Derivatives measure the rate of change, like the speed of your bike, while integrals sum up all the little changes over time to find the total accumulation, like the total distance travelled by you. Integrals are one of the fundamental concepts in calculus, which play a vital role in solving real-world problems involving areas and volumes. After learning about the definite integrals, we can now look forward to the topic of evaluating definite integrals. In exercise 7.9 of the chapter Integrals, we will learn about the evaluation of definite integrals by substitution. This exercise will help the students in applying a suitable substitution to change some complex expressions into more manageable ones and evaluate them easily. This article on the NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to help students clear their doubts and get a clear idea about the logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Evaluate the integral using substitution.
Answer:
$\int_0^1\frac{x}{x^2 +1}dx$
let $x^2+1 = t \Rightarrow xdx =dt/2$
when x = 0 then t = 1 and when x =1 then t = 2
$\therefore \int_{o}^{1}\frac{x}{x^2+1}dx=\frac{1}{2}\int_{1}^{2}\frac{dt}{t}$
$\\=\frac{1}{2}[\log\left | t \right |]_{1}^{2}\\ =\frac{1}{2}\log 2$
Question 2: Evaluate the integral using substitution.
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
Answer:
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
let $\sin \phi = t \Rightarrow \cos \phi d\phi = dt$
when $\phi =0,t\rightarrow 0$ and $\phi =\pi/2,t\rightarrow 1$
using the above substitution we can evaluate the integral as
$\therefore \int_{0}^{1} \sqrt{t}(1 - t^2)\,dt$
$= \int_{0}^{1} t^{\frac{1}{2}}(1 + t^4 - 2t^2)\,dt$
$= \int_{0}^{1} t^{\frac{1}{2}}\,dt + \int_{0}^{1} t^{\frac{9}{2}}\,dt - 2\int_{0}^{1} t^{\frac{5}{2}}\,dt$
$= \left[\frac{2t^{3/2}}{3} + \frac{2t^{11/2}}{11} - \frac{4t^{7/2}}{7} \right]_0^1$
$= \frac{64}{231}$
Question 3: Evaluate the integral using substitution.
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
Answer:
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
when x = 0 then $\theta= 0$ and when x = 1 then $\theta= \pi/4$
$\\=\int_{0}^{\pi/4}\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int_{0}^{\pi/4}\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int_{0}^{\pi/4}2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\begin{aligned}
&= 2\left[\theta \int \sec^2\theta\, d\theta - \int\left( \frac{d}{d\theta} \theta \cdot \int \sec^2\theta\, d\theta \right) d\theta \right]_0^{\pi/4} \\
&= 2\left[\theta \tan\theta - \int \tan\theta\, d\theta \right]_0^{\pi/4} \\
&= 2\left[\theta \tan\theta + \log\left| \cos\theta \right| \right]_0^{\pi/4} \\
&= 2\left[\frac{\pi}{4} + \log\left(\frac{1}{\sqrt{2}}\right)\right] \\
&= \frac{\pi}{2} - \log 2
\end{aligned}$
Question 4: Evaluate the integral using substitution.
$\int_0^2x\sqrt{x+2}$ . (Put ${x+2} = t^2$ )
Let $x+2 = t^2\Rightarrow dx =2t dt$
when x = 0 then t = $\sqrt{2}$ and when x=2 then t = 2
$I=\int_{0}^{2}x\sqrt{x+2}dx$
$= 2\int_{\sqrt{2}}^{2}(t^2 - 2)t^2\, dt$
$= 2\int_{\sqrt{2}}^{2}(t^4 - 2t^2)\, dt$
$= 2\left[ \frac{t^5}{5} - \frac{2}{3}t^3 \right]_{\sqrt{2}}^2$
$= 2\left[ \frac{32}{5} - \frac{16}{3} - \frac{4\sqrt{2}}{5} + \frac{4\sqrt{2}}{3} \right]$
$= \frac{16\sqrt{2}(\sqrt{2} + 1)}{15}$
Question 5: Evaluate the integral using substitution.
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx$
Answer:
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx =I$
let $\cos x =t\Rightarrow -\sin x dx = dt$
when x=0 then t = 1 and when x= $\pi/2$ then t = 0
$\\I=\int_{1}^{0}\frac{dt}{1+t^2}\\ =[\tan ^{-1}t]^0_1\\ =\pi/4$
Question 6: Evaluate the integral using substitution.
