CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26
Derivatives measure the rate of change, like the speed of your bike, while integrals sum up all the little changes over time to find the total accumulation, like the total distance travelled by you. Integrals are one of the fundamental concepts in calculus, which play a vital role in solving real-world problems involving areas and volumes. After learning about the definite integrals, we can now look forward to the topic of evaluating definite integrals. In exercise 7.9 of the chapter Integrals, we will learn about the evaluation of definite integrals by substitution. This exercise will help the students in applying a suitable substitution to change some complex expressions into more manageable ones and evaluate them easily. This article on the NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to help students clear their doubts and get a clear idea about the logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Evaluate the integral using substitution.
Answer:
$\int_0^1\frac{x}{x^2 +1}dx$
let $x^2+1 = t \Rightarrow xdx =dt/2$
when x = 0 then t = 1 and when x =1 then t = 2
$\therefore \int_{o}^{1}\frac{x}{x^2+1}dx=\frac{1}{2}\int_{1}^{2}\frac{dt}{t}$
$\\=\frac{1}{2}[\log\left | t \right |]_{1}^{2}\\ =\frac{1}{2}\log 2$
Question 2: Evaluate the integral using substitution.
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
Answer:
$\int^\frac{\pi}{2}_0\sqrt{\sin\phi}\cos^5\phi d\phi$
let $\sin \phi = t \Rightarrow \cos \phi d\phi = dt$
when $\phi =0,t\rightarrow 0$ and $\phi =\pi/2,t\rightarrow 1$
using the above substitution we can evaluate the integral as
$\therefore \int_{0}^{1} \sqrt{t}(1 - t^2)\,dt$
$= \int_{0}^{1} t^{\frac{1}{2}}(1 + t^4 - 2t^2)\,dt$
$= \int_{0}^{1} t^{\frac{1}{2}}\,dt + \int_{0}^{1} t^{\frac{9}{2}}\,dt - 2\int_{0}^{1} t^{\frac{5}{2}}\,dt$
$= \left[\frac{2t^{3/2}}{3} + \frac{2t^{11/2}}{11} - \frac{4t^{7/2}}{7} \right]_0^1$
$= \frac{64}{231}$
Question 3: Evaluate the integral using substitution.
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
Answer:
$\int_0^1 \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
when x = 0 then $\theta= 0$ and when x = 1 then $\theta= \pi/4$
$\\=\int_{0}^{\pi/4}\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int_{0}^{\pi/4}\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int_{0}^{\pi/4}2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\begin{aligned}
&= 2\left[\theta \int \sec^2\theta\, d\theta - \int\left( \frac{d}{d\theta} \theta \cdot \int \sec^2\theta\, d\theta \right) d\theta \right]_0^{\pi/4} \\
&= 2\left[\theta \tan\theta - \int \tan\theta\, d\theta \right]_0^{\pi/4} \\
&= 2\left[\theta \tan\theta + \log\left| \cos\theta \right| \right]_0^{\pi/4} \\
&= 2\left[\frac{\pi}{4} + \log\left(\frac{1}{\sqrt{2}}\right)\right] \\
&= \frac{\pi}{2} - \log 2
\end{aligned}$
Question 4: Evaluate the integral using substitution.
$\int_0^2x\sqrt{x+2}$ . (Put ${x+2} = t^2$ )
Let $x+2 = t^2\Rightarrow dx =2t dt$
when x = 0 then t = $\sqrt{2}$ and when x=2 then t = 2
$I=\int_{0}^{2}x\sqrt{x+2}dx$
$= 2\int_{\sqrt{2}}^{2}(t^2 - 2)t^2\, dt$
$= 2\int_{\sqrt{2}}^{2}(t^4 - 2t^2)\, dt$
$= 2\left[ \frac{t^5}{5} - \frac{2}{3}t^3 \right]_{\sqrt{2}}^2$
$= 2\left[ \frac{32}{5} - \frac{16}{3} - \frac{4\sqrt{2}}{5} + \frac{4\sqrt{2}}{3} \right]$
$= \frac{16\sqrt{2}(\sqrt{2} + 1)}{15}$
Question 5: Evaluate the integral using substitution.
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx$
Answer:
$\int_0^{\frac{\pi}{2}}\frac{\sin x}{1 + \cos^2 x}dx =I$
let $\cos x =t\Rightarrow -\sin x dx = dt$
when x=0 then t = 1 and when x= $\pi/2$ then t = 0
$\\I=\int_{1}^{0}\frac{dt}{1+t^2}\\ =[\tan ^{-1}t]^0_1\\ =\pi/4$
Question 6: Evaluate the integral using substitution.
$\int_0^2\frac{dx}{x + 4 - x^2}$
Answer:
By adjusting, the denominator can also be written as $(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2 =x+4-x^2$
Now,
$\Rightarrow \int_{0}^{2}\frac{dx}{(\frac{\sqrt{17}}{2})^2-(x-\frac{1}{2})^2}$
let $x-1/2 = t\Rightarrow dx=dt$
when x= 0 then t =-1/2 and when x =2 then t = 3/2
$\Rightarrow \int_{-1/2}^{3/2} \frac{dt}{\left( \frac{\sqrt{17}}{2} \right)^2 - t^2}$
$= \frac{1}{2 \cdot \frac{\sqrt{17}}{2}} \log \frac{\frac{\sqrt{17}}{2} + t}{\frac{\sqrt{17}}{2} - t}$
$= \frac{1}{\sqrt{17}} \left[ \log \frac{\frac{\sqrt{17}}{2} + \frac{3}{2}}{\frac{\sqrt{17}}{2} - \frac{3}{2}} - \log \frac{\frac{\sqrt{17}}{2} - \frac{1}{2}}{\frac{\sqrt{17}}{2} + \frac{1}{2}} \right]$
$= \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 3}{\sqrt{17} - 3} \cdot \frac{\sqrt{17} + 1}{\sqrt{17} - 1} \right) \right]$
$= \frac{1}{\sqrt{17}} \left[ \log \left( \frac{17 + 3 + 4\sqrt{17}}{17 + 3 - 4\sqrt{17}} \right) \right]$
$= \frac{1}{\sqrt{17}} \log \left( \frac{5 + \sqrt{17}}{5 - \sqrt{17}} \right)$
On rationalisation, we get
$=\frac{1}{\sqrt{17}}\log \frac{21+5\sqrt{17}}{4}$
Question 7: Evaluate the integral using substitution.
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
Answer:
$\int_{-1}^1\frac{dx}{x^2 +2x + 5}$
it can be written as $x^2+2x+5 = (x+1)^2+2^2$
and put x+1 = t then dx =dt
when x= -1 then t = 0 and when x = 1 then t = 2
$\\\Rightarrow \int_{0}^{2}\frac{dt}{t^2+2^2}\\ =\frac{1}{2}[\tan^{-1}\frac{t}{2}]^2_0\\ =\frac{1}{2}( \pi/4)\\ =\frac{\pi}{8}$
Question 8: Evaluate the integral using substitution.
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
Answer:
$\int_1^2\left(\frac{1}{x} - \frac{1}{2x^2} \right )e^{2x}dx$
let $2x =t \Rightarrow 2dx =dt$
when x = 1 then t = 2 and when x = 2 then t= 4
$\\=\frac{1}{2}\int_{2}^{4}(\frac{2}{t}-\frac{2}{t^2})e^tdt\\$
let
$\frac{1}{t} = f(t)\Rightarrow f'(t)=-\frac{1}{t^2}$
$\Rightarrow \int_{2}^{4}(\frac{1}{t}-\frac{1}{t^2})e^tdt =\int_{2}^{}4e^t[f(t)+f'(t)]dt$
$\\=[e^tf(t)]^4_2\\ =[e^t.\frac{1}{t}]^4_2\\ =\frac{e^4}{4}-\frac{e^2}{2}\\ =\frac{e^2(e^2-2)}{4}$
Question 9: Choose the correct answer
The value of the integral $\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$ is
(A) 6
(B) 0
(C) 3
(D) 4
Answer:
$\int_{\frac{1}{3}}^1\frac{(x-x^3)^\frac{1}{3}}{x^4}dx$
$\int_{\frac{1}{3}}^1\frac{(\frac{1}{x^2}-1)^\frac{1}{3}}{x^3}dx\\$
let
$\frac{1}{x^2}-1 = t\Rightarrow \frac{dx}{x^3}=-dt/2$
now, when x = 1/3, t = 8 and when x = 1 , t = 0
$\\=-\frac{1}{2}\int_{8}^{0}t^{1/3}dt\\ =-\frac{1}{2}.\frac{3}{4}[t^4/3]^0_8\\ =-\frac{3}{8}[-2^4]\\ =6$
Hence, The value of integral is 6
Question 10: Choose the correct answer
If $f(x) = \int_0^x t \sin t dt$ , then $f'(x)$ is
(A) $\cos x + x\sin x$
(B) $x\sin x$
(C) $x\cos x$
(D) $\sin x + x\cos x$
Answer:
$f(x) = \int_0^x t \sin t dt$
by using by parts method,
$\\=t\int \sin t dt - \int (\frac{d}{dt}t\int \sin t dt)dt\\ =[t(-\cos t )+\sin t]^x_0$
$f(x) = -x\,\text{cos}\,x + \text{sin}\,x$
So, $f'(x) = -\text{cos}\,x + x\,\text{sin}\,x + \text{cos}\,x = x\,\text{sin}\,x$
Hence, The correct answer is $x\sin x$
Also Read,
The main topics covered in class 12 maths chapter 7 of Integrals, exercise 7.9 are:
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Alteat 1 questions will be there in the board examination. Hence students can expect 5 marks minimum. It can go upto 10 marks also.
Integrals without upper and lower limits are known as Indefinite integrals.
There are 10 questions discussed in Exercise 7.10 Class 12 Maths
There are 2 Multiple choice questions in Exercise 7.10 Class 12 Maths
Exact questions are rare to observe but questions are repeated based on the same concepts.
In JEE mains and NEET, questions are asked on similar lines of Exercise 7.10 Class 12 Maths .
On Question asked by student community
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.
LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters