NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 10:46 AM IST

Imagine you are a math detective with many tiny, scattered clues. Your job now is to piece them together and reconstruct the full story. An integral is like the Sherlock Holmes of calculus; it pieces together countless tiny clues scattered across a problem. Each clue is a small part of a whole — an area, a distance, or a total quantity. NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 Integrals discusses an essential part of integrals: Integration by Partial Functions. Without knowledge of these concepts, students will struggle to integrate rational functions and fractions, where the numerator and denominator are polynomials.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.5 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise: 7.5
  3. Topics covered in Chapter 1 Integrals: Exercise 7.5
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

Experienced Careers360 experts diligently curate the 12th-class Maths exercise 7.5 of NCERT by following the latest CBSE guidelines.

Class 12 Maths Chapter 7 Exercise 7.5 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.5

Question 1: Integrate the rational function $\frac{x }{( x +1)( x+2)}$

Answer:

Given function $\frac{x }{( x +1)( x+2)}$

Partial function of this function:

$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$

$\implies x = A(x+2)+B(x+1)$

Now, equating the coefficients of x and constant term, we obtain

$A+B =1$

$2A+B =0$

On solving, we get

$A = -1,\ \text{and}\ B = 2$

$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$

$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$

$=-\log|x+1| +2\log|x+2| +C$

$=\log(x+2)^2-\log|x+1|+C$

$=\log\frac{(x+2)^2}{(x+1)}+C$

Question 2: Integrate the rational function $\frac{1}{x^2 -9 }$

Answer:

Given function $\frac{1}{x^2 -9 }$

The partial function of this function:

$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$

$1 = A(x-3)+B(x+3)$

Now, equating the coefficients of x and constant term, we obtain

$A+B =1$

$-3A+3B =1$

On solving, we get

$A = -\frac{1}{6},\ \text{and}\ B = \frac{1}{6}$

$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$

$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$

$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$

$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$

Question 3: Integrate the rational function $\frac{3x -1}{( x-1)(x-2)(x-3)}$

Answer:

Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$

Partial function of this function:

$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$

$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)

Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get

$A = 1,\ B = -5,\ \text{and}\ C = 4$

$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$

That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$

$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$

Question 4: Integrate the rational function $\frac{x }{( x-1)(x-2)(x-3)}$

Answer:

Given function $\frac{x }{( x-1)(x-2)(x-3)}$

Partial function of this function:

$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$

$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)

Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get

$A = \frac{1}{2},\ B = -2,$ and $C = \frac{3}{2}$

$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$

That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$

$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$

Question 5: Integrate the rational function $\frac{2x}{x^2 + 3x +2 }$

Answer:

Given function $\frac{2x}{x^2 + 3x +2 }$

Partial function of this function:

$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$

$2x = A(x+2)+B(x+1)$ ...........(1)

Now, substituting $x = -1$ and $-2$ respectively in equation (1), we get

$A ={-2},\ B=4$

$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$

That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$

$=4\log|x+2| -2\log|x+1| +C$

Question 6: Integrate the rational function $\frac{1- x^2 }{ x ( 1- 2x )}$

Answer:

Given function $\frac{1- x^2 }{ x ( 1- 2x )}$

Integral is not a proper fraction so,

Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get

$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$

Partial function of this function:

$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$

$(2-x) =A(1-2x)+Bx$ ...........(1)

Now, substituting $x = 0$ and $\frac{1}{2}$ respectively in equation (1), we get

$A =2,\ B=3$

$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$

Now, substituting in equation (1) we get

$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$

$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$

$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$

$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$

Question 7: Integrate the rational function $\frac{x }{( x^2+1 )( x-1)}$

Answer:

Given function $\frac{x }{( x^2+1 )( x-1)}$

Partial function of this function:

$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$

$x = (Ax+B)(x-1)+C(x^2+1)$

$x=Ax^-Ax+Bc-B+Cx^2+C$

Now, equating the coefficients of $x^2, x$ and the constant term, we get

$A+C = 0$

$-A+B =1$ and $-B+C = 0$

On solving these equations, we get

$A = -\frac{1}{2},\ B = \frac{1}{2},\ \text{and}\ C = \frac{1}{2}$

From equation (1), we get

$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$

$\implies \int \frac{x}{(x^2+1)(x-1)}$

$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$

$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$

Now, consider $\int \frac{2x}{x^2+1} dx$ ,

and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$

So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$

$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or

$\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$

Question 8: Integrate the rational function $\frac{x }{( x+1)^2 ( x+2)}$

Answer:

Given function $\frac{x }{( x+1)^2 ( x+2)}$

Partial function of this function:

$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$

$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$

Now, putting $x=1$ in the above equation, we get

$B =\frac{1}{3}$

By equating the coefficients of $x^2$ and constant term, we get

$A+C=0$

$-2A+2B+C = 0$

then after solving, we get

$A = \frac{2}{9}$ and $C = \frac{-2}{9}$

Therefore,

$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$

$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$

$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$

$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$

Question 9: Integrate the rational function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$

Answer:

Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$

can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$

Partial function of this function:

$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$

$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$

$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)

Now, putting $x=1$ in the above equation, we get

$B =4$

By equating the coefficients of $x^2$ and $x$ , we get

$A+C=0$

$B-2C =3$

then after solving, we get

$A = -\frac{1}{2}$ and $C = \frac{1}{2}$

Therefore,

$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$

$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$

$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$

$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$

Question 10: Integrate the rational function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$

Answer:

Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$

can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$

The partial function of this function:

$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$

$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$

Equating the coefficients of $x^2$ and $x$, we get

$B = -\frac{1}{10},\ A = \frac{5}{2}$ and $C = -\frac{24}{5}$

Therefore,

$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$

$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$

$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$

$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$

$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$

$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$

$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$

Question 11: Integrate the rational function $\frac{5x}{(x+1)(x^2-4)}$

Answer:

Given function $\frac{5x}{(x+1)(x^2-4)}$

can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$

The partial function of this function:

$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$

$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$

Now, substituting the value of $x = -1, -2,$ and $2$ respectively in the equation above, we get

$A = \frac{5}{3},\ B = \frac{-5}{2}$ and $C = \frac{5}{6}$

Therefore,

$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$

$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$

Question 12: Integrate the rational function $\frac{x^3 + x +1}{ x^2-1}$

Answer:

Given function $\frac{x^3 + x +1}{ x^2-1}$

As the given integral is not a proper fraction.

So, we divide $(x^3+x+1)$ by $x^2-1$ , we get

$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$

can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$

$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)

Now, substituting $x = 1$ and $x = -1$ in equation (1), we get

$A = \frac{1}{2}$ and $B = \frac{3}{2}$

Therefore,

$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$

$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$

$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$

Question 13: Integrate the rational function $\frac{2}{(1-x)(1+ x^2)}$

Answer:

Given function $\frac{2}{(1-x)(1+ x^2)}$

can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$

$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)

$2 =A +Ax^2 +Bx-Bx^2+C-Cx$

Now, equating the coefficient of $x^2, x,$ and constant term, we get

$A-B= 0$ , $B-C = 0$ , and $A+C =2$

Solving these equations, we get

$A = 1,\ B = 1$ and $C = 1$

Therefore,

$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$

$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$

$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$

Question 14: Integrate the rational function $\frac{3x-1}{(x+2)^2}$

Answer:

Given function $\frac{3x-1}{(x+2)^2}$

can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$

$3x-1 = A(x+2)+B$

Now, equating the coefficient of $x$ and constant term, we get

$A=3$ and $2A+B = -1$ ,

Solving these equations, we get

$B=-7$

Therefore,

$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$

$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$

$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$

$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$

Question 15: Integrate the rational function $\frac{1}{x^4 -1 }$

Answer:

Given function $\frac{1}{x^4 -1 }$

can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$

The partial fraction of above equation,

$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$

$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$

$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$

Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get

$A+B+C = 0$ and $-A+B+D = 0$

$A+B-C = 0$ and $-A+B-D = 1$

Solving these equations, we get

$A = -\frac{1}{4},\ B = \frac{1}{4},\ C = 0$ and $D = -\frac{1}{2}$

Therefore,

$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$

$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$

$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$

Question 16: Integrate the rational function $\frac{1}{x ( x^n+1)}$

[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]

Answer:

Given function $\frac{1}{x ( x^n+1)}$

Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$

$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$

Putting $x^n =t$

$\therefore x^{n-1}dx =dt$

can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$

Partial fraction of above equation,

$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$

$1 = A(1+t)+Bt$ ................(1)

Now, substituting $t = 0,-1$ in equation (1), we get

$A = 1$ and $B = -1$

$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$

$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$

$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$

$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$

$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$

Question 17: Integrate the rational function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$

[Hint : Put $\sin x = t$ ]

Answer:

Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$

Applying the given hint: putting $\sin x =t$

We get, $\cos x dx =dt$

$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$

Partial fraction of above equation,

$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$

$1 = A(2-t)+B(1-t)$ ................(1)

Now, substituting $t = 2$ and $1$ in equation (1), we get

$A = 1\ \text{and}\ B = -1$

$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$

$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$

$= -\log|1-t| +\log|2-t| +C$

$= \log\left | \frac{2-t}{1-t} \right |+C$

Back substituting the value of t in the above equation, we get

$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$

Question 18: Integrate the rational function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$

Answer:

Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$

We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$

Partial fraction of above equation,

$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$

$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$

$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$

$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$

Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get

$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$

After solving these equations, we get

$A = 0,\ B = -2,\ C = 0,\ \text{and}\ D = 6$

$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$

$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$

$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$

$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$

$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$

$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$

Question 19: Integrate the rational function $\frac{2x }{( x^2 +1)( x^2 +3)}$

Answer:

Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$

Taking $x^2 = t \Rightarrow 2xdx=dt$

$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$

The partial fraction of above equation,

$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$

$1= A(t+3)+B(t+1)$ ..............(1)

Now, substituting $t = -3$ and $t = -1$ in equation (1), we get

$A = \frac{1}{2}$ and $B = -\frac{1}{2}$

$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$

$\implies \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx = \int \left\{ \frac{1}{2(t + 1)} - \frac{1}{2(t + 3)} \right\} \, dt$

$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$

$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$

$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$

Question 20: Integrate the rational function $\frac{1}{x (x^4 -1)}$

Answer:

Given function $\frac{1}{x (x^4 -1)}$

So, we multiply numerator and denominator by $x^3$ , to obtain

$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$

$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$

Now, putting $x^4 = t$

we get, $4x^3dx =dt$

Taking $x^2 = t \Rightarrow 2xdx=dt$

$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$

Partial fraction of above equation,

$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$

$1= A(t-1)+Bt$ ..............(1)

Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get

$A = -1\ \text{and}\ B = 1$

$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$

$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$

$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$

$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$

Back substituting the value of t,

$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$

Question 21: Integrate the rational function $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]

Answer:

Given function $\frac{1}{( e ^x-1)}$

So, applying the hint: Putting $e^x = t$

Then $e^x dx= dt$

$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$

Partial fraction of above equation,

$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$

$1= A(t-1)+Bt$ ..............(1)

Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get

$A = -1\ \text{and}\ B = 1$

$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$

$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$

Now, back substituting the value of t,

$= \log \left | \frac{e^x-1}{e^x} \right |+C$

Question 22: Choose the correct answer $\int \frac{x \, dx}{(x - 1)(x - 2)}$ equals

$A)\ \log \left| \frac{(x - 1)^2}{x - 2} \right| + C$

$B)\ \log \left| \frac{(x - 2)^2}{x - 1} \right| + C$

$C)\ \log \left| \left( \frac{x - 1}{x - 2} \right)^2 \right| + C$

$D)\ \log \left| (x - 1)^2 (x - 2) \right| + C$

Answer:

Given integral $\int \frac{x dx }{( x-1)(x-2) }$

Partial fraction of above equation,

$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$

$x= A(x+2)+B(x-1)$ ..............(1)

Now, substituting $x = 1\ \text{and}\ x = 2$ in equation (1), we get

$A = -1\ \text{and}\ B = 2$

$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$

$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$

$= -\text{log}|x - 1| + 2\text{log}|x - 2| + C$

$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$

Therefore, the correct answer is $\log \left| \frac{(x - 2)^2}{x - 1} \right| + C$.

Question 23: Choose the correct answer $\int \frac{dx}{x(x^2 + 1)}$ equals

$A)\ \log |x| - \frac{1}{2} \log (x^2 + 1) + C$

$B)\ \log |x| + \frac{1}{2} \log (x^2 + 1) + C$

$C)\ -\log |x| + \frac{1}{2} \log (x^2 + 1) + C$

$D)\ \frac{1}{2} \log |x| + \log (x^2 + 1) + C$

Answer:

Given integral $\int \frac{dx}{x ( x ^2+1)}$

Partial fraction of above equation,

$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$

$1= A(x^2+1)+(Bx+C)x$

Now, equating the coefficients of $x^2,x,$ and the constant term, we get

$A+B = 0$ , $C=0$ , $A=1$

We have the values, $A = 1\ \text{and}\ B = -1,\ \text{and}\ C = 0$

$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$

$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$

$= \log|x| -\frac{1}{2}\log|x^2+1| +C$

Therefore, the correct answer is $\log |x| - \frac{1}{2} \log (x^2 + 1) + C$.


Also, read

Topics covered in Chapter 1 Integrals: Exercise 7.5

Integration by Partial Fractions

Assume a rational function is defined as the ratio of two polynomials in the form:

$\int \frac{P(x)}{Q(x)} d x$

Where:

- $P(x)$ and $Q(x)$ are polynomials and $Q(x)\neq 0$

- Degree of $P(x)$ < Degree of $Q(x)$

And if $Q(x)$ can be factored into linear or quadratic factors, you can write:

$\frac{P(x)}{Q(x)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\ldots$


Also, read,

Subject-Wise NCERT Exemplar Solutions

Use the following links to access step-by-step NCERT exemplar solutions of other subjects.

Frequently Asked Questions (FAQs)

Q: Is there any real life application of Integrals ?
A:

Integration can be used to calculate the centre of gravity, centre of mass etc. which further helps in understanding dynamics of force, pressure etc. in real life. 

Q: What is the value of integration of cos x?
A:

Integration of cos x is sin x + c 

Q: How much importance does Integrals hold in Board exams ?
A:

In Board exams, questions of around 20 marks are asked directly which can be of great help to students to score well in the examination.  

Q: What is the difficulty level of questions asked in Board exams from this exercise ?
A:

This exercise caters to questions of higher difficulty level. Hence it can be said that easy questions are not asked from this exercise. 

Q: Mention some topics in Exercise 7.5 Class 12 Maths ?
A:

Topics which are related to finding out integrals of rational functions are included in this exercise. 

Q: How many questions are there in this exercise ?
A:

There are 23 main questions in this exercise along with a few subquestions.

Articles
|
Upcoming School Exams
Ongoing Dates
MBSE HSSLC Application Date

21 Oct'25 - 25 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.

LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.