$\int_0^2\frac{dx}{x + 4 - x^2}$
Answer:
By adjusting, the denominator can also be written as $(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2 =x+4-x^2$
Now,
$\Rightarrow \int_{0}^{2}\frac{dx}{(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2}$
let $x-1/2 = t\Rightarrow dx=dt$
when x= 0 then t =-1/2 and when x =2 then t = 3/2
$\Rightarrow \int_{-1/2}^{3/2} \frac{dt}{\left( \frac{\sqrt{17}}{2} \right)^2 - t^2}$
$= \frac{1}{2 \cdot \frac{\sqrt{17}}{2}} \log \frac{\frac{\sqrt{17}}{2} + t}{\frac{\sqrt{17}}{2} - t}$
$= \frac{1}{\sqrt{17}} \left[ \log \frac{\frac{\sqrt{17}}{2} + \frac{3}{2}}{\frac{\sqrt{17}}{2} - \frac{3}{2}} - \log \frac{\frac{\sqrt{17}}{2} - \frac{1}{2}}{\frac{\sqrt{17}}{2} + \frac{1}{2}} \right]$
$= \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 3}{\sqrt{17} - 3} \cdot \frac{\sqrt{17} + 1}{\sqrt{17} - 1} \right) \right]$
$= \frac{1}{\sqrt{17}} \left[ \log \left( \frac{17 + 3 + 4\sqrt{17}}{17 + 3 - 4\sqrt{17}} \right) \right]$
$= \frac{1}{\sqrt{17}} \log \left( \frac{5 + \sqrt{17}}{5 - \sqrt{17}} \right)$
On rationalisation, we get
$=\frac{1}{\sqrt{17}}\log \frac{21+5\sqrt{17}}{4}$
Question 7: Evaluate the integral using substitution.
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
Answer:
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
it can be written as $x^2+2x+5 = (x+1)^2+2^2$
and put x+1 = t then dx =dt
when x= -1 then t = 0 and when x = 1 then t = 2
$\\\Rightarrow \int_{0}^{2}\frac{dt}{t^2+2^2}\\ =\frac{1}{2}[\tan^{-1}\frac{t}{2}]^2_0\\ =\frac{1}{2}( \pi/4)\\ =\frac{\pi}{8}$
Question 8: Evaluate the integral using substitution.
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
Answer:
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
let $2x =t \Rightarrow 2dx =dt$
when x = 1 then t = 2 and when x = 2 then t= 4
$\\=\frac{1}{2}\int_{2}^{4}(\frac{2}{t}-\frac{2}{t^2})e^tdt\\$
let
$\frac{1}{t} = f(t)\Rightarrow f'(t)=-\frac{1}{t^2}$
$\Rightarrow \int_{2}^{4}(\frac{1}{t}-\frac{1}{t^2})e^tdt =\int_{2}^{}4e^t[f(t)+f'(t)]dt$
$\\=[e^tf(t)]^4_2\\ =[e^t.\frac{1}{t}]^4_2\\ =\frac{e^4}{4}-\frac{e^2}{2}\\ =\frac{e^2(e^2-2)}{4}$
Question 9: Choose the correct answer
The value of the integral $\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$ is
(A) 6
(B) 0
(C) 3
(D) 4
Answer:
$\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$
$\int_{\frac{1}{3}}^1\frac{(\frac{1}{x^2}-1)^\frac{1}{3}}{x^3}dx\\$
let
$\frac{1}{x^2}-1 = t\Rightarrow \frac{dx}{x^3}=-dt/2$
now, when x = 1/3, t = 8 and when x = 1 , t = 0
$\\=-\frac{1}{2}\int_{8}^{0}t^{1/3}dt\\ =-\frac{1}{2}.\frac{3}{4}[t^4/3]^0_8\\ =-\frac{3}{8}[-2^4]\\ =6$
Hence, The value of integral is 6
Question 10: Choose the correct answer
If $f(x) = \int_0^x t \sin t dt$ , then $f'(x)$ is
(A) $\cos x + x\sin x$
(B) $x\sin x$
(C) $x\cos x$
(D) $\sin x + x\cos x$
Answer:
$f(x) = \int_0^x t \sin t dt$
by using by parts method,
$\\=t\int \sin t dt - \int (\frac{d}{dt}t\int \sin t dt)dt\\ =[t(-\cos t )+\sin t]^x_0$
$f(x) = -x\,\text{cos}\,x + \text{sin}\,x$
So, $f'(x) = -\text{cos}\,x + x\,\text{sin}\,x + \text{cos}\,x = x\,\text{sin}\,x$
Hence, The correct answer is $x\sin x$
Also Read,
The main topics covered in class 12 maths chapter 7 of Integrals, exercise 7.9 are:
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
There are 2 Multiple choice questions in Exercise 7.10 Class 12 Maths
Exact questions are rare to observe but questions are repeated based on the same concepts.
In JEE mains and NEET, questions are asked on similar lines of Exercise 7.10 Class 12 Maths .
Alteat 1 questions will be there in the board examination. Hence students can expect 5 marks minimum. It can go upto 10 marks also.
Integrals without upper and lower limits are known as Indefinite integrals.
There are 10 questions discussed in Exercise 7.10 Class 12 Maths
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters