An integral is like life — you don’t see the big picture until you’ve summed up all the little moments. In mathematical terms, integrals are a tool to find the area under the curves, sum up quantities over an interval, and calculate total distance when speed changes constantly. The NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 Integrals help us understand some particular formulas of integrals and their applications. These formulas are essential, and we can apply them directly to evaluate other integrals.
This Story also Contains
These 12th-class Maths exercise 7.4 by NCERT are crafted with precision by experienced Careers360 faculty to ensure a comprehensive grasp of each concept discussed before the exercise.
Question1: Integrate the function $\frac{3x^ 2 }{x^6 + 1 }$
Answer:
The given integral can be calculated as follows
Let $x^3 = t$
, therefore, $3x^2 dx =dt$
$\Rightarrow \int\frac{3x^2}{x^6+1}=\int \frac{dt}{t^2+1}$
$\\=\tan^{-1} t +C\\ =tan^{-1}(x^3)+C$
Question 2: Integrate the function $\frac{1}{\sqrt { 1+ 4 x^2 }}$
Answer:
$\frac{1}{\sqrt { 1+ 4 x^2 }}$
let suppose 2x = t
therefore 2dx = dt
$\int \frac{1}{\sqrt{1+4x^2}} =\frac{1}{2}\int \frac{dt}{1+t^2}$
$\\=\frac{1}{2}[\log\left | t+\sqrt{1+t^2} \right |]+C\\ =\frac{1}{2}\log\left | 2x+\sqrt{4x^2+1} \right |+C$ .................using formula $\int\frac{1}{\sqrt{x^2+a^2}}dt = \log\left | x+\sqrt{x^2+a^2} \right |$
Question3: Integrate the function $\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$
Answer:
$\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$
let suppose 2-x =t
then, -dx =dt
$\Rightarrow \int\frac{1}{\sqrt{(2-x)^2+1}}dx = -\int \frac{1}{\sqrt{t^2+1}}dt$
using the identity
$\int \frac{1}{\sqrt{x^2+1}}dt=log\left | x+\sqrt{x^2+1} \right |$
$\\= -\log\left | t+\sqrt{t^2+1} \right |+C\\ =-\log\left | 2-x+\sqrt{(2-x)^2+1} \right |+C\\ =\log \left | \frac{1}{(2-x)+\sqrt{x^2-4x+5}} \right |+C$
Question4: Integrate the function $\frac{1}{\sqrt {9 - 25 x^2 }}$
Answer:
$\frac{1}{\sqrt {9 - 25 x^2 }}$
Let assume 5x =t,
then 5dx = dt
$\Rightarrow \int \frac{1}{\sqrt{9-25x^2}}=\frac{1}{5}\int \frac{1}{\sqrt{9-t^2}}dt$
$\\=\frac{1}{5}\int \frac{1}{\sqrt{3^2-t^2}}dt\\ =\frac{1}{5}\sin^{-1}(\frac{t}{3})+C\\ =\frac{1}{5}\sin^{-1}(\frac{5x}{3})+C$
The above result is obtained using the identity
$\\\int \frac{1}{\sqrt{a^2-x^2}}dt\\ =\frac{1}{a}sin^{-1}\frac{x}{a}$
Question 5: Integrate the function $\frac{3x }{1+ 2 x ^ 4 }$
Answer:
$\frac{3x }{1+ 2 x ^ 4 }$
Let ${\sqrt{2}}x^2 = t$
$\therefore$ $2\sqrt{2}xdx =dt$
The integration can be done as follows
$\Rightarrow \int \frac{3x}{1+2x^4}= \frac{3}{2\sqrt{2}}\int \frac{dt}{1+t^2}$
$\\= \frac{3}{2\sqrt{2}}[\tan^{-1}t]+C\\ =\frac{3}{2\sqrt{2}}[\tan^{-1}(\sqrt{2}x^2)]+C$
Question 6: Integrate the function $\frac{x ^ 2 }{1- x ^ 6 }$
Answer:
$\frac{x ^ 2 }{1- x ^ 6 }$
let $x^3 =t$
then $3x^2dx =dt$
Using the special identities, we can simplify the integral as follows
$\int \frac{x^2}{1-x^6}dx =\frac{1}{3}\int \frac{dt}{1-t^2}$
$=\frac{1}{3}[\frac{1}{2}\log\left | \frac{1+t}{1-t} \right |]+C\\ =\frac{1}{6}\log\left | \frac{1+x^3}{1-x^3} \right |+C$
Question 7: Integrate the function $\frac{x-1 }{\sqrt { x^2 -1 }}$
Answer:
We can write above eq as
$\frac{x-1 }{\sqrt { x^2 -1 }}$ $=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$ ............................................(i)
for $\int \frac{x}{\sqrt{x^2-1}}dx$ let $x^2-1 = t \Rightarrow 2xdx =dt$
$\therefore \int \frac{x}{\sqrt{x^2-1}}dx=\frac{1}{2}\int \frac{dt}{\sqrt{t}}$
$\\=\frac{1}{2}\int t^{1/2}dt\\ =\frac{1}{2}[2t^{1/2}]\\ =\sqrt{t}\\ =\sqrt{x^2-1}$
Now, by using eq (i)
$=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$
$\\=\sqrt{x^2-1}-\int \frac{1}{\sqrt{x^2}-1}dx\\ =\sqrt{x^2-1}-\log\left | x+\sqrt{x^2-1} \right |+C$
Question 8: Integrate the functions $\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
Answer:
The integration can be down as follows
$\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
let $x^3 = t \Rightarrow 3x^2dx =dt$
$\therefore \frac{x^2}{\sqrt{x^6+a^6}}=\frac{1}{3}\int \frac{dt}{\sqrt{t^2+(a^3)^2}}$
$\\=\frac{1}{3}\log\left | t+\sqrt{t^2+a^6} \right |+C\\ =\frac{1}{3}\log\left | x^3+\sqrt{x^6+a^6} \right |+C$ ........................using $\int \frac{dx}{\sqrt{x^2+a^2}} = \log\left | x+\sqrt{x^2+a^2} \right |$
Question 9: Integrate the function $\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x+ 4 }}$
Answer:
The integral can be evaluated as follows
$\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x + 4 }}$
let $\tan x =t \Rightarrow sec^2x dx =dt$
$\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}$
$\\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C$
Question 10: Integrate the function $\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
Answer:
$\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
the above equation can be also written as,
$=\int\frac{1}{\sqrt{(1+x)^2+1^2}}dx$
let 1+x = t
then dx = dt
therefore,
$\\=\int\frac{1}{\sqrt{t^2+1^2}}dx\\ =\log\left | t+\sqrt{t^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(1+x)^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(x^2+2x+2} \right |+C$
Question 11: Integrate the function $\frac{1}{9 x ^2 + 6x + 5 }$
Answer:
$\frac{1}{9 x ^2 + 6x + 5 }$
this denominator can be written as
$9x^2+6x+5=9[x^2+\frac{2}{3}x+\frac{5}{9}]\\=9[(x+\frac{1}{3})^2+(\frac{2}{3})^2]$ Now,
$\frac{1}{9}\int \frac{1}{(x+\frac{1}{3})^2+(\frac{2}{3})^2}dx =\frac{1}{9} [\frac{3}{2}\tan^{-1}(\frac{(x+1/3)}{2/3})] +C\\=\frac{1}{6} \tan^{-1}(\frac{3x+1}{2})] +C$
......................................by using the form $(\int \frac{1}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a}))$
Question 12: Integrate the function $\frac{1}{\sqrt{ 7-6x - x ^ 2 }}$
Answer:
The denominator can also be written as,
$7-6x-x^2=16-(x^2+6x+9)$
$=4^2-(x+3)^2$
therefore
$\int \frac{1}{\sqrt{7-6x-x^2}}dx=\int \frac{1}{\sqrt{4^2-(x+3)^2}}dx$
Let x+3 = t
then dx =dt
$\Rightarrow \int \frac{1}{\sqrt{4^2-(x+3)^2}}dx=\int \frac{1}{\sqrt{4^2-t^2}}dt$ ......................................using formula $\int \frac{1}{\sqrt{a^2-x^2}}=\sin^{-1}(\frac{x}{a})$
$\\= sin^{-1}(\frac{t}{4})+C\\ =\sin^{-1}(\frac{x+3}{4})+C$
Question 13: Integrate the function $\frac{1}{\sqrt { ( x-1)( x-2 )}}$
Answer:
(x-1)(x-2) can be also written as
= $x^2-3x+2$
= $(x-\frac{3}{2})^2-(\frac{1}{2})^2$
therefore
$\int \frac{1}{\sqrt{(x-1)(x-2)}}dx= \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx$
let suppose
$x-3/2 = t \Rightarrow dx =dt$
Now,
$\Rightarrow \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx = \int \frac{1}{\sqrt{t^2-(\frac{1}{2})^2}}dt$ .............by using formula $\int \frac{1}{\sqrt{x^2-a^2}}=\log\left | x+\sqrt{x^2+a^2} \right |$
$\\= \log \left | t+\sqrt{t^2-(1/2)^2} \right |+C\\ = \log \left | (x-\frac{3}{2})+\sqrt{x^2-3x+2} \right |+C$
Question 14: Integrate the function $\frac{1}{\sqrt { 8 + 3 x - x ^ 2 }}$
Answer:
We can write denominator as
$\\=8-(x^2-3x+\frac{9}{4}-\frac{9}{4})\\ =\frac{41}{4}-(x-\frac{3}{2})^2$
therefore
$\Rightarrow \int \frac{1}{\sqrt{8+3x-x^2}}dx= \int \frac{1}{\sqrt{\frac{41}{4}-(x-\frac{3}{2})^2}}$
let $x-3/2 = t \Rightarrow dx =dt$
$\therefore$
$\\=\int \frac{1}{\sqrt{(\frac{\sqrt{41}}{2})^2-t^2}}dt\\ =\sin^{-1}(\frac{t}{\frac{\sqrt{41}}{2}})+C\\ =\sin^{-1}(\frac{2x-3}{\sqrt{41}})+C$
Question15: Integrate the function $\frac{1}{\sqrt {(x-a)( x-b )}}$
Answer:
(x-a)(x-b) can be written as $x^2-(a+b)x+ab$
$\\x^2-(a+b)x+ab+\frac{(a+b)^2}{4}-\frac{(a+b)^2}{4}\\ (x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}$
$\Rightarrow \int\frac{1}{\sqrt{(x-a)(x-b)}}dx=\int \frac{1}{\sqrt{(x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}}}dx$
let
$x-\frac{(a+b)}{2}=t \Rightarrow dx =dt$
So,
$\\=\int \frac{1}{\sqrt{t^2-(\frac{a-b}{2})^2}}dt\\ =\log \left | t+\sqrt{t^2-(\frac{a-b}{2})^2} \right |+C\\ =\log \left | x-(\frac{a+b}{2})+\sqrt{(x-a)(x-b)} \right |+C$
Question 16: Integrate the function $\frac{4x+1 }{\sqrt {2x ^ 2 + x -3 }}$
Answer:
let
$\\4x+1 = A\frac{d}{dx}(2x^2+x-3)+B\\ 4x+1=A(4x+1)+B\\ 4x+1=4Ax+A+B$
By equating the coefficient of x and constant term on each side, we get
A = 1 and B=0
Let $(2x^2+x-3) = t\Rightarrow (4x+1)dx =dt$
$\therefore \int \frac{4x+1}{\sqrt{2x^2+x-3}}dx= \int\frac{1}{\sqrt{t}}dt$
$\\= 2\sqrt{t}+C\\ =2\sqrt{2x^2+x-3}+C$
Question 17: Integrate the function $\frac{x+ 2 }{\sqrt { x ^2 -1 }}$
Answer:
let $x+2 =A\frac{d}{dx}(x^2-1)+B=A(2x)+B$
By comparing the coefficients and constant term on both sides, we get;
A=1/2 and B=2
then $x+2 = \frac{1}{2}(2x)+2$
$\int \frac{x+2}{\sqrt{x^2-1}}dx =\int\frac{1/2(2x)+2}{x^2-1}dx$
$\\=\frac{1}{2}\int\frac{(2x)}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx\\ =\frac{1}{2}[2\sqrt{x^2-1}]+2\log\left | x+\sqrt{x^2-1} \right |+C\\ =\sqrt{x^2-1}+2\log\left | x+\sqrt{x^2-1} \right |+C$
Question 18: Integrate the function $\frac{5x -2 }{1+ 2x +3x^2 }$
Answer:
let
$\\5x+2 = A\frac{d}{dx}(1+2x+3x^2)+B\\ 5x+2= A(2+6x)+B = 2A+B+6Ax$
By comparing the coefficients and constants we get the value of A and B
A = $5/6$ and B = $-11/3$
NOW,
$I = \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}$
$I = I_{1}-\frac{11}{3}I_{2}$ ...........................(i)
put $3x^2+2x+1 =t \Rightarrow (6x+2)dx =dt$
Thus
$I_{1}=\frac{5}{6}\int \frac{dt}{t} =\frac{5}{6}\log t =\frac{5}{6}\log (3x^2+2x+1)+c1$
$I_{2}= \int \frac{dx}{3x^2+2x+1} = \frac{1}{3}\int\frac{dx}{(x+1/3)^2+(\sqrt{2}/3)^2}$
$\\=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt{2}})+c2$
$\therefore I = I_1+I_2$
$I = \frac{5}{6}\log(3x^2+2x+1)-\frac{11}{3}\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt2})+C$
Question 19: Integrate the function $\frac{6x + 7 }{\sqrt {( x-5 )( x-4)}}$
Answer:
let
$6x+7 = A\frac{d}{dx}(x^2-9x+20)+B =A(2x-9)+B$
By comparing the coefficients and constants on both sides, we get
A =3 and B =34
$I =\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx = \int \frac{3(2x+9)}{\sqrt{x^2-9x+20}}dx+34\int\frac{dx}{\sqrt{x^2-9x+20}}$ $I = I_1+I_2$ ....................................(i)
Considering $I_1$
$I_1 =\int \frac{2x-9}{\sqrt{x^2-9x+20}}dx$ let $x^2-9x+20 = t \Rightarrow (2x-9)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{x^2-9x+20}$
Now consider $I_2$
$I_2=\int \frac{dx}{\sqrt{x^2-9x+20}}$
here the denominator can be also written as
Dr = $(x-\frac{9}{2})^2-(\frac{1}{2})^2$
$\therefore I_2 = \int \frac{dx}{\sqrt{(x-\frac{9}{2})^2-(\frac{1}{2})^2}}$
$\\= \log\left | (x-\frac{9}{2})^2+\sqrt{x^2-9x+20} \right |$
Now put the values of $I_1$ and $I_2$ in eq (i)
$\\I = 3I_1+34I_2\\ I=6\sqrt{x^2-9x+20}+34\log\left | (x-\frac{9}{2})+\sqrt{x^2-9x+20} \right |+C$
Question 20: Integrate the function $\frac{x +2 }{\sqrt { 4x - x ^ 2 }}$
Answer:
let
$x+2 = A\frac{d}{dx}(4x-x^2)+B = A(4-2x)+B$
By equating the coefficients and constant term on both sides we get
A = -1/2 and B = 4
(x+2) = -1/2(4-2x)+4
$\\\therefore \int \frac{x+2}{\sqrt{4x-x^2}}dx = -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}\\ \ I =\frac{-1}{2}I_1+4I_2$ ....................(i)
Considering $I_1$
$\int \frac{4-2x}{\sqrt{4x-x^2}}dx$
let $4x-x^2 =t \Rightarrow (4-2x)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{4x-x^2}$
now, $I_2$
$I_2 =\int \frac{dx}{\sqrt{4x-x^2}} = \int \frac{dx}{\sqrt{2^2-(x-2)^2}}$
$=\sin^{-1}(\frac{x-2}{2})$
put the value of $I_1$ and $I_2$
$I =-\sqrt{4x-x^2}+4\sin^{-1}(\frac{x-2}{2})+C$
Question 21: Integrate the function $\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
Answer:
$\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
$\int \frac{x+2}{\sqrt{x^2+2x+3}}dx = \frac{1}{2}\int \frac{2(x+2)}{\sqrt{x^2+2x+3}}dx$
$\\= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\frac{1}{2}\int \frac{2}{\sqrt{x^2+2x+3}}dx\\ =\frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\int \frac{1}{\sqrt{x^2+2x+3}}dx\\ I=\frac{1}{2}I_1+I_2$ ...........(i)
take $I_1$
$\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx$
let $x^2+2x+3 = t \Rightarrow (2x+2)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+2x+3}$
considering $I_2$
$= \int \frac{dx}{\sqrt{x^2+2x+3}}= \int \frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}$
$= \log \left | (x+1)+\sqrt{x^2+2x+3} \right |$
putting the values in equation (i)
$I=\sqrt{x^2+2x+3} +\log \left | (x+1)+\sqrt{x^2+2x+3} \right |+C$
Question 22: Integrate the function $\frac{x + 3 }{x ^ 2 - 2x - 5 }$
Answer:
Let $(x+3) =A\frac{d}{dx}(x^2-2x+5)+B= A(2x-2)+B$
By comparing the coefficients and constant term, we get;
A = 1/2 and B =4
$\\\int \frac{x+3}{x^2-2x+5}dx = \frac{1}{2}\int \frac{2x-2}{x^2-2x+5}dx +4\int \frac{1}{x^2-2x+5}dx\\ I=I_1+I_2$ ..............(i)
$\\\Rightarrow I_1\\ =\int \frac{2x-2}{x^2-2x-5}dx$
put $x^2-2x-5 =t \Rightarrow (2x-2)dx =dt$
$=\int \frac{dt}{t} = \log t = \log (x^2-2x-5)$
$\\\Rightarrow I_2\\ = \int \frac{1}{x^2-2x-5}dx\\ =\int \frac{1}{(x-1)^2+(\sqrt{6})^2}dx\\ =\frac{1}{2\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})$
$I=I_1+I_2$
$=\frac{1}{2}\log\left | x^2-2x-5 \right |+\frac{2}{\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})+C$
Question 23: Integrate the function $\frac{5x + 3 }{\sqrt { x^2 + 4x +10 }}$
Answer:
let
$5x+3 = A\frac{d}{dx}(x^2+4x+10)+B = A(2x+4)+B$
On comparing, we get
A =5/2 and B = -7
$\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx = \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+10}}dx$ $I = 5/2I_1-7I_2$ ...........................................(i)
$\\\Rightarrow I_1\\ \int \frac{2x+4}{\sqrt{x^2+4x+10}}dx$
put
$x^2+4x+10= t \Rightarrow (2x+4)dx = dt$
$=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+4x+10}$
$\\\Rightarrow I_2\\ =\int \frac{1}{\sqrt{x^2+4x+10}}dx \\ =\int \frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}dx\\ =\log \left | (x+2)+\sqrt{x^2+4x+10} \right |$
$I = 5\sqrt{x^2+4x+10}-7\log\left | (x+2)+\sqrt{x^2+4x+10} \right |+C$
Question 24: Choose the correct answer
$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
Answer:
The correct option is (B)
$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
the denominator can be written as $(x+1)^2+1$
now, $\int \frac{dx}{(x+1)^2+1} = tan^{-1}(x+1)+C$
Question 25: Choose the correct answer $\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
Answer:
The following integration can be done as
$\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
$\int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x)}}= \int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x+81/64-81/64)}}dx$
$\\= \int \frac{1}{\sqrt{-4[(x-9/8)^2-(9/8)^2]}}dx\\ =\frac{1}{2}\int \frac{1}{\sqrt{-(x-9/8)^2+(9/8)^2}}dx\\ =\frac{1}{2}[\sin^{-1}(\frac{x-9/8}{9/8})]+C\\ =\frac{1}{2}\sin^{-1}(\frac{8x-9}{9})+C$
The correct option is (B)
Also, read
In this section of the chapter, we will learn about some important formulas of integrals mentioned below and apply them for integrating many other related standard integrals.
(1) $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+\mathrm{C}$
(2) $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+\mathrm{C}$
(3) $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+\mathrm{C}$
(4) $\int \frac{d x}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+\mathrm{C}$
(5) $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+\mathrm{C}$
(6) $\int \frac{d x}{\sqrt{x^2+a^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+\mathrm{C}$
Also, read,
These links will lead students to the NCERT textbook solutions of other subjects, offering them a chance to review and learn concepts thoroughly.
Tap into the links below to access step-by-step NCERT exemplar solutions of other subjects.
Frequently Asked Questions (FAQs)
Topics like finding Integration, area under simple curve etc. are discussed in this chapter in detail. The NCERT syllabus of integration is important for board exam as well as JEE Main exam.
Limit basically represents the range in which the domain of the given function lies.
Yes, questions which involve finding an area under a simple curve are important for this exercise.
Topics which include finding the area under a simple curve, integration by parts etc. are important for the exam.
Two types of Integrals include Definite and Indefinite Integrals.
There are 25 questions in this chapter 7 exercise 7.4. For more questions NCERT exemplar questions can be used.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters