CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Imagine you are a math detective with many tiny, scattered clues. Your job now is to piece them together and reconstruct the full story. An integral is like the Sherlock Holmes of calculus; it pieces together countless tiny clues scattered across a problem. Each clue is a small part of a whole — an area, a distance, or a total quantity. NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 Integrals discusses an essential part of integrals: Integration by Partial Functions. Without knowledge of these concepts, students will struggle to integrate rational functions and fractions, where the numerator and denominator are polynomials.
This Story also Contains
Experienced Careers360 experts diligently curate the 12th-class Maths exercise 7.5 of NCERT by following the latest CBSE guidelines.
Question 1: Integrate the rational function $\frac{x }{( x +1)( x+2)}$
Answer:
Given function $\frac{x }{( x +1)( x+2)}$
Partial function of this function:
$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\implies x = A(x+2)+B(x+1)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$2A+B =0$
On solving, we get
$A = -1,\ \text{and}\ B = 2$
$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$
$=-\log|x+1| +2\log|x+2| +C$
$=\log(x+2)^2-\log|x+1|+C$
$=\log\frac{(x+2)^2}{(x+1)}+C$
Question 2: Integrate the rational function $\frac{1}{x^2 -9 }$
Answer:
Given function $\frac{1}{x^2 -9 }$
The partial function of this function:
$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1 = A(x-3)+B(x+3)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$-3A+3B =1$
On solving, we get
$A = -\frac{1}{6},\ \text{and}\ B = \frac{1}{6}$
$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$
$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$
$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$
$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$
Question 3: Integrate the rational function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = 1,\ B = -5,\ \text{and}\ C = 4$
$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$
That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$
$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$
Question 4: Integrate the rational function $\frac{x }{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{x }{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = \frac{1}{2},\ B = -2,$ and $C = \frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$
$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$Question 5: Integrate the rational function $\frac{2x}{x^2 + 3x +2 }$
Answer:
Given function $\frac{2x}{x^2 + 3x +2 }$
Partial function of this function:
$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2x = A(x+2)+B(x+1)$ ...........(1)
Now, substituting $x = -1$ and $-2$ respectively in equation (1), we get
$A ={-2},\ B=4$
$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$
That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$
$=4\log|x+2| -2\log|x+1| +C$
Question 6: Integrate the rational function $\frac{1- x^2 }{ x ( 1- 2x )}$
Answer:
Given function $\frac{1- x^2 }{ x ( 1- 2x )}$
Integral is not a proper fraction so,
Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get
$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$
Partial function of this function:
$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$
$(2-x) =A(1-2x)+Bx$ ...........(1)
Now, substituting $x = 0$ and $\frac{1}{2}$ respectively in equation (1), we get
$A =2,\ B=3$
$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$
Now, substituting in equation (1) we get
$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$
$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$
$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$
$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$
Question 7: Integrate the rational function $\frac{x }{( x^2+1 )( x-1)}$
Answer:
Given function $\frac{x }{( x^2+1 )( x-1)}$
Partial function of this function:
$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$
$x = (Ax+B)(x-1)+C(x^2+1)$
$x=Ax^-Ax+Bc-B+Cx^2+C$
Now, equating the coefficients of $x^2, x$ and the constant term, we get
$A+C = 0$
$-A+B =1$ and $-B+C = 0$
On solving these equations, we get
$A = -\frac{1}{2},\ B = \frac{1}{2},\ \text{and}\ C = \frac{1}{2}$
From equation (1), we get
$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$
$\implies \int \frac{x}{(x^2+1)(x-1)}$
$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$
$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$
Now, consider $\int \frac{2x}{x^2+1} dx$ ,
and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$
So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$
$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or
$\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$
Question 8: Integrate the rational function $\frac{x }{( x+1)^2 ( x+2)}$
Answer:
Given function $\frac{x }{( x+1)^2 ( x+2)}$
Partial function of this function:
$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$
$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$
Now, putting $x=1$ in the above equation, we get
$B =\frac{1}{3}$
By equating the coefficients of $x^2$ and constant term, we get
$A+C=0$
$-2A+2B+C = 0$
then after solving, we get
$A = \frac{2}{9}$ and $C = \frac{-2}{9}$
Therefore,
$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$
$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 9: Integrate the rational function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
Answer:
Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$
Partial function of this function:
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$
$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$
$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)
Now, putting $x=1$ in the above equation, we get
$B =4$
By equating the coefficients of $x^2$ and $x$ , we get
$A+C=0$
$B-2C =3$
then after solving, we get
$A = -\frac{1}{2}$ and $C = \frac{1}{2}$
Therefore,
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$
$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
Question 10: Integrate the rational function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
Answer:
Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$
The partial function of this function:
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$
$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$
Equating the coefficients of $x^2$ and $x$, we get
$B = -\frac{1}{10},\ A = \frac{5}{2}$ and $C = -\frac{24}{5}$
Therefore,
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$
$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$
$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 11: Integrate the rational function $\frac{5x}{(x+1)(x^2-4)}$
Answer:
Given function $\frac{5x}{(x+1)(x^2-4)}$
can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$
The partial function of this function:
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Now, substituting the value of $x = -1, -2,$ and $2$ respectively in the equation above, we get
$A = \frac{5}{3},\ B = \frac{-5}{2}$ and $C = \frac{5}{6}$
Therefore,
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$
Question 12: Integrate the rational function $\frac{x^3 + x +1}{ x^2-1}$
Answer:
Given function $\frac{x^3 + x +1}{ x^2-1}$
As the given integral is not a proper fraction.
So, we divide $(x^3+x+1)$ by $x^2-1$ , we get
$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$
can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$
$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)
Now, substituting $x = 1$ and $x = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = \frac{3}{2}$
Therefore,
$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$
$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$
Question 13: Integrate the rational function $\frac{2}{(1-x)(1+ x^2)}$
Answer:
Given function $\frac{2}{(1-x)(1+ x^2)}$
can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$
$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)
$2 =A +Ax^2 +Bx-Bx^2+C-Cx$
Now, equating the coefficient of $x^2, x,$ and constant term, we get
$A-B= 0$ , $B-C = 0$ , and $A+C =2$
Solving these equations, we get
$A = 1,\ B = 1$ and $C = 1$
Therefore,
$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$
$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$
$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$
Question 14: Integrate the rational function $\frac{3x-1}{(x+2)^2}$
Answer:
Given function $\frac{3x-1}{(x+2)^2}$
can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$
$3x-1 = A(x+2)+B$
Now, equating the coefficient of $x$ and constant term, we get
$A=3$ and $2A+B = -1$ ,
Solving these equations, we get
$B=-7$
Therefore,
$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$
$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$
$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$
$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$
Question 15: Integrate the rational function $\frac{1}{x^4 -1 }$
Answer:
Given function $\frac{1}{x^4 -1 }$
can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$
The partial fraction of above equation,
$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$
$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$
$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$
Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get
$A+B+C = 0$ and $-A+B+D = 0$
$A+B-C = 0$ and $-A+B-D = 1$
Solving these equations, we get
$A = -\frac{1}{4},\ B = \frac{1}{4},\ C = 0$ and $D = -\frac{1}{2}$
Therefore,
$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$
$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$
$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$
Question 16: Integrate the rational function $\frac{1}{x ( x^n+1)}$
[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]
Answer:
Given function $\frac{1}{x ( x^n+1)}$
Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$
$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$
Putting $x^n =t$
$\therefore x^{n-1}dx =dt$
can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$
$1 = A(1+t)+Bt$ ................(1)
Now, substituting $t = 0,-1$ in equation (1), we get
$A = 1$ and $B = -1$
$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$
$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$
$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$
$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$
$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$
Question 17: Integrate the rational function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
[Hint : Put $\sin x = t$ ]
Answer:
Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
Applying the given hint: putting $\sin x =t$
We get, $\cos x dx =dt$
$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$
Partial fraction of above equation,
$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1 = A(2-t)+B(1-t)$ ................(1)
Now, substituting $t = 2$ and $1$ in equation (1), we get
$A = 1\ \text{and}\ B = -1$
$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$
$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$
$= -\log|1-t| +\log|2-t| +C$
$= \log\left | \frac{2-t}{1-t} \right |+C$
Back substituting the value of t in the above equation, we get
$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$
Question 18: Integrate the rational function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
Answer:
Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$
Partial fraction of above equation,
$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$
$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$
$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$
$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$
Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get
$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$
After solving these equations, we get
$A = 0,\ B = -2,\ C = 0,\ \text{and}\ D = 6$
$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$
$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$
$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$
$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$
$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$
$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$
Question 19: Integrate the rational function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Answer:
Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$
The partial fraction of above equation,
$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1= A(t+3)+B(t+1)$ ..............(1)
Now, substituting $t = -3$ and $t = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = -\frac{1}{2}$
$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
$\implies \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx = \int \left\{ \frac{1}{2(t + 1)} - \frac{1}{2(t + 3)} \right\} \, dt$
$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$
$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$
$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$
Question 20: Integrate the rational function $\frac{1}{x (x^4 -1)}$
Answer:
Given function $\frac{1}{x (x^4 -1)}$
So, we multiply numerator and denominator by $x^3$ , to obtain
$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$
$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$
Now, putting $x^4 = t$
we get, $4x^3dx =dt$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$
$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$
$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$
Back substituting the value of t,
$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$
Question 21: Integrate the rational function $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]
Answer:
Given function $\frac{1}{( e ^x-1)}$
So, applying the hint: Putting $e^x = t$
Then $e^x dx= dt$
$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$
Now, back substituting the value of t,
$= \log \left | \frac{e^x-1}{e^x} \right |+C$
Question 22: Choose the correct answer $\int \frac{x \, dx}{(x - 1)(x - 2)}$ equals
$A)\ \log \left| \frac{(x - 1)^2}{x - 2} \right| + C$
$B)\ \log \left| \frac{(x - 2)^2}{x - 1} \right| + C$
$C)\ \log \left| \left( \frac{x - 1}{x - 2} \right)^2 \right| + C$
$D)\ \log \left| (x - 1)^2 (x - 2) \right| + C$
Answer:
Given integral $\int \frac{x dx }{( x-1)(x-2) }$
Partial fraction of above equation,
$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x= A(x+2)+B(x-1)$ ..............(1)
Now, substituting $x = 1\ \text{and}\ x = 2$ in equation (1), we get
$A = -1\ \text{and}\ B = 2$
$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$
$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$
$= -\text{log}|x - 1| + 2\text{log}|x - 2| + C$
$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$
Therefore, the correct answer is $\log \left| \frac{(x - 2)^2}{x - 1} \right| + C$.
Question 23: Choose the correct answer $\int \frac{dx}{x(x^2 + 1)}$ equals
$A)\ \log |x| - \frac{1}{2} \log (x^2 + 1) + C$
$B)\ \log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$C)\ -\log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$D)\ \frac{1}{2} \log |x| + \log (x^2 + 1) + C$
Answer:
Given integral $\int \frac{dx}{x ( x ^2+1)}$
Partial fraction of above equation,
$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$
$1= A(x^2+1)+(Bx+C)x$
Now, equating the coefficients of $x^2,x,$ and the constant term, we get
$A+B = 0$ , $C=0$ , $A=1$
We have the values, $A = 1\ \text{and}\ B = -1,\ \text{and}\ C = 0$
$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$
$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$
$= \log|x| -\frac{1}{2}\log|x^2+1| +C$
Therefore, the correct answer is $\log |x| - \frac{1}{2} \log (x^2 + 1) + C$.
Also, read
Integration by Partial Fractions |
Assume a rational function is defined as the ratio of two polynomials in the form: $\int \frac{P(x)}{Q(x)} d x$ Where: - $P(x)$ and $Q(x)$ are polynomials and $Q(x)\neq 0$ - Degree of $P(x)$ < Degree of $Q(x)$ And if $Q(x)$ can be factored into linear or quadratic factors, you can write: $\frac{P(x)}{Q(x)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\ldots$ |
Also, read,
Unlock the structured NCERT solutions of other subjects provided below.
Use the following links to access step-by-step NCERT exemplar solutions of other subjects.
Frequently Asked Questions (FAQs)
Integration can be used to calculate the centre of gravity, centre of mass etc. which further helps in understanding dynamics of force, pressure etc. in real life.
Integration of cos x is sin x + c
In Board exams, questions of around 20 marks are asked directly which can be of great help to students to score well in the examination.
This exercise caters to questions of higher difficulty level. Hence it can be said that easy questions are not asked from this exercise.
Topics which are related to finding out integrals of rational functions are included in this exercise.
There are 23 main questions in this exercise along with a few subquestions.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters