Careers360 Logo
NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

Edited By Ramraj Saini | Updated on Dec 03, 2023 09:52 PM IST | #CBSE Class 12th

NCERT Solutions For Class 12 Maths Chapter 7 Exercise 7.4

NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 Integrals are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In NCERT solutions for Class 12 Maths chapter 7 exercise 7.4, logarithmic functions, parabolic functions etc. are discussed in detail. These concepts are going to help in subsequent Class 12 chapters also. Exercise 7.4 Class 12 Maths is an extension of the earlier exercises with a slightly more difficulty level. NCERT solutions for Class 12 Maths chapter 7 exercise 7.4 provided below are of good quality prepared by subject matter experts. Questions from this NCERT book exercise can be solved by students to increase their speed with accuracy in Integrals. Since speed is also a parameter in scoring well in exams like JEE Main.

12th class Maths exercise 7.4 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

VMC VIQ Scholarship Test

Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.

Pearson | PTE

Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer! Trusted by 3,500+ universities globally

Access NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.4

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.4

Question:1 Integrate the functions \frac{3x^ 2 }{x^6 + 1 }

Answer:

The given integral can be calculated as follows

Let x^3 = t
, therefore, 3x^2 dx =dt

\Rightarrow \int\frac{3x^2}{x^6+1}=\int \frac{dt}{t^2+1}

\\=\tan^{-1} t +C\\ =tan^{-1}(x^3)+C

Question:2 Integrate the functions \frac{1}{\sqrt { 1+ 4 x^2 }}

Answer:

\frac{1}{\sqrt { 1+ 4 x^2 }}
let suppose 2x = t
therefore 2dx = dt

\int \frac{1}{\sqrt{1+4x^2}} =\frac{1}{2}\int \frac{dt}{1+t^2}
\\=\frac{1}{2}[\log\left | t+\sqrt{1+t^2} \right |]+C\\ =\frac{1}{2}\log\left | 2x+\sqrt{4x^2+1} \right |+C .................using formula \int\frac{1}{\sqrt{x^2+a^2}}dt = \log\left | x+\sqrt{x^2+a^2} \right |

Question:3 Integrate the functions \frac{1}{\sqrt { ( 2- x)^2+ 1 }}

Answer:

\frac{1}{\sqrt { ( 2- x)^2+ 1 }}

let suppose 2-x =t
then, -dx =dt
\Rightarrow \int\frac{1}{\sqrt{(2-x)^2+1}}dx = -\int \frac{1}{\sqrt{t^2+1}}dt

using the identity

\int \frac{1}{\sqrt{x^2+1}}dt=log\left | x+\sqrt{x^2+1} \right |

\\= -\log\left | t+\sqrt{t^2+1} \right |+C\\ =-\log\left | 2-x+\sqrt{(2-x)^2+1} \right |+C\\ =\log \left | \frac{1}{(2-x)+\sqrt{x^2-4x+5}} \right |+C

Question:4 Integrate the functions \frac{1}{\sqrt {9 - 25 x^2 }}

Answer:

\frac{1}{\sqrt {9 - 25 x^2 }}
Let assume 5x =t,
then 5dx = dt

\Rightarrow \int \frac{1}{\sqrt{9-25x^2}}=\frac{1}{5}\int \frac{1}{\sqrt{9-t^2}}dt
\\=\frac{1}{5}\int \frac{1}{\sqrt{3^2-t^2}}dt\\ =\frac{1}{5}\sin^{-1}(\frac{t}{3})+C\\ =\frac{1}{5}\sin^{-1}(\frac{5x}{3})+C

The above result is obtained using the identity

\\\int \frac{1}{\sqrt{a^2-x^2}}dt\\ =\frac{1}{a}sin^{-1}\frac{x}{a}

Question:5 Integrate the functions \frac{3x }{1+ 2 x ^ 4 }

Answer:

\frac{3x }{1+ 2 x ^ 4 }


Let {\sqrt{2}}x^2 = t
\therefore 2\sqrt{2}xdx =dt

The integration can be done as follows

\Rightarrow \int \frac{3x}{1+2x^4}= \frac{3}{2\sqrt{2}}\int \frac{dt}{1+t^2}
\\= \frac{3}{2\sqrt{2}}[\tan^{-1}t]+C\\ =\frac{3}{2\sqrt{2}}[\tan^{-1}(\sqrt{2}x^2)]+C

Question:6 Integrate the functions \frac{x ^ 2 }{1- x ^ 6 }

Answer:

\frac{x ^ 2 }{1- x ^ 6 }

let x^3 =t
then 3x^2dx =dt

using the special identities we can simplify the integral as follows

\int \frac{x^2}{1-x^6}dx =\frac{1}{3}\int \frac{dt}{1-t^2}
=\frac{1}{3}[\frac{1}{2}\log\left | \frac{1+t}{1-t} \right |]+C\\ =\frac{1}{6}\log\left | \frac{1+x^3}{1-x^3} \right |+C

Question:7 Integrate the functions \frac{x-1 }{\sqrt { x^2 -1 }}

Answer:


We can write above eq as
\frac{x-1 }{\sqrt { x^2 -1 }} =\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx ............................................(i)

for \int \frac{x}{\sqrt{x^2-1}}dx let x^2-1 = t \Rightarrow 2xdx =dt

\therefore \int \frac{x}{\sqrt{x^2-1}}dx=\frac{1}{2}\int \frac{dt}{\sqrt{t}}
\\=\frac{1}{2}\int t^{1/2}dt\\ =\frac{1}{2}[2t^{1/2}]\\ =\sqrt{t}\\ =\sqrt{x^2-1}
Now, by using eq (i)
=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx
\\=\sqrt{x^2-1}-\int \frac{1}{\sqrt{x^2}-1}dx\\ =\sqrt{x^2-1}-\log\left | x+\sqrt{x^2-1} \right |+C

Question:8 Integrate the functions \frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}

Answer:

The integration can be down as follows

\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}
let x^3 = t \Rightarrow 3x^2dx =dt

\therefore \frac{x^2}{\sqrt{x^6+a^6}}=\frac{1}{3}\int \frac{dt}{\sqrt{t^2+(a^3)^2}}
\\=\frac{1}{3}\log\left | t+\sqrt{t^2+a^6} \right |+C\\ =\frac{1}{3}\log\left | x^3+\sqrt{x^6+a^6} \right |+C ........................using \int \frac{dx}{\sqrt{x^2+a^2}} = \log\left | x+\sqrt{x^2+a^2} \right |

Question:9 Integrate the functions \frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x+ 4 }}

Answer:

The integral can be evaluated as follows

\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x + 4 }}
let \tan x =t \Rightarrow sec^2x dx =dt

\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}
\\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C

Question:10 Integrate the functions \frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}

Answer:

\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}
the above equation can be also written as,
=\int\frac{1}{\sqrt{(1+x)^2+1^2}}dx
let 1+x = t
then dx = dt
therefore,

\\=\int\frac{1}{\sqrt{t^2+1^2}}dx\\ =\log\left | t+\sqrt{t^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(1+x)^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(x^2+2x+2} \right |+C

Question:11 Integrate the functions \frac{1}{9 x ^2 + 6x + 5 }

Answer:

\frac{1}{9 x ^2 + 6x + 5 }
this denominator can be written as
9x^2+6x+5=9[x^2+\frac{2}{3}x+\frac{5}{9}]\\=9[(x+\frac{1}{3})^2+(\frac{2}{3})^2] Now,
\frac{1}{9}\int \frac{1}{(x+\frac{1}{3})^2+(\frac{2}{3})^2}dx =\frac{1}{9} [\frac{3}{2}\tan^{-1}(\frac{(x+1/3)}{2/3})] +C\\=\frac{1}{6} \tan^{-1}(\frac{3x+1}{2})] +C
......................................by using the form (\int \frac{1}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a}))

Question:12 Integrate the functions \frac{1}{\sqrt{ 7-6x - x ^ 2 }}

Answer:

the denominator can be also written as,
7-6x-x^2=16-(x^2+6x+9)
=4^2-(x+3)^2

therefore

\int \frac{1}{\sqrt{7-6x-x^2}}dx=\int \frac{1}{\sqrt{4^2-(x+3)^2}}dx
Let x+3 = t
then dx =dt

\Rightarrow \int \frac{1}{\sqrt{4^2-(x+3)^2}}dx=\int \frac{1}{\sqrt{4^2-t^2}}dt ......................................using formula \int \frac{1}{\sqrt{a^2-x^2}}=\sin^{-1}(\frac{x}{a})
\\= sin^{-1}(\frac{t}{4})+C\\ =\sin^{-1}(\frac{x+3}{4})+C

Question:13 Integrate the functions \frac{1}{\sqrt { ( x-1)( x-2 )}}

Answer:

(x-1)(x-2) can be also written as
= x^2-3x+2
= (x-\frac{3}{2})^2-(\frac{1}{2})^2

therefore

\int \frac{1}{\sqrt{(x-1)(x-2)}}dx= \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx
let suppose
x-3/2 = t \Rightarrow dx =dt
Now,

\Rightarrow \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx = \int \frac{1}{\sqrt{t^2-(\frac{1}{2})^2}}dt .............by using formula \int \frac{1}{\sqrt{x^2-a^2}}=\log\left | x+\sqrt{x^2+a^2} \right |
\\= \log \left | t+\sqrt{t^2-(1/2)^2} \right |+C\\ = \log \left | (x-\frac{3}{2})+\sqrt{x^2-3x+2} \right |+C

Question:14 Integrate the functions \frac{1}{\sqrt { 8 + 3 x - x ^ 2 }}

Answer:

We can write denominator as
\\=8-(x^2-3x+\frac{9}{4}-\frac{9}{4})\\ =\frac{41}{4}-(x-\frac{3}{2})^2

therefore
\Rightarrow \int \frac{1}{\sqrt{8+3x-x^2}}dx= \int \frac{1}{\sqrt{\frac{41}{4}-(x-\frac{3}{2})^2}}
let x-3/2 = t \Rightarrow dx =dt

\therefore
\\=\int \frac{1}{\sqrt{(\frac{\sqrt{41}}{2})^2-t^2}}dt\\ =\sin^{-1}(\frac{t}{\frac{\sqrt{41}}{2}})+C\\ =\sin^{-1}(\frac{2x-3}{\sqrt{41}})+C

Question:15 Integrate the functions \frac{1}{\sqrt {(x-a)( x-b )}}

Answer:

(x-a)(x-b) can be written as x^2-(a+b)x+ab
\\x^2-(a+b)x+ab+\frac{(a+b)^2}{4}-\frac{(a+b)^2}{4}\\ (x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}

\Rightarrow \int\frac{1}{\sqrt{(x-a)(x-b)}}dx=\int \frac{1}{\sqrt{(x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}}}dx
let
x-\frac{(a+b)}{2}=t \Rightarrow dx =dt
So,
\\=\int \frac{1}{\sqrt{t^2-(\frac{a-b}{2})^2}}dt\\ =\log \left | t+\sqrt{t^2-(\frac{a-b}{2})^2} \right |+C\\ =\log \left | x-(\frac{a+b}{2})+\sqrt{(x-a)(x-b)} \right |+C

Question:16 Integrate the functions \frac{4x+1 }{\sqrt {2x ^ 2 + x -3 }}

Answer:

let
\\4x+1 = A\frac{d}{dx}(2x^2+x-3)+B\\ 4x+1=A(4x+1)+B\\ 4x+1=4Ax+A+B

By equating the coefficient of x and constant term on each side, we get
A = 1 and B=0

Let (2x^2+x-3) = t\Rightarrow (4x+1)dx =dt

\therefore \int \frac{4x+1}{\sqrt{2x^2+x-3}}dx= \int\frac{1}{\sqrt{t}}dt
\\= 2\sqrt{t}+C\\ =2\sqrt{2x^2+x-3}+C

Question:17 Integrate the functions \frac{x+ 2 }{\sqrt { x ^2 -1 }}

Answer:

let x+2 =A\frac{d}{dx}(x^2-1)+B=A(2x)+B
By comparing the coefficients and constant term on both sides, we get;

A=1/2 and B=2
then x+2 = \frac{1}{2}(2x)+2

\int \frac{x+2}{\sqrt{x^2-1}}dx =\int\frac{1/2(2x)+2}{x^2-1}dx
\\=\frac{1}{2}\int\frac{(2x)}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx\\ =\frac{1}{2}[2\sqrt{x^2-1}]+2\log\left | x+\sqrt{x^2-1} \right |+C\\ =\sqrt{x^2-1}+2\log\left | x+\sqrt{x^2-1} \right |+C

Question:18 Integrate the functions \frac{5x -2 }{1+ 2x +3x^2 }

Answer:

let
\\5x+2 = A\frac{d}{dx}(1+2x+3x^2)+B\\ 5x+2= A(2+6x)+B = 2A+B+6Ax
By comparing the coefficients and constants we get the value of A and B

A = 5/6 and B = -11/3

NOW,
I = \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}
I = I_{1}-\frac{11}{3}I_{2} ...........................(i)

put 3x^2+2x+1 =t \Rightarrow (6x+2)dx =dt
Thus
I_{1}=\frac{5}{6}\int \frac{dt}{t} =\frac{5}{6}\log t =\frac{5}{6}\log (3x^2+2x+1)+c1
I_{2}= \int \frac{dx}{3x^2+2x+1} = \frac{1}{3}\int\frac{dx}{(x+1/3)^2+(\sqrt{2}/3)^2}
\\=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt{2}})+c2

\therefore I = I_1+I_2
I = \frac{5}{6}\log(3x^2+2x+1)-\frac{11}{3}\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt2})+C

Question:19 Integrate the functions \frac{6x + 7 }{\sqrt {( x-5 )( x-4)}}

Answer:

let
6x+7 = A\frac{d}{dx}(x^2-9x+20)+B =A(2x-9)+B
By comparing the coefficients and constants on both sides, we get
A =3 and B =34

I =\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx = \int \frac{3(2x+9)}{\sqrt{x^2-9x+20}}dx+34\int\frac{dx}{\sqrt{x^2-9x+20}} I = I_1+I_2 ....................................(i)

Considering I_1

I_1 =\int \frac{2x-9}{\sqrt{x^2-9x+20}}dx let x^2-9x+20 = t \Rightarrow (2x-9)dx =dt

I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{x^2-9x+20}

Now consider I_2

I_2=\int \frac{dx}{\sqrt{x^2-9x+20}}
here the denominator can be also written as
Dr = (x-\frac{9}{2})^2-(\frac{1}{2})^2

\therefore I_2 = \int \frac{dx}{\sqrt{(x-\frac{9}{2})^2-(\frac{1}{2})^2}}
\\= \log\left | (x-\frac{9}{2})^2+\sqrt{x^2-9x+20} \right |

Now put the values of I_1 and I_2 in eq (i)

\\I = 3I_1+34I_2\\ I=6\sqrt{x^2-9x+20}+34\log\left | (x-\frac{9}{2})+\sqrt{x^2-9x+20} \right |+C

Question:20 Integrate the functions \frac{x +2 }{\sqrt { 4x - x ^ 2 }}

Answer:

let
x+2 = A\frac{d}{dx}(4x-x^2)+B = A(4-2x)+B
By equating the coefficients and constant term on both sides we get

A = -1/2 and B = 4

(x+2) = -1/2(4-2x)+4

\\\therefore \int \frac{x+2}{\sqrt{4x-x^2}}dx = -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}\\ \ I =\frac{-1}{2}I_1+4I_2 ....................(i)

Considering I_1
\int \frac{4-2x}{\sqrt{4x-x^2}}dx
let 4x-x^2 =t \Rightarrow (4-2x)dx =dt
I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{4x-x^2}
now, I_2

I_2 =\int \frac{dx}{\sqrt{4x-x^2}} = \int \frac{dx}{\sqrt{2^2-(x-2)^2}}
=\sin^{-1}(\frac{x-2}{2})

put the value of I_1 and I_2

I =-\sqrt{4x-x^2}+4\sin^{-1}(\frac{x-2}{2})+C

Question:21 Integrate the functions \frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}

Answer:

\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}
\int \frac{x+2}{\sqrt{x^2+2x+3}}dx = \frac{1}{2}\int \frac{2(x+2)}{\sqrt{x^2+2x+3}}dx
\\= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\frac{1}{2}\int \frac{2}{\sqrt{x^2+2x+3}}dx\\ =\frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\int \frac{1}{\sqrt{x^2+2x+3}}dx\\ I=\frac{1}{2}I_1+I_2 ...........(i)

take I_1

\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx
let x^2+2x+3 = t \Rightarrow (2x+2)dx =dt

I_1=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+2x+3}
considering I_2

= \int \frac{dx}{\sqrt{x^2+2x+3}}= \int \frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}
= \log \left | (x+1)+\sqrt{x^2+2x+3} \right |
putting the values in equation (i)

I=\sqrt{x^2+2x+3} +\log \left | (x+1)+\sqrt{x^2+2x+3} \right |+C

Question:22 Integrate the functions \frac{x + 3 }{x ^ 2 - 2x - 5 }

Answer:

Let (x+3) =A\frac{d}{dx}(x^2-2x+5)+B= A(2x-2)+B

By comparing the coefficients and constant term, we get;

A = 1/2 and B =4

\\\int \frac{x+3}{x^2-2x+5}dx = \frac{1}{2}\int \frac{2x-2}{x^2-2x+5}dx +4\int \frac{1}{x^2-2x+5}dx\\ I=I_1+I_2 ..............(i)

\\\Rightarrow I_1\\ =\int \frac{2x-2}{x^2-2x-5}dx
put x^2-2x-5 =t \Rightarrow (2x-2)dx =dt

=\int \frac{dt}{t} = \log t = \log (x^2-2x-5)

\\\Rightarrow I_2\\ = \int \frac{1}{x^2-2x-5}dx\\ =\int \frac{1}{(x-1)^2+(\sqrt{6})^2}dx\\ =\frac{1}{2\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})

I=I_1+I_2

=\frac{1}{2}\log\left | x^2-2x-5 \right |+\frac{2}{\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})+C

Question:23 Integrate the functions \frac{5x + 3 }{\sqrt { x^2 + 4x +10 }}

Answer:

let
5x+3 = A\frac{d}{dx}(x^2+4x+10)+B = A(2x+4)+B
On comparing, we get

A =5/2 and B = -7

\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx = \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+10}}dx I = 5/2I_1-7I_2 ...........................................(i)

\\\Rightarrow I_1\\ \int \frac{2x+4}{\sqrt{x^2+4x+10}}dx
put
x^2+4x+10= t \Rightarrow (2x+4)dx = dt

=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+4x+10}

\\\Rightarrow I_2\\ =\int \frac{1}{\sqrt{x^2+4x+10}}dx \\ =\int \frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}dx\\ =\log \left | (x+2)+\sqrt{x^2+4x+10} \right |

I = 5\sqrt{x^2+4x+10}-7\log\left | (x+2)+\sqrt{x^2+4x+10} \right |+C

Question:24 Choose the correct answer

\int \frac{dx }{x^2 + 2x +2 }\: \: equals

(A) x \tan^{-1} (x + 1) + C\\\\ (B) \tan^{-1} (x + 1) + C\\\\ (C) (x + 1) \tan^{-1}x + C \\\\ (D) \tan^{-1}x + C

Answer:

The correct option is (B)

\int \frac{dx }{x^2 + 2x +2 }\: \: equals
the denominator can be written as (x+1)^2+1
now, \int \frac{dx}{(x+1)^2+1} = tan^{-1}(x+1)+C

Question:25 Choose the correct answer \int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals

A) \frac{1}{9} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\B ) \frac{1}{2} \sin ^{-1}\left ( \frac{8x-9}{9} \right )+ C \\\\ C) \frac{1}{3} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\ D ) \frac{1}{2} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C

Answer:

The following integration can be done as

\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals
\int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x)}}= \int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x+81/64-81/64)}}dx
\\= \int \frac{1}{\sqrt{-4[(x-9/8)^2-(9/8)^2]}}dx\\ =\frac{1}{2}\int \frac{1}{\sqrt{-(x-9/8)^2+(9/8)^2}}dx\\ =\frac{1}{2}[\sin^{-1}(\frac{x-9/8}{9/8})]+C\\ =\frac{1}{2}\sin^{-1}(\frac{8x-9}{9})+C

The correct option is (B)



More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.4

The NCERT Class 12 Maths chapter Integrals is a good source to cover integrals from basics to advanced level. Exercise 7.4 Class 12 Maths can help students to get an idea of types of questions asked in the examination. Overall NCERT solutions for Class 12 Maths chapter 7 exercise 7.4 is a good source to practice before the exam.

Also Read| Integrals Class 12 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.4

  • It is advised to students to practice Exercise 7.4 Class 12 Maths to get good marks in examinations.
  • These Class 12 Maths chapter 7 exercise 7.4 questions can be asked directly in the Board exams as well as competitive exams.
  • NCERT solutions for Class 12 Maths chapter 7 exercise 7.4 are highly recommended to students.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 7.4 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 7.4, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 7.4 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 7.4 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 7.4 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 7.4 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.
JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

Also see-

NCERT Solutions Subject Wise

Subject Wise NCERT Exemplar Solutions

Happy learning!!!

Frequently Asked Questions (FAQs)

1. Which areas are focusses in this chapter ?

Topics like finding Integration, area under simple curve etc. are discussed in this chapter in detail. The NCERT syllabus of integration is important for board exam as well as JEE Main exam.

2. What is the role of limits put on the integrals ?

Limit basically represents the range in which the domain of the given function lies. 

3. Is this exercise Helpful for the examination ?

Yes, questions which involve finding an area under a simple curve are important for this exercise. 

4. Which portions are most important in this chapter for examination?

Topics which include finding the area under a simple curve, integration by parts etc. are important for the exam. 

5. Mention two different types of integrals in Maths ?

Two types of Integrals include Definite and Indefinite Integrals. 

6. How many total questions are there in chapter 7 exercise 7.4 ?

There are 25 questions in this chapter 7 exercise 7.4. For more questions NCERT exemplar questions can be used.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

Hello student,

If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:

  • No school admission needed! Register directly with CBSE. (But if you want to attend the school then you can take admission in any private school of your choice but it will be waste of money)
  • You have to appear for the 2025 12th board exams.
  • Registration for class 12th board exam starts around September 2024 (check CBSE website for exact dates).
  • Aim to register before late October to avoid extra fees.
  • Schools might not offer classes for private students, so focus on self-study or coaching.

Remember , these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.

I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.

Good luck with your studies!

Hello Aspirant , Hope your doing great . As per your query , your eligible for JEE mains in the year of 2025 , Every candidate can appear for the JEE Main exam 6 times over three consecutive years . The JEE Main exam is held two times every year, in January and April.

Hi there,

Hope you are doing fine

Yes you are certainly eligible for giving the jee exam in the year 2025. You must pass the maths exam with at least 75% criteria as required by jee and provide the marksheet and the passing certificate while registering for the exam.


Pursuing maths as an additional subject while taking biology as your main subject does not offer any hindrance in you appearing for the jee examination. It is indeed an privilege to pursue both maths and biology as the subjects and prepare for the same.

There will be no issue in filling the form while registering for the exam as it will only require your basic details and marksheet which you can provide by attaching the marksheet of maths also. Also, a detailed roadmap is also available on the official websites on how to fill the registration form. So you can fill the form easily.


Hope this resolves your query.

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top