NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
Have you ever thought about how we calculate the area under a curve? total accumulation of any quantity over a period of time? Or the total distance travelled by a moving object with different speeds? Welcome to the world of Integrals, one of the most important concepts in calculus. As per the latest NCERT syllabus for class 12, the Integrals chapter contains the concepts of Integration as an Inverse Process of Differentiation, Indefinite Integrals, Methods of Integration, Definite Integrals, Fundamental Theorems of Calculus, etc. Understanding these concepts will help the students grasp more advanced mathematical concepts easily and enhance their problem-solving ability in real-world applications.
This article on NCERT solutions for class 12 Maths Chapter 7 Integrals offers clear and step-by-step solutions for the exercise problems in the NCERT Books for class 12 Maths. Students who are in need of the Integrals class 12 NCERT solutions will find this article very useful. It covers all the important Class 12 Maths Chapter 7 question answers. These Class 12 maths chapter 7 ncert solutions are made by the Subject Matter Experts according to the latest CBSE syllabus, ensuring that students can grasp the basic concepts effectively. The NCERT solutions for class 12 maths and the NCERT solutions for other subjects and classes can be downloaded from the NCERT Solutions.
>> Integration as Inverse of Differentiation: Integration is the inverse process of differentiation.
In differential calculus, we find the derivative of a given function, while in integral calculus, we find a function whose derivative is given.
Indefinite Integrals:
∫f(x) dx = F(x) + C
These integrals are called indefinite integrals or general integrals.
C is an arbitrary constant that leads to different anti-derivatives of the given function.
Multiple Anti-Derivatives:
A derivative of a function is unique, but a function can have infinite anti-derivatives or integrals.
Properties of Indefinite Integral:
∫[f(x) + g(x)] dx = ∫f(x) dx + ∫g(x) dx
For any real number k, ∫k f(x) dx = k∫f(x)dx.
In general, if f1, f2, …, fn are functions and k1, k2, …, kn are real numbers,
then ∫[k1f1(x) + k2f2(x) + … + knfn(x)] dx = k1 ∫f1(x) dx + k2 ∫f2(x) dx + … + kn ∫fn(x) dx
First Fundamental Theorem of Integral Calculus:
Define the area function A(x) = ∫[a, x]f(t)dt for x ≥ a, where f is continuous on [a, b].
Then A'(x) = f(x) for every x ∈ [a, b].
Second Fundamental Theorem of Integral Calculus:
If f is a continuous function on [a, b], then ∫[a, b]f(x)dx = F(b) - F(a), where F(x) is an antiderivative of f(x).
Standard Integral Formulas:
∫xn dx = xn+1/(n+1) + C (n ≠ -1)
∫cos x dx = sin x + C
∫sin x dx = -cos x + C
∫sec2 x dx = tan x + C
∫cosec2 x dx = -cot x + C
∫sec x tan x dx = sec x + C
∫cosec x cot x dx = -cosec x + C
∫ex dx = ex + C
∫ax dx = (ax)/ln(a) + C
∫(1/x) dx = ln|x| + C
Other Integral Formulas:
∫tan x dx = ln|sec x| + C
∫cot x dx = ln|sin x| + C
∫sec x dx = ln|sec x + tan x| + C
∫cosec x dx = ln|cosec x - cot x| + C
NCERT Integrals Class 12 Questions And Answers (Exercise)
Class 12 Integrals NCERT Solutions Exercise: 7.1
Page Number: 234-235, Total Questions: 22
Answer:
Given $\sin 2x$;
So, the anti derivative of $\sin 2x$ is a function of $x$ whose derivative is $\sin 2x$.
$\frac{d}{dx}\left ( \cos 2x \right ) = -2\sin 2x$
$⇒ \sin 2x =-\frac{1}{2} \frac{d}{dx}\left (\cos 2x \right)$
$⇒ \sin 2x = \frac{d}{dx}\left ( -\frac{1}{2}\cos 2x \right)$
So, the antiderivative of $\sin 2x$ is $\left (-\frac{1}{2}\cos 2x \right)$.
Answer:
Given $\cos 3x$;
So, the antiderivative of $\cos 3x$ is a function of $x$ whose derivative is $\cos 3x$.
$\frac{d}{dx}\left ( \sin 3x \right ) = 3\cos3x$
$⇒ \cos 3x =\frac{1}{3} \frac{d}{dx}\left ( \sin 3x \right )$
Therefore, we have the anti derivative of $\cos 3x$ is $\frac{1}{3}\sin 3x$.
Answer:
Given $e ^{2x}$;
So, the anti derivative of $e ^{2x}$ is a function of $x$ whose derivative is $e ^{2x}$.
$\frac{d}{dx}\left ( e ^{2x}\right ) = 2e ^{2x}$
$⇒ e ^{2x} = \frac{1}{2}\frac{d}{dx}(e ^{2x})$
$\therefore e ^{2x} = \frac{d}{dx}(\frac{1}{2}e ^{2x})$
Therefore, we have the anti derivative of $e^{2x}$ is $\frac{1}{2}e ^{2x}$.
Answer:
Given $( ax + b )^2$;
So, the anti-derivative of $( ax + b )^2$ is a function of $x$ whose derivative is $( ax + b )^2$.
$\frac{d}{dx} (ax+b)^3 = 3a(ax+b)^2$
$\Rightarrow (ax+b)^2 =\frac{1}{3a}\frac{d}{dx}(ax+b)^3$
$\therefore (ax+b)^2 = \frac{d}{dx}[\frac{1}{3a}(ax+b)^3]$
Therefore, we have the anti derivative of $(ax+b)^2$ is $[\frac{1}{3a}(ax+b)^3]$.
Answer:
Given $\sin 2x - 4 e ^{3x}$ ;
So, the anti derivative of $\sin 2x - 4 e ^{3x}$ is a function of $x$ whose derivative is $\sin 2x - 4 e ^{3x}$.
$\frac{d}{dx} (-\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x}) = \sin 2x -4e^{3x}$
Therefore, we have the anti derivative of $\sin 2x - 4 e ^{3x}$ is $\left ( -\frac{1}{2}\cos 2x - \frac{4}{3}e^{3x} \right )$.
Question:6 Find the following integrals $\int ( 4e ^{3x}+1) dx$
Answer:
Given intergral $\int ( 4e ^{3x}+1) dx$ ;
$=4\int e ^{3x} dx + \int 1 dx = 4\left ( \frac{e^{3x}}{3} \right ) +x +C$
$=\frac{4}{3} e^{3x} +x +C$ , where C is any constant value.
Question:7 Find the following integrals $\int x ^2 ( 1- \frac{1}{x^2})dx$
Answer:
Given intergral $\int x ^2 ( 1- \frac{1}{x^2})dx$ ;
$=\int x^2 dx - \int1dx$
$=\frac{x^3}{3} - x +C$ , where C is any constant value.
Question:8 Find the following integrals $\int ( ax ^2 + bx + c ) dx$
Answer:
Given intergral $\int ( ax ^2 + bx + c ) dx$;
$\int ax^2\ dx + \int bx\ dx + \int c\ dx$
$= a\int x^2\ dx + b\int x\ dx + c\int dx$
$= a\frac{x^3}{3}+b\frac{x^2}{2}+cx +C$
$=\frac{ax^3}{3}+\frac{bx^2}{2}+cx +C$ , where C is any constant value.
Question:9 Find the following integrals intergration of $\int \left ( 2x^2 + e ^x \right ) dx$
Answer:
Given intergral $\int \left ( 2x^2 + e ^x \right ) dx$;
$\int 2x^2\ dx + \int e^{x}\ dx$
$= 2\int x^2\ dx + \int e^{x}\ dx$
$= 2\frac{x^3}{3}+e^{x} +C$
$=\frac{2x^3}{3}+e^{x} +C$ , where C is any constant value.
Question:10 Find the following integrals $\int \left ( \sqrt x - \frac{1}{\sqrt x } \right ) ^2 dx$
Answer:
Given integral $\int \left ( \sqrt x - \frac{1}{\sqrt x } \right ) ^2 dx$;
$=\int (x+\frac{1}{x}-2)\ dx$
$= \int x\ dx + \int \frac{1}{x}\ dx -2\int dx$
$= \frac{x^2}{2} + \ln|x| -2x +C$ , where C is any constant value.
Question:11 Find the following integrals intergration of $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$
Answer:
Given intergral $\int \frac{x^3 + 5x^2 - 4}{x^2} dx$ ;
$=\int \frac{x^3}{x^2}\ dx+\int \frac{5x^2}{x^2}\ dx -4\int \frac{1}{x^2}\ dx$
$=\int x\ dx + 5\int1. dx - 4\int x^{-2}\ dx$
$= \frac{x^2}{2}+5x-4\left ( \frac{x^{-1}}{-1} \right )+C$
$=\frac{x^2}{2}+5x+\frac{4}{x}+C$ , where C is any constant value.
Question:12 Find the following integrals $\int \frac{x^3+ 3x +4 }{\sqrt x } dx$
Answer:
Given intergral $\int \frac{x^3+ 3x +4 }{\sqrt x } dx$ ;
$=\int \frac{x^3}{x^{\frac{1}{2}}}\ dx+\int \frac{3x}{x^{\frac{1}{2}}}\ dx +4\int \frac{1}{x^{\frac{1}{2}}}\ dx$
$= \int x^{\frac{5}{2}}\ dx + 3\int x^{\frac{1}{2}}\ dx +4\int x^{-\frac{1}{2}}\ dx$
$=\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left ( x^{\frac{3}{2}} \right )}{\frac{3}{2}}+\frac{4\left ( x^{\frac{1}{2}} \right )}{\frac{1}{2}} +C$
$= \frac{2}{7}x^{\frac{7}{2}} +2x^{\frac{3}{2}}+8\sqrt{x} +C$, where C is any constant value.
Question:13 Find the following integrals intergration of $\int \frac{x^3 - x^2 + x -1 }{x-1 } dx$
Answer:
Given integral $\int \frac{x^3 - x^2 + x -1 }{x-1 } dx$
It can be written as
$= \int \frac{x^2(x-1)+(x+1)}{(x-1)} dx$
Taking $(x-1)$ common out
$= \int \frac{(x-1)(x^2+1)}{(x-1)} dx$
Now, cancelling out the term $(x-1)$ from both the numerator and the denominator.
$= \int (x^2+1)dx$
Splitting the terms inside the brackets
$=\int x^2dx + \int 1dx$
$= \frac{x^3}{3}+x+c$, where C is any constant value.
Question:14 Find the following integrals $\int (1-x) \sqrt x dx$
Answer:
Given intergral $\int (1-x) \sqrt x dx$ ;
$\int \sqrt{x}\ dx - \int x\sqrt{x}\ dx$ or
$\int x^{\frac{1}{2}}\ dx - \int x^{\frac{3}{2}} \ dx$
$= \frac{x^\frac{3}{2}}{\frac{3}{2}} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}} +C$
$= \frac{2}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}}+C$, where C is any constant value.
Question:15 Find the following integrals $\int \sqrt x ( 3x^2 + 2x +3 )dx$
Answer:
Given intergral $\int \sqrt x ( 3x^2 + 2x +3 )dx$ ;
$= \int 3x^2\sqrt{x}\ dx + \int 2x\sqrt{x}\ dx + \int 3\sqrt {x}\ dx$ or $= 3\int x^{\frac{5}{2}}\ dx + 2\int x^{\frac{3}{2}} \ dx +3\int x^{\frac{1}{2}} \ dx$
$= 3\frac{x^\frac{7}{2}}{\frac{7}{2}} +2\frac{x^{\frac{5}{2}}}{\frac{5}{2}} +3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} +C$
$= \frac{6}{7}x^{\frac{7}{2}} + \frac{4}{5}x^{\frac{5}{2}}+ 2x^{\frac{3}{2}}+C$, where C is any constant value.
Question:16 Find the following integrals $\int ( 2x - 3 \cos x + e ^x ) dx$
Answer:
Given integral $\int ( 2x - 3 \cos x + e ^x ) dx$;
Splitting the integral as the sum of three integrals
$\int 2x\ dx -3 \int \cos x\ dx +\int e^{x}\ dx$
$= 2 \frac{x^2}{2} - 3 \sin x + e^x+C$
$= x^2 - 3 \sin x + e^x+C$, where C is any constant value.
Question:17 Find the following integrals $\int ( 2 x ^2 - 3 \sin x + 5 \sqrt x ) dx$
Answer:
Given integral $\int ( 2 x ^2 - 3 \sin x + 5 \sqrt x ) dx$ ;
$2\int x^2\ dx -3\int \sin x\ dx + 5\int \sqrt {x}\ dx$
$= 2 \frac{x^3}{3} - 3(-\cos x ) +5\left ( \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{2x^3}{3} +3\cos x +\frac{10}{3} x^{\frac{3}{2}}+C$, where C is any constant value.
Question:18 Find the following integrals $\int \sec x ( \sec x + \tan x ) dx$
Answer:
Given integral $\int \sec x ( \sec x + \tan x ) dx$ ;
$\int (\sec^2x+ \sec x \tan x ) \ dx$
Using the integral of trigonometric functions
$= \int (sec^2 x )\ dx+ \int \sec x \tan x\ dx$
$= \tan x + \sec x +C$, where C is any constant value.
Question:19 Find the following integrals intergration of $\int \frac{sec ^2 x }{cosec ^2 x } dx$
Answer:
Given integral $\int \frac{sec ^2 x }{cosec ^2 x } dx$ ;
$\int \frac{\frac{1}{\cos^2x}}{\frac{1}{\sin^2 x}}\ dx$
$= \int \frac{\sin^2 x }{\cos ^2 x } \ dx$
$= \int \tan^2x \ dx$
$=\int (\sec^2 x-1 )\ dx$
$=\int \sec^2 x\ dx-\int1 \ dx$
$= \tan x -x+C$, where C is any constant value.
Question:20 Find the following integrals $\int \frac{2- 3 \sin x }{\cos ^ 2 x } dx$
Answer:
Given integral $\int \frac{2- 3 \sin x }{\cos ^ 2 x } dx$ ;
$\int \left ( \frac{2}{\cos^2x}-\frac{3\sin x }{\cos^2 x} \right )\ dx$
Using the antiderivative of trigonometric functions
$= 2\tan x -3\sec x +C$, where C is any constant value.
Question: 21 Choose the correct answer
The anti derivative of $\left ( \sqrt x + 1/ \sqrt x \right )$ equals
Answer:
Given to find the anti derivative or integral of $\left ( \sqrt x + 1/ \sqrt x \right )$ ;
$\int \left ( \sqrt x + 1/ \sqrt x \right )\ dx$
$\int x^{\frac{1}{2}}\ dx + \int x^{-\frac{1}{2}}\ dx$
$= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+C$
$= \frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} +C$, where C is any constant value.
Hence, the correct option is (C).
Question: 22 Choose the correct answer:
If $\frac{d}{dx}f(x) = 4 x ^3 - \frac{3}{x^4}$ such that f (2) = 0. Then f (x) is
Answer:
Given that the anti derivative of $\frac{d}{dx}f(x) = 4 x ^3 - \frac{3}{x^4}$
So, $\frac{d}{dx}f(x) = 4 x ^3 - \frac{3}{x^4}$
$f(x) = \int 4 x ^3 - \frac{3}{x^4}\ dx$
$f(x) = 4\int x ^3 - 3\int {x^{-4}}\ dx$
$f(x) = 4\left ( \frac{x^4}{4} \right ) -3\left ( \frac{x^{-3}}{-3} \right )+C$
$f(x) = x^4+\frac{1}{x^3} +C$
Now, to find the constant C;
Putting the condition, f (2) = 0
$f(2) = 2^4+\frac{1}{2^3} +C = 0$
$⇒ 16+\frac{1}{8} +C = 0$
$⇒ C = \frac{-129}{8}$
$\Rightarrow f(x) = x^4+\frac{1}{x^3}-\frac{129}{8}$
Therefore, the correct answer is A.
Class 12 Integrals NCERT solutions Exercise: 7.2
Page: 240-241, Total Questions: 39
Question:1 Integrate the functions $\frac{2x}{1+ x ^2}$
Answer:
Given to integrate $\frac{2x}{1+ x ^2}$ function,
Let us assume $1+x^2 =t$
We get, $2xdx = dt$
$\implies \int \frac{2x}{1+x^2} dx = \int \frac{1}{t} dt$
$= \log|t| +C$
$= \log|1+x^2| +C$ now back substituting the value of $t = 1+x^2$
As $(1+x^2)$ is positive we can write
$= \log(1+x^2) +C$, where C is any constant value.
Question:2 Integrate the functions $\frac{( \log x )^2}{x}$
Answer:
Given to integrate $\frac{( \log x )^2}{x}$ function,
Let us assume $\log |x| = t$
We get, $\frac{1}{x}dx= dt$
$\implies \int \frac{\left ( \log|x| \right )^2}{x}\ dx = \int t^2dt$
$= \frac{t^3}{3}+C$
$= \frac{(\log|x|)^3}{3}+C$, where C is any constant value.
Question:3 Integrate the functions $\frac{1}{x+ x \log x }$
Answer:
Given to integrate $\frac{1}{x+ x \log x }$ function,
Let us assume $1+\log x = t$
We get, $\frac{1}{x}dx= dt$
$\implies \int \frac{1}{x(1+\log x )} dx = \int \frac{1}{t} dt$
$= \log|t| +C$
$= \log |1+ \log x | +C$, where C is any constant value.
Question:4 Integrate the functions $\sin x \sin ( \cos x )$
Answer:
Given to integrate $\sin x \sin ( \cos x )$ function,
Let us assume $\cos x =t$
We get, $-\sin x dx =dt$
$\implies \int \sin x \sin(\cos x)dx = -\int \sin t dt$
$= -\left ( -\cos t \right ) +C$
$= \cos t +C$
Back substituting the value of $t$ we get,
$= \cos (\cos x ) +C$, where C is any constant value.
Question:5 Integrate the functions $\sin ( ax + b ) \cos ( ax + b )$
Answer:
Given to integrate $\sin ( ax + b ) \cos ( ax + b )$ function,
$\sin ( ax + b ) \cos ( ax + b ) = \frac{2\sin ( ax + b ) \cos ( ax + b )}{2} = \frac{\sin 2(ax+b)}{2}$
Let us assume $2(ax+b) = t$
We get, $2adx =dt$
$\int \frac{\sin 2(ax+b)}{2} dx = \frac{1}{2}\int \frac{\sin t}{2a} dt$
$= \frac{1}{4a}[-cos t] +C$
Now, by back substituting the value of t,
$= \frac{-1}{4a}[cos 2(ax+b)] +C$, where C is any constant value.
Question:6 Integrate the functions $\sqrt { ax + b }$
Answer:
Given to integrate $\sqrt { ax + b }$ function,
Let us assume $(ax+b) = t$
We get, $adx =dt$
$dx = \frac{1}{a}dt$
$\Rightarrow \int(ax+b)^{\frac{1}{2}} dx = \frac{1}{a}\int t^{\frac{1}{2}}dt$
Now, by back substituting the value of t,
$= \frac{1}{a}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{2(ax+b)^\frac{3}{2}}{3a} +C$, where C is any constant value.
Question:7 Integrate the functions $x \sqrt { x +2 }$
Answer:
Given function $x \sqrt { x +2 }$ ,
$\int x\sqrt{x+2}$
Assume the $(x+2) = t$ 19634
$\therefore dx =dt$
$\Rightarrow \int x\sqrt{x+2} dx = \int (t-2) \sqrt{t} dt$
$= \int (t-2) \sqrt{t} dt$
$= \int \left ( t^{\frac{3}{2}}-2t^{\frac{1}{2}} \right )dt$
$= \int t^{\frac{3}{2}}dt -2\int t^{\frac{1}{2}}dt$
$= \frac{t^{\frac{5}{2}}}{\frac{5}{2}} -2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{2}{5}t^{\frac{5}{2}} -\frac{4}{3}t^{\frac{3}{2}} +C$
Substituting the value of $t$ in the above equation,
$=\frac{2}{5}(x+2)^{\frac{5}{2}}- \frac{4}{3}(x+2)^\frac{3}{2} +C$, where C is any constant value.
Question:8 Integrate the functions $x \sqrt { 1+ 2 x^2 }$
Answer:
Given function $x \sqrt { 1+ 2 x^2 }$ ,
$\int x \sqrt { 1+ 2 x^2 }\ dx$
Assume the $1+2x^2= t$
$\therefore 4xdx =dt$
$\Rightarrow \int x\sqrt{1+2x^2}dx = \int \frac{\sqrt {t}}{4} dt$
$= \frac{1}{4}\int t^{\frac{1}{2}} dt = \frac{1}{4}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{1}{6}(1+2x^2)^{\frac{3}{2}} +C$, where C is any constant value.
Question:9 Integrate the functions $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$
Answer:
Given function $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$ ,
$\int ( 4x +2 ) \sqrt { x ^ 2 + x + 1 } dx$
Assume the $1+x+x^2 = t$
$\therefore (2x+1)dx =dt$
$\Rightarrow \int (4x+2)\sqrt{1+x+x^2} dx$
$= \int 2\sqrt {t}dt = 2\int \sqrt{t}dt$
$= 2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
Now, back substituting the value of t in the above equation,
$= \frac{4}{3}(1+x+x^2)^{\frac{3}{2}} +C$, where C is any constant value.
Question:10 Integrate the functions $\frac{1}{x - \sqrt x }$
Answer:
Given function $\frac{1}{x - \sqrt x }$ ,
$\int \frac{1}{x - \sqrt x } dx$
Can be written in the form:
$\frac{1}{x - \sqrt x } = \frac{1}{\sqrt {x}(\sqrt{x}-1)}$
Assume the $(\sqrt{x}-1) =t$
$\therefore \frac{1}{2\sqrt{x}}dx =dt$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)}dx = \int \frac{2}{t}dt$
$= 2\log|t| +C$
$= 2\log|\sqrt{x}-1| +C$, where C is any constant value.
Question:11 Integrate the functions $\frac{x }{ \sqrt{ x +4} }$, x > 0
Answer:
Given function $\frac{x }{ \sqrt{ x +4} }$ ,
$\int \frac{x }{ \sqrt{ x +4} }dx$
Assume the $x+4 =t$ so, $x =t-4$
$\therefore dx=dt$
$\int \frac{x}{\sqrt{x+4}}dx = \int \frac{t-4}{\sqrt{t}}dt$
$\int t^\frac{1}{2}dt -4\int t^{\frac{-1}{2}}dt$
$= \frac{2}{3}t^{\frac{3}{2}} - 4\left ( 2t^{\frac{1}{2}} \right )+C$
$= \frac{2}{3}(x+4)^{\frac{3}{2}} -16(x+4)^{\frac{1}{2}}+C$, where C is any constant value.
Question:12 Integrate the functions $( x ^3 - 1 ) ^{1/3} x ^ 5$
Answer:
Given function $( x ^3 - 1 ) ^{1/3} x ^ 5$ ,
$\int ( x ^3 - 1 ) ^{1/3} x ^ 5 dx$
Assume the $x^3-1 = t$
$\therefore 3x^2dx=dt$
$⇒ \int(x^3-1)^{\frac{1}{3}} x^5 dx = \int (x^3-1)^{\frac{1}{3}}x^3.x^2dx$
$= \int t^{\frac{1}{3}}(t+1)\frac{dt}{3}$
$= \frac{1}{3} \int \left ( t^\frac{4}{3}+t^\frac{1}{3} \right )dt$
$= \frac{1}{3}\left [ \frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}} \right ]+C$
$= \frac{1}{3}\left [ \frac{3}{7}t^{\frac{7}{3}}+\frac{3}{4}t^{\frac{4}{3}} \right ]+C$
$= \frac{1}{7}(x^3-1)^{\frac{7}{3}} + \frac{1}{4}(x^3-1)^{\frac{4}{3}} +C$ , where C is any constant value.
Question:13 Integrate the functions $\frac{x ^2 }{(2+3x^3)^3}$
Answer:
Given function $\frac{x ^2 }{(2+3x^3)^3}$ ,
$\int \frac{x ^2 }{(2+3x^3)^3} dx$
Assume the $2+3x^3 =t$
$\therefore 9x^2dx=dt$
$⇒ \int\frac{x^2}{(2+3x^2)}dx = \frac{1}{9}\int \frac{dt}{t^3}$
$= \frac{1}{9}\left ( \frac{t^{-2}}{-2} \right ) +C$
$= \frac{-1}{18}\left ( \frac{1}{t^2} \right )+C$
$= \frac{-1}{18(2+3x^3)^2}+C$ , where C is any constant value.
Question:14 Integrate the functions $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$
Answer:
Given function $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$ ,
Assume the $\log x =t$
$\therefore \frac{1}{x}dx =dt$
$⇒ \int\frac{1}{x(logx)^m}dx = \int\frac{dt}{t^m}$
$=\left ( \frac{t^{-m+1}}{1-m} \right ) +C$
$= \frac{(log x )^{1-m}}{(1-m)} +C$ , where C is any constant value.
Question:15 Integrate the functions $\frac{x}{9- 4 x ^2 }$
Answer:
Given function $\frac{x}{9- 4 x ^2 }$ ,
Assume the $9-4x^2 =t$
$\therefore -8xdx =dt$
$⇒ \int\frac{x}{9-4x^2} = -\frac{1}{8}\int \frac{1}{t}dt$
$= \frac{-1}{8}\log|t| +C$
Now, substituting the value of t;
$= \frac{-1}{8}\log|9-4x^2| +C$ , where C is any constant value.
Question:16 Integrate the functions $e ^{ 2 x +3 }$
Answer:
Given function $e ^{ 2 x +3 }$ ,
Assume the $2x+3 =t$
$\therefore 2dx =dt$
$⇒ \int e^{2x+3} dx = \frac{1}{2}\int e^t dt$
$= \frac{1}{2}e^t +C$
Now, substituting the value of t;
$= \frac{1}{2}e^{2x+3}+C$ , where C is any constant value.
Question:17 Integrate the functions $\frac{x }{e^{x^{2}}}$
Answer:
Given function $\frac{x }{e^{x^{2}}}$ ,
Assume the $x^2=t$
$\therefore 2xdx =dt$
$⇒ \int \frac{x}{e^{x^2}}dx = \frac{1}{2}\int \frac{1}{e^t}dt$
$= \frac{1}{2}\int e^{-t} dt$
$= \frac{1}{2}\left ( \frac{e^{-t}}{-1} \right ) +C$
$= \frac{-1}{2}e^{-x^2} +C$
$= \frac{-1}{2e^{x^2} }+C$, where C is any constant value.
Question:18 Integrate the functions $\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$
Answer:
Given,
$\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$
Let's do the following substitution
$\\ tan^{-1}x = t \\ ⇒ \frac{1}{1+x^2}dx = dt$
$\therefore \int \frac{e ^{\tan ^{-1}x}}{1+ x^2 }dx = \int e ^{t}dt = e^t + C$
$= e^{tan^{-1}x} + C$, where C is any constant value.
Question:19 Integrate the functions $\frac{e ^{2x}-1}{e ^{2x}+1}$
Answer:
Given function $\frac{e ^{2x}-1}{e ^{2x}+1}$ ,
Simplifying it by dividing both the numerator and the denominator by $e^x$, we obtain
$\frac{\frac{e^{2x}-1}{e^x}}{\frac{e^{2x}+1}{e^x}} = \frac{e^x-e^{-x}}{e^x+e^{-x}}$
Assume the $e^{x}+e^{-x} =t$
$\therefore (e^x-e^{-x})dx =dt$
$⇒ \int \frac{e^{2x}-1}{e^{2x}+1}dx = \int \frac{e^x-e^{-x}}{e^x+e^{-x}}dx$
$= \int \frac{dt}{t}$
$= \log |t| +C$
Now, back substituting the value of t,
$= \log |e^x+e^{-x}| +C$, where C is any constant value.
Question:20 Integrate the functions $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$
Answer:
Given function $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$ ,
Assume the $e^{2x}+e^{-2x} =t$
$\therefore (2e^{2x}-2e^{-2x})dx =dt$
$⇒ \int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}dx = \int \frac{dt}{2t}$
$= \frac{1}{2}\int \frac{1}{t}dt$
$= \frac{1}{2}\log|t| +C$
Now, back substituting the value of t,
$= \frac{1}{2}\log|e^{2x}+e^{-2x}| +C$, where C is any constant value.
Question:21 Integrate the functions $\tan ^2 ( 2x-3 )$
Answer:
Given function $\tan ^2 ( 2x-3 )$ ,
Assume the $2x-3 =t$
$\therefore 2dx =dt$
$⇒ \int \tan^2(2x-3) dx = \frac{\int \tan^2(t)}{2}dt$
$=\frac{1}{2}\int (\sec^2t -1) dt$ $\left [\because \tan^2t+1 = \sec^2 t \right ]$
$= \frac{1}{2}\left [ \tan t - t \right ] +C$
Now, back substituting the value of t,
$= \frac{1}{2}\left [ \tan(2x-3)-2x+3 \right ]+C$
$=\frac{1}{2} \tan(2x-3)-x+C$, where C is any constant value.
Question:22 Integrate the functions $\sec ^2 ( 7- 4x )$
Answer:
Given function $\sec ^2 ( 7- 4x )$ ,
Assume the $7-4x=t$
$\therefore -4dx =dt$
$⇒ \int \sec^2(7-4x)dx = \frac{-1}{4}\int \sec^2t dt$
$=-\frac{1}{4}(\tan t) +C$
Now, substituting the value of t,
$=-\frac{1}{4}\tan(7-4x)+C$, where C is any constant value.
Question:23 Integrate the functions $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$
Answer:
Given function $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$ ,
Assume the $\sin^{-1}x =t$
$\therefore \frac{1}{\sqrt{1-x^2}}dx = dt$
$⇒ \int \frac{\sin^{-1}x}{\sqrt{1-x^2}}dx =\int t dt$
$= \frac{t^2}{2}+C$
Now, substituting the value of t,
$= \frac{(\sin^{-1}x)^2}{2}+C$, where C is any constant value.
Question:24 Integrate the functions $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$
Answer:
Given function $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$ ,
Or simplified as $\frac{2 \cos x - 3\sin x }{2(3 \cos x + 2 \sin x) }$
Assume the $3\cos x +2\sin x =t$
$\therefore (-3\sin x + 2\cos x )dx =dt$
$⇒ \int \frac{2\cos x - 3\sin x }{6\cos x +4\sin x }dx = \int \frac{dt}{2t}$
$= \frac{1}{2}\int \frac{dt}{t}$
$= \frac{1}{2}\log|t| +C$
Now, substituting the value of t,
$= \frac{1}{2}\log|3\cos x +2\sin x| +C$, where C is any constant value.
Question:25 Integrate the functions $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$
Answer:
Given function $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$ ,
Or simplified as $\frac{1 }{ \cos ^2 x (1-\tan x )^2} = \frac{\sec^2x}{(1-\tan x)^2}$
Assume the $(1-\tan x)=t$
$\therefore -\sec^2xdx =dt$
$\implies \int \frac{\sec^2x}{(1-\tan x)^2}dx = \int\frac{-dt}{t^2}$
$= -\int t^{-2} dt$
$= \frac{1}{t} +C$
Now, substituting the value of t,
$= \frac{1}{1-\tan x}+C$, where C is any constant value.
Question:26 Integrate the functions $\frac{\cos \sqrt x }{\sqrt x }$
Answer:
Given function $\frac{\cos \sqrt x }{\sqrt x }$ ,
Assume the $\sqrt x =t$
$\therefore \frac{1}{2\sqrt x}dx =dt$
$⇒ \int \frac{\cos \sqrt{x}}{\sqrt{x}}dx = 2\int \cos t dt$
$= 2\sin t +C$
Now, substituting the value of t,
$= 2\sin \sqrt{x}+C$, where C is any constant value.
Question:27 Integrate the functions $\sqrt { \sin 2x } \cos 2x$
Answer:
Given function $\sqrt { \sin 2x } \cos 2x$ ,
Assume the $\sin 2x = t$
$\therefore 2\cos 2x dx =dt$
$⇒ \int \sqrt{\sin 2x }\cos 2x dx = \frac{1}{2}\int \sqrt t dt$
$= \frac{1}{2}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right )+C$
$= \frac{1}{3}t^{\frac{3}{2}}+C$
Now, substituting the value of t,
$= \frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+C$, where C is any constant value.
Question:28 Integrate the functions $\frac{\cos x }{\sqrt { 1+ \sin x }}$
Answer:
Given function $\frac{\cos x }{\sqrt { 1+ \sin x }}$ ,
Assume the $1+\sin x =t$
$\therefore \cos x dx = dt$
$⇒ \int \frac{\cos x }{\sqrt{1+\sin x}}dx = \int \frac{dt}{\sqrt t}$
$= \frac{t^{\frac{1}{2}}}{\frac{1}{2}} +C$
$= 2\sqrt t +C$
Now, substituting the value of t,
$= 2{\sqrt{1+\sin x}} +C$, where C is any constant value.
Question:29 Integrate the functions $\cot x \: log \sin x$
Answer:
Given function $\cot x \: log \sin x$ ,
Assume the $\log \sin x =t$
$\therefore \frac{1}{\sin x }.\cos x dx =dt$
$\cot x dx =dt$
$⇒ \int \cot x \log \sin x dx =\int t dt$
$= \frac{t^2}{2}+C$
Now, substituting the value of t,
$= \frac{1}{2}(\log \sin x )^2+C$, where C is any constant value.
Question:30 Integrate the functions $\frac{\sin x }{1+ \cos x }$
Answer:
Given function $\frac{\sin x }{1+ \cos x }$ ,
Assume the $1+\cos x =t$
$\therefore -\sin x dx =dt$
$⇒ \int \frac{\sin x}{1+\cos x}dx = \int -\frac{dt}{t}$
$= -\log|t| +C$
Now, substituting the value of t,
$= -\log|1+\cos x | +C$ , where C is any constant value.
Question:31 Integrate the functions $\frac{\sin x }{( 1+ \cos x )^2}$
Answer:
Given function $\frac{\sin x }{( 1+ \cos x )^2}$ ,
Assume the $1+\cos x =t$
$\therefore -\sin x dx =dt$
$⇒ \int \frac{\sin x}{(1+\cos x)^2}dx = \int -\frac{dt}{t^2}$
$= -\int t^{-2}dt$
$= \frac{1}{t}+C$
Now, substituting the value of t,
$= \frac{1}{1+\cos x} +C$, where C is any constant value.
Question:32 Integrate the functions $\frac{1}{1+ \cot x }$
Answer:
Given function $\frac{1}{1+ \cot x }$
Assume that $I = \int \frac{1}{1+ \cot x } dx$
Now solving the assumed integral,
$I = \int \frac{1}{1+ \frac{\cos x }{\sin x} } dx$
$= \int \frac{\sin x }{\sin x + \cos x } dx$
$= \frac{1}{2}\int \frac{2\sin x }{\sin x + \cos x } dx$
$= \frac{1}{2}\int \frac{(\sin x+ \cos x ) +(\sin x -\cos x ) }{(\sin x + \cos x) } dx$
$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$
$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$
Now, to solve further we will assume $\sin x + \cos x =t$
$⇒ (\cos x -\sin x)dx =dt$
$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$
$= \frac{x}{2}- \frac{1}{2}\log|t| +C$
Now, substituting the value of t,
$= \frac{x}{2}- \frac{1}{2}\log|\sin x + \cos x| +C$, where C is any constant value.
Question:33 Integrate the functions $\frac{1}{1- \tan x }$
Answer:
Given function $\frac{1}{1- \tan x }$
Assume that $I = \int \frac{1}{1- \tan x } dx$
Now solving the assumed integral,
$I = \int \frac{1}{1-\frac{\sin x}{\cos x }} dx$
$= \int \frac{\cos x }{\cos x - \sin x } dx$
$= \frac{1}{2}\int \frac{2\cos x }{\cos x - \sin x } dx$
$= \frac{1}{2}\int \frac{(\cos x -\sin x ) +(\cos x +\sin x ) }{(\cos x - \sin x) } dx$
$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$
$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$
Now, to solve further we will assume $\cos x - \sin x =t$
Or, $(-\sin x-\cos x )dx =dt$
$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$
$= \frac{x}{2}- \frac{1}{2}\log|t| +C$
Now, back substituting the value of t,
$= \frac{x}{2}- \frac{1}{2}\log|\cos x - \sin x| +C$, where C is any constant value.
Question:34 Integrate the functions $\frac{\sqrt { \tan x } }{\sin x \cos x }$
Answer:
Given function $\frac{\sqrt { \tan x } }{\sin x \cos x }$
Assume that $I = \int \frac{\sqrt { \tan x } }{\sin x \cos x }dx$
Now solving the assumed integral,
Multiplying the numerator and denominator by $\cos x$ ;
$I = \int \frac{\sqrt{\tan x }\times\cos x}{\sin x \cos x\times \cos x}dx$
$= \int \frac{\sqrt{\tan x }}{\tan x \cos^2 x } dx$
$= \int \frac{\sec^2 x }{\sqrt{\tan x }}dx$
Now, to solve further, we will assume $\tan x =t$
Or, $\sec^2{x}dx =dt$
$\therefore I =\int \frac{dt}{\sqrt t}$
$=2\sqrt t +C$
Now, back substituting the value of t,
$= 2\sqrt{\tan x } +C$, where C is any constant value.
Question:35 Integrate the functions $\frac{( 1+ \log x )^2}{x}$
Answer:
Given function $\frac{( 1+ \log x )^2}{x}$
Assume that $1+\log x =t$
$\therefore \frac{1}{x}dx =dt$
$= \int \frac{(1+\log x )^2}{x}dx = \int t^2 dt$
$= \frac{t^3}{3}+C$
Now, back substituting the value of t,
$= \frac{(1+\log x )^3}{3}+C$, where C is any constant value.
Question:36 Integrate the functions $\frac{( x+1)( x+ \log x )^2}{x }$
Answer:
Given function $\frac{( x+1)( x+ \log x )^2}{x }$
$⇒\frac{( x+1)( x+ \log x )^2}{x } = \left ( \frac{x+1}{x} \right )\left ( x+\log x \right )^2$
$=\left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2$
Assume that $x+\log x =t$
$\therefore \left ( 1+\frac{1}{x} \right )dx = dt$
$= \int \left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2 dx = \int t^2 dt$
$= \frac{t^3}{3}+C$
Now, back substituting the value of t,
$= \frac{(x+\log x )^3}{3}+C$, where C is any constant value.
Question:37 Integrate the functions $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$
Answer:
Given function $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$
Assume that $x^4 =t$
$\therefore 4x^3 dx =dt$
$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx = \frac{1}{4} \int \frac{\sin(\tan^{-1} t)}{1+t^2}dt$ ......................(1)
Now to solve further we take $\tan ^{-1} t = u$
$\therefore \frac{1}{1+t^2} dt =du$
So, from equation (1), we will get
$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx =\frac{1}{4}\int \sin u\ du$
$= \frac{1}{4}(-\cos u) +C$
Now back substitute the value of u,
$= \frac{-1}{4}\cos (\tan^{-1} t) +C$
Substituting the value of t,
$= \frac{-1}{4}\cos (\tan^{-1} x^4) +C$, where C is any constant value.
Question:38 Choose the correct answer $\int \frac{10 x^ 9 + 10 ^x \log _ e 10 dx }{x ^{10}+ 10 ^x }dx\: \: \: equals$
Answer:
Given integral $\int \frac{10 x^ 9 + 10 ^x \log _ e 10 dx }{x ^{10}+ 10 ^x }dx$
Taking the denominator $x^{10} +10^x = t$
Now, differentiating both sides, we get
$\therefore \left ( 10x^9+10^x\log_{e}10 \right )dx = dt$
$⇒ \int \frac{10x^9+10^x\log_{e}10}{x^{10}+10^x} dx = \int \frac{dt}{t}$
$= \log t +C$
Substituting the value of t,
$= \log (x^{10}+10^x) +C$, where C is any constant value.
Therefore the correct answer is D.
Question:39 Choose the correct answer $\int \frac{dx }{\sin ^ 2 x \cos ^2 x }\: \: \: equals$
Answer:
Given integral $\int \frac{dx }{\sin ^ 2 x \cos ^ 2x }$
$\int \frac{dx }{\sin ^ 2 x \cos ^ 2x } = \int \frac{1}{\sin ^2 x \cos ^2 x } dx$
$=\int \frac{\sin ^2 x +\cos^2 x }{\sin^2 x \cos^2 x}dx$ $\left ( \because \sin ^2 x +\cos^2 x =1 \right )$
$=\int \frac{\sin^2 x }{\sin^2 x \cos^2 x}dx + \int \frac{\cos^2 x}{\sin^2 x \cos^2 x}dx$
$=\int \sec^2 x dx + \int cosec^2 x dx$
$=\tan x -\cot x +C$, where C is any constant value.
Therefore, the correct answer is B.
Class 12 Integrals NCERT Solutions Exercise: 7.3
Page: 243, Total Questions: 24
Question:1 Find the integrals of the functions $\sin ^ 2 ( 2x+ 5 )$
Answer:
$\sin ^ 2 ( 2x+ 5 )$
Using the trigonometric identity $\sin^2x=\frac{1-\cos2x}{2}$
We can write the given question as
$=\frac{1-\cos 2(2x+5)}{2}$ $= \frac{1-\cos (4x+10)}{2}$
Now, $\int \frac{1-\cos (4x+10)}{2}dx\\ =\frac{1}{2}\int dx - \frac{1}{2}\int \cos(4x+10)dx$
$=\frac{x}{2}-\frac{1}{2}[\frac{\sin(4x+10)}{4}]\\ =\frac{x}{2}-\frac{\sin(4x+10)}{8}+C$
Question:2 Find the integrals of the functions $\sin 3x \cos 4x$
Answer:
Using identity $\sin A\cos B = 1/2[sin(A+B)+sin(A-B)]$
The given integral can be written as
$\int \sin 3x\cos 4x=\frac{1}{2}\int \sin(3x+4x)+\sin(3x-4x)\ dx$
$=\frac{1}{2}\int \sin(7x)-\sin(x)\ dx\\ =1/2[\int \sin (7x) dx-\int \sin x\ dx]$
$=\frac{1}{2}[(-1/7)\cos 7x+\cos x+ C]$
$= \frac{\cos x}{2}-\frac{\cos 7x}{14}+C$
Question:3 Find the integrals of the functions $\cos 2x \cos 4x \cos 6x$
Answer:
Using identity $\cos A\cos B = \frac{1}{2}[\cos(A+B)+\cos(A-B)]$
$\int \cos 2x.\cos 4x.\cos 6x = \int \cos 2x. \frac{1}{2}[(\cos 10x)+\cos 2x]dx$
Again use the same identity mentioned in the first line
$= \frac{1}{2}\int (\cos 2x.\cos 10x+\cos 2x. \cos 2x)dx$
$=\frac{1}{2}\int\frac{1}{2}({\cos12x +\cos 8x})dx+\frac{1}{2}\int (\frac{1+\cos 4x}{2})dx$
$=\frac{\sin 12x}{48}+\frac{\sin 8x}{32}+\frac{\sin 4x}{16}+ \frac{x}{4}+C$
Question:4 Find the integrals of the functions $\sin ^ 3 ( 2x +1 )$
Answer:
$\int \sin^3(2x+1)dx = \int \sin^2(2x+1).\sin(2x+1)dx$
The integral can be written as
$= \int (1-\cos^2(2x+1)).\sin(2x+1)dx$
Let $\\\cos (2x+1) =t\\ ⇒\sin (2x+1)dx = -dt/2$
$\\=\frac{-1}{2}\int (1-t^2)dt\\ =\frac{-1}{2}[t-t^3/3]\\ =\frac{t^3}{6}-\frac{t}{2}$
Now, replacing the value of t, we get;
$=\frac{\cos^3(2x+1)}{6}-\frac{\cos(2x+1)}{2}+C$
Question:5 Find the integrals of the functions $\sin ^3 x \cos ^ 3 x$
Answer:
$I = \int \sin^3x.\cos^3x\ dx$
Rewrite the integral as follows
$\\=\int \cos^3x.\sin^2x.\sin x\ dx\\ =\int \cos^3x(1-\cos^2x)\sin x\ dx$
Let $\cos x = t \Rightarrow \sin x dx =-dt$
$\\=-\int t^3(1-t^2)dt\\ =-\int(t^3-t^5)dt\\ =-[\frac{t^4}{4}]+[\frac{t^6}{6}] +C$
$=\frac{\cos^6x}{6}-\frac{cos^4x}{4}+C$ ......(replacing the value of t as $\cos\ x$)
Question:6 Find the integrals of the functions $\sin x \sin 2x \sin 3x$
Answer:
Using the formula
$\sin A\sin B=\frac{1}{2}(\cos(A-B)-\cos(A+B))$
We can write the integral as follows
$\int \sin x.\sin 2x\sin 3x\ dx = \int \sin x\frac{1}{2}[\cos x-\cos 5x]dx$
$=\frac{1}{2} \int [\sin x.\cos x-\sin x.\cos 5x]dx$
$=\frac{1}{2}\int \frac{\sin 2x}{2}dx-\frac{1}{2}\int \sin x. \cos 5x\ dx$
$=-\frac{\cos 2x}{8}-\frac{1}{4}\int[\sin 6x -\sin 4x]$
$=-\frac{\cos 2x}{8}-\frac{1}{4}[\frac{-\cos 6x}{6}+\frac{\cos 4x}{4}]$
$=-\frac{\cos 2x}{8}+\frac{\cos 6x}{24}-\frac{\cos 4x}{16}+C$
Question:7 Find the integrals of the functions $\sin 4x \sin 8x$
Answer:
Using identity
$\sin A\sin B=\frac{1}{2}(\cos(A-B)-\cos(A+B))$
We can write the following integral as
$\sin 4x \sin 8x=\frac{1}{2}\int(\cos 4x - \cos 12x) dx$
$=\frac{1}{2} [\int\cos 4x\ dx - \int \cos 12x\ dx]\\ =\frac{\sin 4x}{8}-\frac{\sin 12x}{24}+C$
Question:8 Find the integrals of the functions $\frac{1- \cos x }{1+ \cos x }$
Answer:
We know the identities
$\\1+\cos 2A = 2\cos^2A\\ 1-\cos 2A = 2\sin^2 A$
Using the above relations we can write
$\frac{1-\cos x}{1+\cos x}=\frac{\sin^2x/2}{\cos^2x/2} = \tan^2x/2$
$=\int \tan^2x/2 =\int (\sec^2x/2-1)dx$
$=\int (\sec^2x/2)dx-\int dx\\ = 2[\tan x/2]-{x}+C$
Question:9 Find the integrals of the functions $\frac {\cos x }{1 + \cos x }$
Answer:
The integral is rewritten using trigonometric identities
$\frac{\cos x}{1+ \cos x}= \frac{\cos^2x/2-\sin^2x/2}{2\cos^2x/2} =\frac{1}{2}[1-\tan^2x/2]$
Now, $\int \frac{1}{2}[1-\tan^2x/2] dx =\frac{1}{2}\int 1-[\sec^2\frac{x}{2}-1]=\frac{1}{2}\int 2-\sec^2\frac{x}{2}\\=x-\tan\frac{x}{2}+c$
Question:10 Find the integrals of the functions $\sin ^ 4 x$
Answer:
$\sin ^ 4 x$ can be written as follows using trigonometric identities
$=\sin^2x.\sin^2x =\frac{1}{4}(1-\cos 2x)^{2}\\ =\frac{1}{4}(1+\cos^22x-2\cos 2x)$
$=\frac{1}{4}(1+\frac{1}{2}(1+\cos 4x)-2\cos 2x)\\ =\frac{3}{8}+\frac{\cos 4x}{8}-\frac{\cos 2x}{2}$
$\Rightarrow \int \sin^4x\ dx = \int \frac{3}{8}dx+\frac{1}{8}\int\cos 4x\ dx -\frac{1}{2}\int\cos 2x\ dx$
$= \frac{3x}{8}+\frac{\sin 4x}{32} -\frac{\sin 2x}{4}+C$
Question:11 Find the integrals of the functions $\cos ^ 4 2x$
Answer:
$\cos^42x=\cos^32x\cos2x$
Now using the identity
$\cos^3x=\frac{cos3x+3cosx}{4}$
$\cos^32x\cos2x=\frac{\cos6x +3\cos2x}{4}\cos2x=\frac{\cos6x\cos2x+3\cos^22x}{4}$
Now using the two identities below,
$\cos a\cos b=\frac{cos(a+b)+cos(a-b)}{2}\ and\ \cos^22x=\frac{1+cos4x}{2}\\$
the value
$\cos^42x=\cos^32x\cos2x\\=\frac{\cos6x\cos2x+3\cos^22x}{4}=\frac{\cos 4x+\cos8x}{8}+\frac{3}{4}\frac{1+\cos4x}{2}$ .
The integral of the given function can be written as
$\int \cos^42x=\int \frac{\cos 4x+\cos8x}{8}+\int \frac{3}{4}\frac{1+\cos4x}{2}\\ \\=\frac{3}{8}x+\frac{\sin4x}{8}+\frac{\sin8x}{64}+C$
Question:12 Find the integrals of the functions $\frac{\sin ^ 2x }{1+ \cos x }$
Answer:
Using trigonometric identities we can write the given integral as follows.
$\frac{\sin ^ 2x }{1+ \cos x }$
$=\frac{4\sin^2\frac{x}{2}\cos^2\frac{x}{2}}{2\cos^2\frac{x}{2}}\\ =2\sin^2\frac{x}{2}\\ =1-\cos x$
$\therefore \int \frac{\sin^22x}{1+\cos x} = \int (1-\cos x)dx$
$\\= \int 1dx-\int\cos x\ dx\\ =x-\sin x+C$
Question:13 Find the integrals of the functions $\frac{\cos 2x - \cos 2 \alpha }{\cos x - \cos \alpha }$
Answer:
We know that,
$\cos A-\cos B = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$
Using this identity we can rewrite the given integral as
$\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\frac{-2\sin\frac{2x+2\alpha}{2}\sin\frac{2x-2\alpha}{2}}{-2\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}$
$\\=\frac{\sin(x+\alpha)\sin(x-\alpha)}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =\frac{[2\sin\frac{x+\alpha}{2}\cos \frac{x+\alpha}{2}][2\sin\frac{x-\alpha}{2}\cos\frac{x-\alpha}{2}]}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =4\cos\frac{x+\alpha}{2}\cos\frac{x-\alpha}{2}\\ =2[\cos x+\cos \alpha]$
$\therefore \int\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\int 2\cos x\ dx +\int 2\cos \alpha\ dx$
$=2[\sin x + x\cos \alpha]+C$
Question:14 Find the integrals of the functions $\frac{\cos x - \sin x }{1+ \sin 2x }$
Answer:
$\frac{\cos x-\sin x}{1+2\sin x}=\frac{\cos x-\sin x}{(sin^2x+cos^2x)+2 sin x.\cos x}$
$=\frac{\cos x-\sin x}{(\sin x+\cos x)^2}$
$\sin x+\cos x =t\\ \therefore (\cos x-\sin x)dx = dt$
Now, $=\int \frac{dt}{t^2}\\ =\int t^-2\ dt\\ =-t^{-1}+C\\ =-\frac{1}{(\sin x+\cos x)}+C$
Question:15 Find the integrals of the functions $\tan ^ 3 2x \sec 2x$
Answer:
$\tan^32x.\sec 2x = \tan^22x.\tan 2x.\sec 2x$
$\\= (\sec^22x-1).\tan 2x.\sec 2x\\ =\sec^22x.\tan 2x-\tan 2x.\sec 2x$
Therefore integration of $\tan ^ 3 2x \sec 2x$ =
$\\=\int\sec^22x.\tan 2x\ dx-\int\tan 2x.\sec 2x\ dx\\ =\int\sec^22x.\tan 2x\ dx-\sec 2x/2+C\\$ .....................(i)
Let assume
$\sec 2x = t$
So, that $2\sec 2x.\tan 2x\ dx =dt$
Now, the equation (i) becomes,
$\\\Rightarrow \frac{1}{2}\int t^2\ dt-\frac{\sec 2x}{2}+C\\ \Rightarrow \frac{t^3}{6}-\frac{\sec 2x}{2}+C\\ =\frac{(\sec 2x)^3}{6}-\frac{\sec 2x}{2}+C$
Question:16 Find the integrals of the functions $\tan ^ 4x$
Answer:
the given question can be rearranged using trigonometric identities
$tan^4x=(\sec^2x-1).\tan^2x\\ =\sec^2x.\tan^2x-\tan^2x\\ =\sec^2x.\tan^2x-\sec^2x+1$
Therefore, the integration of $\tan^4x$ = $\\=\int \sec^2x.\tan^2x\ dx-\int\sec^2x\ dx+\int dx\\ =(\int \sec^2x.\tan^2x\ dx)-\tan x+x+C\\$ ...................(i)
Considering only $\int \sec^2x.\tan^2x\ dx$
let $\tan x =t\Rightarrow \sec^2x\ dx =dt$
$\int \sec^2x\tan^2x\ dx = \int t^2\ dt = t^3/3=\frac{\tan^3x}{3}$
now the final solution is,
$\int \tan^4x =\frac{\tan^3x}{3}-\tan x+x+C$
Question:17 Find the integrals of the functions $\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
Answer:
$\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
now splitting the terms we can write
$\\=\frac{\sin^3x}{\sin^2x.\cos^2x}+\frac{\cos^3x}{\sin^2x.\cos^2x}\\ =\frac{\sin x}{cos^2x}+\frac{\cos x}{\sin^2x}\\ =\tan x.\sec x+\cot xcosec x$
Therefore, the integration of
$\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
$\\=\int (\tan x\sec x+\cot xcosec x)dx\\ =\sec x-cosec\ x+C$
Question:18 Find the integrals of the functions $\frac{\cos 2 x + 2 \sin ^ 2x }{\cos ^ 2 x }$
Answer:
The integral of the above equation is
$\\=\int (\frac{\cos 2x+2\sin^2x}{\cos^2x})dx\\ =\int (\frac{\cos 2x+(1-\cos 2x)}{\cos^2x}\\ =\int\frac{1}{\cos^2x}\\ =\int \sec^2x\ dx =\tan x+C$
Thus after evaluation, the value of integral is tanx+ c
Question:19 Find the integrals of the functions $\frac{1}{\sin x \cos ^3 x }$
Answer:
We can write 1 = $\sin^2x +\cos^2x$
Then, the equation can be written as
$I =\frac{\sin^2x +\cos^2x}{\sin x\cos^3x}$
$I =\int (\tan x+\frac{1}{\tan x})\sec^2 x dx$
put the value of tan $x$ = t
So, that $\sec^2xdx =dt$
$\\\Rightarrow I=\int (t+\frac{1}{t})dt\\ =\frac{t^2}{2}+\log\left | t \right |+C\\ =\log\left | \tan x \right |+\frac{1}{2}\tan^2x+C$
Question:20 Find the integrals of the functions $\frac{\cos 2x }{( \cos x + \sin x )^2}$
Answer:
We know that $cos2x= cos^2x-sin^2x$
Therefore, $\frac{\cos 2x }{( \cos x + \sin x )^2}$
$\frac{\cos 2x}{1+\sin 2x}\\ \Rightarrow \int \frac{\cos 2x}{1+\sin 2x}\\$ let $1+sin2x =t \Rightarrow 2cos2x\ dx = dt$
Now the given integral can be written as
$\therefore \int \frac{\cos 2x}{(\cos x+\sin x)^2}=\frac{1}{2}\int \frac{1}{t}dt$
$\\\Rightarrow \frac{1}{2}\log\left | t \right |+C\\ \Rightarrow \frac{1}{2}\log\left | 1+\sin 2x \right |+C$
$=log|sin^2x+cos^2x+2sinxcosx|+C\\=\frac{1}{2}log|(sinx+cosx)^2|+C=log|sinx+cosx|+C$
Question: 21 Find the integrals of the functions $\sin ^ { -1} ( \cos x )$
Answer:
Using the trigonometric identities, we can evaluate the following integral as follows
$\int \sin^{-1}(\cos x)dx = \int \sin^{-1}(sin(\frac{\pi}{2}-x))dx\\=\int(\frac{\pi}{2}-x)dx=\frac{\pi x}{2}-\frac{x^2}{2}+C$
Question: 22 Find the integrals of the functions $\frac{1}{\cos ( x-a ) \cos ( x-b )}$
Answer:
Using the trigonometric identities following integrals can be simplified as follows
$\frac{1}{\cos(x-a)\cos(x-b)}=\frac{1}{\sin(a-b)}[\frac{\sin(a-b)}{\cos(x-a)\cos(x-b)}]$
$=\frac{1}{\sin(a-b)}[\frac{\sin[(x-b)-(x-a)]}{\cos(x-a)\cos(x-b)}]$
$=\frac{1}{\sin(a-b)}[\frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)}]$
$=\frac{tan(x-b)-\tan (x-a)}{\sin(a-b)}$
$=\frac{1}{\sin(a-b)}\int tan(x-b)-\tan (x-a)dx$
$\\=\frac{1}{\sin(a-b)}[-\log\left | \cos(x-b) \right |+\log\left | \cos(x-a) \right |]\\ =\frac{1}{\sin(a-b)}(\log\left | \frac{\cos(x-a)}{\cos(x-b)} \right |)$
Question: 23 Choose the correct answer
$\int \frac{\sin ^ 2 x - \cos ^ 2 x dx }{\sin ^ 2 x \cos ^ 2x } dx \: \:is \: \:equal \: \: to$
(A) $\tan x+\cot x+C$
(B) $\tan x+x+C$
(C) $-\tan x+\cot x+C$
(D) $\tan x+\sec x+C$
Answer:
The correct option is (A)
On reducing, the above integral becomes $\sec^2x-csc^2x$
$\int\sec^2x-csc^2x\ dx = \tan x+ \cot x+C$
Question:24 Choose the correct answer $\int \frac{e ^x ( 1+x)}{\cos ^ 2 ( e ^xx )} dx \: \: equals$
$\\(A) -\cot (ex^x) + C \\\\ (B) \tan (xe^x) + C\\\\ (C) \tan (e^x) + C \\\\ (D) \cot (e^x) + C$
Answer:
The correct option is (B)
Let $e^xx = t$ .
So, $(e^x.x+ 1.e^x)dx = dt$
(1+ $x$ ) $e^x\ dx =dt$
Therefore, $\int \frac{e^x(1+x)}{\cos^2(e^x.x)}dx =\int\frac{dt}{\cos^2t}$
$\\=\int \sec^2t dt\\ =\tan t +C\\ =\tan(e^x.x)+C$
NCERT solutions for Maths Chapter 7 Class 12 Integrals Exercise: 7.4
Page number: 251-252, Total questions: 25
Question:1 Integrate the functions $\frac{3x^ 2 }{x^6 + 1 }$
Answer:
The given integral can be calculated as follows
Let $x^3 = t$
Therefore, $3x^2 dx =dt$
$\Rightarrow \int\frac{3x^2dx}{x^6+1}=\int \frac{dt}{t^2+1}$
$\\=\tan^{-1} t +C\\ =tan^{-1}(x^3)+C$
Question:2 Integrate the functions $\frac{1}{\sqrt { 1+ 4 x^2 }}$
Answer:
$\frac{1}{\sqrt { 1+ 4 x^2 }}$
let suppose 2x = t
therefore 2dx = dt
$\int \frac{1}{\sqrt{1+4x^2}} =\frac{1}{2}\int \frac{dt}{1+t^2}$
$\\=\frac{1}{2}[\log\left | t+\sqrt{1+t^2} \right |]+C\\ =\frac{1}{2}\log\left | 2x+\sqrt{4x^2+1} \right |+C$ .................using formula $\int\frac{1}{\sqrt{x^2+a^2}}dt = \log\left | x+\sqrt{x^2+a^2} \right |$
Question:3 Integrate the functions $\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$
Answer:
$\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$
let suppose 2-x =t
then, -dx =dt
$\Rightarrow \int\frac{1}{\sqrt{(2-x)^2+1}}dx = -\int \frac{1}{\sqrt{t^2+1}}dt$
using the identity
$\int \frac{1}{\sqrt{x^2+1}}dt=log\left | x+\sqrt{x^2+1} \right |$
$\\= -\log\left | t+\sqrt{t^2+1} \right |+C\\ =-\log\left | 2-x+\sqrt{(2-x)^2+1} \right |+C\\ =\log \left | \frac{1}{(2-x)+\sqrt{x^2-4x+5}} \right |+C$
Question:4 Integrate the functions $\frac{1}{\sqrt {9 - 25 x^2 }}$
Answer:
$\frac{1}{\sqrt {9 - 25 x^2 }}$
Let assume 5x =t,
then 5dx = dt
$\Rightarrow \int \frac{1}{\sqrt{9-25x^2}}=\frac{1}{5}\int \frac{1}{\sqrt{9-t^2}}dt$
$\\=\frac{1}{5}\int \frac{1}{\sqrt{3^2-t^2}}dt\\ =\frac{1}{5}\sin^{-1}(\frac{t}{3})+C\\ =\frac{1}{5}\sin^{-1}(\frac{5x}{3})+C$
The above result is obtained using the identity
$\\\int \frac{1}{\sqrt{a^2-x^2}}dt\\ =\frac{1}{a}sin^{-1}\frac{x}{a}$
Question:5 Integrate the functions $\frac{3x }{1+ 2 x ^ 4 }$
Answer:
$\frac{3x }{1+ 2 x ^ 4 }$
Let ${\sqrt{2}}x^2 = t$
$\therefore$ $2\sqrt{2}xdx =dt$
The integration can be done as follows
$\Rightarrow \int \frac{3x}{1+2x^4}= \frac{3}{2\sqrt{2}}\int \frac{dt}{1+t^2}$
$\\= \frac{3}{2\sqrt{2}}[\tan^{-1}t]+C\\ =\frac{3}{2\sqrt{2}}[\tan^{-1}(\sqrt{2}x^2)]+C$
Question:6 Integrate the functions $\frac{x ^ 2 }{1- x ^ 6 }$
Answer:
$\frac{x ^ 2 }{1- x ^ 6 }$
let $x^3 =t$
then $3x^2dx =dt$
using the special identities we can simplify the integral as follows
$\int \frac{x^2}{1-x^6}dx =\frac{1}{3}\int \frac{dt}{1-t^2}$
$=\frac{1}{3}[\frac{1}{2}\log\left | \frac{1+t}{1-t} \right |]+C\\ =\frac{1}{6}\log\left | \frac{1+x^3}{1-x^3} \right |+C$
Question:7 Integrate the functions $\frac{x-1 }{\sqrt { x^2 -1 }}$
Answer:
We can write above eq as
$\frac{x-1 }{\sqrt { x^2 -1 }}$ $=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$ ................(i)
For $\int \frac{x}{\sqrt{x^2-1}}dx$ let $x^2-1 = t \Rightarrow 2xdx =dt$
$\therefore \int \frac{x}{\sqrt{x^2-1}}dx=\frac{1}{2}\int \frac{dt}{\sqrt{t}}$
$\\=\frac{1}{2}\int t^{1/2}dt\\ =\frac{1}{2}[2t^{1/2}]\\ =\sqrt{t}\\ =\sqrt{x^2-1}$
Now, by using eq (i)
$=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$
$\\=\sqrt{x^2-1}-\int \frac{1}{\sqrt{x^2}-1}dx\\ =\sqrt{x^2-1}-\log\left | x+\sqrt{x^2-1} \right |+C$
Question:8 Integrate the functions $\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
Answer:
The integration can be down as follows
$\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
let $x^3 = t \Rightarrow 3x^2dx =dt$
$\therefore \frac{x^2}{\sqrt{x^6+a^6}}=\frac{1}{3}\int \frac{dt}{\sqrt{t^2+(a^3)^2}}$
$\\=\frac{1}{3}\log\left | t+\sqrt{t^2+a^6} \right |+C\\ =\frac{1}{3}\log\left | x^3+\sqrt{x^6+a^6} \right |+C$ ...Using $\int \frac{dx}{\sqrt{x^2+a^2}} = \log\left | x+\sqrt{x^2+a^2} \right |$
Question:9 Integrate the functions $\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x+ 4 }}$
Answer:
The integral can be evaluated as follows
$\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x + 4 }}$
let $\tan x =t \Rightarrow sec^2x dx =dt$
$\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}$
$\\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C$
Question:10 Integrate the functions $\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
Answer:
$\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
the above equation can be also written as,
$=\int\frac{1}{\sqrt{(1+x)^2+1^2}}dx$
let 1+x = t
then dx = dt
Therefore,
$=\int\frac{1}{\sqrt{t^2+1^2}}dx\\ =\log\left | t+\sqrt{t^2+1} \right |+C$
$ =\log\left | (1+x)+\sqrt{(1+x)^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(x^2+2x+2} \right |+C$
Question:11 Integrate the functions $\frac{1}{9 x ^2 + 6x + 5 }$
Answer:
$\frac{1}{9 x ^2 + 6x + 5 }$
this denominator can be written as
$9x^2+6x+5=9[x^2+\frac{2}{3}x+\frac{5}{9}]\\=9[(x+\frac{1}{3})^2+(\frac{2}{3})^2]$ Now,
$\frac{1}{9}\int \frac{1}{(x+\frac{1}{3})^2+(\frac{2}{3})^2}dx =\frac{1}{9} [\frac{3}{2}\tan^{-1}(\frac{(x+1/3)}{2/3})] +C\\=\frac{1}{6} \tan^{-1}(\frac{3x+1}{2})] +C$
......................................by using the form $(\int \frac{1}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a}))$
Question:12 Integrate the functions $\frac{1}{\sqrt{ 7-6x - x ^ 2 }}$
Answer:
the denominator can be also written as,
$7-6x-x^2=16-(x^2+6x+9)$
$=4^2-(x+3)^2$
Therefore
$\int \frac{1}{\sqrt{7-6x-x^2}}dx=\int \frac{1}{\sqrt{4^2-(x+3)^2}}dx$
Let x+3 = t
then dx =dt
$\Rightarrow \int \frac{1}{\sqrt{4^2-(x+3)^2}}dx=\int \frac{1}{\sqrt{4^2-t^2}}dt$..Using formula $\int \frac{1}{\sqrt{a^2-x^2}}=\sin^{-1}(\frac{x}{a})$
$\\= sin^{-1}(\frac{t}{4})+C\\ =\sin^{-1}(\frac{x+3}{4})+C$
Question:13 Integrate the functions $\frac{1}{\sqrt { ( x-1)( x-2 )}}$
Answer:
(x-1)(x-2) can be also written as
= $x^2-3x+2$
= $(x-\frac{3}{2})^2-(\frac{1}{2})^2$
Therefore
$\int \frac{1}{\sqrt{(x-1)(x-2)}}dx= \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx$
let suppose
$x-3/2 = t \Rightarrow dx =dt$
Now,
$\Rightarrow \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx = \int \frac{1}{\sqrt{t^2-(\frac{1}{2})^2}}dt$ ...by using formula $\int \frac{1}{\sqrt{x^2-a^2}}=\log\left | x+\sqrt{x^2+a^2} \right |$
$\\= \log \left | t+\sqrt{t^2-(1/2)^2} \right |+C\\ = \log \left | (x-\frac{3}{2})+\sqrt{x^2-3x+2} \right |+C$
Question:14 Integrate the functions $\frac{1}{\sqrt { 8 + 3 x - x ^ 2 }}$
Answer:
We can write denominator as
$\\=8-(x^2-3x+\frac{9}{4}-\frac{9}{4})\\ =\frac{41}{4}-(x-\frac{3}{2})^2$
therefore
$\Rightarrow \int \frac{1}{\sqrt{8+3x-x^2}}dx= \int \frac{1}{\sqrt{\frac{41}{4}-(x-\frac{3}{2})^2}}$
let $x-3/2 = t \Rightarrow dx =dt$
$\therefore$
$\\=\int \frac{1}{\sqrt{(\frac{\sqrt{41}}{2})^2-t^2}}dt\\ =\sin^{-1}(\frac{t}{\frac{\sqrt{41}}{2}})+C\\ =\sin^{-1}(\frac{2x-3}{\sqrt{41}})+C$
Question:15 Integrate the functions $\frac{1}{\sqrt {(x-a)( x-b )}}$
Answer:
$(x-a)(x-b)$ can be written as $x^2-(a+b)x+ab$
$\\x^2-(a+b)x+ab+\frac{(a+b)^2}{4}-\frac{(a+b)^2}{4}\\ (x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}$
$\Rightarrow \int\frac{1}{\sqrt{(x-a)(x-b)}}dx=\int \frac{1}{\sqrt{(x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}}}dx$
Let
$x-\frac{(a+b)}{2}=t \Rightarrow dx =dt$
So,
$\int \frac{1}{\sqrt{t^2-(\frac{a-b}{2})^2}}dt\\ =\log \left | t+\sqrt{t^2-(\frac{a-b}{2})^2} \right |+C$
$ =\log \left | x-(\frac{a+b}{2})+\sqrt{(x-a)(x-b)} \right |+C$
Question:16 Integrate the functions $\frac{4x+1 }{\sqrt {2x ^ 2 + x -3 }}$
Answer:
let
$\\4x+1 = A\frac{d}{dx}(2x^2+x-3)+B\\ 4x+1=A(4x+1)+B\\ 4x+1=4Ax+A+B$
By equating the coefficient of x and constant term on each side, we get
A = 1 and B=0
Let $(2x^2+x-3) = t\Rightarrow (4x+1)dx =dt$
$\therefore \int \frac{4x+1}{\sqrt{2x^2+x-3}}dx= \int\frac{1}{\sqrt{t}}dt$
$\\= 2\sqrt{t}+C\\ =2\sqrt{2x^2+x-3}+C$
Question:17 Integrate the functions $\frac{x+ 2 }{\sqrt { x ^2 -1 }}$
Answer:
let $x+2 =A\frac{d}{dx}(x^2-1)+B=A(2x)+B$
By comparing the coefficients and constant term on both sides, we get;
A=1/2 and B=2
then $x+2 = \frac{1}{2}(2x)+2$
$\int \frac{x+2}{\sqrt{x^2-1}}dx =\int\frac{1/2(2x)+2}{x^2-1}dx$
$\\=\frac{1}{2}\int\frac{(2x)}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx$
$ =\frac{1}{2}[2\sqrt{x^2-1}]+2\log\left | x+\sqrt{x^2-1} \right |+C$
$ =\sqrt{x^2-1}+2\log\left | x+\sqrt{x^2-1} \right |+C$
Question:18 Integrate the functions $\frac{5x -2 }{1+ 2x +3x^2 }$
Answer:
Let
$\\5x+2 = A\frac{d}{dx}(1+2x+3x^2)+B\\ 5x+2= A(2+6x)+B = 2A+B+6Ax$
By comparing the coefficients and constants we get the value of A and B
A = $5/6$ and B = $-11/3$
Now,
$I = \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}$
$I = I_{1}-\frac{11}{3}I_{2}$ ...........................(i)
put $3x^2+2x+1 =t \Rightarrow (6x+2)dx =dt$
Thus
$I_{1}=\frac{5}{6}\int \frac{dt}{t} =\frac{5}{6}\log t =\frac{5}{6}\log (3x^2+2x+1)+c1$
$I_{2}= \int \frac{dx}{3x^2+2x+1} = \frac{1}{3}\int\frac{dx}{(x+1/3)^2+(\sqrt{2}/3)^2}$
$\\=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt{2}})+c2$
$\therefore I = I_1+I_2$
$I = \frac{5}{6}\log(3x^2+2x+1)-\frac{11}{3}\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt2})+C$
Question:19 Integrate the functions $\frac{6x + 7 }{\sqrt {( x-5 )( x-4)}}$
Answer:
Let
$6x+7 = A\frac{d}{dx}(x^2-9x+20)+B =A(2x-9)+B$
By comparing the coefficients and constants on both sides, we get
A =3 and B =34
$I =\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx = \int \frac{3(2x+9)}{\sqrt{x^2-9x+20}}dx+34\int\frac{dx}{\sqrt{x^2-9x+20}}$ $I = I_1+I_2$ ....................................(i)
Considering $I_1$
$I_1 =\int \frac{2x-9}{\sqrt{x^2-9x+20}}dx$ let $x^2-9x+20 = t \Rightarrow (2x-9)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{x^2-9x+20}$
Now consider $I_2$
$I_2=\int \frac{dx}{\sqrt{x^2-9x+20}}$
here the denominator can be also written as
Dr = $(x-\frac{9}{2})^2-(\frac{1}{2})^2$
$\therefore I_2 = \int \frac{dx}{\sqrt{(x-\frac{9}{2})^2-(\frac{1}{2})^2}}$
$\\= \log\left | (x-\frac{9}{2})^2+\sqrt{x^2-9x+20} \right |$
Now put the values of $I_1$ and $I_2$ in eq (i)
$\\I = 3I_1+34I_2\\ I=6\sqrt{x^2-9x+20}+34\log\left | (x-\frac{9}{2})+\sqrt{x^2-9x+20} \right |+C$
Question:20 Integrate the functions $\frac{x +2 }{\sqrt { 4x - x ^ 2 }}$
Answer:
Let
$x+2 = A\frac{d}{dx}(4x-x^2)+B = A(4-2x)+B$
By equating the coefficients and constant term on both sides, we get
A = -1/2 and B = 4
(x+2) = -1/2(4-2x)+4
$\\\therefore \int \frac{x+2}{\sqrt{4x-x^2}}dx = -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}\\ \ I =\frac{-1}{2}I_1+4I_2$...(i)
Considering $I_1$
$\int \frac{4-2x}{\sqrt{4x-x^2}}dx$
let $4x-x^2 =t \Rightarrow (4-2x)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{4x-x^2}$
now, $I_2$
$I_2 =\int \frac{dx}{\sqrt{4x-x^2}} = \int \frac{dx}{\sqrt{2^2-(x-2)^2}}$
$=\sin^{-1}(\frac{x-2}{2})$
put the value of $I_1$ and $I_2$
$I =-\sqrt{4x-x^2}+4\sin^{-1}(\frac{x-2}{2})+C$
Question:21 Integrate the functions $\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
Answer:
$\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
$\int \frac{x+2}{\sqrt{x^2+2x+3}}dx = \frac{1}{2}\int \frac{2(x+2)}{\sqrt{x^2+2x+3}}dx$
$\\= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\frac{1}{2}\int \frac{2}{\sqrt{x^2+2x+3}}dx$
$ =\frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\int \frac{1}{\sqrt{x^2+2x+3}}dx\\ I=\frac{1}{2}I_1+I_2$ ...........(i)
take $I_1$
$\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx$
let $x^2+2x+3 = t \Rightarrow (2x+2)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+2x+3}$
considering $I_2$
$= \int \frac{dx}{\sqrt{x^2+2x+3}}= \int \frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}$
$= \log \left | (x+1)+\sqrt{x^2+2x+3} \right |$
putting the values in equation (i)
$I=\sqrt{x^2+2x+3} +\log \left | (x+1)+\sqrt{x^2+2x+3} \right |+C$
Question:22 Integrate the functions $\frac{x + 3 }{x ^ 2 - 2x - 5 }$
Answer:
Let $(x+3) =A\frac{d}{dx}(x^2-2x+5)+B= A(2x-2)+B$
By comparing the coefficients and constant term, we get;
A = 1/2 and B =4
$\\\int \frac{x+3}{x^2-2x+5}dx = \frac{1}{2}\int \frac{2x-2}{x^2-2x+5}dx +4\int \frac{1}{x^2-2x+5}dx\\ I=I_1+I_2$ ..............(i)
$\\\Rightarrow I_1\\ =\int \frac{2x-2}{x^2-2x-5}dx$
put $x^2-2x-5 =t \Rightarrow (2x-2)dx =dt$
$=\int \frac{dt}{t} = \log t = \log (x^2-2x-5)$
$\\\Rightarrow I_2\\ = \int \frac{1}{x^2-2x-5}dx\\ =\int \frac{1}{(x-1)^2+(\sqrt{6})^2}dx\\ =\frac{1}{2\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})$
$I=I_1+I_2$
$=\frac{1}{2}\log\left | x^2-2x-5 \right |+\frac{2}{\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})+C$
Question:23 Integrate the functions $\frac{5x + 3 }{\sqrt { x^2 + 4x +10 }}$
Answer:
Let
$5x+3 = A\frac{d}{dx}(x^2+4x+10)+B = A(2x+4)+B$
On comparing, we get
A =5/2 and B = -7
$\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx = \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+10}}dx$ $I = 5/2I_1-7I_2$ ...........................................(i)
$\\\Rightarrow I_1\\ \int \frac{2x+4}{\sqrt{x^2+4x+10}}dx$
put
$x^2+4x+10= t \Rightarrow (2x+4)dx = dt$
$=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+4x+10}$
$\\\Rightarrow I_2\\ =\int \frac{1}{\sqrt{x^2+4x+10}}dx \\ =\int \frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}dx\\ =\log \left | (x+2)+\sqrt{x^2+4x+10} \right |$
$I = 5\sqrt{x^2+4x+10}-7\log\left | (x+2)+\sqrt{x^2+4x+10} \right |+C$
Question: 24 Choose the correct answer
$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
Answer:
The correct option is (B)
$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
The denominator can be written as $(x+1)^2+1$
now, $\int \frac{dx}{(x+1)^2+1} = tan^{-1}(x+1)+C$
Question:25 Choose the correct answer $\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
Answer:
The following integration can be done as
$\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
$\int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x)}}= \int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x+81/64-81/64)}}dx$
$\\= \int \frac{1}{\sqrt{-4[(x-9/8)^2-(9/8)^2]}}dx\\ =\frac{1}{2}\int \frac{1}{\sqrt{-(x-9/8)^2+(9/8)^2}}dx$
$ =\frac{1}{2}[\sin^{-1}(\frac{x-9/8}{9/8})]+C\\ =\frac{1}{2}\sin^{-1}(\frac{8x-9}{9})+C$
The correct option is (B).
NCERT solutions for maths chapter 7 Class 12 Integrals Exercise: 7.5
Page number: 258-259, Total questions: 23
Question:1 Integrate the rational functions $\frac{x }{( x +1)( x+2)}$
Answer:
Given function $\frac{x }{( x +1)( x+2)}$
Partial function of this function:
$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\implies x = A(x+2)+B(x+1)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$2A+B =0$
On solving, we get
$A=-1\ and\ B =2$
$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$
$=-\log|x+1| +2\log|x+2| +C$
$=\log(x+2)^2-\log|x+1|+C$
$=\log\frac{(x+2)^2}{(x+1)}+C$
Question:2 Integrate the rational functions $\frac{1}{x^2 -9 }$
Answer:
Given function $\frac{1}{x^2 -9 }$
The partial function of this function:
$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1 = A(x-3)+B(x+3)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$-3A+3B =1$
On solving, we get
$A=-\frac{1}{6}\ and\ B =\frac{1}{6}$
$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$
$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$
$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$
$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$
Question:3 Integrate the rational functions $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)
Now, substituting $x=1,2,\ and\ 3$ respectively in equation (1), we get
$A =1,\ B=-5,\ and\ C=4$
$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$
That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$
$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$
Question:4 Integrate the rational functions $\frac{x }{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{x }{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)
Now, substituting $x=1,2,\ and\ 3$ respectively in equation (1), we get
$A =\frac{1}{2},\ B=-2,\ and\ C=\frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$
$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$
Question:5 Integrate the rational functions $\frac{2x}{x^2 + 3x +2 }$
Answer:
Given function $\frac{2x}{x^2 + 3x +2 }$
Partial function of this function:
$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2x = A(x+2)+B(x+1)$ ...........(1)
Now, substituting $x=-1\ and\ -2$ respectively in equation (1), we get
$A ={-2},\ B=4$
$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$
That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$
$=4\log|x+2| -2\log|x+1| +C$
Question:6 Integrate the rational functions $\frac{1- x^2 }{ x ( 1- 2x )}$
Answer:
Given function $\frac{1- x^2 }{ x ( 1- 2x )}$
Integral is not a proper fraction so,
Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get
$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$
Partial function of this function:
$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$
$(2-x) =A(1-2x)+Bx$ ...........(1)
Now, substituting $x=0\ and\ \frac{1}{2}$ respectively in equation (1), we get
$A =2,\ B=3$
$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$
No, substituting in equation (1) we get
$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$
$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$
$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$
$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$
Question:7 Integrate the rational functions $\frac{x }{( x^2+1 )( x-1)}$
Answer:
Given function $\frac{x }{( x^2+1 )( x-1)}$
Partial function of this function:
$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$
$x = (Ax+B)(x-1)+C(x^2+1)$
$x=Ax^-Ax+Bc-B+Cx^2+C$
Now, equating the coefficients of $x^2, x$ and the constant term, we get
$A+C = 0$
$-A+B =1$ and $-B+C = 0$
On solving these equations, we get
$A = -\frac{1}{2}, B= \frac{1}{2},\ and\ C=\frac{1}{2}$
From equation (1), we get
$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$
$\implies \int \frac{x}{(x^2+1)(x-1)}$
$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$
$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$
Now, consider $\int \frac{2x}{x^2+1} dx$ ,
and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$
So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$
$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or $\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$
Question:8 Integrate the rational functions $\frac{x }{( x+1)^2 ( x+2)}$
Answer:
Given function $\frac{x }{( x+1)^2 ( x+2)}$
Partial function of this function:
$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$
$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$
Now, putting $x=1$ in the above equation, we get
$B =\frac{1}{3}$
By equating the coefficients of $x^2$ and constant term, we get
$A+C=0$
$-2A+2B+C = 0$
then after solving, we get
$A= \frac{2}{9}\ and\ C=\frac{-2}{9}$
Therefore,
$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$
$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question:9 Integrate the rational functions $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
Answer:
Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$
Partial function of this function:
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$
$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$
$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)
Now, putting $x=1$ in the above equation, we get
$B =4$
By equating the coefficients of $x^2$ and $x$ , we get
$A+C=0$
$B-2C =3$
then after solving, we get
$A= -\frac{1}{2}\ and\ C=\frac{1}{2}$
Therefore,
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$
$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
Question:10 Integrate the rational functions $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
Answer:
Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$
The partial function of this function:
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$
$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$
Equating the coefficients of $x^2\ and\ x$ , we get
$B=-\frac{1}{10},\ A =\frac{5}{2},\ and\ C= -\frac{24}{5}$
Therefore,
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$
$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$
$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question:11 Integrate the rational functions $\frac{5x}{(x+1)(x^2-4)}$
Answer:
Given function $\frac{5x}{(x+1)(x^2-4)}$
can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$
The partial function of this function:
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Now, substituting the value of $x =-1,-2,\ and\ 2$ respectively in the equation above, we get
$A=\frac{5}{3},\ B =\frac{-5}{2},\ and\ C= \frac{5}{6}$
Therefore,
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$
Question:12 Integrate the rational functions $\frac{x^3 + x +1}{ x^2-1}$
Answer:
Given function $\frac{x^3 + x +1}{ x^2-1}$
As the given integral is not a proper fraction.
So, we divide $(x^3+x+1)$ by $x^2-1$ , we get
$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$
can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$
$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)
Now, substituting $x =1\ and\ x=-1$ in equation (1), we get
$A =\frac{1}{2}\ and\ B=\frac{3}{2}$
Therefore,
$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$
$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$
Question:13 Integrate the rational functions $\frac{2}{(1-x)(1+ x^2)}$
Answer:
Given function $\frac{2}{(1-x)(1+ x^2)}$
can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$
$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)
$2 =A +Ax^2 +Bx-Bx^2+C-Cx$
Now, equating the coefficient of $x^2, x,$ and constant term, we get
$A-B= 0$ , $B-C = 0$ , and $A+C =2$
Solving these equations, we get
$A=1, B=1,\ and\ C=1$
Therefore,
$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$
$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$
$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$
Question:14 Integrate the rational functions $\frac{3x-1}{(x+2)^2}$
Answer:
Given function $\frac{3x-1}{(x+2)^2}$
can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$
$3x-1 = A(x+2)+B$
Now, equating the coefficient of $x$ and constant term, we get
$A=3$ and $2A+B = -1$ ,
Solving these equations, we get
$B=-7$
Therefore,
$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$
$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$
$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$
$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$
Question:15 Integrate the rational functions $\frac{1}{x^4 -1 }$
Answer:
Given function $\frac{1}{x^4 -1 }$
can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$
The partial fraction of above equation,
$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$
$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$
$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$
Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get
$A+B+C = 0$ and $-A+B+D = 0$
$A+B-C = 0$ and $-A+B-D = 1$
Solving these equations, we get
$A= -\frac{1}{4}, B=\frac{1}{4},C=0,\ and\ D = -\frac{1}{2}$
Therefore,
$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$
$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$
$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$
Question:16 Integrate the rational functions $\frac{1}{x ( x^n+1)}$
[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]
Answer:
Given function $\frac{1}{x ( x^n+1)}$
Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$
$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$
Putting $x^n =t$
$\therefore x^{n-1}dx =dt$
can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$
$1 = A(1+t)+Bt$ ................(1)
Now, substituting $t = 0,-1$ in equation (1), we get
$A=1\ and\ B=-1$
$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$
$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$
$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$
$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$
$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$
Question:17 Integrate the rational functions $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
Answer:
Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
Applying the given hint: putting $\sin x =t$
We get, $\cos x dx =dt$
$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$
Partial fraction of above equation,
$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1 = A(2-t)+B(1-t)$ ................(1)
Now, substituting $t = 2\ and\ 1$ in equation (1), we get
$A=1\ and\ B=-1$
$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$
$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$
$= -\log|1-t| +\log|2-t| +C$
$= \log\left | \frac{2-t}{1-t} \right |+C$
Back substituting the value of t in the above equation, we get
$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$
Question: 18 Integrate the rational functions $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
Answer:
Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$
Partial fraction of above equation,
$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$
$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$
$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$
$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$
Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get
$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$
After solving these equations, we get
$A= 0, B =-2, C=0,$ and $D=6$
$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$
$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$
$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$
$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$
$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$
$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$
Question:19 Integrate the rational functions $\frac{2x }{( x^2 +1)( x^2 +3)}$
Answer:
Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$
The partial fraction of above equation,
$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1= A(t+3)+B(t+1)$ ..............(1)
Now, substituting $t = -3\ and\ t = -1$ in equation (1), we get
$A =\frac{1}{2}\ and\ B = -\frac{1}{2}$
$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
$\implies \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \left \{ \frac{1}{2(t+1)}-\frac{1}{2(t+3)} \right \}dt$
$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$
$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$
$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$
Question:20 Integrate the rational functions $\frac{1}{x (x^4 -1)}$
Answer:
Given function $\frac{1}{x (x^4 -1)}$
So, we multiply numerator and denominator by $x^3$ , to obtain
$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$
$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$
Now, putting $x^4 = t$
we get, $4x^3dx =dt$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ and\ t = 1$ in equation (1), we get
$A = -1\ and\ B=1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$
$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$
$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$
Back substituting the value of t,
$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$
Question:21 Integrate the rational functions $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]
Answer:
Given function $\frac{1}{( e ^x-1)}$
So, applying the hint: Putting $e^x = t$
Then $e^x dx= dt$
$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ and\ t = 1$ in equation (1), we get
$A = -1\ and\ B=1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$
Now, back substituting the value of t,
$= \log \left | \frac{e^x-1}{e^x} \right |+C$
Question:22 Choose the correct answer $\int \frac{x dx }{( x-1)(x-2) } \: \: equals$
Answer:
Given integral $\int \frac{x dx }{( x-1)(x-2) }$
Partial fraction of above equation,
$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x= A(x+2)+B(x-1)$ ..............(1)
Now, substituting $x = 1\ and\ x = 2$ in equation (1), we get
$A = -1\ and\ B=2$
$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$
$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$
$= -\log|x-1| +2log|x-2| +C$
$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$
Therefore, the correct answer is B.
Question:23 Choose the correct answer $\int \frac{dx}{x ( x ^2+1)} \: \: equals$
Answer:
Given integral $\int \frac{dx}{x ( x ^2+1)}$
Partial fraction of above equation,
$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$
$1= A(x^2+1)+(Bx+C)x$
Now, equating the coefficients of $x^2,x,$ and the constant term, we get
$A+B = 0$ , $C=0$ , $A=1$
We have the values, $A = 1\ and\ B=-1,\ and\ C=0$
$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$
$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$
$= \log|x| -\frac{1}{2}\log|x^2+1| +C$
Therefore, the correct answer is A.
NCERT solutions for Maths chapter 7 class 12 Integrals Exercise: 7.6
Page number: 263-264, Total questions: 24
Question:1 Integrate the functions $x \sin x$
Answer:
Given function is
$f(x)=x \sin x$
We will use integrate by parts method
$\int x\sin x = x.\int \sin xdx - \int(\frac{d(x)}{dx}.\int sin x dx)dx$
$\int x\sin x = x.(-\cos x)- \int (1.(-\cos x))dx\\ \\ \int x\sin x= -x\cos x+\sin x + C$
Therefore, the answer is $-x\cos x+\sin x + C$
Question:2 Integrate the functions $x \sin 3x$
Answer:
Given function is
$f(x)=x \sin 3x$
We will use the integration by parts method
$\int x\sin 3x = x.\int \sin 3xdx - \int(\frac{d(x)}{dx}.\int sin 3x dx)dx$
$\int x\sin 3x = x.(\frac{-\cos 3x}{3})- \int (1.(\frac{-\cos 3x}{3}))dx$
$\int x\sin 3x= -\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$
Therefore, the answer is $-\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$
Question:3 Integrate the functions $x ^ 2 e ^x$
Answer:
Given function is
$f(x)=x^2e^x$
We will use integration by parts method
$\int x^2e^x= x^2.\int e^xdx - \int(\frac{d(x^2)}{dx}.\int e^x dx)dx$
$ \int x^2e^x = x^2.e^x- \int (2x.e^x)dx\\$
Again use integration by parts in $\int (2x.e^x)dx\\$
$\int (2x.e^x)dx = 2x.\int e^x dx - \int (\frac{d(2x)}{dx}.\int e^xdx)dx$
$\int 2x.e^x dx = 2xe^x- \int 2.e^xdx\\ \int 2x.e^x dx = 2xe^x- 2e^x$
Put this value in our equation
we will get,
$\int x^2.e^x dx =x^2e^x -2xe^x+ 2e^x + C\\ \int x^2.e^x dx = e^x(x^2-2x+2)+ C$
Therefore, answer is $e^x(x^2-2x+2)+ C$
Question:4 Integrate the functions $x \log x$
Answer:
Given function is
$f(x)=x.\log x$
We will use integration by parts method
$\int x.\log xdx= \log x.\int xdx - \int(\frac{d(\log x)}{dx}.\int x dx)dx$
$\int x\log xdx = \log x.\frac{x^2}{2}- \int (\frac{1}{x}.\frac{x^2}{2})dx$
$ \int x\log xdx = \log x.\frac{x^2}{2}- \int \frac{x}{2}dx\\ \int x\log xdx = \log x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Therefore, the answer is $\frac{x^2}{2}\log x- \frac{x^2}{4}+ C$
Question:5 Integrate the functions $x \log 2x$
Answer:
Given function is
$f(x)=x.\log 2 x$
We will use integration by parts method
$\int x.\log 2xdx= \log 2x.\int xdx - \int(\frac{d(\log 2x)}{dx}.\int x dx)dx$
$ \int x\log 2xdx = \log 2x.\frac{x^2}{2}- \int (\frac{2}{2x}.\frac{x^2}{2})dx$
$\int x\log 2xdx = \log 2x.\frac{x^2}{2}- \int \frac{x}{2}dx\\ \int x\log 2xdx = \log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Therefore, the answer is $\log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Question:6 Integrate the functions $x^ 2 \log x$
Answer:
Given function is
$f(x)=x^2.\log x$
We will use integration by parts method
$\int x^2.\log xdx= \log x.\int x^2dx - \int(\frac{d(\log x)}{dx}.\int x^2 dx)dx$
$ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int (\frac{1}{x}.\frac{x^3}{3})dx$
$ \int x^2\log xdx = \log x.\frac{x^3}{3}- \int \frac{x^2}{3}dx$
$ \int x^2\log xdx = \log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$
Therefore, the answer is $\log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$
Question:7 Integrate the functions $x \sin ^{ -1} x$
Answer:
Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method
$\int x.\sin^{-1} xdx= \sin^{-1} x.\int xdx - \int(\frac{d(\sin^{-1} x)}{dx}.\int x dx)dx$
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right)$
$ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x-\sin^{-1}x \right )$
$ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\sin^{-1}x}{4}+C$
Put this value in our equation
Therefore, the answer is $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$
Question:8 Integrate the functions $x \tan ^{-1} x$
Answer:
The given function is
$f(x)=x.\tan^{-1} x$
We will use integration by parts method
$\int x.\tan^{-1} xdx= \tan^{-1} x.\int xdx - \int(\frac{d(\tan^{-1} x)}{dx}.\int x dx)dx$
$ \int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}- \int (\frac{1}{1+x^2}.\frac{x^2}{2})dx$
$\int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\int \left ( \frac{x^2+1}{1+x^2}-\frac{1}{1+x^2} \right )dx$
$\int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\int \left ( 1-\frac{1}{1+x^2} \right )dx$
$\int x\tan^{-1} xdx = \tan^{-1} x.\frac{x^2}{2}-\frac{1}{2}\left ( x- \tan^{-1}x \right )+C$
$\int x\tan^{-1}xdx = \frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$
Put this value in our equation
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C$
$\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}$
Therefore, the answer is $\frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$
Question:9 Integrate the functions $x\cos ^{ -1} x$
Answer:
The given function is
$f(x)=x.\cos^{-1} x$
We will use the integration by parts method
$\int x.\cos^{-1} xdx= \cos^{-1} x.\int xdx - \int(\frac{d(\cos^{-1} x)}{dx}.\int x dx)dx$
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}- \int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
Now, we need to integrate $\int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \frac{1-x^2}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}} \right )dx$
$ \int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\int \left ( \sqrt{1-x^2}-\frac{1}{\sqrt{1-x^2}} \right )dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx=\frac{1}{2}\left ( \int \sqrt{1-x^2}dx-\int \frac{1}{\sqrt{1-x^2}}dx \right )$
$\int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{1}{2}\left ( \frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}\cos^{-1}x+\cos^{-1}x \right )$
$ \int \frac{-x^2}{2\sqrt{1-x^2}}dx = \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C$
Put this value in our equation
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )$
$ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Therefore, the answer is $\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Question:10 Integrate the functions $( \sin ^{-1}x ) ^ 2$
Answer:
Given function is
$f(x)=( \sin ^{-1}x ) ^ 2$
we will use integration by parts method
$\int (\sin^{-1}x)^2= (\sin^{-1}x)^2.\int 1dx-\int \left ( \frac{d( (\sin^{-1}x)^2)}{dx} .\int 1dx\right )dx$
$\int (\sin^{-1}x)^2 = (\sin^{-1}x)^2.x-\int \left ( \sin^{-1}.\frac{2x}{\sqrt{1-x^2}} \right )dx$
$\int (\sin^{-1}x)^2 = (\sin^{-1}x)^2.x + \left [ \sin^{-1}x.\int \frac{-2x}{\sqrt{1-x^2}}dx-\int \left ( \frac{d(\sin^{-1}x)}{dx}. \int \frac{-2x}{\sqrt{1-x^2}}dx\right ) \right ]$
$= (\sin^{-1}x)^2.x + \left [ \sin^{-1}x.2\sqrt{1-x^2}- \int \frac{1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$
$= (\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$
Therefore, answer is $(\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$
Question:11 Integrate the functions $\frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}$
Answer:
Consider $\int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I$
So, we have then: $I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx$
After taking $\cos ^{-1}x$ as a first function and $\left ( \frac{-2x}{\sqrt{1-x^2}} \right )$ as second function and integrating by parts, we get
$I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ]$
$=-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C$
Or,
Question:12 Integrate the functions $x \sec ^2 x$
Answer:
Consider $x \sec ^2 x$
So, we have then: $I =\int x\sec^2 x dx$
After taking $x$ as a first function and $\sec^2x$ as a second function and integrating by parts, we get
$I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx$
$= x\tan x -\int1.\tan x dx$
$= x\tan x +\log|\cos x | +C$
Question:13 Integrate the functions $\tan ^{-1} x$
Answer:
Consider $\tan ^{-1} x$
So, we have then: $I =\int 1.\tan^{-1}x dx$
After taking $\tan^{-1}x$ as a first function and $1$ as second function and integrating by parts, we get
$I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx$
$= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx$
$= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx$
$= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C$
$= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C$
Question:14 Integrate the functions $x ( \log x )^ 2$
Answer:
Consider $x ( \log x )^ 2$
So, we have then: $I = \int x(\log x)^2 dx$
After taking $(\log x )^2$ as a first function and $x$ as second function and integrating by parts, we get
$I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx$
$= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx$
$= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx$
$= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C$
Question:15 Integrate the functions $( x^2 + 1 ) \log x$
Answer:
Consider $( x^2 + 1 ) \log x$
So, we have then: $I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx$
Let us take $I = I_{1} +I_{2}$ ....................(1)
Where, $I_{1} = \int x^2\log x dx$ and $I_{2} = \int \log x dx$
So, $I_{1} = \int x^2\log x dx$
After taking $\log x$ as a first function and $x^2$ as second function and integrating by parts, we get
$I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx$
$= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$
$= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}$ ....................(2)
$I_{2} = \int \log x dx$
After taking $\log x$ as a first function and $1$ as second function and integrating by parts, we get
$I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx$
$= \log x .x -\int \frac{1}{x}. xdx$
$= x\log x -\int 1 dx$
$= x\log x -x +C_{2}$ ................(3)
Now, using the two equations (2) and (3) in (1) we get,
$I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}$
$= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})$
$=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C$
Question:16 Integrate the functions $e ^ x ( \sin x + \cos x )$
Answer:
Let suppose
$I =$ $e ^ x ( \sin x + \cos x )$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
Thus, the solution of the given integral is given by
$\therefore I = e^x\sin x +C$
Question:17 Integrate the functions $\frac{x e ^x }{( 1+ x )^2}$
Answer:
$\frac{x e ^x }{( 1+ x )^2}$
Let suppose
$I = \int \frac{e^x(x)}{(1+x)^2}dx$
by rearranging the equation, we get
$\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx$
let
$f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
therefore the solution of the given integral is
$I = \frac{e^x}{1+x}+C$
Question:18 Integrate the functions $e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
Answer:
Let
$I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
substitute $1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$
$\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\$
let
$f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
Therefore the solution of the given integral is
$I = e^x\tan\frac{x}{2} +C$
Question:19 Integrate the functions $e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
Answer:
$e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
It is known that
$\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
let
$f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}$
Therefore the required solution of the given above integral is
$I = e^x.\frac{1}{x}+C$
Question:20 Integrate the functions $\frac{( x-3)e ^x }{( x-1)^3}$
Answer:
$\frac{( x-3)e ^x }{( x-1)^3}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
So, By adjusting the given equation, we get
$\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx$
to let
$f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}$
Therefore the required solution of the given $I=\frac{e^x}{(x-1)^2}+C$ integral is
Question:21 Integrate the functions $e ^{ 2x } \sin x$
Answer:
Let
$I =e ^{ 2x } \sin x$
By using integrating by parts, we get
$\\=\sin x\int e ^{ 2x }dx-\int(\frac{d}{dx}\sin x.\int e^{2x}dx)\ dx$
$=\frac{\sin x.e^{2x}}{2}-\frac{1}{2}\int e^{2x}.\cos x\ dx$
$=\frac{\sin x.e^{2x}}{2}-\frac{1}{2}[\cos x\int e^{2x}dx-\int (\frac{d}{dx}\cos x.\int e^{2x}dx)\ dx]$
$=\frac{\sin x.e^{2x}}{2}-\frac{1}{2}[\cos x.\frac{e^x}{2}+\frac{1}{2}\int e^{2x}\sin x dx]$
$=\frac{\sin x.e^{2x}}{2}-\frac{1}{4}\cos x.e^{2x}-\frac{1}{4}I$
$\Rightarrow \frac{5}{4}I =\frac{\sin x.e^{2x}}{2}-\frac{1}{4}\cos x.e^{2x}$
$I = \frac{e^{2x}}{5}[2\sin x-\cos x]+C$
Question:22 Integrate the functions $\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
Answer:
$\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
$\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
$\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta$
$ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\\=2[\theta\int \sec^2\theta d\theta-\int(\frac{d}{d\theta}\theta.\int \sec^2\theta\ d\theta)d\theta]$ $=2[\theta\tan\theta-\int \tan\theta\ d\theta]+C\\ =2[\theta\tan\theta+\log\left | \cos\theta \right |]+C$
$=2x\tan^{-1}x+2\log (1+x^2)^{-1/2}\\ =2x\tan^{-1}x-\log(1+x^2)+C$
Question:23 Choose the correct answer
$\int x ^ 2 e ^{x ^3 } dx \: \: equals$
Answer:
The integration can be done ass follows
Let $x^3 =t\Rightarrow 3x^2dx=dt$
$\Rightarrow I =\frac{1}{3}\int e^tdt =\frac{1}{3}e^t+C=\frac{1}{3}e^{x^3}+C$
Question:24 Choose the correct answer
$\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals$
$A ) e ^ x \cos x + C \\\\ B) e ^ x \sec x + C \\\\ C ) e ^ x \sin x + C\\\\D ) e ^ x \tan x + C$
Answer:
We know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
from above integral
let
$f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x$
thus, the solution of the above integral is
$I=e^x\sec x+C$
NCERT solutions for Maths chapter 7 class 12 Integrals Exercise: 7.7
Page number: 266, Total questions: 11
Question:1 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{4 - x^2}$ ,
So, let us consider the function to be;
$I = \int \sqrt{4-x^2}dx$
$= \int \sqrt{(2)^2-x^2}dx$
Then it is known that, $= \int \sqrt{a^2-x^2}dx =\frac{x}{2}\sqrt{a^2-x^2} +\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$
Therefore, $I = \frac{x}{2}\sqrt{4-x^2} +\frac{4}{2}\sin^{-1}{\frac{x}{2}}+C$
$= \frac{x}{2}\sqrt{4-x^2} +2\sin^{-1}{\frac{x}{2}}+C$
Question:2 Integrate the functions in Exercises 1 to 9.
Answer:
Given function to integrate $\sqrt{1 - 4x^2}$
Now we can rewrite as
$= \int \sqrt{1 - (2x)^2}dx$
As we know the integration of this form is $\left [ \because \int \sqrt{a^2-x^2}dx =\frac{x}{2}\sqrt{a^2-x^2} +\frac{a^2}{2}\sin^{-1}\frac{x}{a} \right ]$
$= \frac{(\frac{2x}{2})\sqrt{1^2-(2x)^2}+\frac{1^2}{2}\sin^{-1}\frac{2x}{1}}{2\rightarrow Coefficient\ of\ x\ in\ 2x} +C$
$= \frac{1}{2}\left [ x\sqrt{1-4x^2}+\frac{1}{2}\sin^{-1}2x \right ]+C$
$= \frac{x}{2}\sqrt{1-4x^2}+\frac{1}{4}\sin^{-1}2x+C$
Question:3 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{x^2 + 4x + 6}$ ,
So, let us consider the function to be;
$I = \int\sqrt{x^2 + 4x + 6}dx$
$= \int\sqrt{(x^2 + 4x + 4)+2}dx = \int\sqrt{(x + 2)^2 +(\sqrt2)^2}dx$
And we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$
$\Rightarrow I = \frac{x+2}{2}\sqrt{x^2+4x+6}+\frac{2}{2}\log\left | (x+2)+\sqrt{x^2+4x+6} \right |+C$
$= \frac{x+2}{2}\sqrt{x^2+4x+6}+\log\left | (x+2)+\sqrt{x^2+4x+6} \right |+C$
Question:4 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{x^2 + 4x +1}$ ,
So, let us consider the function to be;
$I = \int\sqrt{x^2 + 4x + 1}dx$
$= \int\sqrt{(x^2 + 4x + 4)-3}dx = \int\sqrt{(x + 2)^2 -(\sqrt3)^2}dx$
And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$
$\therefore I = \frac{x+2}{2}\sqrt{x^2+4x+1}-\frac{3}{2}\log\left | (x+2)+\sqrt{x^2+4x+1} \right |+C$
Question:5 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{1-4x-x^2}$ ,
So, let us consider the function to be;
$I = \int\sqrt{1-4x-x^2}dx$
$= \int\sqrt{1-(x^2+4x+4-4)}dx = \int\sqrt{1+4 -(x+2)^2}dx$
$= \int\sqrt{(\sqrt5)^2 -(x+2)^2}dx$
And we know that, $\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$
$\therefore I = \frac{x+2}{2}\sqrt{1-4x-x^2}+\frac{5}{2}\sin^{-1}\left ( \frac{x+2}{\sqrt5} \right )+C$
Question:6 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{x^2 + 4x - 5}$ ,
So, let us consider the function to be;
$I = \int\sqrt{x^2+4x-5}dx$
a $= \int\sqrt{(x^2+4x+4)-9}dx = \int\sqrt{(x+2)^2 -(3)^2}dx$
And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}|+C$
$\therefore I = \frac{x+2}{2}\sqrt{x^2+4x-5}-\frac{9}{2}\log\left | (x+2)+ \sqrt{x^2+4x-5} \right |+C$
Question:7 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{1 + 3x - x^2}$ ,
So, let us consider the function to be;
$I = \int\sqrt{1+3x-x^2}dx$
$= \int\sqrt{(1-\left ( x^2-3x+\frac{9}{4}-\frac{9}{4} \right )}dx = \int \sqrt{\left ( 1+\frac{9}{4} \right )-\left ( x-\frac{3}{2} \right )^2}dx$ $= \int \sqrt{\left ( \frac{\sqrt{13}}{2} \right )^2-\left ( x-\frac{3}{2} \right )^2}dx$
And we know that, $\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$
$\therefore I = \frac{x-\frac{3}{2}}{2}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}} \right )+C$
$= \frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\left ( \frac{2x-3}{\sqrt{13}} \right )+C$
Question:8 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{x^2 + 3x}$ ,
So, let us consider the function to be;
$I = \int\sqrt{x^2+3x}dx$
$= \int\sqrt{x^2+3x+\frac{9}{4}-\frac{9}{4}}dx$
$= \int\sqrt{\left ( x+\frac{3}{2} \right )^2-\left ( \frac{3}{2} \right )^2 }dx$
And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$
$\therefore I = \frac{x+\frac{3}{2}}{2}\sqrt{x^2+3x}-\frac{\frac{9}{4}}{2}\log \left | \left ( x+\frac{3}{2} \right )+\sqrt{x^2+3x} \right |+C$
$= \frac{2x+3}{4}\sqrt{x^2+3x}-\frac{9}{8}\log\left | \left ( x+\frac{3}{2} \right )+\sqrt{x^2+3x} \right |+C$
Question:9 Integrate the functions in Exercises 1 to 9.
Answer:
Given function $\sqrt{1 + \frac{x^2}{9}}$ ,
So, let us consider the function to be;
$I = \int\sqrt{1+\frac{x^2}{9}}dx = \frac{1}{3}\int \sqrt{9+x^2}dx$
$= \frac{1}{3}\int \sqrt{3^2+x^2}dx$
And we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$
$\therefore I = \frac{1}{3}\left [ \frac{x}{2}\sqrt{x^2+9} +\frac{9}{2}\log|x+\sqrt{x^2+9}| \right ]+C$
$= \frac{x}{6}\sqrt{x^2+9} +\frac{3}{2}\log\left | x+\sqrt{x^2+9} \right |+C$
Question:10 Choose the correct answer in Exercises 10 to 11.
$\int \sqrt{1+x^2}dx$ is equal to
(A) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log\left |\left(x + \sqrt{1+x^2} \right )\right| +C$
(B) $\frac{2}{3}(1+x^2)^{\frac{3}{2}} + C$
(C) $\frac{2}{3}x(1+x^2)^{\frac{3}{2}} + C$
(D) $\frac{x^2}{2}\sqrt{1+x^2} + \frac{1}{2}x^2\log\left |x + \sqrt{1+x^2} \right| +C$
Answer:
As we know that, $\int \sqrt{x^2+a^2}dx = \frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log|x+\sqrt{x^2+a^2}| +C$
So, $\int \sqrt{1+x^2}dx = \frac{x}{2}\sqrt{x^2+1}+\frac{1}{2}\log|x+\sqrt{x^2+1}| +C$
Therefore, the correct answer is A.
Question:11 Choose the correct answer in Exercises 10 to 11.
$\int \sqrt{x^2 - 8x+7}dx$ is equal to
(A) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} + 9\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$
(B) $\frac{1}{2}(x+4)\sqrt{x^2-8x+7} + 9\log\left|x+4+\sqrt{x^2 -8x+7}\right| +C$
(C) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} -3\sqrt2\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$
(D) $\frac{1}{2}(x-4)\sqrt{x^2-8x+7} -\frac{9}{2}\log\left|x-4+\sqrt{x^2 -8x+7}\right| +C$
Answer:
Given integral $\int \sqrt{x^2 - 8x+7}dx$
So, let us consider the function to be;
$I = \int\sqrt{x^2-8x+7}dx =\int\sqrt{(x^2-8x+16)-(9)}dx$
$=\int\sqrt{(x-4)^2-(3)^2}dx$
And we know that, $\int \sqrt{x^2-a^2}dx = \frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log|x+\sqrt{x^2-a^2}| +C$
$I = \frac{(x-4)}{2}\sqrt{x^2-8x+7}-\frac{9}{2}\log|(x-4)+\sqrt{x^2-8x+7}| +C$
Therefore, the correct answer is D.
NCERT solutions for Maths chapter 7 class 12 Integrals Exercise: 7.8
Page number: 270-271, Total questions: 22
Question:1 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $I = \int_{-1}^{1} (x+1)dx$
Consider the integral $\int (x+1)dx$
$\int (x+1)dx = \frac{x^2}{2}+x$
So, we have the function of $x$ , $f(x) = \frac{x^2}{2}+x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1)-f(-1)$
$= \left ( \frac{1}{2}+1\right ) - \left (\frac{1}{2}-1 \right ) = \frac{1}{2}+1-\frac{1}{2}+1 = 2$
Question:2 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $I = \int_2^3\frac{1}{x}dx$
Consider the integral $\int_2^3\frac{1}{x}dx$
$\int \frac{1}{x}dx = \log|x|$
So, we have the function of $x$ , $f(x) = \log|x|$
Now, by Second fundamental theorem of calculus, we have
$I = f(3)-f(2)$
$=\log|3|-\log|2| = \log \frac{3}{2}$
Question:3 Evaluate the definite integrals in Exercises 1 to 20.
$\int_1^2(4x^3-5x^2 + 6x +9)dx$
Answer:
Given integral: $I = \int_1^2(4x^3-5x^2 + 6x +9)dx$
Consider the integral $I = \int (4x^3-5x^2 + 6x +9)dx$
$\int (4x^3-5x^2 + 6x +9)dx = 4\frac{x^4}{4} -5\frac{x^3}{3}+6\frac{x^2}{2}+9x$
$= x^4 -\frac{5x^3}{3}+3x^2+9x$
So, we have the function of $x$ , $f(x) = x^4 -\frac{5x^3}{3}+3x^2+9x$
Now, by Second fundamental theorem of calculus, we have
$I = f(2)-f(1)$
$=\left \{ 2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right \} - \left \{ 1^4-\frac{5(1)^3}{3}+3(1)^2+9(1) \right \}$
$=\left \{ 16-\frac{40}{3}+12+18\right \} - \left \{ 1-\frac{5}{3}+3+9 \right \}$
$=\left \{ 46-\frac{40}{3}\right \} - \left \{ 13-\frac{5}{3}\right \}$
$=\left \{ 33-\frac{35}{3} \right \} = \left \{ \frac{99-35}{3} \right \}$
$= \frac{64}{3}$
Question:4 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^\frac{\pi}{4}\sin 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}\sin 2x dx$
Consider the integral $\int \sin 2x dx$
$\int \sin 2x dx = \frac{-\cos 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{-\cos 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4})-f(0)$
$= \frac{-\cos 2(\frac{\pi}{4})}{2} + \frac{\cos 0}{2}$
$=\frac{1}{2} - 0$
$= \frac{1}{2}$
Question:5 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^\frac{\pi}{2}\cos 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos 2x dx$
Consider the integral $\int \cos 2x dx$
$\int \cos 2x dx = \frac{\sin 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{\sin 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2})-f(0)$
$= \frac{1}{2}\left \{ \sin 2(\frac{\pi}{2}) - \sin 0 \right \}$
$= \frac{1}{2}\left \{ 0 - 0 \right \} = 0$
Question:6 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $\int_4^5 e^x dx$
Consider the integral $\int e^x dx$
$\int e^x dx = e^x$
So, we have the function of $x$ , $f(x) = e^x$
Now, by Second fundamental theorem of calculus, we have
$I = f(5) -f(4)$
$= e^5 -e^4$
$= e^4(e-1)$
Question:7 Evaluate the definite integrals in Exercises 1 to 20.
$\int^\frac{\pi}{4}_0 \tan x dx$
Answer:
Given integral: $\int^\frac{\pi}{4}_0 \tan x dx$
Consider the integral $\int \tan x dx$
$\int \tan x dx = -\log|\cos x |$
So, we have the function of $x$ , $f(x) = -\log|\cos x |$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= -\log\left | \cos \frac{\pi}{4} \right | +\log|\cos 0|$
$= -\log\left | \cos \frac{1}{\sqrt2} \right | +\log|1|$
$= -\log\left | \frac{1}{\sqrt2} \right | + 0 = -\log (2)^{-\frac{1}{2}}$
$= \frac{1}{2}\log (2)$
Question:8 Evaluate the definite integrals in Exercises 1 to 20.
$\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec}xdx$
Answer:
Given integral: $\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec}xdx$
Consider the integral $\int\textup{cosec}xdx$
$\int\textup{cosec}xdx = \log|cosec x -\cot x |$
So, we have the function of $x$ , $f(x) =\log|cosec x -\cot x |$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(\frac{\pi}{6})$
$= \log|cosec \frac{\pi}{4} -\cot \frac{\pi}{4} | - \log|cosec \frac{\pi}{6} -\cot \frac{\pi}{6} |$
$= \log|\sqrt2 -1 | - \log|2 -\sqrt3 |$
$= \log \left ( \frac{\sqrt2 -1}{2-\sqrt3} \right )$
Question:9 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Answer:
Given integral: $\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Consider the integral $\int \frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$
So, we have the function of $x$ , $f(x) = \sin^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \sin^{-1}(1) -\sin^{-1}(0)$
$= \frac{\pi}{2} - 0$
$= \frac{\pi}{2}$
Question:10 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $\int_0^1\frac{dx}{1 + x^2}$
Consider the integral $\int\frac{dx}{1 + x^2}$
$\int\frac{dx}{1 + x^2} = \tan^{-1}x$
So, we have the function of $x$ , $f(x) =\tan^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \tan^{-1}(1) -\tan^{-1}(0)$
$= \frac{\pi}{4} - 0$
$= \frac{\pi}{4}$
Question:11 Evaluate the definite integrals in Exercises 1 to 20.
$\int_2^3 \frac{dx}{x^2 -1 }$
Answer:
Given integral: $\int_2^3 \frac{dx}{x^2 -1 }$
Consider the integral $\int \frac{dx}{x^2 -1 }$
$\int \frac{dx}{x^2 -1 } = \frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log\left | \frac{3-1}{3+1} \right | - \log\left | \frac{2-1}{2+1} \right | \right \}$
$= \frac{1}{2}\left \{ \log\left | \frac{2}{4} \right | -\log\left | \frac{1}{3} \right | \right \}$
$= \frac{1}{2}\left \{ \log \frac{1}{2} -\log \frac{1}{3} \right \} = \frac{1}{2}\log\frac{3}{2}$
Question:12 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos^2 x dx$
Consider the integral $\int \cos^2 x dx$
$\int \cos^2 x dx = \int \frac{1+\cos 2x}{2} dx = \frac{x}{2}+\frac{\sin 2x }{4}$
$= \frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2}) -f(0)$
$= \frac{1}{2}\left \{ \left ( \frac{\pi}{2}-\frac{\sin \pi}{2} \right ) -\left ( 0+\frac{\sin 0}{2} \right ) \right \}$
$= \frac{1}{2}\left \{ \frac{\pi}{2}+0-0-0 \right \}$
$= \frac{\pi}{4}$
Question:13 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $\int_2^3\frac{xdx}{x^2+1}$
Consider the integral $\int \frac{xdx}{x^2+1}$
$\int \frac{xdx}{x^2+1} = \frac{1}{2}\int \frac{2x}{x^2+1}dx =\frac{1}{2}\log(1+x^2)$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log(1+x^2)$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log(1+(3)^2)-\log(1+(2)^2) \right \}$
$= \frac{1}{2}\left \{ \log(10)-\log(5) \right \} = \frac{1}{2}\log\left ( \frac{10}{5} \right ) = \frac{1}{2}\log2$
Question:14 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^1\frac{2x+3}{5x^2+1}dx$
Answer:
Given integral: $\int_0^1\frac{2x+3}{5x^2+1}dx$
Consider the integral $\int \frac{2x+3}{5x^2+1}dx$
Multiplying by 5 both in numerator and denominator:
$\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx$
$=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx$
$= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx$
$= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
So, we have the function of $x$ , $f(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}$
$= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}$
Question:15 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $\int_0^1xe^{x^2}dx$
Consider the integral $\int xe^{x^2}dx$
Putting $x^2 = t$ which gives, $2xdx =dt$
As, $x\rightarrow0 ,t \rightarrow0$ and as $x\rightarrow1 ,t \rightarrow1$ .
So, we have now:
$\therefore I = \frac{1}{2}\int_0^1 e^t dt$
$= \frac{1}{2}\int e^t dt = \frac{1}{2} e^t$
So, we have the function of $x$ , $f(x) = \frac{1}{2} e^t$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \frac{1}{2}e^1 -\frac{1}{2}e^0 = \frac{1}{2}(e-1)$
Question:16 Evaluate the definite integrals in Exercises 1 to 20.
$\int_1^2\frac{5x^2}{x^2 + 4x +3}$
Answer:
Given integral: $I = \int_1^2\frac{5x^2}{x^2 + 4x +3}$
So, we can rewrite the integral as;
$I = \int_1^2 \frac{5x^2}{x^2 + 4x +3}= \int_1^2 \left ( 5 - \frac{20x+15}{x^2 + 4x +3} \right ) dx$
$= \int_1^2 5 dx - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$= [5x]_1^2 - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$I = 5-I_1$ where $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$ . ................(1)
Now, consider $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
Take numerator $20x+15 = A \frac{d}{dx}\left ( x^2+4x+3 \right )+B$
$= 2A x+(4A+B)$
We now equate the coefficients of x and constant term, we get
$A= 10$ and $B =-25$
$\Rightarrow I_1 = 10\int_1^2 \frac{2x+4}{x^2+4x+3}dx -25\int_1^2 \frac{dx}{x^2+4x+3}$
Now take denominator $x^2+4x+3 = t$
Then we have $(2x+4)dx =dt$
$\Rightarrow I_{1} =10\int \frac{dt}{t} -25\int \frac{dx}{(x+2)^2-1^2}$
$= 10\log t -25\left [ \frac{1}{2}\log\left ( \frac{x+2-1}{x+2+1} \right ) \right ]$
$=[10\log(x^2+4x+3)]_1^2 -25 \left [ \frac{1}{2}\log\left ( \frac{x+1}{x+3} \right ) \right ]_1^2$
$= \left [ 10\log15 -10\log 8 \right ] -25 \left [ \frac{1}{2}\log\frac{3}{5} -\frac{1}{2}\log\frac{2}{4} \right ]$
$= \left [ 10\log5 +10\log3 -10\log4-10\log2 \right ] -\frac{25}{2}\left [ \log3 -\log5-\log2+\log4 \right ]$ $= \left ( 10+\frac{25}{2} \right )\log5 + \left ( -10-\frac{25}{2} \right )\log 4 + \left ( 10-\frac{25}{2} \right )\log 3 + \left ( -10+\frac{25}{2} \right )\log 2$ $= \frac{45}{2}\log5 -\frac{45}{2}\log4 - \frac{5}{2}\log3 +\frac{5}{2}\log2$
$= \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log \frac{3}{2}$
Then substituting the value of $I_{1}$ in equation (1), we get
$I= 5 -\left ( \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log\frac{3}{2} \right )$
$= 5 -\frac{5}{2}\left ( 9\log\frac{5}{4}-\log\frac{3}{2} \right )$
Question:17 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Consider the integral $\int (2\sec^2x + x^3 + 2)dx$
$\int (2\sec^2x + x^3 + 2)dx = 2\tan x +\frac{x^4}{4}+2x$
So, we have the function of $x$ , $f(x) = 2\tan x +\frac{x^4}{4}+2x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= \left \{ \left ( 2\tan\frac{\pi}{4}+\frac{1}{4}\left ( \frac{\pi}{4} \right )^4+2\frac{\pi}{4} \right ) - \left ( 2\tan 0 +0 +0 \right ) \right \}$
$=2\tan\frac{\pi}{4} +\frac{\pi^4}{4^5} +\frac{\pi}{2}$
$2+\frac{\pi}{2}+\frac{\pi^4}{1024}$
Question:18 Evaluate the definite integrals in Exercises 1 to 20.
$\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Answer:
Given integral: $\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Consider the integral $\int (\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
can be rewritten as: $-\int (\cos^2\frac{x}{2} - \sin^2\frac{x}{2})dx = -\int_0^{\pi} \cos x dx$
$= \sin x$
So, we have the function of $x$ , $f(x) =\sin x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\pi) - f(0)$
$\Rightarrow \sin \pi - \sin 0 = 0-0 =0$
Question:19 Evaluate the definite integrals in Exercises 1 to 20.
Answer:
Given integral: $\int_0^2\frac{6x+3}{x^2+ 4}$
Consider the integral $\int \frac{6x+3}{x^2+ 4}$
can be rewritten as: $\int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx$
$= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx$
$= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
So, we have the function of $x$ , $f(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(2) - f(0)$
$= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}$ $=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0$
$=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0$
$=3\log \frac{8}{4} +\frac{3\pi}{8}$
or we have $=3\log 2 +\frac{3\pi}{8}$
Question:20 Evaluate the definite integrals in Exercises 1 to 20.
$\int_0^1(xe^x + sin\frac{\pi x}{4})dx$
Answer:
Given integral: $\int_0^1(xe^x + sin\frac{\pi x}{4})dx$
Consider the integral $\int (xe^x + sin\frac{\pi x}{4})dx$
can be rewritten as: $x\int e^x dx - \int \left \{ \left ( \frac{d}{dx}x \right )\int e^x dx \right \}dx +\left \{ \frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}} \right \}$
$= xe^x -\int e^x dx -\frac{4\pi}{\pi} \cos \frac{x}{4}$
$= xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
So, we have the function of $x$ , $f(x) = xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) - f(0)$
$= \left (1.e^t-e^t - \frac{4}{\pi}\cos \frac{\pi}{4} \right ) - \left ( 0.e^0 -e^0 -\frac{4}{\pi}\cos 0 \right )$
$= e-e -\frac{4}{\pi}\left ( \frac{1}{\sqrt2} \right )+1+\frac{4}{\pi}$
Question:21 Choose the correct answer in Exercises 20 and 21.
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$
Answer:
Given definite integral $\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$
Consider $\int \frac{dx}{1 +x^2} = \tan^{-1}x$
we have then the function of x, as $f(x) = \tan^{-1}x$
By applying the second fundamental theorem of calculus, we will get
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2} = f(\sqrt3) - f(1)$
$= \tan^{-1}\sqrt{3} - \tan^{-1}1$
$=\frac{\pi}{3} - \frac{\pi}{4}$
$= \frac{\pi}{12}$
Therefore the correct answer is D.
Question:22 Choose the correct answer in Exercises 21 and 22.
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$ equals
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{12}$
(C) $\frac{\pi}{24}$
(D) $\frac{\pi}{4}$
Answer:
Given definite integral $\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$
Consider $\int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}$
Now, putting $3x = t$
we get, $3dx=dt$
Therefore we have, $\int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}$
$= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
we have the function of x , as $f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
So, by applying the second fundamental theorem of calculus, we get
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)$
$= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0$
$= \frac{1}{6}\tan^{-1}1 - 0$
$= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}$
Therefore the correct answer is C.
NCERT solutions for class 12 maths chapter 7 Integrals - Exercise:7.9
Page number: 273, Total questions: 10
Question: 1 Evaluate the integrals in Exercises 1 to 8 using substitution.
Answer:
$\int_0^1\frac{x}{x^2 +1}dx$
Let $x^2+1 = t \Rightarrow xdx =dt/2$
when x = 0 then t = 1 and when x =1 then t = 2
$\therefore \int_{o}^{1}\frac{x}{x^2+1}dx=\frac{1}{2}\int_{1}^{2}\frac{dt}{t}$
$\\=\frac{1}{2}[\log\left | t \right |]_{1}^{2}\\ =\frac{1}{2}\log 2$
Question: 2 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
Answer:
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
let $\sin \phi = t \Rightarrow \cos \phi d\phi = dt$
when $\phi =0,t\rightarrow 0$ and $\phi =\pi/2,t\rightarrow 1$
using the above substitution we can evaluate the integral as
$\\\therefore \int_{0}^{1}\sqrt{t}(1-t^2)dt\\ =\int_{0}^{1} t^\frac{1}{2}(1+t^4-2t^2)dt$
$=\int_{0}^{1}t^\frac{1}{2}dt+\int_{0}^{1}t^{9/2}dt-2\int_{0}^{1}t^{5/2}dt$
$=[2t^{3/2}/3+2t^{11/2}/11+4t^{7/2}/7]^1_0\\ =\frac{64}{231}$
Question: 3 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
Answer:
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
when x = 0 then $\theta= 0$ and when x = 1 then $\theta= \pi/4$
$\\=\int_{0}^{\pi/4}\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta$
$=\int_{0}^{\pi/4}\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta$
$=\int_{0}^{\pi/4}2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\\=2[\theta\int \sec^2\theta d\theta-\int(\frac{d}{d\theta}\theta.\int \sec^2\theta\ d\theta)d\theta]^{\pi/4}_0$
$=2[\theta\tan\theta-\int \tan\theta\ d\theta]^{\pi/4}_0$
$=2[\theta\tan\theta+\log\left | \cos\theta \right |]^{\pi/4}_0$
$=2[\pi/4+\log(1/\sqrt{2})]\\ =\pi/4-\log 2$
Question: 4 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_0^2x\sqrt{x+2}$ . (Put ${x+2} = t^2$ )
Answer:
Let $x+2 = t^2\Rightarrow dx =2tdt$
when x = 0 then t = $\sqrt{2}$ and when x=2 then t = 2
$I=\int_{0}^{2}x\sqrt{x+2}dx$
$\\=2\int_{\sqrt{2}}^{2}(t^2-2)t^2dt\\ =2\int_{\sqrt{2}}^{2}(t^4-2t^2)dt$
$=2[t^5/5-\frac{2}{3}t^3]^2_{\sqrt{2}}$
$=2[\frac{32}{5}-\frac{16}{3}-\frac{4\sqrt{2}}{5}+\frac{4\sqrt{2}}{3}]\\ =\frac{16\sqrt{2}(\sqrt{2}+1)}{15}$
Question: 5 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx$
Answer:
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx =I$
Let $\cos x =t\Rightarrow -\sin x dx = dt$
when x=0 then t = 1 and when x= $\pi/2$ then t = 0
$\\I=\int_{1}^{0}\frac{dt}{1+t^2}\\ =[\tan ^{-1}t]^0_1\\ =\pi/4$
Question: 6 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_0^2\frac{dx}{x + 4 - x^2}$
Answer:
By adjusting, the denominator can also be written as $(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2 =x+4-x^2$
Now,
$\Rightarrow \int_{0}^{2}\frac{dx}{(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2}$
let $x-1/2 = t\Rightarrow dx=dt$
when x= 0 then t =-1/2 and when x =2 then t = 3/2
$\\\Rightarrow\int_{-1/2}^{3/2}\frac{dt}{(\frac{\sqrt{17}}{2})^2-t^2}$
$=\frac{1}{2.\frac{\sqrt{17}}{2}}\log\frac{\frac{\sqrt{17}}{2}+t}{\frac{\sqrt{17}}{2}-t}$
$=\frac{1}{\sqrt{17}}[\log\frac{\sqrt{17}/2+3/2}{\sqrt{17}/2-3/2}-\log\frac{\sqrt{17}/2-1/2}{\sqrt{17}/2+1/2}]$
$=\frac{1}{\sqrt{17}}[\log\frac{\sqrt{17}+3}{\sqrt{17}-3/}.\frac{\sqrt{17}+1}{\sqrt{17}+1}]$
$=\frac{1}{\sqrt{17}}[\log (\frac{17+3+4\sqrt{17}}{17+3-4\sqrt{17}})]$
$=\frac{1}{\sqrt{17}}[\log (\frac{5+\sqrt{17}}{5-\sqrt{17}})]$
On rationalisation, we get
$=\frac{1}{\sqrt{17}}\log \frac{21+5\sqrt{17}}{4}$
Question: 7 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
Answer:
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
the Dr can be written as $x^2+2x+5 = (x+1)^2+2^2$
and put x+1 = t then dx =dt
when x= -1 then t = 0 and when x = 1 then t = 2
$\\\Rightarrow \int_{0}^{2}\frac{dt}{t^2+2^2}\\ =\frac{1}{2}[\tan^{-1}\frac{t}{2}]^2_0\\ =\frac{1}{2}( \pi/4)\\ =\frac{\pi}{8}$
Question: 8 Evaluate the integrals in Exercises 1 to 8 using substitution.
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
Answer:
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
let $2x =t \Rightarrow 2dx =dt$
when x = 1 then t = 2 and when x = 2 then t= 4
$\\=\frac{1}{2}\int_{2}^{4}(\frac{2}{t}-\frac{2}{t^2})e^tdt\\$
let
$\frac{1}{t} = f(t)\Rightarrow f'(t)=-\frac{1}{t^2}$
$\Rightarrow \int_{2}^{4}(\frac{1}{t}-\frac{1}{t^2})e^tdt =\int_{2}^{}4e^t[f(t)+f'(t)]dt$
$\\=[e^tf(t)]^4_2\\ =[e^t.\frac{1}{t}]^4_2\\ =\frac{e^4}{4}-\frac{e^2}{2}\\ =\frac{e^2(e^2-2)}{4}$
Question: 9 Choose the correct answer in Exercises 9 and 10.
The value of the integral $\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$ is
(A) 6
(B) 0
(C) 3
(D) 4
Answer:
The value of integral is (A) = 6
$\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$
$\int_{\frac{1}{3}}^1\frac{(\frac{1}{x^2}-1)^\frac{1}{3}}{x^3}dx\\$
let
$\frac{1}{x^2}-1 = t\Rightarrow \frac{dx}{x^3}=-dt/2$
now, when x = 1/3, t = 8 and when x = 1 , t = 0
therefore
$\\=-\frac{1}{2}\int_{8}^{0}t^{1/3}dt\\ =-\frac{1}{2}.\frac{3}{4}[t^4/3]^0_8\\ =-\frac{3}{8}[-2^4]\\ =6$
Question: 10 Choose the correct answer in Exercises 9 and 10.
If $f(x) = \int_0^x t \sin t dt$ , then $f'(x)$ is
(A) $\cos x + x\sin x$
(B) $x\sin x$
(C) $x\cos x$
(D) $\sin x + x\cos x$
Answer:
The correct answer is (B) = $x\sin x$
$f(x) = \int_0^x t \sin t dt$
by using by parts method,
$\\=t\int \sin t dt - \int (\frac{d}{dt}t\int \sin t dt)dt\\ =[t(-\cos t )+\sin t]^x_0$
$f(x)= -x\cos x+sinx$
So, $f'(x)= -\cos x+x\sin x+\cos x\\ =x\sin x$
NCERT solutions for class 12 maths chapter 7 Integrals - Exercise:7.10
Page number: 280, Total questions: 21
Question:1 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)
By using
$\int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :-
$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$
or
$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)
Adding both (i) and (ii), we get :-
$\int_0^\frac{\pi}{2}\cos^2 x dx$ $+\ \int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2I$
or $\int_0^\frac{\pi}{2}\ (cos^2 x\ +\ sin^2 x) dx\ =\ 2I$
or $\int_0^\frac{\pi}{2}1. dx\ =\ 2I$
or $2I\ =\ \left [ x \right ] ^\frac{\Pi }{2}_0\ =\ \frac{\Pi }{2}$
or $I\ =\ \frac{\Pi }{4}$
Question:2 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .............. (i)
By using,
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$
or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
or $2I\ =\ \int_0^\frac{\pi}{2}1.dx$
or $2I\ =\ \left [ x \right ]^\frac{\Pi }{2}_0\ =\ \frac{\Pi }{2}$
Thus $I\ =\ \frac{\Pi }{4}$
Question: 3 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$
Answer:
We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$......(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$
or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$...........(ii)
Adding (i) and (ii), we get :
$2I\ =\ \int^{\frac{\pi}{2}}_0\frac{\ (sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x)dx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question: 4 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$
or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)
Adding (i) and (ii), we get :
$2I\ =\ \int_0^\frac{\pi}{2} \frac{\ ( sin^5x \ +\ cos^5 x)dx}{\sin^5x + \cos^5x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question: 5 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have, $I\ =\ \int_{-5}^5|x+2|dx$
For opening the modulas we need to define the bracket :
If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).
So the integral becomes :-
$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$
This gives $I\ =\ 29$
Question:6 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have, $I\ =\ \int_{2}^8|x-5|dx$
For opening the modulas we need to define the bracket :
If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).
So the integral becomes:-
$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$
This gives $I\ =\ 9$
Question: 7 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have $I\ =\ \int^1_0x(1-x)^ndx$
Using the property: -
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get: -
$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$
or $I\ =\ \int^1_0(1-x)x^n\ dx$
or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$
or $=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$
or $=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$
or $I\ =\ \frac{1}{(n+1)(n+2)}$
Question: 8 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$
or $2I\ =\ \left [ x\log2 \right ]^{\frac{\Pi }{4}}_0$
or $I\ =\ \frac{\Pi }{8}\log2$
Question: 9 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have $I\ =\ \int_0^2x\sqrt{2-x}dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get:
$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$
or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$
or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$
or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$
or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$
or $I\ =\ \frac{16\sqrt{2}}{15}$
Question: 10 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)
By using the identity :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :
$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)
Adding (i) and (ii) we get :-
$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$
or $I\ =\ -\log 2\left [ \frac{\Pi }{2} \right ]$
or $I\ =\ \frac{\Pi }{2}\log\frac{1}{2}$
Question: 11 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.
Also,
$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$
So,
$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$
or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\Pi }{2}}_0$
or $I\ =\ \frac{\Pi }{2}$
Question:12 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\pi\frac{xdx}{1+\sin x}$
Answer:
We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)
By using the identity :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\Pi -x)dx}{1+\sin (\Pi -x)}$
or $I\ =\ \int_0^\pi\frac{(\Pi -x)dx}{1+\sin x}$ ............................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\frac{\Pi}{1+\sin x} dx$
or $2I\ =\ \Pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \Pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$
or $2I\ =\ \Pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$
or $I\ =\ \Pi$
Question:13 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
We know that $\sin^7x$ is an odd function.
So the following property holds here:-
$\int_{-a}^{a}f(x)dx\ =\ 0$
Hence
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$
Question:14 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have $I\ =\ \int_0^{2\pi}\cos^5xdx$
It is known that :-
$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f(2a - x) = f(x)
$=\ 0$ If f (2a - x) = - f(x)
Now, using the above property
$\cos^5(\Pi - x)\ =\ - \cos^5x$
Therefore, $I\ =\ 0$
Question:15 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................(i)
By using the property :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$
or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ..........................(ii)
Adding both (i) and (ii), we get
$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$
Thus I = 0
Question:16 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)
By using the property:-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\pi\log(1 +\cos (\Pi -x))dx$
$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$
or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$
or $2I\ =\ 2\int_0^\pi\log \sin xdx$
or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)
Adding (iv) and (v) we get,
$I\ =\ -\pi \log2$
Question:17 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$
Answer:
We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ...........................(i)
By using, we get
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .........(ii)
Adding (i) and (ii) we get :
$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$
or $2I\ =\ \left [ x \right ]^a_0 = a$
or $I\ =\ \frac{a}{2}$
Question:18 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
Answer:
We have, $I\ =\ \int_{0}^4|x-1|dx$
For opening the modulas we need to define the bracket :
If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).
So the integral becomes:-
$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$
or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$
This gives $I\ =\ 5$
Answer:
Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)
This can also be written as :
$I\ =\ \int_0^a f(a-x)g(a-x)dx$
or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$
$2I\ =\ \int_0^a f(x)4dx$
or $I\ =\ 2\int_0^a f(x)dx$
Question:20 Choose the correct answer in Exercises 20 and 21.
The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is
(A) 0
(B) 2
(C) $\pi$
(D) 1
Answer:
We have
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$
This can be written as :
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$
Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$
And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$
Using the above property I become:-
$I\ =\ 0+0+0+ 2\int_{0}^{\frac{\Pi }{2}}1.dx$
or $I\ =\ 2\left [ x \right ]^{\frac{\Pi }{2}}_0$
or $I\ =\ \Pi$
Question: 21 Choose the correct answer in Exercises 20 and 21.
The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is
Answer:
We have
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ ..............................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$
or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ ..............(ii)
Adding (i) and (ii), we get:
$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$
or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$
Thus $I\ =\ 0$
NCERT solutions for class 12 maths chapter 7 Integrals - Miscellaneous Exercise
Page number: 285 - 287, Total questions: 40
Question:1 Integrate the functions in Exercises 1 to 24.
Answer:
Firstly we will simplify the given equation :-
$\frac{1}{x - x^3}\ =\ \frac{1}{(x)(1-x)(1+x)}$
Let
$\frac{1}{(x)(1-x)(1+x)} =\ \frac{A}{x}\ +\ \frac{B}{1-x}\ +\ \frac{C}{1+x}$
By solving the equation and equating the coefficients of x 2 , x and the constant term, we get
$A\ =\ 1,\ B\ =\ \frac{1}{2},\ C\ =\ \frac{-1}{2}$
Thus the integral can be written as :
$\int \frac{1}{(x)(1-x)(1+x)}dx =\ \int \frac{1}{x}dx\ +\ \frac{1}{2}\int \frac{1}{1-x}dx\ +\ \frac{-1}{2}\int \frac{1}{1+x}dx$
$=\ \log x\ -\ \frac{1}{2}\log(1-x)\ +\ \frac{-1}{2}\log (1+x)$
or $=\ \frac{1}{2} \log \frac{x^2}{1-x^2}\ +\ C$
Question:2 Integrate the functions in Exercises 1 to 24.
$\frac{1}{\sqrt{x+a} + \sqrt{x+b}}$
Answer:
At first we will simplify the given expression,
$\frac{1}{\sqrt{x+a} + \sqrt{x+b}}\ =\ \frac{1}{\sqrt{x+a} + \sqrt{x+b}}\times\frac{\sqrt{x+a} - \sqrt{x+b}}{\sqrt{x+a} - \sqrt{x+b}}$
or $=\ \frac{\sqrt{x+a} - \sqrt{x+b}}{a-b}$
Now taking its integral, we get,
$\int \frac{1}{\sqrt{x+a} + \sqrt{x+b}}\ =\ \frac{1}{a-b}\int (\sqrt{x+a} -\sqrt{x+b})dx$
or $=\ \frac{1}{a-b}\left [ \frac{(x+a)^{\frac{3}{2}}} {\frac{3}{2}}\ -\ \frac{(x+b)^{\frac{3}{2}}} {\frac{3}{2}} \right ]$
or $=\ \frac{2}{3(a-b)}\left [ (x+a)^{\frac{3}{2}}\ -\ (x+b)^{\frac{3}{2}} \right ]\ +\ C$
Question:3 Integrate the functions in Exercises 1 to 24.
$\frac{1}{x\sqrt{ax-x^2}}$ [Hint: Put $x = \frac{a}{t}$ ]
Answer:
Let
$x = \frac{a}{t}\ dx\ \Rightarrow \ dx\ =\ \frac{-a}{t^2}dh$
Using the above substitution we can write the integral is
$\int \frac{1}{x\sqrt{ax-x^2}}\ =\ \int \frac{1}{\frac{a}{t}\sqrt{a.\frac{a}{t}\ -\ (\frac{a}{t})^2}} \frac{-a}{t^2}dt$
or
$=\ \frac{-1}{a}\int \frac{1}{\sqrt{(t-1)}}dt$
or
$=\ \frac{-1}{a}\ (2\sqrt{t-1})\ +\ C$
or $=\ \frac{-1}{a}\ (2\sqrt{\frac{a}{x}\ -\ 1})\ +\ C$
or $=\ \frac{-2}{a}\ \sqrt{\frac{a-x}{x}}\ +\ C$
Question:4 Integrate the functions in Exercises 1 to 24.
$\frac{1}{x^2(x^4 + 1)^\frac{3}{4}}$
Answer:
For the simplifying the expression, we will multiply and dividing it by x -3 .
We then have,
$\frac{x^{-3}}{x^2 x^{-3}(x^4 + 1)^\frac{3}{4}}\ =\ \frac{1}{x^5}\left [ \frac{x^4\ +\ 1}{x^4} \right ]^{\frac{-3}{4}}$
Now, let
$\frac{1}{x^4}\ =\ t\ \Rightarrow \ \frac{1}{x^5}dx\ =\ \frac{-dt}{4}$
Thus,
$\int \frac{1}{x^2(x^4 + 1)^\frac{3}{4}}\ =\ \int \frac{1}{x^5}\left ( 1+\ \frac{1}{x^4}^{\frac{-3}{4}}\ \right )dx$
or $=\ \frac{-1}{4} \int (1+t)^{\frac{-3}{4}}dt$
$=\ \frac{-1}{4} \frac{(1+\frac{1}{x^4})^{\frac{1}{4}}}{\frac{1}{4}}\ +\ C$
$=\ - \left [ 1+\frac{1}{x^4} \right ]^{\frac{1}{4}}\ +\ C$
Question:5 Integrate the functions in Exercises 1 to 24.
$\frac{1}{x^{\frac{1}{2}}+ x^\frac{1}{3}}$ [Hint: $\frac{1}{x^{\frac{1}{2}}+ x^\frac{1}{3}} = \frac{1}{x^\frac{1}{3}(1 + \ x^\frac{1}{6})}$ , put $x = t^6$ ]
Answer:
Put $x = t^6\ \Rightarrow \ dx = 6t^5dt$
We get,
$\int \frac{1}{x^{\frac{1}{2}}+ x^\frac{1}{3}}dx\ =\ \int \frac{6t^5}{t^3+t^2}dt$
or $=\ 6\int \frac{t^3}{1+t}dt$
or $=\ 6\int \left \{ (t^2-t+1)-\frac{1}{1+t} \right \}dt$
or $=\ 6 \left [ \left ( \frac{t^3}{3} \right ) -\left ( \frac{t^2}{2} \right )+t - \log(1+t) \right ]$
Now put $x = t^6$ in the above result :
$=\ 2\sqrt{x} -3x^{\frac{1}{3}}+ 6x^{\frac{1}{6}} - 6 \log \left ( 1-x^\frac{1}{6} \right )\ +\ C$
Question:6 Integrate the functions in Exercises 1 to 24.
Answer:
Let us assume that :
$\frac{5x}{(x+1)(x^2 + 9)}\ =\ \frac{A}{(x+1)}\ +\ \frac{Bx + c}{x^2 + 9}$
Solving the equation and comparing coefficients of x 2 , x and the constant term.
We get,
$A\ =\ \frac{-1}{2}\ ;\ B\ =\ \frac{1}{2}\ ;\ C\ =\ \frac{9}{2}$
Thus the equation becomes :
$\frac{5x}{(x+1)(x^2 + 9)}\ =\ \frac{-1}{2(x+1)}\ +\ \frac{\frac{x}{2}+\frac{9}{2}}{x^2 + 9}$
or
$\int \frac{5x}{(x+1)(x^2 + 9)}\ =\ \int \left [ \frac{-1}{2(x+1)}\ +\ \frac{x+9}{2(x^2 + 9}) \right ]dx$
or $=\ \frac{-1}{2} \log \left | x+1 \right | + \frac{1}{2} \int \frac{x}{x^2 +9}dx +\frac{9}{2} \int \frac{1}{x^2+9}dx$
or $=\ \frac{-1}{2} \log \left | x+1 \right | + \frac{1}{4} \int \frac{2x}{x^2 +9}dx +\frac{9}{2} \int \frac{1}{x^2+9}dx$
or $=\ \frac{-1}{2} \log \left | x+1 \right | + \frac{1}{4} \log {(x^2 +9)} +\frac{3}{2} \tan^{-1}\frac{x}{3}\ +\ C$
Question:7 Integrate the functions in Exercises 1 to 24.
Answer:
We have,
$I\ =\ \frac{\sin x}{\sin (x-a)}$
Assume :- $(x-a)\ =\ t \Rightarrow \ dx=dt$
Putting this in above integral :
$\int \frac{\sin x}{\sin (x-a)}dx\ =\ \int \frac{\sin (t+a)}{\sin t}dt$
or $=\ \int \frac{\sin t \cos a\ +\ \cos t \sin a }{\sin t}dt$
or $=\ \int (\cos a\ +\ \cot t \sin a)dt$
or $=\ t\cos a\ +\ \sin a \log |\sin t|\ +\ C$
or $=\ \sin a \log \left | \sin(x-a) \right | + x\cos a\ +\ C$
Question: 9 Integrate the functions in Exercises 1 to 24.
$\frac{\cos x}{\sqrt{4 - \sin^2 x}}$
Answer:
We have the given integral
$I\ =\ \frac{\cos x}{\sqrt{4 - \sin^2 x}}$
Assume $\sin x = t\ \Rightarrow \cos x dx = dt$
So, this substitution gives,
$\int \frac{\cos x}{\sqrt{4 - \sin^2 x}}\ =\ \int \frac{dt}{\sqrt{(2)^2 - (t)^2}}$
$=\ \sin^{-1}\frac{t}{2}\ +\ C$
or $=\ \sin^{-1}\left ( \frac{\sin x}{2} \right )\ +\ C$
Question:10 Integrate the functions in Exercises 1 to 24.
$\frac{\sin^8 x - \cos^8 x}{1- 2\sin^ x\cos^2 x}$
Answer:
We have
$I\ =\ \int \frac{\sin^8 x - \cos^8 x}{1- 2\sin^ x\cos^2 x}$
Simplifying the given expression, we get :
$\frac{\sin^8 x - \cos^8 x}{1- 2\sin^ x\cos^2 x}\ =\ \frac{(\sin^4x + \cos^4x)(\sin^4x - \cos^4x) }{1- 2\sin^ x\cos^2 x}$
or $=\ \frac{(\sin^4x + \cos^4x)(\sin^2x - \cos^2x)(\sin^2x + \cos^2x) }{1- 2\sin^ x\cos^2 x}$
or $=\ -\frac{(\sin^4x + \cos^4x)(\cos^2x - \sin^2x) }{1- 2\sin^ x\cos^2 x}$
or $=\ -\cos^2x - \sin^2x\ =\ -\cos 2x$
Thus,
$I\ =\ \int \frac{\sin^8 x - \cos^8 x}{1- 2\sin^ x\cos^2 x}\ =\ -\int \cos 2x\ dx$
and $=\ - \frac{\sin 2x}{2}\ +\ C$
Question:11 Integrate the functions in Exercises 1 to 24.
$\frac{1}{\cos(x+a)\cos(x+b)}$
Answer:
For simplifying the given equation, we need to multiply and divide the expression by $\sin (a-b)$ .
Thus we obtain :
$\frac{1}{\cos(x+a)\cos(x+b)}\ =\ \frac{1}{\sin(a-b)}\times\frac{\sin (a-b)}{\cos(x+a)\cos(x+b)}$
or $= \frac{1}{ \sin (a-b)}\times \frac{\sin{\left [ (x+a) - (x+b) \right ]}}{\cos (x+a) \cos (x+b)}$
or $= \frac{1}{ \sin (a-b)}\times \left ( \frac{\sin (x+a) }{\cos (x+a) } - \frac{\sin(x+b)}{\cos (x+b)} \right )$
or $= \frac{1}{ \sin (a-b)}\times \left ( \tan(x+a)\ -\ \tan(x+b) \right )$
Thus integral becomes :
$\int \frac{1}{\cos(x+a)\cos(x+b)}\ =\ \frac{1}{\sin (a-b)} \times \int \left ( \tan(x+a)\ -\ \tan(x+b) \right )dx$
or $=\ \frac{1}{\sin (a-b)} \times \left [ -\log \left | \cos (x+a) \right | + \log \left | \cos(x+b) \right | \right ]\ +\ C$
or $=\ \frac{1}{\sin (a-b)} \times \log \left [ \frac{\cos(x+b) }{cos(x+a)} \right ]\ +\ C$
Question:12 Integrate the functions in Exercises 1 to 24.
Answer:
Given that to integrate
$\frac{x^3}{\sqrt{1-x^8}}$
Let $x^4 = t \implies 4x^3dx = dt$
$\therefore \int \frac{x^3}{\sqrt{1-x^8}}dx = \frac{1}{4}\int\frac{1}{\sqrt {1-t^2}}dt$
$= \frac{1}{4}sin^{-1}t + C= \frac{1}{4}sin^{-1}{x^4} + C$
the required solution is $\frac{1}{4}sin^{-1}{(x^4)} + C$
Question:13 Integrate the functions in Exercises 1 to 24.
$\frac{e^x}{(1 + e^x)(2 + e^x)}$
Answer:
we have to integrate the following function
$\frac{e^x}{(1 + e^x)(2 + e^x)}$
Let $1+e^x = t \implies e^xdx = dt$
using this we can write the integral as
$\therefore \int\frac{e^x}{(1 + e^x)(2 + e^x)}dx = \int\frac{1}{t(1+t)}dt = \int\frac{(1+t)-t}{t(1+t)}dt$
$\\ = \int\left ( \frac{1}{t}-\frac{1}{t+1} \right )dt$
$\\ = \int\frac{1}{t}dt - \int\frac{1}{t+1}dt$
$\\ = \log t - \log (1+t) + C \\ = \log (1+e^x) - \log (2+e^x) + C \\ = \log\left ( \frac{e^x + 1}{e^x + 2} \right ) + C$
Question:14 Integrate the functions in Exercises 1 to 24.
Answer:
Given,
$\frac{1}{(x^2 + 1)(x^2 +4)}$
Let $I = \int\frac{1}{(x^2 + 1)(x^2 +4)}$
Now, Using partial differentiation,
$\frac{1}{(x^2 + 1)(x^2 +4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx +D}{(x^2 +4)}$
$\implies \frac{1}{(x^2 + 1)(x^2 +4)} = \frac{(Ax + B)(x^2 +4) + (Cx +D)(x^2 + 1)}{(x^2 + 1)(x^2 +4)}$
$\\ \implies1 = (Ax + B)(x^2 + 4)+(Cx + D)(x^2 + 1)$
$ \implies 1 = Ax^3 +4Ax+ Bx^2 + 4B+ Cx^3 + Cx + Dx^2 + D$
$ \implies (A+C)x^3 +(B+D)x^2 +(4A+C)x + (4B+D) = 1$
Equating the coefficients of $x, x^2, x^3$ and constant value,
A + C = 0 $\implies$ C = -A
B + D = 0 $\implies$ B = -D
4A + C =0 $\implies$ 4A = -C $\implies$ 4A = A $\implies$ A = 0 = C
4B + D = 1 $\implies$ 4B – B = 1 $\implies$ B = 1/3 = -D
Putting these values in equation, we have
$\implies I = \frac{1}{3}tan^{-1}x - \frac{1}{6}tan^{-1}\frac{x}{2} + C$
Question:15 Integrate the functions in Exercises 1 to 24.
Answer:
Given,
$\cos^3 x \;e^{\log\sin x}$
$I = \int \cos^3 x \;e^{\log\sin x}$ (let)
Let $cos x = t \implies -sin x dx = dt \implies sin x dx = -dt$
Using the above substitution the integral is written as
$\therefore \int cos^3xe^{\log sinx}dx = \int cos^3x.sinx dx$
$I = -\frac{cos^4x}{4} + C$
Question:16 Integrate the functions in Exercises 1 to 24.
Answer:
Given the function to be integrated as
$e^{3\log x} (x^4 + 1)^{-1}$
$= e^{\log x^3}(x^4 + 1)^{-1} = \frac{x^3}{x^4 + 1}$
Let $I = \int e^{3\log x} (x^4 + 1)^{-1}$
Let $x^4 = t \implies 4x^3 dx = dt$
$I = \int e^{3\log x} (x^4 + 1)^{-1} = \int \frac{x^3}{x^4 + 1}$
$\implies I = \frac{1}{4}\log(x^4 +1) + C$
Question: 17 Integrate the functions in Exercises 1 to 24.
Answer:
Given,
$f'(ax +b)[f(ax +b)]^n$
Let $I = \int f'(ax +b)[f(ax +b)]^n$
Let f(ax +b) = t ⇒ a .f ' (ax + b)dx = dt
Now we can write the ntegral as
$\int f'(ax +b)[f(ax +b)]^n = \frac{1}{a}\int t^ndt$
$\\ = \frac{1}{a}.\frac{t^{n+1}}{n+1} + C \\ = \frac{1}{a}.\frac{(f(ax+b))^{n+1}}{n+1} + C$
$\implies I = \frac{(f(ax+b))^{n+1}}{a(n+1)} + C$
Question:18 Integrate the functions in Exercises 1 to 24.
$\frac{1}{\sqrt{\sin^3 x \sin(x+\alpha)}}$
Answer:
Given,
$\frac{1}{\sqrt{\sin^3 x \sin(x+\alpha)}}$
Let $I = \int \frac{1}{\sqrt{\sin^3 x \sin(x+\alpha)}}$
We know the identity that
sin (A+B) = sin A cos B + cos A sin B
$\therefore \frac{1}{\sqrt{\sin^3 x \sin(x+\alpha)}} = \frac{1}{\sqrt{\sin^3 x (\sin x \cos \alpha + \cos x \sin \alpha)}}$
$= \frac{1}{\sqrt{\sin^3 x . \sin x(\cos \alpha + \cot x \sin \alpha)}} = \frac{1}{\sqrt{\sin^4 x (\cos \alpha + \cot x \sin \alpha)}}$
$\frac{cosec^2 x}{\sqrt{(\cos \alpha + \cot x \sin \alpha)}}$
Question: 19 Integrate the functions in Exercises 1 to 24.
$\sqrt{\frac{1-\sqrt x}{1 +\sqrt x}}$
Answer:
Given,
$\sqrt{\frac{1-\sqrt x}{1 +\sqrt x}}$ = I (let)
Let $x= cos^2\theta \implies dx = -2sin\theta cos\theta d\theta$
$And \sqrt x= cos\theta \implies \theta = \cos^{-1}\sqrt x$
using the above substitution we can write the integral as
$\\ I = \int \sqrt{\frac{1-\sqrt {cos^2\theta}}{1 +\sqrt {cos^2\theta}}}(-2\sin\theta\cos\theta)d\theta $
$= -\int \sqrt{\frac{1-cos\theta}{1 +cos\theta}}(2\sin\theta\cos\theta)d\theta$
$\\ = -\int \sqrt{tan^2\frac{\theta}{2}}(2\sin\theta\cos\theta)d\theta $
$ = -\int \sqrt{tan^2\frac{\theta}{2}}(2. 2 \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\theta)d\theta$
$ = -4\int \sin^2\frac{\theta}{2}\cos\theta d\theta$
$\\ = -4\int \sin^2\frac{\theta}{2}(2cos^2\frac{\theta}{2} -1) d\theta$
$\frac{2 + \sin 2x}{1 + \cos 2x}e^x$
Answer:
Given to evaluate
$\frac{2 + \sin 2x}{1 + \cos 2x}e^x$
$\frac{2 + \sin 2x}{1 + \cos 2x}e^x$
Now the integral becomes
Let tan x = f(x)
$\implies f'(x) = sec^2x dx$
Question:21 Integrate the functions in Exercises 1 to 24.
$\frac{x^2 + x + 1}{(x+1)^2 (x+2)}$
Answer:
Given,
$\frac{x^2 + x + 1}{(x+1)^2 (x+2)}$
using partial fraction we can simplify the integral as
Let $\frac{x^2 + x + 1}{(x+1)^2 (x+2)} = \frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x+2}$
$\\ \implies \frac{x^2 + x + 1}{(x+1)^2 (x+2)} = \frac{A(x+1)(x+2) + B(x+2) + C(x+1)^2}{(x+1)^2 (x+2)}$
$ \implies \frac{x^2 + x + 1}{(x+1)^2 (x+2)} = \frac{A(x^2 + 3x+2) + B(x+2) + C(x^2 + 2x+1)}{(x+1)^2 (x+2)}$
$\\ \implies x^2 + x + 1 = A(x^2 + 3x+2) + B(x+2) + C(x^2 + 2x+1)$
$ = (A+C)x^2 + (3A+B+2C)x + (2A+2B+C)$
Equating the coefficients of x, x 2 and constant value, we get:
A + C = 1
3A + B + 2C = 1
2A+2B+C =1
Solving these:
A= -2, B=1 and C=3
$\implies \frac{x^2 + x + 1}{(x+1)^2 (x+2)} = \frac{-2}{x+1}+\frac{1}{(x+1)^2}+\frac{3}{x+2}$
$\\ \implies \int \frac{x^2 + x + 1}{(x+1)^2 (x+2)} = \int\frac{-2}{x+1}dx+\int\frac{1}{(x+1)^2}dx+\int\frac{3}{x+2}dx \\ = -2\log(x+1) - \frac{1}{(x+1)} + 3\log (x+2) + C$
Question:22 Integrate the functions in Exercises 1 to 24.
$\tan^{-1}\sqrt{\frac{1-x}{1+x}}$
Answer:
We have
$I\ =\ \int \tan^{-1}\sqrt{\frac{1-x}{1+x}}$
Let us assume that : $x\ =\ \cos 2\Theta$
Differentiating wrt x,
$dx\ =\ -2 \sin 2\Theta\ d\Theta$
Substituting this in the original equation, we get
$\int \tan^{-1}\sqrt{\frac{1-x}{1+x}}\ =\ \int \tan^{-1}\sqrt{\frac{1-cos2\Theta }{1+cos2\Theta }}\times -2\sin 2\Theta \ d\Theta$
or $=\ -2\int \tan^{-1} (\frac{sin\Theta }{cos\Theta })\times \sin 2\Theta \ d\Theta$
or $=\ -2\int \Theta \sin 2\Theta \ d\Theta$
Using integration by parts, we get
$=\ -2\left ( \Theta \int \sin 2\Theta \ d\Theta\ - \int \frac{d\Theta }{d\Theta } \int \sin 2\Theta \ d\Theta\ \right )$
or $=\ -2\left ( \Theta \left ( \frac{-\cos 2\Theta }{2} \right ) - \int 1.\frac{-\cos 2\Theta }{2} \ d\Theta\ \right )$
or $=\ -2\left ( \frac{-\Theta \cos 2\Theta }{2}+ \frac{\sin 2\Theta }{4} \right )$
Putting all the assumed values back in the expression,
$=\ -2\left ( -\frac{1}{2}\left ( \frac{1}{2} \cos^{-1} x \right )+ \frac{\sqrt{1-x^2} }{4} \right )$
or $=\ \frac{1}{2}\left ( x \cos^{-1} x\ -\ \sqrt{1-x^2} \right )\ +\ C$
Question:23 Integrate the functions in Exercises 1 to 24.
$\frac{\sqrt{x^2 + 1}[\log(x^2+1)-2\log x]}{x^4}$
Answer:
$\frac{\sqrt{x^2 + 1}[\log(x^2+1)-2\log x]}{x^4}$
Here let's first reduce the log function.
$=\frac{\sqrt{x^2+1}}{x^4}\left [ \log (x^2+1)-\log x^2 \right ]dx$
$=\frac{\sqrt{x^2\left ( 1+\frac{1}{x^2} \right )}}{x^4}\left [ \log\frac{ (x^2+1)}{x^2} \right ]dx$
$=\int\frac{\sqrt{\left ( 1+\frac{1}{x^2} \right )}}{x^3}\left [ \log\left ( 1+\frac{1}{x^2} \right ) \right ]dx$
Now, let
$t=1+\frac{1}{x^2}$
$dt=\frac{-2}{x^3}dx$
So our function in terms if new variable t is :
$I=\frac{-1}{2}\int \left [\log t \right ]\cdot t^{\frac{1}{2}}dt$
now let's solve this By using integration by parts
$I=\frac{-1}{2}\int \left [(\log t)\frac{t^\frac{3}{2}}{\frac{3}{2}} -\int \frac{1}{t}\cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}dt\right ]$
$I=\frac{-1}{3}t^\frac{3}{2}\log t+\frac{1}{3}\int t^{\frac{1}{2}}dt$
$I=\frac{-1}{3}t^\frac{3}{2}\log t+\frac{1}{3}\frac{t^{\frac{3}{2}}}{\frac{3}{2}}$
$I=\frac{2}{9}t^{\frac{3}{2}}-\frac{1}{3}t^{\frac{3}{2}}logt+c$
$I=\frac{1}{3}t^{\frac{3}{2}}\left [ \frac{2}{3}-\log t \right ]+c$
$I=\frac{1}{3}\left ( 1+\frac{1}{x^2} \right )^{\frac{3}{2}}\left [ \frac{2}{3}-\log \left ( 1+\frac{1}{x^2} \right ) \right ]+c$
Question:24 Evaluate the definite integrals in Exercises 25 to 33.
$\int_\frac{\pi}{2}^\pi e^x \left(\frac{1-\sin x}{1-\cos x} \right )dx$
Answer:
$\int_\frac{\pi}{2}^\pi e^x \left(\frac{1-\sin x}{1-\cos x} \right )dx$
Since, we have $e^x$ multiplied by some function, let's try to make that function in any function and its derivative.Basically we want to use the property,
$\int e^x(f(x)+f'(x))dx=e^xf(x)$
So,
$\int_\frac{\pi}{2}^\pi e^x \left(\frac{1-\sin x}{1-\cos x} \right )dx$
$=\int_\frac{\pi}{2}^\pi e^x \left(\frac{1-2\sin \frac{x}{2}cos\frac{x}{2}}{2sin^2\frac{x}{2}} \right )dx$
$=\int_\frac{\pi}{2}^\pi e^x \left(\frac{1}{2sin^2\frac{x}{2}} -\frac{2\sin \frac{x}{2}cos\frac{x}{2}}{2sin^2\frac{x}{2}}\right )dx$
$=\int_\frac{\pi}{2}^\pi e^x \left(\frac{1}{2}cosec^2\frac{x}{2}-cot\frac{x}{2}\right )dx$
$=\int_\frac{\pi}{2}^\pi e^x \left(-cot\frac{x}{2}+\frac{1}{2}cosec^2\frac{x}{2}\right )dx$
Here let's use the property
$\int e^x(f(x)+f'(x))dx=e^xf(x)$
so,
$=\int_\frac{\pi}{2}^\pi e^x \left(-cot\frac{x}{2}+\frac{1}{2}cosec^2\frac{x}{2}\right )dx$
$=\left [ -e^xcot\frac{x}{2} \right ]_\frac{\pi}{2}^\pi$
$=\left [ -e^\pi cot\frac{\pi}{2} \right ]-\left [ -e^{\frac{\pi}{2}} cot\frac{\pi}{4} \right ]$
$=e^{\frac{\pi}{2}}$
Question:25 Evaluate the definite integrals in Exercises 25 to 33.
$\int_0^\frac{\pi}{4}\frac{\sin x\cos x }{\cos^4 x+\sin^4 x}$
Answer:
$\int_0^\frac{\pi}{4}\frac{\sin x\cos x }{\cos^4 x+\sin^4 x}$
First, let's convert sin and cos into tan and sec. (because we have a good relation in tan and square of sec,)
Let' divide both numerator and denominator by $cos^4x$
$=\int_0^\frac{\pi}{4}\frac{\frac{\sin x\cos x}{cosxcosxsos^2x} }{1+\frac{\sin^4 x}{\cos^4x}}$
$=\int_0^\frac{\pi}{4}\frac{tanxsec^2x}{1+tan^4x}$
Now lets change the variable
$\\t=tan^2x \\dt=2tanxsec^2xdx$
the limits will also change since the variable is changing
$when\:x=0,t=tan^20=0$
$when\:x=\frac{\pi}{4},t=tan^2\frac{\pi}{4}=1$
So, the integration becomes:
$I=\frac{1}{2}\int_{0}^{1}\frac{dt}{1+t^2}$
$I=\frac{1}{2}\left [ tan^{-1}t \right ]_0^1$
$I=\frac{1}{2}\left [ tan^{-1}1 \right ]-\frac{1}{2}\left [ tan^{-1}0\right ]$
$I=\frac{1}{2}\left [ \frac{\pi}{4} \right ]-0$
$I=\frac{\pi}{8}$
Question:26 Evaluate the definite integrals in Exercises 25 to 33.
$\int_0^\frac{\pi}{2}\frac{\cos^2 x dx}{\cos^2 x + 4\sin^2 x}$
Answer:
Lets first simplify the function.
$\int_0^\frac{\pi}{2}\frac{\cos^2 x dx}{\cos^2 x + 4\sin^2 x}=\int_0^\frac{\pi}{2}\frac{\cos^2 x dx}{\cos^2 x + 4(1-\cos^2 x)}=\int_0^\frac{\pi}{2}\frac{\cos^2 x dx}{4-3\cos^2 x}$
$\frac{-1}{3}\int_0^\frac{\pi}{2}\frac{4-3\cos^2 x-4\:\: }{4-3\cos^2 x }dx=\frac{-1}{3}\int_0^\frac{\pi}{2}\frac{4-3\cos^2 x\:\: }{4-3\cos^2 x }dx-\frac{-1}{3}\int_0^\frac{\pi}{2}\frac{-4\:\: }{4-3\cos^2 x }dx$
$\\=\frac{-1}{3}\int_0^\frac{\pi}{2}1dx-\frac{-1}{3}\int_0^\frac{\pi}{2}\frac{-4\:\: }{4-3\cos^2 x }dx$
$=\frac{-1}{3} \left [ x \right ]_0^{\frac{\pi}{2}}-\frac{1}{3}\int_0^\frac{\pi}{2}\frac{4\:\: }{4-3\cos^2 x }dx$
As we have a good relation in between squares of the tan and square of sec lets try to take our equation there,
$=\frac{-1}{3} \left [ \frac{\pi}{2-0} \right ]-\frac{1}{3}\int_0^\frac{\pi}{2}\frac{4sec^2x\:\: }{4sec^2x-3 }dx$
AS we can write square of sec in term of tan,
$=\frac{-1}{3} \left [ \frac{\pi}{2-0} \right ]-\frac{1}{3}\int_0^\frac{\pi}{2}\frac{4sec^2x\:\: }{4(1+tan^2x)-3 }dx$
$=\frac{-1}{3} \left [ \frac{\pi}{2-0} \right ]-\frac{1}{3}\int_0^\frac{\pi}{2}\frac{4sec^2x\:\: }{1+4tan^2x }dx$
Now let's calculate the integral of the second function, (we already have calculated the first function)
$=-\frac{1}{3}\int_0^\frac{\pi}{2}\frac{4sec^2x\:\: }{1+4tan^2x }dx$
let
$\\t=2tanx, \\dt=2sec^2xdx$
here we are changing the variable so we have to calculate the limits of the new variable
when x = 0, t = 2tanx = 2tan(0)=0
when $x=\pi/2,t=2tan{\pi/2}=\infty$
our function in terms of t is
$=-\frac{2}{3}\int_0^\infty\frac{1 }{1+t^2 }dt$
$=\left [ tan^{-1} t\right ]_0^\infty=\left [ tan^{-1} \infty-tan^{-1} 0\right ]$
$=\frac{\pi}{2}$
Hence our total solution of the function is
$\\=-\frac{\pi}{6}+\frac{2}{3}×\frac{\pi}{2}\\=\frac{\pi}{6}$
Question:27 Evaluate the definite integrals in Exercises 25 to 33.
$\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{\sin 2x}}$
Answer:
$\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{\sin 2x}}$
Here first let convert sin2x as the angle of x ( sinx, and cosx)
$\\=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{2sinxcosx}}$
Now let's remove the square root form function by making a perfect square inside the square root
$\\=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{-(-1+1-2sinxcosx)}}$
$\\=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{(1-(sin^2x+cos^2x-2sinxcosx)}}$
$\\=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sin x + \cos x }{\sqrt{(1-(sinx-cosx)^2}}$
Now let
, $\\t=sinx-cosx \\dt=(cosx+sinx)dx$
since we are changing the variable, limit of integration will change
$\\when\: x=\pi/6, t=sin\pi/6-cos\pi/6=(1-\sqrt{3})/2 \\ when x= \pi/3,t=sin\pi/3-cos\pi/3=(\sqrt{3}-1)/2$
our function in terms of t :
$\\=\int_\frac{1-\sqrt{3}}{2}^\frac{\sqrt{3}-1}{2} \frac{1}{\sqrt{(1-t^2)}}dt$
$\\=\left [ sin^{-1}t \right ]_\frac{1-\sqrt{3}}{2}^\frac{\sqrt{3}-1}{2}$
$=2sin^{-1}\left (\frac{\sqrt{3}-1}{2} \right )$
Question:28 Evaluate the definite integrals in Exercises 25 to 33.
$\int_0^1\frac{dx}{\sqrt{1+x} -\sqrt x}$
Answer:
$\int_0^1\frac{dx}{\sqrt{1+x} -\sqrt x}$
First, let's get rid of the square roots from the denominator,
$\\=\int_0^1\frac{dx}{\sqrt{1+x} -\sqrt x}×\frac{\sqrt{1+x} +\sqrt x}{\sqrt{1+x} +\sqrt x}$
$\\=\int_0^1\frac{\sqrt{1+x}+\sqrt{x}}{{1+x} -x}dx$
$\\=\int_0^1({\sqrt{1+x}+\sqrt{x}})dx$
$\\=\int_0^1({\sqrt{1+x})dx+\int_0^1({\sqrt{x}})dx$
$\\=\int_0^1(1+x)^\frac{1}{2}dx+\int_0^1x^\frac{1}{2}dx$
$\\=\left [ \frac{2}{3}(1+x)^{\frac{3}{2}} \right ]_0^1+\left [ \frac{2}{3}(x)^{\frac{3}{2}} \right ]_0^1$
$\\=\left [ \frac{2}{3}(1+1)^{\frac{3}{2}} \right ]-\left [ \frac{2}{3} \right ]+\left [ \frac{2}{3}(1)^{\frac{3}{2}} \right ]-\left [ 0 \right ]$
$\\=\frac{4\sqrt{2}}{3}$
Question:29 Evaluate the definite integrals in Exercises 25 to 33.
$\int_0^\frac{\pi}{4}\frac{\sin x +\cos x }{9 + 16 \sin 2x}dx$
Answer:
$\int_0^\frac{\pi}{4}\frac{\sin x +\cos x }{9 + 16 \sin 2x}dx$
First let's assume t = cosx - sin x so that (sinx +cosx)dx=dt
So,
Now since we are changing the variable, the new limit of the integration will be,
when x = 0, t = cos0-sin0=1-0=1
when $x=\pi/4$ $t=\cos\pi/4-\sin\pi/4=0$
Now,
$(\cos x-\sin x)^2=t^2$
$\cos ^2x+\sin^2 x-2\cos x \sin x =t^2$
$1-\sin 2x =t^2$
$\sin 2x =1-t^2$
Hence our function in terms of t becomes,
$\int_{-1}^{0}\frac{dt}{9+16(1-t^2)}=\int_{-1}^{0}\frac{dt}{9+16-16t^2}=\int_{-1}^{0}\frac{dt}{25-16t^2}=\int_{-1}^{0}\frac{dt}{5^2-(4t)^2)}$
$= \frac{1}{4}\left [\frac{1}{2(5)}\log \frac{5+4t}{5-4t} \right ]_{-1}^0$
$= \frac{1}{40}\left[ \log (1)-\log (\frac{1}{9})\right ]$
$=\frac{\log 9}{40}$
Question:30 Evaluate the definite integrals in Exercises 25 to 33.
$\int_0^\frac{\pi}{2}\sin 2x\tan^{-1}(\sin x)dx$
Answer:
Let I =
$\int_{0}^{\frac{\pi}{2}}sin2xtan^{-1}(sinx)dx$
$=\int_{0}^{\frac{\pi}{2}}2sinxcosxtan^{-1}(sinx)dx$
Here, we can see that if we put sinx = t, then the whole function will convert in term of t with dx being changed to dt.so
$\\t=sinx \\dt=cosxdx$
Now the important step here is to change the limit of the integration as we are changing the variable.so,
$\\when\:x=0,t=sin0=0 \\when\:x=\frac{\pi}{2},t=sin\frac{\pi}{2}=1$
So our function becomes,
$I=2\int_{0}^{1}(tan^{-1}t)tdt$
Now, let's integrate this by using integration by parts method,
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\int\frac{1}{1+t^2}\cdot\frac{t^2}{2}dt \right ]_0^1$
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\frac{1}{2}\int\frac{t^2}{1+t^2}\cdot dt \right ]_0^1$
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\frac{1}{2}\int\frac{(1+t^2)-1}{1+t^2}\cdot dt \right ]_0^1$
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\frac{1}{2}\int\left ( 1-\frac{1}{1+t^2} \right )\cdot dt \right ]_0^1$
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\frac{1}{2}(t-tan^{-1}t) \right ]_0^1$
$I=2\left [ tan^{-1}t\cdot\frac{t^2}{2}-\frac{1}{2}(t)+\frac{1}{2}tan^{-1}t) \right ]_0^1$
$I=2\left [ \frac{1}{2} \left (tan^{-1}t\cdot(t^2+1)-t \right )\right ]_0^1$
$I=\left [ \left (tan^{-1}t\cdot(t^2+1)-t \right )\right ]_0^1$
$I=\left [ \left (tan^{-1}(1)\cdot(1^2+1)-1 \right )\right ]-\left [ \left (tan^{-1}(0)\cdot(0^2+1)-0 \right )\right ]$ $I=2tan^{-1}1-1=2\times \frac{\pi}{4}-1$
$I=\frac{\pi}{2}-1$
Question:31 Evaluate the definite integrals in Exercises 25 to 33.
$\int_1^4[|x-1| + |x-2| + |x-3|]dx$
Answer:
Given integral $\int_1^4[|x-1| + |x-2| + |x-3|]dx$
So, we split it in according to intervals they are positive or negative.
$= \int_{1}^4 |x-1| dx + \int_{1}^4 |x-2| dx + \int^4_{1} |x-3| dx$
$= I_{1}+I_{2}+I_{3}$
Now,
$I_{1} = \int^4_{1}|x-1| dx = \int^4_{1} (x-1)dx$
$\because$ as $(x-1)$ is positive in the given x -range $[1,4]$
$=\left [ \frac{x^2}{2}-x\right ]^4_{1} = \left [ \frac{4^2}{2}-4 \right ] - \left [ \frac{1^2}{2}-1 \right ]$
$= \left [ 8-4 \right ] - [-\frac{1}{2}] = 4+\frac{1}{2} = \frac{9}{2}$
Therefore, $I_{1} = \frac{9}{2}$
$I_{2} = \int^4_{1}|x-2| dx = \int^2_{1} (2-x)dx +\int^4_{2} (x-2)dx$
$\because$ as $(x-2)\geq 0$ is in the given x -range $[2,4]$ and $\leq 0$ in the range $[1,2]$
$=\left [ 2x - \frac{x^2}{2}\right ] ^2_{1} + \left [ \frac{x^2}{2} -2x\right ] ^4_{2}$
$= \left \{ \left [ 2(2)-\frac{2^2}{2} \right ] - \left [ 2(1)-\frac{1^2}{2} \right ] \right \} + \left \{ \left [ \frac{4^2}{2}-2(4) \right ] - \left [ \frac{2^2}{2}-2(2) \right ] \right \}$
$= [4-2-2+\frac{1}{2}] +[8-8-2+4]$
$= \frac{1}{2}+2 =\frac{5}{2}$
Therefore, $I_{2} = \frac{5}{2}$
$I_{3} = \int^4_{1}|x-3| dx = \int^3_{1} (3-x)dx +\int^4_{3} (x-3)dx$
$\because$ as $(x-3)\geq 0$ is in the given x -range $[3,4]$ and $\leq 0$ in the range $[1,3]$
$=\left [ 3x - \frac{x^2}{2}\right ] ^3_{1} + \left [ \frac{x^2}{2} -3x\right ] ^4_{3}$
$= \left \{ \left [ 3(3)-\frac{3^2}{2} \right ] - \left [ 3(1)-\frac{1^2}{2} \right ] \right \} + \left \{ \left [ \frac{4^2}{2}-3(4) \right ] - \left [ \frac{3^2}{2}-3(3) \right ] \right \}$
$= [9-\frac{9}{2}-3+\frac{1}{2}]+[8-12-\frac{9}{2}+9]$
$= [6-4]+\frac{1}{2} =\frac{5}{2}$
Therefore, $I_{3} = \frac{5}{2}$
So, We have the sum $= I_{1}+I_{2}+I_{3}$
$I = \frac{9}{2}+\frac{5}{2}+\frac{5}{2} = \frac{19}{2}$
Question:32 Prove the following (Exercises 34 to 39)
$\int_1^3\frac{dx}{x^2(x+1)} = \frac{2}{3}+ \log \frac{2}{3}$
Answer:
L.H.S = $\int_1^3\frac{dx}{x^2(x+1)}$
We can write the numerator as [(x+1) -x]
$\therefore \int_1^3\frac{dx}{x^2(x+1)} = \int_1^3\frac{(x+1)-x}{x^2(x+1)}dx$
$\\ = \int_1^3\left [ \frac{1}{x^2} - \frac{1}{x(x+1)} \right ]dx $
$= \int_1^3\frac{1}{x^2}dx - \int_1^3\frac{(x+1)-x}{x(x+1)}dx$
$\\ = \int_1^3\frac{1}{x^2}dx - \int_1^3\left [ \frac{1}{x} - \frac{1}{(x+1)} \right ]dx $
$= \int_1^3\frac{1}{x^2}dx - \int_1^3\frac{1}{x}dx + \int_1^3\frac{1}{(x+1)}dx $
$= \left [ -\frac{1}{x} \right ]^3_1 - \left [ \log x \right ]^3_1 +\left [ \log(x+1) \right ]^3_1$
$\\ = \left [ -\frac{1}{3} +1 \right ] - \left [ \log 3 - \log 1 \right ] +\left [\log 4 - \log 2 \right ] $
$ = \frac{2}{3} + \log \left ( \frac{4}{3.2}\right ) \\$
$= \log \left(\frac{2}{3} \right ) +\frac{2}{3}$ = RHS
Hence proved.
Question:33 Prove the following (Exercises 34 to 39)
Answer:
$Let\ I=\int xe^{x}dx$
Integrating I by parts
$\\I=x\int e^{x}dx-\int ( (\frac{\mathrm{d} (x)}{\mathrm{d} x})\int e^{x}dx)dx$
$I=xe^{x}-\int e^{x}dx\\ I=xe^{x}-e^{x}+c$
Applying Limits from 0 to 1
$\\\int_{0}^{1}xe^{x}dx=[xe^{x}-e^{x}+c]_{0}^{1}$
$I=[e-e+c]-[0-1+c]\\ I=1$
Hence proved I = 1
Question:34 Prove the following (Exercises 34 to 39)
$\int_{-1}^1x^{17}\cos^4 x dx=0$
Answer:
$Let \ x^{17}cos^{4}x=g(x)$
$g(-x)= (-x)^{17}cos^{4}(-x)=-x^{17}cos^{4}x=-g(x)$
The Integrand g(x) therefore is an odd function and therefore
$\int_{-1}^{1}g(x)dx=0$
Question:35 Prove the following (Exercises 34 to 39)
$\int_0^\frac{\pi}{2}\sin^3 x dx =\frac{2}{3}$
Answer:
$\\Let\ I= \int_{0}^{\frac{\pi }{2}}sin^{3}xdx$
⇒ $I=\int_{0}^{\frac{\pi }{2}}sinx(1-sin^{2}x)dx$
⇒ $I=\int_{0}^{\frac{\pi }{2}}sinxdx-\int_{0}^{\frac{\pi }{2}}cos^{2}xsinxdx$
⇒ $I=I_{1}-I_{2}$
$I_{1}=[-cosx]_{0}^{\frac{\pi }{2}}$
$I_{1}=-0-(-1)=1$
For I2 let cosx=t, -sinxdx=dt
The limits change to 0 and 1
$\\I_{2}=-\int_{1}^{0}t^{2}dt\\ I_{2}=-[\frac{t^{3}}{3}]{_{1}}^{0}\\ I_{2}=0-(-\frac{1}{3})\\ I_{2}=\frac{1}{3}$
I1 -I 2 = 2/3
Hence proved.
Question: 36 Prove the following (Exercises 34 to 39)
$\int_0^\frac{\pi}{4}2\tan^3 x dx = 1 - \log 2$
Answer:
The integral is written as
$\\Let\ I=\int 2tan^{3}xdx\\ I=\int 2tan^{2}x\cdot tanxdx$
$I=\int 2(sec^{2}x-1)tanxdx\\ I=2\int tanxsec^{2}xdx-2\int tanxdx$
⇒ $I=2\int tdt-2log(cosx)+c\ \ \ \ \ \ \ (t=tanx)$
⇒ $I=t^{2}-2log(cosx)+c$
⇒ $I=tan^{2}x-2log(cosx)+c$
$[I]_{0}^{\frac{\pi }{4}}=[tan^{2}x-2log(cosx)]_{0}^{\frac{\pi }{4}}\\$
⇒ $[I]_{0}^{\frac{\pi }{4}}=(1-2log\sqrt{2})-(0-2log1)$
⇒ $[I]_{0}^{\frac{\pi }{4}}=1-log2$
Hence Proved.
Question:37 Prove the following (Exercises 34 to 39)\
$\int_0^1\sin^{-1}xdx = \frac{\pi}{2}-1$
Answer:
$Let \ I=\int sin^{-1}xdx$
Integrating by parts we get
$I= sin^{-1}x\int 1\cdot dx-\int (\frac{\mathrm{d} (sin^{-1}x)}{\mathrm{d} x}\int 1\cdot dx)$
$I=xsin^{-1}x+c-\int \frac{1}{\sqrt{1-x^{2}}}\cdot xdx$
$I=I_{1}-I_{2}$
For I2 take 1-x2 = t2 , -xdx=tdt
$\\I_{2}=\int \frac{1}{\sqrt{1-x^{2}}}\cdot xdx$
$I_{2}=-\int\frac{1}{t}tdt \\ I_{2}=-t+c\\ I_{2}=-\sqrt{1-x^{2}}+c$
$[I]_{0}^{1}=[I_{1}-I_{2}]_{0}^{1}\\$
$\\=[xsin^{-1}x-(-\sqrt{1-x^{2}})]_{0}^{1}$
$=[xsin^{-1}x+\sqrt{1-x^{2}}]_{0}^{1}$
$=[1\cdot \frac{\pi }{2}+0]-[0+1]$
$=\frac{\pi }{2}-1$
Hence Proved.
Question: 38 Choose the correct answers in Exercises 41 to 44.
$\int\frac{dx}{e^x + e^{-x}}$ is equal to
(A) $\tan^{-1}(e^x) + c$
(B) $\tan^{-1}(e^{-x}) + c$
(C) $\log (e^x - e^{-x}) + C$
(D) $\log (e^x + e^{-x}) + C$
Answer:
$\int\frac{dx}{e^x + e^{-x}}$
the above integral can be re arranged as
$\\=\int \frac{e^{x}}{e^{2x}+1}dx\\$
let e x =t, e x dx=dt
$\int\frac{dx}{e^x + e^{-x}}$
$\\=\int \frac{1}{t^{2}+1}dt\\ =tan^{-1}t+c\\ =tan^{-1}(e^{x})+c$
(A) is correct
Question:39 Choose the correct answers in Exercises 41 to 44.
$\int\frac{\cos 2x}{(\sin x + \cos x)^2}dx$ is equal to
(A) $\frac{-1}{\sin x + \cos x} + C$
(B) $\log |{\sin x + \cos x} |+ C$
(C) $\log |{\sin x- \cos x} |+ C$
(D) $\frac{1}{(\sin x + \cos x)^2} + C$
Answer:
$\\\frac{\cos 2x}{(\sin x + \cos x)^2}\\ =\frac{cos^{2}x-sin^{2}x}{(\sin x + \cos x)^2}\\ =\frac{(\sin x + \cos x)(\cos x-\sin x)}{(\sin x + \cos x)^2} \\=\frac{(\cos x-\sin x)}{(\sin x + \cos x)}$ cos2x=cos 2 x-sin 2 x
let sinx+cosx=t,(cosx-sinx)dx=dt
hence the given integral can be written as
$\\\int\frac{\cos 2x}{(\sin x + \cos x)^2}dx\\ =\int \frac{dt}{t}\\ =log|t|+c \\=log|cosx+sinx|+c$
B is correct
Question:40 Choose the correct answers in Exercises 41 to 44.
If $f(a+b-x) = f(x)$ , then $\int_a^bxf(x)dx$ is equal to
(A) $\frac{a+b}{2}\int^b_af(b-x)dx$
(B) $\frac{a+b}{2}\int^b_af(b+x)dx$
(C) $\frac{b-a}{2}\int^b_af(x)dx$
(D) $\frac{a+b}{2}\int^b_af(x)dx$
Answer:
$Let\ \int_a^bxf(x)dx=I$
As we know $\int_a^bf(x)dx=\int_a^bf(a+b-x)dx$
Using the above property we can write the integral as
$I=\int_{a}^{b}(a+b-x)f(a+b-x)dx$
⇒ $I=\int_{a}^{b}(a+b-x)f(x)dx$
⇒ $I=(a+b)\int_{a}^{b}f(x)dx-\int_{a}^{b}xf(x)dx$
⇒ $I=(a+b)\int_{a}^{b}f(x)dx-I$
⇒ $2I=(a+b)\int_{a}^{b}f(x)dx$
⇒ $I=\frac{a+b}{2}\int_{a}^{b}f(x)dx$
Answer (D) is correct.
If you are looking for the integrals class 12 NCERT solutions of exercises, then they are listed below.
Given below are the subject-wise links for the NCERT exemplar solutions of class 12:
Here are the subject-wise links for the NCERT solutions of class 12:
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
The important topics covered in Class 12 Maths Chapter 7 Integrals are Integration as an Inverse Process of Differentiation, Indefinite Integrals, Methods of Integration, Definite Integrals, Fundamental Theorems of Calculus etc. Understanding these concepts will help the students grasp more advanced mathematical concepts easily and enhance their problem-solving ability in real-world applications.
To find the NCERT solutions for Class 12 Maths Chapter 7 Integrals, refer to the following link:
NCERT solutions for Class 12 Maths Chapter 7 Integrals.
Here you will get a PDF with all the solutions of class 12 Maths Chapter 7 Integrals exercises. NCERT solutions are created by the expert team of careers360, who know how best to write answers for the board exam in order to get good marks. Integrating their techniques can help obtain meritorious marks. Sometimes students do not understand where s/he are making a mistake, NCERT solutions can help them to understand that. The practice of a lot of questions and their solution makes you confident and helps you in getting an in-depth understanding of concepts. Therefore NCERT solutions are very helpful for students.
To solve integration problems easily in Class 12 Maths, you have to understand all the formulas and identities of integration. Then find out which type of integration is required to solve the given problem, like substitution or partial differentiation, etc. Also, try to use simplifications and algebraic operations when needed. Practice regularly to master the concepts to solve the problems more quickly and efficiently.
The different methods of integration in NCERT Class 12 Maths are as follows:
According to the latest NCERT syllabus, there are 10 exercises and one miscellaneous exercise in Class 12 Maths Chapter 7.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters