sin x|}= \sin ^{-3}x= \frac{1}{\sin^3x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\frac{1}{\sin^3 x}) =\int (\sin 2x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\sin x\cos x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times \frac{\cos x}{\sin x}\times\frac{1}{\sin x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times\cot x\times cosec x)dx +C$
$\frac{y}{\sin^3 x} =-2cosec x +C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 2 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$\frac{2}{\sin^3\frac{\pi}{2}} = -2cosec \frac{\pi}{2}+C$
$ 2 = -2 +C\\ C = 4$
Now,
$y= 4\sin^3 x-2\sin^2x\\$
Therefore, the particular solution is $ y=4\sin^3 x-2\sin^2x$
Answer:
Let f(x, y) be the curve passing through the origin
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} = y + x$
$ \\ \frac{dy}{dx}-y=x$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int (x \times e^{-x} )dx+ C$
Now, Let
$I= \int (x \times e^{-x} )dx $
$ \\ I = x.\int e^{-x}dx-\int \left ( \frac{d(x)}{dx}.\int e^{-x}dx \right )dx$
$ \\ I = -xe^{-x}+\int e^{-x}dx\\ $
$\\ I = -xe^{-x}-e^{-x}$
$ \\ I = -e^{-x}(x+1)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x+1)+C$
Now, by using boundary conditions, we will find the value of C
It is given that curve passing through origin i.e. (x , y) = (0 , 0)
$0.e^{-0}= -e^{-0}(0+1)+C$
$ C = 1$
Our final equation becomes
$ye^{-x}= -e^{-x}(x+1)+1$
$ y+x+1=e^x$
Therefore, the required equation of the curve is $y+x+1=e^x$
Answer:
Let f(x, y) be the curve passing through the point (0, 2)
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} +5= y + x$
$ \\ \frac{dy}{dx}-y=x-5$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x- 5$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int ((x-5) \times e^{-x} )dx+ C$
Now, Let
$I= \int ((x-5) \times e^{-x} )dx$
$ I = (x-5).\int e^{-x}dx-\int \left ( \frac{d(x-5)}{dx}.\int e^{-x}dx \right )dx$
$ I = -(x-5)e^{-x}+\int e^{-x}dx$
$ I = -xe^{-x}-e^{-x}+5e^{-x}$
$ I = -e^{-x}(x-4)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x-4)+C$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through point (0, 2)
$2.e^{-0}= -e^{-0}(0-4)+C$
$C = -2$
Our final equation becomes
$ye^{-x}= -e^{-x}(x-4)-2$
$ y=4-x-2e^x$
Therefore, the required equation of the curve is $y=4-x-2e^x$
Question 18: The Integrating Factor of the differential equation $x\frac{dy}{dx} - y = 2x^2$ is
Answer:
The given equation is
$x\frac{dy}{dx} - y = 2x^2$
We can rewrite it as
$\frac{dy}{dx}-\frac{y}{x}= 2x$
Now,
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = \frac{-1}{x} \ and \ Q = 2x$
Now,
$I.F. = e^{\int pdx} = e^{\int \frac{-1}{x}dx}= e^{\int -\log x }= x^{-1}= \frac{1}{x}$
Therefore, the correct answer is (C)
Question 19: The Integrating Factor of the differential equation $(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$ is
(D) $\frac{1}{\sqrt{1 - y^2 }}$
Answer:
The given equation is
$(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$
We can rewrite it as
$\frac{dx}{dy}+\frac{yx}{1-y^2}= \frac{ay}{1-y^2}$
It is $\frac{dx}{dy}+px= Q$ type of equation where $p = \frac{y}{1-y^2}\ and \ Q = \frac{ay}{1-y^2}$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{y}{1-y^2}dy}= e^{\frac{\log |1 - y^2|}{-2}}= (1-y^2)^{\frac{-1}{2}}= \frac{1}{\sqrt{1-y^2}}$
Therefore, the correct answer is (D).
Class 12 Maths chapter 9 solutions - Miscellaneous Exercise Page number: 333-335 Total questions: 15 |
Question 1: Indicate Order and Degree.
(i) $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
Answer:
The given function is
$\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
We can rewrite it as
$y''+5x(y')^2-6y = \log x$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y''$
Therefore, the order of the given differential equation $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$ is 2
Now, the given differential equation is a polynomial equation in its derivative y '' and y 'and the power raised to y '' is 1
Therefore, its degree is 1
Question 1: Indicate Order and Degree.
(ii) $\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
Answer:
The given function is
$\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
We can rewrite it as
$(y')^3-4(y')^2+7y=\sin x$
Now, it is clear from the above that the highest order derivative present in the differential equation is y'.
Therefore, the order of the given differential equation is 1
Now, the given differential equation is a polynomial equation in its derivatives, and the power raised to y ' is 3
Therefore, its degree is 3
Question 1: Indicate Order and Degree.
(iii) $\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
Answer:
The given function is
$\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
We can rewrite it as
$y''''-\sin y''' = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is y''''
Therefore, the order of the given differential equation is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined
(i) $xy = ae^x + be^{-x} + x^2\qquad :\ x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy +x^2 -2 =0$
Answer:
Given,
$xy = ae^x + be^{-x} + x^2$
Now, differentiating both sides w.r.t. x,
$x\frac{dy}{dx} + y = ae^x - be^{-x} + 2x$
Again, differentiating both sides w.r.t. x,
$\\ (x\frac{d^2y}{dx^2} + \frac{dy}{dx}) + \frac{dy}{dx} = ae^x + be^{-x} + 2 $
$\\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = ae^x + be^{-x} + 2 $
$\\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = xy -x^2 + 2$
$ \\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy + x^2 + 2$
Therefore, the given function is the solution of the corresponding differential equation.
(ii) $y = e^x(a\cos x + b \sin x )\qquad : \ \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Answer:
Given,
$y = e^x(a\cos x + b \sin x )$
Now, differentiating both sides w.r.t. x,
$\frac{dy}{dx} = e^x(-a\sin x + b \cos x ) + e^x(a\cos x + b \sin x ) =e^x(-a\sin x + b \cos x ) +y$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = e^x(-a\cos x - b \sin x ) + e^x(-a\sin x + b \cos x ) + \frac{dy}{dx} = -y + (\frac{dy}{dx} -y) + \frac{dy}{dx} $
$ \implies \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iii) $y= x\sin 3x \qquad : \ \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Answer:
Given,
$y= x\sin 3x$
Now, differentiating both sides w.r.t. x,
$y= x\sin 3x \frac{dy}{dx} = x(3\cos 3x) + \sin 3x$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = 3x(-3\sin 3x) + 3\cos 3x + 3\cos 3x \\ = -9y + 6\cos 3x $
$ \implies \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iv) $x^2 = 2y^2\log y\qquad : \ (x^2 + y^2)\frac{dy}{dx} - xy = 0$
Answer:
Given,
$x^2 = 2y^2\log y$
Now, differentiating both sides w.r.t. x,
$\\ 2x = (2y^2.\frac{1}{y} + 2(2y)\log y)\frac{dy}{dx} = 2(y + 2y\log y)\frac{dy}{dx} $
$ \implies \frac{dy}{dx} = \frac{x}{y(1+ 2\log y)}$
Putting $\frac{dy}{dx}\ and \ x^2$ values in LHS
$\\ (2y^2\log y + y^2)\frac{dy}{dx} - xy = y^2(2\log y + 1)\frac{x}{y(1+ 2\log y)} -xy \\ = xy - xy = 0 = RHS$
Therefore, the given function is the solution of the corresponding differential equation.
Answer:
Given,
$
\begin{aligned}
& \left(x^3-3 x y^2\right) d x=\left(y^3-3 x^2 y\right) d y \\
& \Longrightarrow \frac{d y}{d x}=\frac{\left(x^3-3 x y^2\right)}{\left(y^3-3 x^2 y\right)}
\end{aligned}
$
Now, let $\mathbf{y}=\mathrm{vx}$
$
\Longrightarrow \frac{d y}{d x}=\frac{d(v x)}{d x}=v+x \frac{d v}{d x}
$
Substituting the values of $y$ and $y^{\prime}$ in the equation,
$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{\left(x^3-3 x(v x)^2\right)}{\left((v x)^3-3 x^2(v x)\right)} \\
& \Longrightarrow v+x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v} \\
& \Longrightarrow x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v}-v=\frac{1-v^4}{v^3-3 v} \\
& \Longrightarrow\left(\frac{v^3-3 v}{1-v^4}\right) d v=\frac{d x}{x}
\end{aligned}
$
Integrating both sides, we get,
$
\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\log x+\log C^{\prime}
$
Now, $\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\int \frac{v^3}{1-v^4} d v-3 \int \frac{v d v}{1-v^4}$
$
\Rightarrow \int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=I_1-3 I_2 \text {, where } I_1=\int \frac{v^3}{1-v^4} d v \text { and } I_2=\int \frac{v d v}{1-v^4}
$
Let $1-v^4=\mathrm{t}$
$
\begin{aligned}
& \frac{d}{d v}\left(1-v^4\right)=\frac{d t}{d v} \\
& \Longrightarrow-4 v^3=\frac{d t}{d v} \\
& \Longrightarrow v^3 d v=-\frac{d t}{4}
\end{aligned}
$
Now,
$
\mathrm{I}_1=\int-\frac{\mathrm{dt}}{4}=-\frac{1}{4} \log \mathrm{t}=-\frac{1}{4} \log \left(1-\mathrm{v}^4\right)
$
and
$
I_2=\int \frac{v d v}{1-v^4}=\int \frac{v d v}{1-\left(v^2\right)^2}
$
Let $v^2=p$
$
\begin{aligned}
& \Rightarrow \frac{d}{d v}\left(v^2\right)=\frac{d p}{d v} \\
& \Rightarrow 2 v=\frac{d p}{d v}
\end{aligned}
$
Question 4: Find the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
Answer:
The given equation is
$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
We can rewrite it as
$\frac{dy}{dx } =- \sqrt{\frac{1-y^2}{1-x^2}}$
$ \frac{dy}{\sqrt{1-y^2}}= \frac{-dx}{\sqrt{1-x^2}}$
Now, integrate on both sides
$\sin^{-1}y + C =- \sin ^{-1}x + C'$
$ \sin^{-1}y+\sin^{-1}x= C$
Therefore, the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$ is $\sin^{-1}y+\sin^{-1}x= C$
Given,
$
\begin{aligned}
& \frac{d y}{d x}+\frac{y^2+y+1}{x^2+x+1}=0 \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{y}^2+\mathrm{y}+1}{\mathrm{x}^2+\mathrm{x}+1}\right) \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}=\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}+\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1}=0
\end{aligned}
$
Integrating both sides,
$
\begin{aligned}
& \int \frac{d y}{y^2+y+1}+\int \frac{d x}{x^2+x+1}=C \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\int \frac{d y}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=C \\
& \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{\mathrm{y}+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]+\frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]=C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 y+1}{\sqrt{3}}\right]+\tan ^{-1}\left[\frac{2 x+1}{\sqrt{3}}\right]=\mathrm{C} \Rightarrow \tan ^{-1}\left[\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{1-\frac{2 y+1}{\sqrt{3}} \cdot \frac{2 x+1}{\sqrt{3}}}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 x+2 y+2}{\sqrt{3}}}{1-\left(\frac{4 x y+2 x+2 y+1}{3}\right)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{3-4 x y-2 x-2 y-1}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \frac{\sqrt{3}(x+y+1)}{(1-x-y-2 x y)}=\tan \left(\frac{\sqrt{3}}{2} c\right)
\end{aligned}
$
Let $\tan \left(\frac{\sqrt{3}}{2} c\right)=B$
$
x+y+1=\frac{2 B}{\sqrt{3}}(1-x-y-2 x y)
$
Let $A=\frac{2 B}{\sqrt{3}}$,
$
x+y+1=A(1-x-y-2 x y)
$
Hence proved.
Answer:
The given equation is
$\sin x \cos y dx + \cos x \sin y dy = 0.$
We can rewrite it as
$\frac{dy}{dx}= -\tan x\cot y$
$ \frac{dy}{\cot y}= -\tan xdx$
$ \tan y dy =- \tan x dx$
Integrate both tides
$\log |\sec y|+C' = -\log|sec x|- C''$
$ \log|\sec y | +\log|\sec x| = C$
$ \sec y .\sec x = e^{C}$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through the point $\left(0,\frac{\pi}{4} \right )$
So,
$\sec \frac{\pi}{4} .\sec 0 = e^{C}$
$ \sqrt2.1= e^C$
$ C = \log \sqrt2$
Now,
$\sec y.\sec x= e^{\log \sqrt 2}$
$ \frac{\sec x}{\cos y} = \sqrt 2$
$ \cos y = \frac{\sec x}{\sqrt 2}$
Therefore, the equation of the curve passing through the point $\left(0,\frac{\pi}{4} \right )$ whose differential equation is $\sin x \cos y dx + \cos x \sin y dy = 0.$ is $\cos y = \frac{\sec x}{\sqrt 2}$
Answer:
The given equation is
$(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$
We can rewrite it as
$\frac{dy}{dx}= -\frac{(1+y^2)e^x}{(1+e^{2x})}$
$ \frac{dy}{1+y^2}= \frac{-e^xdx}{1+e^{2x}}$
Now, integrate both sides
$\tan^{-1}y + C' =\int \frac{-e^{x}dx}{1+e^{2x}}$
$\int \frac{-e^{x}dx}{1+e^{2x}}\\$
Put
$e^x = t \\ e^xdx = dt$
$\int \frac{dt}{1+t^2}= \tan^{-1}t + C''$
Put $t = e^x$ again
$\int \frac{-e^{x}dx}{1+e^{2x}} = -\tan ^{-1}e^x+C''$
Put this in our equation
$\tan^{-1}y = -\tan ^{-1}e^x+C\\ \tan^{-1}y +\tan ^{-1}e^x=C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = 1 when x = 0
$\\ \tan^{-1}1 +\tan ^{-1}e^0=C$
$ \frac{\pi}{4}+\frac{\pi}{4}= C\\ C = \frac{\pi}{2}$
Now, put the value of C
$\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Therefore, the particular solution of the differential equation $(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$ is $\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Question 8: Solve the differential equation $ye^\frac{x}{y}dx = \left(xe^\frac{x}{y} + y^2 \right )dy\ (y \neq 0)$
Answer:
Given,
$ye^\frac{x}{y}dx = (xe^\frac{x}{y} + y^2)dy$
$\\ ye^\frac{x}{y}\frac{dx}{dy} = xe^\frac{x}{y} + y^2 \\ \implies e^\frac{x}{y}[y\frac{dx}{dy} -x] = y^2 \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} = 1$
Let $\large e^\frac{x}{y} = t$
Differentiating it w.r.t. y, we get,
$\\ \frac{d}{dy}e^\frac{x}{y} = \frac{dt}{dy} \\ \implies e^\frac{x}{y}.\frac{d}{dy}(\frac{x}{y}) = \frac{dt}{dy} \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} =\frac{dt}{dy}$
Thus, from these two equations, we get,
$\\ \frac{dt}{dy} = 1 \\ \implies \int dt = \int dy \\ \implies t = y + C$
$\Rightarrow e^{\frac{x}{y}}=y+C$
Answer:
The given equation is
$(x - y) (dx + dy) = dx - dy,$
Now, integrate both sides
Put
$(x-y ) = t\\ dx - dy = dt$
Now, the given equation becomes
$dx+dy= \frac{dt}{t}$
Now, integrate both sides
$x+ y + C '= \log t + C''$
Put $t = x- y$ again
$x+y = \log (x-y)+ C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = -1 when x = 0
$0+(-1) = \log (0-(-1))+ C\\ C = -1$
Now, put the value of C
$x+y = \log |x-y|-1\\ \log|x-y|= x+y+1$
Therefore, the particular solution of the differential equation $(x - y) (dx + dy) = dx - dy,$ is $\log|x-y|= x+y+1$
Answer:
Given,
$\left[\frac{e^{-2\sqrt x}}{\sqrt x} - \frac{y}{\sqrt x} \right ]\frac{dx}{dy} = 1$
$\begin{aligned} & \Rightarrow \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} \\ & \Rightarrow \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\end{aligned}$
This equation is in the form of $\frac{d y}{d x}+p y=Q$
$
\begin{aligned}
& p=\frac{1}{\sqrt{x}} \text { and } Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \\
& \text { Now, I.F. }=e^{\int p d x}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}
\end{aligned}
$
We know that the solution of the given differential equation is:
$\begin{aligned} & y(I . F .)=\int(Q \cdot F .) d x+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int\left(\frac{\mathrm{e}^{-2 \sqrt{\mathrm{x}}}}{\sqrt{\mathrm{x}}} \times \mathrm{e}^{2 \sqrt{\mathrm{x}}}\right) \mathrm{dx}+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}+\mathrm{C} \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=2 \sqrt{\mathrm{x}}+C\end{aligned}$
Answer:
The given equation is
$\frac{dy}{dx} + y \cot x = 4x \textup{cosec} x\ (x\neq 0)$
This is $\frac{dy}{dx} + py = Q$ type where $p =\cot x$ and $Q = 4xcosec x$ $Q = 4x \ cosec x$
Now,
$I.F. = e^{\int pdx}= e^{\int \cot xdx}= e^{\log |\sin x|}= \sin x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sin x ) =\int (\sin x\times 4x \ cosec x)dx +C$
$y(\sin x) =\int(\sin x\times \frac{4x}{\sin x}) +C$
$ y(\sin x) = \int 4x + C\\ y\sin x= 2x^2+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$0.\sin \frac{\pi}{2 } = 2.\left ( \frac{\pi}{2} \right )^2+C$
$ C = - \frac{\pi^2}{2}$
Now, put the value of C
$y\sin x= 2x^2-\frac{\pi^2}{2}$
Therefore, the particular solution is $y\sin x= 2x^2-\frac{\pi^2}{2}, (sinx\neq0)$
Answer:
The given equation is
$(x+1)\frac{dy}{dx} = 2e^{-y} -1$
We can rewrite it as
$\frac{e^ydy}{2-e^y}= \frac{dx}{x+1}\\$
Integrate both sides
$\int \frac{e^ydy}{2-e^y}= \log |x+1|\\$
$\int \frac{e^ydy}{2-e^y}$
Put
$2-e^y = t\\ -e^y dy = dt$
$\int \frac{-dt}{t}=- \log |t|$
put $t = 2- e^y$ again
$\int \frac{e^ydy}{2-e^y} =- \log |2-e^y|$
Put this in our equation
$\log |2-e^y| + C'= \log|1+x| + C''\\ \log (2-e^y)^{-1}= \log (1+x)+\log C\\ \frac{1}{2-e^y}= C(1+x)$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 0
at x = 0
$\frac{1}{2-e^0}= C(1+0)\\ C = \frac{1}{2}$
Now, put the value of C
$\frac{1}{2-e^y} = \frac{1}{2}(1+x)$
$ \frac{2}{1+x}= 2-e^y\\ \frac{2}{1+x}-2= -e^y\\ -\frac{2x-1}{1+x} = -e^y\\ y = \log \frac{2x-1}{1+x}$
Therefore, the particular solution is $y = \log \frac{2x-1}{1+x}, x\neq-1$
Question 13: The general solution of the differential equation $\frac{ydx - xdy}{y} = 0$ is
Answer:
The given equation is
$\frac{ydx - xdy}{y} = 0$
We can rewrite it as
$dx = \frac{x}{y}dy\\ \frac{dy}{y}=\frac{dx}{x}$
Integrate both sides
We will get
$\log |y| = \log |x| + C\\ \log \frac{y}{x} = C \\ \frac{y}{x} = e^C\\ \frac{y}{x} = C\\ y = Cx$
Therefore, the answer is (C)
Question 14: The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is
(A) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(B) $ye^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
(C) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(D) $xe^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
Answer:
The given equation is
$\frac{dx}{dy} + P_1 x = Q_1$
And we know that the general equation of such type of differential equation is
$xe^{\int p_1dy} = \int (Q_1e^{\int p_1dy})dy+ C$
Therefore, the correct answer is (C)
Question 15: The general solution of the differential equation $e^x dy + (y e^x + 2x) dx = 0$ is
Answer:
The given equation is
$e^x dy + (y e^x + 2x) dx = 0$
We can rewrite it as
$\frac{dy}{dx}+y=-2xe^{-x}$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = 1 \ and \ Q = -2xe^{-x}$
Now,
$I.F. = e^{\int p dx }= e^{\int 1dx}= e^x$
Now, the general solution is
$y(I.F.) = \int (Q\times I.F.)dx+C$
$y(e^x) = \int (-2xe^{-x}\times e^x)dx+C\\ ye^x= \int -2xdx + C\\ ye^x=- x^2 + C\\ ye^x+x^2 = C$
Therefore, (C) is the correct answer.
Also, read,
Question:
Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x$, $y(0)=\frac{1}{3}+e^3$. Then $y\left(\frac{\pi}{4}\right)$ is equal to:
Solution:
We have the differential equation,
$\begin{array}{l}\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x \\ \Rightarrow \frac{d y}{d x}+3 \sec ^2 x y=\sec ^2 x\end{array} $
Compare it with the linear differential equation,
$\frac{dy}{dx}+Py=Q$
We get, $Q=\sec^2 x$
Use this in the formula,
$I.F =e^{\int Pd x}$
$I.F =e^{\int 3 \sec ^2 x d x}=e^{3 \tan x}$
The solution to the differential equation is given by:
$y \cdot e^{3\tan x}=\int e^{3 \tan x} \cdot \sec ^2 x d x+c$
$y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+c$
$\begin{aligned} & \text { Also } f(0)=\frac{1}{3}+e^3 \\ & \Rightarrow\left(\frac{1}{3}+e^3\right)=\frac{1}{3}+c \\ & \Rightarrow c=e^3 \\ & \therefore y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+e^3 \\ & \text { Put } x=\frac{\pi}{4} \\ & y e^3=\frac{e^3}{3}+e^3 \Rightarrow y=\frac{4}{3}\end{aligned}$
Hence, the correct answer is $\frac{4}{3}$.
The topics discussed in the NCERT Solutions for class 12, chapter 9, Differential Equations are:
Concept Name |
JEE |
NCERT |
✅ |
✅ | |
Formation of Differential Equation and Solutions of a Differential Equation |
✅ |
✅ |
✅ |
✅ | |
✅ |
✅ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
✅ |
Students can access all the Maths solutions from the NCERT book from the links below.
Also, read,
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the class-wise solutions of the NCERT :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Frequently Asked Questions (FAQs)
$ \frac{d y}{d x}+P(x) y=Q(x)$
To solve it:
1. Find the integrating factor (IF):
$ I F=e^{\int P(x) d x} $
2. Multiply the equation by IF.
3. Integrate both sides to get the general solution.
General Solution: Solve the equation without specific conditions, including a constant C .
Particular Solution: Find C using given initial/boundary conditions.
Initial conditions are given values of the function and its derivatives at a specific point, used to find the particular solution.
Differential equations are used in various real-world scenarios, including:
- Physics - Motion of objects, electric circuits.
- Biology - Population growth, spread of diseases.
- Engineering - Heat transfer, fluid mechanics.
- Economics - Predicting market trends, interest rates.
Solving linear differential equations using the integrating factor.
Finding general and particular solutions.
Forming differential equations from given conditions.
Applications-based problems like population growth and cooling laws.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters