NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

Komal MiglaniUpdated on 24 Apr 2025, 09:08 AM IST

An integral is like life — you don’t see the big picture until you’ve summed up all the little moments. In mathematical terms, integrals are a tool to find the area under the curves, sum up quantities over an interval, and calculate total distance when speed changes constantly. The NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 Integrals help us understand some particular formulas of integrals and their applications. These formulas are essential, and we can apply them directly to evaluate other integrals.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.4 Solutions: Download PDF
  2. Download PDFIntegrals Class 12 Chapter 7 Exercise 7.4
  3. Topics covered in Chapter 1 Integrals: Exercise 7.4
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

These 12th-class Maths exercise 7.4 by NCERT are crafted with precision by experienced Careers360 faculty to ensure a comprehensive grasp of each concept discussed before the exercise.

Class 12 Maths Chapter 7 Exercise 7.4 Solutions: Download PDF

Download PDFIntegrals Class 12 Chapter 7 Exercise 7.4

Question1: Integrate the function $\frac{3x^ 2 }{x^6 + 1 }$

Answer:

The given integral can be calculated as follows

Let $x^3 = t$
, therefore, $3x^2 dx =dt$

$\Rightarrow \int\frac{3x^2}{x^6+1}=\int \frac{dt}{t^2+1}$

$\\=\tan^{-1} t +C\\ =tan^{-1}(x^3)+C$

Question 2: Integrate the function $\frac{1}{\sqrt { 1+ 4 x^2 }}$

Answer:

$\frac{1}{\sqrt { 1+ 4 x^2 }}$
let suppose 2x = t
therefore 2dx = dt

$\int \frac{1}{\sqrt{1+4x^2}} =\frac{1}{2}\int \frac{dt}{1+t^2}$
$\\=\frac{1}{2}[\log\left | t+\sqrt{1+t^2} \right |]+C\\ =\frac{1}{2}\log\left | 2x+\sqrt{4x^2+1} \right |+C$ .................using formula $\int\frac{1}{\sqrt{x^2+a^2}}dt = \log\left | x+\sqrt{x^2+a^2} \right |$

Question3: Integrate the function $\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$

Answer:

$\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$

let suppose 2-x =t
then, -dx =dt
$\Rightarrow \int\frac{1}{\sqrt{(2-x)^2+1}}dx = -\int \frac{1}{\sqrt{t^2+1}}dt$

using the identity

$\int \frac{1}{\sqrt{x^2+1}}dt=log\left | x+\sqrt{x^2+1} \right |$

$\\= -\log\left | t+\sqrt{t^2+1} \right |+C\\ =-\log\left | 2-x+\sqrt{(2-x)^2+1} \right |+C\\ =\log \left | \frac{1}{(2-x)+\sqrt{x^2-4x+5}} \right |+C$

Question4: Integrate the function $\frac{1}{\sqrt {9 - 25 x^2 }}$

Answer:

$\frac{1}{\sqrt {9 - 25 x^2 }}$
Let assume 5x =t,
then 5dx = dt

$\Rightarrow \int \frac{1}{\sqrt{9-25x^2}}=\frac{1}{5}\int \frac{1}{\sqrt{9-t^2}}dt$
$\\=\frac{1}{5}\int \frac{1}{\sqrt{3^2-t^2}}dt\\ =\frac{1}{5}\sin^{-1}(\frac{t}{3})+C\\ =\frac{1}{5}\sin^{-1}(\frac{5x}{3})+C$

The above result is obtained using the identity

$\\\int \frac{1}{\sqrt{a^2-x^2}}dt\\ =\frac{1}{a}sin^{-1}\frac{x}{a}$

Question 5: Integrate the function $\frac{3x }{1+ 2 x ^ 4 }$

Answer:

$\frac{3x }{1+ 2 x ^ 4 }$

Let ${\sqrt{2}}x^2 = t$
$\therefore$ $2\sqrt{2}xdx =dt$

The integration can be done as follows

$\Rightarrow \int \frac{3x}{1+2x^4}= \frac{3}{2\sqrt{2}}\int \frac{dt}{1+t^2}$
$\\= \frac{3}{2\sqrt{2}}[\tan^{-1}t]+C\\ =\frac{3}{2\sqrt{2}}[\tan^{-1}(\sqrt{2}x^2)]+C$

Question 6: Integrate the function $\frac{x ^ 2 }{1- x ^ 6 }$

Answer:

$\frac{x ^ 2 }{1- x ^ 6 }$

let $x^3 =t$
then $3x^2dx =dt$

Using the special identities, we can simplify the integral as follows

$\int \frac{x^2}{1-x^6}dx =\frac{1}{3}\int \frac{dt}{1-t^2}$
$=\frac{1}{3}[\frac{1}{2}\log\left | \frac{1+t}{1-t} \right |]+C\\ =\frac{1}{6}\log\left | \frac{1+x^3}{1-x^3} \right |+C$

Question 7: Integrate the function $\frac{x-1 }{\sqrt { x^2 -1 }}$

Answer:
We can write above eq as
$\frac{x-1 }{\sqrt { x^2 -1 }}$ $=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$ ............................................(i)

for $\int \frac{x}{\sqrt{x^2-1}}dx$ let $x^2-1 = t \Rightarrow 2xdx =dt$

$\therefore \int \frac{x}{\sqrt{x^2-1}}dx=\frac{1}{2}\int \frac{dt}{\sqrt{t}}$
$\\=\frac{1}{2}\int t^{1/2}dt\\ =\frac{1}{2}[2t^{1/2}]\\ =\sqrt{t}\\ =\sqrt{x^2-1}$
Now, by using eq (i)
$=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$
$\\=\sqrt{x^2-1}-\int \frac{1}{\sqrt{x^2}-1}dx\\ =\sqrt{x^2-1}-\log\left | x+\sqrt{x^2-1} \right |+C$

Question 8: Integrate the functions $\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$

Answer:

The integration can be down as follows

$\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
let $x^3 = t \Rightarrow 3x^2dx =dt$

$\therefore \frac{x^2}{\sqrt{x^6+a^6}}=\frac{1}{3}\int \frac{dt}{\sqrt{t^2+(a^3)^2}}$
$\\=\frac{1}{3}\log\left | t+\sqrt{t^2+a^6} \right |+C\\ =\frac{1}{3}\log\left | x^3+\sqrt{x^6+a^6} \right |+C$ ........................using $\int \frac{dx}{\sqrt{x^2+a^2}} = \log\left | x+\sqrt{x^2+a^2} \right |$

Question 9: Integrate the function $\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x+ 4 }}$

Answer:

The integral can be evaluated as follows

$\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x + 4 }}$
let $\tan x =t \Rightarrow sec^2x dx =dt$

$\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}$
$\\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C$

Question 10: Integrate the function $\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$

Answer:

$\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
the above equation can be also written as,
$=\int\frac{1}{\sqrt{(1+x)^2+1^2}}dx$
let 1+x = t
then dx = dt
therefore,

$\\=\int\frac{1}{\sqrt{t^2+1^2}}dx\\ =\log\left | t+\sqrt{t^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(1+x)^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(x^2+2x+2} \right |+C$

Question 11: Integrate the function $\frac{1}{9 x ^2 + 6x + 5 }$

Answer:

$\frac{1}{9 x ^2 + 6x + 5 }$
this denominator can be written as
$9x^2+6x+5=9[x^2+\frac{2}{3}x+\frac{5}{9}]\\=9[(x+\frac{1}{3})^2+(\frac{2}{3})^2]$ Now,
$\frac{1}{9}\int \frac{1}{(x+\frac{1}{3})^2+(\frac{2}{3})^2}dx =\frac{1}{9} [\frac{3}{2}\tan^{-1}(\frac{(x+1/3)}{2/3})] +C\\=\frac{1}{6} \tan^{-1}(\frac{3x+1}{2})] +C$
......................................by using the form $(\int \frac{1}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a}))$

Question 12: Integrate the function $\frac{1}{\sqrt{ 7-6x - x ^ 2 }}$

Answer:

The denominator can also be written as,
$7-6x-x^2=16-(x^2+6x+9)$
$=4^2-(x+3)^2$

therefore

$\int \frac{1}{\sqrt{7-6x-x^2}}dx=\int \frac{1}{\sqrt{4^2-(x+3)^2}}dx$
Let x+3 = t
then dx =dt

$\Rightarrow \int \frac{1}{\sqrt{4^2-(x+3)^2}}dx=\int \frac{1}{\sqrt{4^2-t^2}}dt$ ......................................using formula $\int \frac{1}{\sqrt{a^2-x^2}}=\sin^{-1}(\frac{x}{a})$
$\\= sin^{-1}(\frac{t}{4})+C\\ =\sin^{-1}(\frac{x+3}{4})+C$

Question 13: Integrate the function $\frac{1}{\sqrt { ( x-1)( x-2 )}}$

Answer:

(x-1)(x-2) can be also written as
= $x^2-3x+2$
= $(x-\frac{3}{2})^2-(\frac{1}{2})^2$

therefore

$\int \frac{1}{\sqrt{(x-1)(x-2)}}dx= \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx$
let suppose
$x-3/2 = t \Rightarrow dx =dt$
Now,

$\Rightarrow \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx = \int \frac{1}{\sqrt{t^2-(\frac{1}{2})^2}}dt$ .............by using formula $\int \frac{1}{\sqrt{x^2-a^2}}=\log\left | x+\sqrt{x^2+a^2} \right |$
$\\= \log \left | t+\sqrt{t^2-(1/2)^2} \right |+C\\ = \log \left | (x-\frac{3}{2})+\sqrt{x^2-3x+2} \right |+C$

Question 14: Integrate the function $\frac{1}{\sqrt { 8 + 3 x - x ^ 2 }}$

Answer:

We can write denominator as
$\\=8-(x^2-3x+\frac{9}{4}-\frac{9}{4})\\ =\frac{41}{4}-(x-\frac{3}{2})^2$

therefore
$\Rightarrow \int \frac{1}{\sqrt{8+3x-x^2}}dx= \int \frac{1}{\sqrt{\frac{41}{4}-(x-\frac{3}{2})^2}}$
let $x-3/2 = t \Rightarrow dx =dt$

$\therefore$
$\\=\int \frac{1}{\sqrt{(\frac{\sqrt{41}}{2})^2-t^2}}dt\\ =\sin^{-1}(\frac{t}{\frac{\sqrt{41}}{2}})+C\\ =\sin^{-1}(\frac{2x-3}{\sqrt{41}})+C$

Question15: Integrate the function $\frac{1}{\sqrt {(x-a)( x-b )}}$

Answer:

(x-a)(x-b) can be written as $x^2-(a+b)x+ab$
$\\x^2-(a+b)x+ab+\frac{(a+b)^2}{4}-\frac{(a+b)^2}{4}\\ (x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}$

$\Rightarrow \int\frac{1}{\sqrt{(x-a)(x-b)}}dx=\int \frac{1}{\sqrt{(x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}}}dx$
let
$x-\frac{(a+b)}{2}=t \Rightarrow dx =dt$
So,
$\\=\int \frac{1}{\sqrt{t^2-(\frac{a-b}{2})^2}}dt\\ =\log \left | t+\sqrt{t^2-(\frac{a-b}{2})^2} \right |+C\\ =\log \left | x-(\frac{a+b}{2})+\sqrt{(x-a)(x-b)} \right |+C$

Question 16: Integrate the function $\frac{4x+1 }{\sqrt {2x ^ 2 + x -3 }}$

Answer:

let
$\\4x+1 = A\frac{d}{dx}(2x^2+x-3)+B\\ 4x+1=A(4x+1)+B\\ 4x+1=4Ax+A+B$

By equating the coefficient of x and constant term on each side, we get
A = 1 and B=0

Let $(2x^2+x-3) = t\Rightarrow (4x+1)dx =dt$

$\therefore \int \frac{4x+1}{\sqrt{2x^2+x-3}}dx= \int\frac{1}{\sqrt{t}}dt$
$\\= 2\sqrt{t}+C\\ =2\sqrt{2x^2+x-3}+C$

Question 17: Integrate the function $\frac{x+ 2 }{\sqrt { x ^2 -1 }}$

Answer:

let $x+2 =A\frac{d}{dx}(x^2-1)+B=A(2x)+B$
By comparing the coefficients and constant term on both sides, we get;

A=1/2 and B=2
then $x+2 = \frac{1}{2}(2x)+2$

$\int \frac{x+2}{\sqrt{x^2-1}}dx =\int\frac{1/2(2x)+2}{x^2-1}dx$
$\\=\frac{1}{2}\int\frac{(2x)}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx\\ =\frac{1}{2}[2\sqrt{x^2-1}]+2\log\left | x+\sqrt{x^2-1} \right |+C\\ =\sqrt{x^2-1}+2\log\left | x+\sqrt{x^2-1} \right |+C$

Question 18: Integrate the function $\frac{5x -2 }{1+ 2x +3x^2 }$

Answer:

let
$\\5x+2 = A\frac{d}{dx}(1+2x+3x^2)+B\\ 5x+2= A(2+6x)+B = 2A+B+6Ax$
By comparing the coefficients and constants we get the value of A and B

A = $5/6$ and B = $-11/3$

NOW,
$I = \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}$
$I = I_{1}-\frac{11}{3}I_{2}$ ...........................(i)

put $3x^2+2x+1 =t \Rightarrow (6x+2)dx =dt$
Thus
$I_{1}=\frac{5}{6}\int \frac{dt}{t} =\frac{5}{6}\log t =\frac{5}{6}\log (3x^2+2x+1)+c1$
$I_{2}= \int \frac{dx}{3x^2+2x+1} = \frac{1}{3}\int\frac{dx}{(x+1/3)^2+(\sqrt{2}/3)^2}$
$\\=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt{2}})+c2$

$\therefore I = I_1+I_2$
$I = \frac{5}{6}\log(3x^2+2x+1)-\frac{11}{3}\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt2})+C$

Question 19: Integrate the function $\frac{6x + 7 }{\sqrt {( x-5 )( x-4)}}$

Answer:

let
$6x+7 = A\frac{d}{dx}(x^2-9x+20)+B =A(2x-9)+B$
By comparing the coefficients and constants on both sides, we get
A =3 and B =34

$I =\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx = \int \frac{3(2x+9)}{\sqrt{x^2-9x+20}}dx+34\int\frac{dx}{\sqrt{x^2-9x+20}}$ $I = I_1+I_2$ ....................................(i)

Considering $I_1$

$I_1 =\int \frac{2x-9}{\sqrt{x^2-9x+20}}dx$ let $x^2-9x+20 = t \Rightarrow (2x-9)dx =dt$

$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{x^2-9x+20}$

Now consider $I_2$

$I_2=\int \frac{dx}{\sqrt{x^2-9x+20}}$
here the denominator can be also written as
Dr = $(x-\frac{9}{2})^2-(\frac{1}{2})^2$

$\therefore I_2 = \int \frac{dx}{\sqrt{(x-\frac{9}{2})^2-(\frac{1}{2})^2}}$
$\\= \log\left | (x-\frac{9}{2})^2+\sqrt{x^2-9x+20} \right |$

Now put the values of $I_1$ and $I_2$ in eq (i)

$\\I = 3I_1+34I_2\\ I=6\sqrt{x^2-9x+20}+34\log\left | (x-\frac{9}{2})+\sqrt{x^2-9x+20} \right |+C$

Question 20: Integrate the function $\frac{x +2 }{\sqrt { 4x - x ^ 2 }}$

Answer:

let
$x+2 = A\frac{d}{dx}(4x-x^2)+B = A(4-2x)+B$
By equating the coefficients and constant term on both sides we get

A = -1/2 and B = 4

(x+2) = -1/2(4-2x)+4

$\\\therefore \int \frac{x+2}{\sqrt{4x-x^2}}dx = -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}\\ \ I =\frac{-1}{2}I_1+4I_2$ ....................(i)

Considering $I_1$
$\int \frac{4-2x}{\sqrt{4x-x^2}}dx$
let $4x-x^2 =t \Rightarrow (4-2x)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{4x-x^2}$
now, $I_2$

$I_2 =\int \frac{dx}{\sqrt{4x-x^2}} = \int \frac{dx}{\sqrt{2^2-(x-2)^2}}$
$=\sin^{-1}(\frac{x-2}{2})$

put the value of $I_1$ and $I_2$

$I =-\sqrt{4x-x^2}+4\sin^{-1}(\frac{x-2}{2})+C$

Question 21: Integrate the function $\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$

Answer:

$\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
$\int \frac{x+2}{\sqrt{x^2+2x+3}}dx = \frac{1}{2}\int \frac{2(x+2)}{\sqrt{x^2+2x+3}}dx$
$\\= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\frac{1}{2}\int \frac{2}{\sqrt{x^2+2x+3}}dx\\ =\frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\int \frac{1}{\sqrt{x^2+2x+3}}dx\\ I=\frac{1}{2}I_1+I_2$ ...........(i)

take $I_1$

$\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx$
let $x^2+2x+3 = t \Rightarrow (2x+2)dx =dt$

$I_1=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+2x+3}$
considering $I_2$

$= \int \frac{dx}{\sqrt{x^2+2x+3}}= \int \frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}$
$= \log \left | (x+1)+\sqrt{x^2+2x+3} \right |$
putting the values in equation (i)

$I=\sqrt{x^2+2x+3} +\log \left | (x+1)+\sqrt{x^2+2x+3} \right |+C$

Question 22: Integrate the function $\frac{x + 3 }{x ^ 2 - 2x - 5 }$

Answer:

Let $(x+3) =A\frac{d}{dx}(x^2-2x+5)+B= A(2x-2)+B$

By comparing the coefficients and constant term, we get;

A = 1/2 and B =4

$\\\int \frac{x+3}{x^2-2x+5}dx = \frac{1}{2}\int \frac{2x-2}{x^2-2x+5}dx +4\int \frac{1}{x^2-2x+5}dx\\ I=I_1+I_2$ ..............(i)

$\\\Rightarrow I_1\\ =\int \frac{2x-2}{x^2-2x-5}dx$
put $x^2-2x-5 =t \Rightarrow (2x-2)dx =dt$

$=\int \frac{dt}{t} = \log t = \log (x^2-2x-5)$

$\\\Rightarrow I_2\\ = \int \frac{1}{x^2-2x-5}dx\\ =\int \frac{1}{(x-1)^2+(\sqrt{6})^2}dx\\ =\frac{1}{2\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})$

$I=I_1+I_2$

$=\frac{1}{2}\log\left | x^2-2x-5 \right |+\frac{2}{\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})+C$

Question 23: Integrate the function $\frac{5x + 3 }{\sqrt { x^2 + 4x +10 }}$

Answer:

let
$5x+3 = A\frac{d}{dx}(x^2+4x+10)+B = A(2x+4)+B$
On comparing, we get

A =5/2 and B = -7

$\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx = \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+10}}dx$ $I = 5/2I_1-7I_2$ ...........................................(i)

$\\\Rightarrow I_1\\ \int \frac{2x+4}{\sqrt{x^2+4x+10}}dx$
put
$x^2+4x+10= t \Rightarrow (2x+4)dx = dt$

$=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+4x+10}$

$\\\Rightarrow I_2\\ =\int \frac{1}{\sqrt{x^2+4x+10}}dx \\ =\int \frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}dx\\ =\log \left | (x+2)+\sqrt{x^2+4x+10} \right |$

$I = 5\sqrt{x^2+4x+10}-7\log\left | (x+2)+\sqrt{x^2+4x+10} \right |+C$

Question 24: Choose the correct answer

$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$

$(A) x \tan^{-1} (x + 1) + C\\\\ (B) \tan^{-1} (x + 1) + C\\\\ (C) (x + 1) \tan^{-1}x + C \\\\ (D) \tan^{-1}x + C$

Answer:

The correct option is (B)

$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
the denominator can be written as $(x+1)^2+1$
now, $\int \frac{dx}{(x+1)^2+1} = tan^{-1}(x+1)+C$

Question 25: Choose the correct answer $\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$

$A) \frac{1}{9} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\B ) \frac{1}{2} \sin ^{-1}\left ( \frac{8x-9}{9} \right )+ C \\\\ C) \frac{1}{3} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\ D ) \frac{1}{2} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C$

Answer:

The following integration can be done as

$\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
$\int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x)}}= \int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x+81/64-81/64)}}dx$
$\\= \int \frac{1}{\sqrt{-4[(x-9/8)^2-(9/8)^2]}}dx\\ =\frac{1}{2}\int \frac{1}{\sqrt{-(x-9/8)^2+(9/8)^2}}dx\\ =\frac{1}{2}[\sin^{-1}(\frac{x-9/8}{9/8})]+C\\ =\frac{1}{2}\sin^{-1}(\frac{8x-9}{9})+C$

The correct option is (B)


Also, read

Topics covered in Chapter 1 Integrals: Exercise 7.4

In this section of the chapter, we will learn about some important formulas of integrals mentioned below and apply them for integrating many other related standard integrals.

(1) $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+\mathrm{C}$

(2) $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+\mathrm{C}$

(3) $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+\mathrm{C}$

(4) $\int \frac{d x}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+\mathrm{C}$

(5) $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+\mathrm{C}$

(6) $\int \frac{d x}{\sqrt{x^2+a^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+\mathrm{C}$

Also, read,

NCERT Solutions Subject Wise

These links will lead students to the NCERT textbook solutions of other subjects, offering them a chance to review and learn concepts thoroughly.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Subject-Wise NCERT Exemplar Solutions

Tap into the links below to access step-by-step NCERT exemplar solutions of other subjects.

Frequently Asked Questions (FAQs)

Q: Which areas are focusses in this chapter ?
A:

Topics like finding Integration, area under simple curve etc. are discussed in this chapter in detail. The NCERT syllabus of integration is important for board exam as well as JEE Main exam.

Q: What is the role of limits put on the integrals ?
A:

Limit basically represents the range in which the domain of the given function lies. 

Q: Is this exercise Helpful for the examination ?
A:

Yes, questions which involve finding an area under a simple curve are important for this exercise. 

Q: Which portions are most important in this chapter for examination?
A:

Topics which include finding the area under a simple curve, integration by parts etc. are important for the exam. 

Q: Mention two different types of integrals in Maths ?
A:

Two types of Integrals include Definite and Indefinite Integrals. 

Q: How many total questions are there in chapter 7 exercise 7.4 ?
A:

There are 25 questions in this chapter 7 exercise 7.4. For more questions NCERT exemplar questions can be used.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the