Imagine you are a math detective with many tiny, scattered clues. Your job now is to piece them together and reconstruct the full story. An integral is like the Sherlock Holmes of calculus; it pieces together countless tiny clues scattered across a problem. Each clue is a small part of a whole — an area, a distance, or a total quantity. NCERT Solutions for Exercise 7.5 Class 12 Maths Chapter 7 Integrals discusses an essential part of integrals: Integration by Partial Functions. Without knowledge of these concepts, students will struggle to integrate rational functions and fractions, where the numerator and denominator are polynomials.
cbse.gov.in is the link to the official website from where students can download the date sheet of the CBSE 10th, 12th examinations 2026.
This Story also Contains
Experienced Careers360 experts diligently curate the 12th-class Maths exercise 7.5 of NCERT by following the latest CBSE guidelines.
Question 1: Integrate the rational function $\frac{x }{( x +1)( x+2)}$
Answer:
Given function $\frac{x }{( x +1)( x+2)}$
Partial function of this function:
$\frac{x }{( x +1)( x+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$\implies x = A(x+2)+B(x+1)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$2A+B =0$
On solving, we get
$A = -1,\ \text{and}\ B = 2$
$\therefore \frac{x}{(x+1)(x+2)} = \frac{-1}{(x+1)}+\frac{2}{(x+2)}$
$\implies \int \frac{x}{(x+1)(x+2)} dx =\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} dx$
$=-\log|x+1| +2\log|x+2| +C$
$=\log(x+2)^2-\log|x+1|+C$
$=\log\frac{(x+2)^2}{(x+1)}+C$
Question 2: Integrate the rational function $\frac{1}{x^2 -9 }$
Answer:
Given function $\frac{1}{x^2 -9 }$
The partial function of this function:
$\frac{1}{(x+3)(x-3)}= \frac{A}{(x+3)}+\frac{B}{(x-3)}$
$1 = A(x-3)+B(x+3)$
Now, equating the coefficients of x and constant term, we obtain
$A+B =1$
$-3A+3B =1$
On solving, we get
$A = -\frac{1}{6},\ \text{and}\ B = \frac{1}{6}$
$\frac{1}{(x+3)(x-3)}= \frac{-1}{6(x+3)} +\frac{1}{6(x-3)}$
$\int \frac{1}{(x^2-9)}dx = \int \left ( \frac{-1}{6(x+3)}+\frac{1}{6(x-3)} \right )dx$
$=-\frac{1}{6}\log|x+3| +\frac{1}{6}\log|x-3| +C$
$= \frac{1}{6}\log\left | \frac{x-3}{x+3} \right |+C$
Question 3: Integrate the rational function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{3x -1}{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{3x -1}{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$3x-1 = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = 1,\ B = -5,\ \text{and}\ C = 4$
$\therefore \frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{(x-1)} -\frac{5}{(x-2)}+\frac{4}{(x-3)}$
That implies $\int \frac{3x-1}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} \right \}dx$
$= \log|x-1|-5\log|x-2|+4\log|x-3|+C$
Question 4: Integrate the rational function $\frac{x }{( x-1)(x-2)(x-3)}$
Answer:
Given function $\frac{x }{( x-1)(x-2)(x-3)}$
Partial function of this function:
$\frac{x }{( x-1)(x-2)(x-3)}= \frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
$x = A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2)$ .....(1)
Now, substituting $x = 1, 2,$ and $3$ respectively in equation (1), we get
$A = \frac{1}{2},\ B = -2,$ and $C = \frac{3}{2}$
$\therefore \frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} -\frac{2}{(x-2)}+\frac{3}{2(x-3)}$
That implies $\int \frac{x}{(x-1)(x-2)(x-3)} dx = \int \left \{ \frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)} \right \}dx$
$= \frac{1}{2}\log|x-1|-2\log|x-2|+\frac{3}{2}\log|x-3|+C$Question 5: Integrate the rational function $\frac{2x}{x^2 + 3x +2 }$
Answer:
Given function $\frac{2x}{x^2 + 3x +2 }$
Partial function of this function:
$\frac{2x}{x^2 + 3x +2 }= \frac{A}{(x+1)}+\frac{B}{(x+2)}$
$2x = A(x+2)+B(x+1)$ ...........(1)
Now, substituting $x = -1$ and $-2$ respectively in equation (1), we get
$A ={-2},\ B=4$
$\frac{2x}{x^2 + 3x +2 }= \frac{-2}{(x+1)}+\frac{4}{(x+2)}$
That implies $\int \frac{2x}{x^2 + 3x +2 }dx= \int \left \{ \frac{-2}{(x+1)}+\frac{4}{(x+2)} \right \}dx$
$=4\log|x+2| -2\log|x+1| +C$
Question 6: Integrate the rational function $\frac{1- x^2 }{ x ( 1- 2x )}$
Answer:
Given function $\frac{1- x^2 }{ x ( 1- 2x )}$
Integral is not a proper fraction so,
Therefore, on dividing $(1-x^2)$ by $x(1-2x)$ , we get
$\frac{1- x^2 }{ x ( 1- 2x )} = \frac{1}{2} +\frac{1}{2}\left ( \frac{2-x}{x(1-2x)} \right )$
Partial function of this function:
$\frac{2-x}{x(1-2x)} =\frac{A}{x}+\frac{B}{(1-2x)}$
$(2-x) =A(1-2x)+Bx$ ...........(1)
Now, substituting $x = 0$ and $\frac{1}{2}$ respectively in equation (1), we get
$A =2,\ B=3$
$\therefore \frac{2-x}{x(1-2x)} = \frac{2}{x}+\frac{3}{1-2x}$
Now, substituting in equation (1) we get
$\frac{1-x^2}{(1-2x)} = \frac{1}{2}+\frac{1}{2}\left \{ \frac{2}{3}+\frac{3}{(1-2x)} \right \}$
$\implies \int \frac{1-x^2}{x(1-2x)}dx =\int \left \{ \frac{1}{2}+\frac{1}{2}\left ( \frac{2}{x}+\frac{3}{1-2x} \right ) \right \}dx$
$=\frac{x}{2}+\log|x| +\frac{3}{2(-2)}\log|1-2x| +C$
$=\frac{x}{2}+\log|x| -\frac{3}{4}\log|1-2x| +C$
Question 7: Integrate the rational function $\frac{x }{( x^2+1 )( x-1)}$
Answer:
Given function $\frac{x }{( x^2+1 )( x-1)}$
Partial function of this function:
$\frac{x }{( x^2+1 )( x-1)} = \frac{Ax+b}{(x^2+1)} +\frac{C}{(x-1)}$
$x = (Ax+B)(x-1)+C(x^2+1)$
$x=Ax^-Ax+Bc-B+Cx^2+C$
Now, equating the coefficients of $x^2, x$ and the constant term, we get
$A+C = 0$
$-A+B =1$ and $-B+C = 0$
On solving these equations, we get
$A = -\frac{1}{2},\ B = \frac{1}{2},\ \text{and}\ C = \frac{1}{2}$
From equation (1), we get
$\therefore \frac{x}{(x^2+1)(x-1)} = \frac{\left ( -\frac{1}{2}x+\frac{1}{2} \right )}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}$
$\implies \int \frac{x}{(x^2+1)(x-1)}$
$=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2} \int \frac{1}{x-1}dx$
$=- \frac{1}{4} \int \frac{2x}{x^2+1} dx +\frac{1}{2} \tan^{-1}x + \frac{1}{2} \log|x-1| +C$
Now, consider $\int \frac{2x}{x^2+1} dx$ ,
and we will assume $(x^2+1) = t \Rightarrow 2xdx =dt$
So, $\int \frac{2x}{x^2+1}dx = \int \frac{dt}{t} =\log|t| = \log|x^2+1|$
$\therefore \int \frac{x}{(x^2+1)(x-1)} =-\frac{1}{4}\log|x^2+1| +\frac{1}{2}\tan^{-1}x +\frac{1}{2}\log|x-1| +C$ or
$\frac{1}{2}\log|x-1| - \frac{1}{4}\log|x^2+1|+\frac{1}{2}\tan^{-1}x +C$
Question 8: Integrate the rational function $\frac{x }{( x+1)^2 ( x+2)}$
Answer:
Given function $\frac{x }{( x+1)^2 ( x+2)}$
Partial function of this function:
$\frac{x }{( x+1)^2 ( x+2)} = \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}$
$x = A(x-1)(x+2)+B(x+2)+C(x-1)^2$
Now, putting $x=1$ in the above equation, we get
$B =\frac{1}{3}$
By equating the coefficients of $x^2$ and constant term, we get
$A+C=0$
$-2A+2B+C = 0$
then after solving, we get
$A = \frac{2}{9}$ and $C = \frac{-2}{9}$
Therefore,
$\frac{x}{(x-1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}$
$\int \frac{x}{(x-1)^2(x+2)}dx= \frac{2}{9}\int \frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 9: Integrate the rational function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
Answer:
Given function $\frac{3x+ 5 }{x^3 - x^2 - x +1 }$
can be rewritten as $\frac{3x+ 5 }{x^3 - x^2 - x +1 } = \frac{3x+5}{(x-1)^2(x+1)}$
Partial function of this function:
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+1)}$
$3x+5 = A(x-1)(x+1)+B(x+1)+C(x-1)^2$
$3x+5 = A(x^2-1)+B(x+1)+C(x^2+1-2x)$ ................(1)
Now, putting $x=1$ in the above equation, we get
$B =4$
By equating the coefficients of $x^2$ and $x$ , we get
$A+C=0$
$B-2C =3$
then after solving, we get
$A = -\frac{1}{2}$ and $C = \frac{1}{2}$
Therefore,
$\frac{3x+5}{(x-1)^2(x+1)}= \frac{-1}{2(x-1)}+\frac{4}{(x-1)^2}+\frac{1}{2(x+1)}$
$\int \frac{3x+5}{(x-1)^2(x+1)}dx= \frac{-1}{2}\int \frac{1}{(x-1)}dx+4\int \frac{1}{(x-1)^2} dx+\frac{1}{2}\int \frac{1}{(x+1)}dx$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
Question 10: Integrate the rational function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
Answer:
Given function $\frac{2x -3 }{(x^2 -1 )( 2x+3)}$
can be rewritten as $\frac{2x -3 }{(x^2 -1 )( 2x+3)} = \frac{2x-3}{(x+1)(x-1)(2x+3)}$
The partial function of this function:
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{A}{(x+1)} +\frac{B}{(x-1)}+\frac{C}{(2x+3)}$
$\Rightarrow (2x-3) =A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)$ $\Rightarrow (2x-3) =A(2x^2+x-3)+B(2x^2+5x+3)+C(x^2-1)$ $\Rightarrow (2x-3) =(2A+2B+C)x^2+(A+5B)x+(-3A+3B-C)$
Equating the coefficients of $x^2$ and $x$, we get
$B = -\frac{1}{10},\ A = \frac{5}{2}$ and $C = -\frac{24}{5}$
Therefore,
$\frac{2x -3 }{(x^2 -1 )( 2x-3)} = \frac{5}{2(x+1)} -\frac{1}{10(x-1)}-\frac{24}{5(2x+3)}$
$\implies \int \frac{2x-3}{(x^2-1)(2x+3)}dx = \frac{5}{2}\int \frac{1}{(x+1)}dx -\frac{1}{10}\int \frac{1}{x-1}dx -\frac{24}{5}\int \frac{1}{(2x+3)}dx$ $= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{24}{10}\log|2x+3|$
$= \frac{5}{2}\log|x+1| -\frac{1}{10}\log|x-1| -\frac{12}{5}\log|2x+3|+C$
$= -\frac{1}{2}\log|x-1| +4\left ( \frac{-1}{x-1} \right ) +\frac{1}{2}\log|x+1| +C$
$=\frac{1}{2}\log|\frac{x+1}{x-1}| - \frac{4}{(x-1)} + +C$
$= \frac{2}{9}\log|x-1|+\frac{1}{3}\left ( \frac{-1}{x-1} \right )-\frac{2}{9}\log|x+2|+C$
$\frac{2}{9}\log\left | \frac{x-1}{x+2} \right | -\frac{1}{3(x-1)}+C$
Question 11: Integrate the rational function $\frac{5x}{(x+1)(x^2-4)}$
Answer:
Given function $\frac{5x}{(x+1)(x^2-4)}$
can be rewritten as $\frac{5x}{(x+1)(x^2-4)} = \frac{5x}{(x+1)(x+2)(x-2)}$
The partial function of this function:
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{A}{(x+1)} +\frac{B}{(x+2)}+\frac{C}{(x-2)}$
$\Rightarrow (5x) =A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2)$
Now, substituting the value of $x = -1, -2,$ and $2$ respectively in the equation above, we get
$A = \frac{5}{3},\ B = \frac{-5}{2}$ and $C = \frac{5}{6}$
Therefore,
$\frac{5x }{(x+1)( x+2)(x-2)} = \frac{5}{3(x+1)} -\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
$\implies \int \frac{5x}{(x+1)(x^2-4)}dx = \frac{5}{3}\int \frac{1}{(x+1)}dx -\frac{5}{2}\int \frac{1}{x+2}dx+\frac{5}{6}\int \frac{1}{(x-2)}dx$ $= \frac{5}{3}\log|x+1| -\frac{5}{2}\log|x+2| +\frac{5}{6}\log|x-2|+C$
Question 12: Integrate the rational function $\frac{x^3 + x +1}{ x^2-1}$
Answer:
Given function $\frac{x^3 + x +1}{ x^2-1}$
As the given integral is not a proper fraction.
So, we divide $(x^3+x+1)$ by $x^2-1$ , we get
$\frac{x^3 + x +1}{ x^2-1} = x+\frac{2x+1}{x^2-1}$
can be rewritten as $\frac{2x+1}{x^2-1} =\frac{A}{(x+1)} +\frac{B}{(x-1)}$
$2x+1 ={A}{(x-1)} +{B}{(x+1)}$ ....................(1)
Now, substituting $x = 1$ and $x = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = \frac{3}{2}$
Therefore,
$\frac{x^3+x+1 }{(x^2-1)} =x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}$
$\implies \int \frac{x^3+x+1 }{(x^2-1)}dx =\int xdx +\frac{1}{2}\int \frac{1}{(x+1)} dx+\frac{3}{2} \int \frac{1}{(x-1)}dx$
$= \frac{x^2}{2}+\frac{1}{2}\log|x+1| +\frac{3}{2}\log|x-1| +C$
Question 13: Integrate the rational function $\frac{2}{(1-x)(1+ x^2)}$
Answer:
Given function $\frac{2}{(1-x)(1+ x^2)}$
can be rewritten as $\frac{2}{(1-x)(1+ x^2)} = \frac{A}{(1-x)}+\frac{Bx+C}{1+x^2}$
$2 =A(1+x^2)+(Bx+C)(1-x)$ ....................(1)
$2 =A +Ax^2 +Bx-Bx^2+C-Cx$
Now, equating the coefficient of $x^2, x,$ and constant term, we get
$A-B= 0$ , $B-C = 0$ , and $A+C =2$
Solving these equations, we get
$A = 1,\ B = 1$ and $C = 1$
Therefore,
$\therefore \frac{2}{(1-x)(1+ x^2)} = \frac{1}{(1-x)}+\frac{x+1}{1+x^2}$
$\implies \int \frac{2}{(1-x)(1+ x^2)}dx =\int \frac{1}{(1-x)} dx+ \int \frac{x}{1+x^2}dx +\int \frac{1}{1+x^2}dx$ $= -\int \frac{1}{x-1}dx +\frac{1}{2}\int \frac{2x}{1+x^2}dx +\int\frac{1}{1+x^2}dx$
$=-\log|x-1| +\frac{1}{2}\log|1+x^2| +\tan^{-1}x+C$
Question 14: Integrate the rational function $\frac{3x-1}{(x+2)^2}$
Answer:
Given function $\frac{3x-1}{(x+2)^2}$
can be rewritten as $\frac{3x-1}{(x+2)^2} = \frac{A}{(x+2)}+\frac{B}{(x+2)^2}$
$3x-1 = A(x+2)+B$
Now, equating the coefficient of $x$ and constant term, we get
$A=3$ and $2A+B = -1$ ,
Solving these equations, we get
$B=-7$
Therefore,
$\frac{3x-1}{(x+2)^2} = \frac{3}{(x+2)}-\frac{7}{(x+2)^2}$
$\implies \int\frac{3x-1}{(x+2)^2}dx = 3 \int \frac{1}{(x+2)}dx-7\int \frac{x}{(x+2)^2}dx$
$\implies 3\log|x+2| -7\left ( \frac{-1}{(x+2)}\right )+C$
$\implies 3\log|x+2| + \frac{7}{(x+2)} +C$
Question 15: Integrate the rational function $\frac{1}{x^4 -1 }$
Answer:
Given function $\frac{1}{x^4 -1 }$
can be rewritten as $\frac{1}{x^4 -1 } = \frac{1}{(x^2-1)(x^2+1)} =\frac{1}{(x+1)(x-1)(1+x^2)}$
The partial fraction of above equation,
$\frac{1}{(x+1)(x-1)(1+x^2)} = \frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{Cx+D}{(x^2+1)}$
$1 = A(x-1)(x^2+1) +B(x+1)(x^2+1)+(Cx+D)(x^2-1)$
$1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D$ $1 = (A+B+C)x^3 +(-A+B+D)x^2+(A+B-C)x+(-A+B-D)$
Now, equating the coefficient of $x^3,x^2,x$ and constant term, we get
$A+B+C = 0$ and $-A+B+D = 0$
$A+B-C = 0$ and $-A+B-D = 1$
Solving these equations, we get
$A = -\frac{1}{4},\ B = \frac{1}{4},\ C = 0$ and $D = -\frac{1}{2}$
Therefore,
$\frac{1}{x^4-1} = \frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2(x^2+1)}$
$\implies \int \frac{1}{x^4-1}dx = -\frac{1}{4}\log|x-1| +\frac{1}{4}\log|x-1| -\frac{1}{2}\tan^{-1}x +C$
$= \frac{1}{4}\log|\frac{x-1}{x+1}| -\frac{1}{2}\tan^{-1}x +C$
Question 16: Integrate the rational function $\frac{1}{x ( x^n+1)}$
[Hint: multiply numerator and denominator by $x ^{n-1}$ and put $x ^n = t$ ]
Answer:
Given function $\frac{1}{x ( x^n+1)}$
Applying Hint multiplying numerator and denominator by $x^{n-1}$ and putting $x^n =t$
$\frac{1}{x ( x^n+1)} = \frac{x^{n-1}}{x^{n-1}x(x^n+1)} = \frac{x^{n-1}}{x^n(x^n+1)}$
Putting $x^n =t$
$\therefore x^{n-1}dx =dt$
can be rewritten as $\int \frac{1}{x ( x^n+1)}dx =\int \frac{x^{n-1}}{x^n(x^n+1)}dx = \frac{1}{n} \int \frac{1}{t(t+1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t+1)} =\frac{A}{t}+\frac{B}{(t+1)}$
$1 = A(1+t)+Bt$ ................(1)
Now, substituting $t = 0,-1$ in equation (1), we get
$A = 1$ and $B = -1$
$\therefore \frac{1}{t(t+1)} = \frac{1}{t}- \frac{1}{(1+t)}$
$\implies \int \frac{1}{x(x^n+1)}dx = \frac{1}{n} \int \left \{ \frac{1}{t}-\frac{1}{(t+1)} \right \}dx$
$= \frac{1}{n} \left [ \log|t| -\log|t+1| \right ] +C$
$= -\frac{1}{n} \left [ \log|x^n| -\log|x^n+1| \right ] +C$
$= \frac{1}{n} \log|\frac{x^n}{x^n+1}| +C$
Question 17: Integrate the rational function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
[Hint : Put $\sin x = t$ ]
Answer:
Given function $\frac{\cos x }{(1- \sin x )( 2- \sin x )}$
Applying the given hint: putting $\sin x =t$
We get, $\cos x dx =dt$
$\therefore \int \frac{\cos x }{(1- \sin x )( 2- \sin x )}dx = \int \frac{dt}{(1-t)(2-t)}$
Partial fraction of above equation,
$\frac{1}{(1-t)(2-t)} =\frac{A}{(1-t)}+\frac{B}{(2-t)}$
$1 = A(2-t)+B(1-t)$ ................(1)
Now, substituting $t = 2$ and $1$ in equation (1), we get
$A = 1\ \text{and}\ B = -1$
$\therefore \frac{1}{(1-t)(2-t)} = \frac{1}{(1-t)} - \frac{1}{(2-t)}$
$\implies \int \frac{\cos x }{(1-\sin x)(2-\sin x )}dx = \int \left \{ \frac{1}{1-t}-\frac{1}{(2-t)} \right \}dt$
$= -\log|1-t| +\log|2-t| +C$
$= \log\left | \frac{2-t}{1-t} \right |+C$
Back substituting the value of t in the above equation, we get
$= \log\left | \frac{2-\sin x}{1- \sin x} \right |+C$
Question 18: Integrate the rational function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
Answer:
Given function $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )}$
We can rewrite it as: $\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$
Partial fraction of above equation,
$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} =\frac{Ax+B}{(x^2+3)}+\frac{Cx+D}{(x^2+4)}$
$4x^2+10 = (Ax+B)(x^2+4)+(Cx+D)(x^2+3)$
$4x^2+10 = Ax^3+4Ax+Bx^2+4B+Cx^3+3Cx+Dx^2+3D$
$4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(3D+4B)$
Now, equating the coefficients of $x^3, x^2, x$ and constant term, we get
$A+C=0$ , $B+D = 4$ , $4A+3C = 0$ , $4B+3D =10$
After solving these equations, we get
$A = 0,\ B = -2,\ C = 0,\ \text{and}\ D = 6$
$\therefore \frac{4x^2+10}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$
$\frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} = 1- \left ( \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)} \right )$
$\implies \int \frac{( x^2 +1 )( x^2 +2 )}{( x^2 +3 )( x^2 +4 )} dx= \int \left \{ 1+ \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)} \right \}dx$
$= \int \left \{ 1+ \frac{2}{(x^2+(\sqrt3)^2)} - \frac{6}{(x^2+2^2)} \right \}dx$
$= x+2\left ( \frac{1}{\sqrt3}\tan^{-1}\frac{x}{\sqrt 3} \right ) - 6\left ( \frac{1}{2}\tan^{-1}\frac{x}{2} \right )+C$
$= x+\frac{2}{\sqrt3}\tan^{-1}\frac{x}{\sqrt3} -3\tan^{-1}\frac{x}{2}+C$
Question 19: Integrate the rational function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Answer:
Given function $\frac{2x }{( x^2 +1)( x^2 +3)}$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{2x }{( x^2 +1)( x^2 +3)}dx = \int \frac{dt}{(t+1)(t+3)}$
The partial fraction of above equation,
$\frac{1}{(t+3)(t+3)} = \frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1= A(t+3)+B(t+1)$ ..............(1)
Now, substituting $t = -3$ and $t = -1$ in equation (1), we get
$A = \frac{1}{2}$ and $B = -\frac{1}{2}$
$\therefore\frac{1}{(t+3)(t+3)} = \frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
$\implies \int \frac{2x}{(x^2 + 1)(x^2 + 3)} \, dx = \int \left\{ \frac{1}{2(t + 1)} - \frac{1}{2(t + 3)} \right\} \, dt$
$= \frac{1}{2}\log|t+1|- \frac{1}{2}\log|t+3| +C$
$= \frac{1}{2}\log\left | \frac{t+1}{t+3} \right | +C$
$= \frac{1}{2}\log\left | \frac{x^2+1}{x^2+3} \right | +C$
Question 20: Integrate the rational function $\frac{1}{x (x^4 -1)}$
Answer:
Given function $\frac{1}{x (x^4 -1)}$
So, we multiply numerator and denominator by $x^3$ , to obtain
$\frac{1}{x (x^4 -1)} = \frac{x^3}{x^4(x^4-1)}$
$\therefore \int \frac{1}{x(x^4-1)}dx =\int\frac{x^3}{x^4(x^4-1)}dx$
Now, putting $x^4 = t$
we get, $4x^3dx =dt$
Taking $x^2 = t \Rightarrow 2xdx=dt$
$\therefore \int \frac{1}{x(x^4-1)}dx =\frac{1}{4}\int \frac{dt}{t(t-1)}$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\Rightarrow \int \frac{1}{x(x^4+1)}dx =\frac{1}{4}\int \left \{ \frac{-1}{t}+\frac{1}{t-1} \right \}dt$
$= \frac{1}{4} \left [ -\log|t|+\log|t-1| \right ]+C$
$= \frac{1}{4}\log\left | \frac{t-1}{t} \right |+C$
Back substituting the value of t,
$=\frac{1}{4}\log \left | \frac{x^4-1}{x^4} \right | +C$
Question 21: Integrate the rational function $\frac{1}{( e ^x-1)}$ [Hint : Put $e ^x= t$ ]
Answer:
Given function $\frac{1}{( e ^x-1)}$
So, applying the hint: Putting $e^x = t$
Then $e^x dx= dt$
$\int \frac{1}{( e ^x-1)}dx = \int\frac{1}{t-1}\times\frac{dt}{t} = \int \frac{1}{t(t-1)}dt$
Partial fraction of above equation,
$\frac{1}{t(t-1)} = \frac{A}{t}+\frac{B}{(t-1)}$
$1= A(t-1)+Bt$ ..............(1)
Now, substituting $t = 0\ \text{and}\ t = 1$ in equation (1), we get
$A = -1\ \text{and}\ B = 1$
$\Rightarrow \frac{1}{t(t+1)} = -\frac{1}{t}+\frac{1}{t-1}$
$\implies \int \frac{1}{t(t-1)}dt = \log \left | \frac{t-1}{t} \right |+C$
Now, back substituting the value of t,
$= \log \left | \frac{e^x-1}{e^x} \right |+C$
Question 22: Choose the correct answer $\int \frac{x \, dx}{(x - 1)(x - 2)}$ equals
$A)\ \log \left| \frac{(x - 1)^2}{x - 2} \right| + C$
$B)\ \log \left| \frac{(x - 2)^2}{x - 1} \right| + C$
$C)\ \log \left| \left( \frac{x - 1}{x - 2} \right)^2 \right| + C$
$D)\ \log \left| (x - 1)^2 (x - 2) \right| + C$
Answer:
Given integral $\int \frac{x dx }{( x-1)(x-2) }$
Partial fraction of above equation,
$\frac{x}{(x-1)(x-2)} = \frac{A}{(x-1)}+\frac{B}{(x-2)}$
$x= A(x+2)+B(x-1)$ ..............(1)
Now, substituting $x = 1\ \text{and}\ x = 2$ in equation (1), we get
$A = -1\ \text{and}\ B = 2$
$\therefore \frac{x}{(x-1)(x-2)} = -\frac{1}{(x-1)}+\frac{2}{(x-2)}$
$\implies \int \frac{x}{(x-1)(x-2)}dx = \int \left \{ \frac{-1}{(x-1)}+\frac{2}{(x-2)} \right \}dx$
$= -\text{log}|x - 1| + 2\text{log}|x - 2| + C$
$=\log \left | \frac{(x-2)^2}{x-1} \right | +C$
Therefore, the correct answer is $\log \left| \frac{(x - 2)^2}{x - 1} \right| + C$.
Question 23: Choose the correct answer $\int \frac{dx}{x(x^2 + 1)}$ equals
$A)\ \log |x| - \frac{1}{2} \log (x^2 + 1) + C$
$B)\ \log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$C)\ -\log |x| + \frac{1}{2} \log (x^2 + 1) + C$
$D)\ \frac{1}{2} \log |x| + \log (x^2 + 1) + C$
Answer:
Given integral $\int \frac{dx}{x ( x ^2+1)}$
Partial fraction of above equation,
$\frac{1}{x ( x ^2+1)} = \frac{A}{x}+\frac{Bx+c}{x^2+1}$
$1= A(x^2+1)+(Bx+C)x$
Now, equating the coefficients of $x^2,x,$ and the constant term, we get
$A+B = 0$ , $C=0$ , $A=1$
We have the values, $A = 1\ \text{and}\ B = -1,\ \text{and}\ C = 0$
$\therefore \frac{1}{x ( x ^2+1)} = \frac{1}{x}+\frac{-x}{x^2+1}$
$\implies \int \frac{1}{x ( x ^2+1)}dx =\int \left \{ \frac{1}{x}+\frac{-x}{x^2+1}\right \}dx$
$= \log|x| -\frac{1}{2}\log|x^2+1| +C$
Therefore, the correct answer is $\log |x| - \frac{1}{2} \log (x^2 + 1) + C$.
Also, read
Integration by Partial Fractions |
Assume a rational function is defined as the ratio of two polynomials in the form: $\int \frac{P(x)}{Q(x)} d x$ Where: - $P(x)$ and $Q(x)$ are polynomials and $Q(x)\neq 0$ - Degree of $P(x)$ < Degree of $Q(x)$ And if $Q(x)$ can be factored into linear or quadratic factors, you can write: $\frac{P(x)}{Q(x)}=\frac{A}{(x-a)}+\frac{B}{(x-b)}+\ldots$ |
Also, read,
Unlock the structured NCERT solutions of other subjects provided below.
Use the following links to access step-by-step NCERT exemplar solutions of other subjects.
Frequently Asked Questions (FAQs)
Integration can be used to calculate the centre of gravity, centre of mass etc. which further helps in understanding dynamics of force, pressure etc. in real life.
Integration of cos x is sin x + c
In Board exams, questions of around 20 marks are asked directly which can be of great help to students to score well in the examination.
This exercise caters to questions of higher difficulty level. Hence it can be said that easy questions are not asked from this exercise.
Topics which are related to finding out integrals of rational functions are included in this exercise.
There are 23 main questions in this exercise along with a few subquestions.
On Question asked by student community
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters