NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 24 Apr 2025, 09:08 AM IST

An integral is like life — you don’t see the big picture until you’ve summed up all the little moments. In mathematical terms, integrals are a tool to find the area under the curves, sum up quantities over an interval, and calculate total distance when speed changes constantly. The NCERT Solutions for Exercise 7.4 Class 12 Maths Chapter 7 Integrals help us understand some particular formulas of integrals and their applications. These formulas are essential, and we can apply them directly to evaluate other integrals.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.4 Solutions: Download PDF
  2. Download PDFIntegrals Class 12 Chapter 7 Exercise 7.4
  3. Topics covered in Chapter 1 Integrals: Exercise 7.4
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

These 12th-class Maths exercise 7.4 by NCERT are crafted with precision by experienced Careers360 faculty to ensure a comprehensive grasp of each concept discussed before the exercise.

Class 12 Maths Chapter 7 Exercise 7.4 Solutions: Download PDF

Download PDFIntegrals Class 12 Chapter 7 Exercise 7.4

Question1: Integrate the function $\frac{3x^ 2 }{x^6 + 1 }$

Answer:

The given integral can be calculated as follows

Let $x^3 = t$
, therefore, $3x^2 dx =dt$

$\Rightarrow \int\frac{3x^2}{x^6+1}=\int \frac{dt}{t^2+1}$

$\\=\tan^{-1} t +C\\ =tan^{-1}(x^3)+C$

Question 2: Integrate the function $\frac{1}{\sqrt { 1+ 4 x^2 }}$

Answer:

$\frac{1}{\sqrt { 1+ 4 x^2 }}$
let suppose 2x = t
therefore 2dx = dt

$\int \frac{1}{\sqrt{1+4x^2}} =\frac{1}{2}\int \frac{dt}{1+t^2}$
$\\=\frac{1}{2}[\log\left | t+\sqrt{1+t^2} \right |]+C\\ =\frac{1}{2}\log\left | 2x+\sqrt{4x^2+1} \right |+C$ .................using formula $\int\frac{1}{\sqrt{x^2+a^2}}dt = \log\left | x+\sqrt{x^2+a^2} \right |$

Question3: Integrate the function $\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$

Answer:

$\frac{1}{\sqrt { ( 2- x)^2+ 1 }}$

let suppose 2-x =t
then, -dx =dt
$\Rightarrow \int\frac{1}{\sqrt{(2-x)^2+1}}dx = -\int \frac{1}{\sqrt{t^2+1}}dt$

using the identity

$\int \frac{1}{\sqrt{x^2+1}}dt=log\left | x+\sqrt{x^2+1} \right |$

$\\= -\log\left | t+\sqrt{t^2+1} \right |+C\\ =-\log\left | 2-x+\sqrt{(2-x)^2+1} \right |+C\\ =\log \left | \frac{1}{(2-x)+\sqrt{x^2-4x+5}} \right |+C$

Question4: Integrate the function $\frac{1}{\sqrt {9 - 25 x^2 }}$

Answer:

$\frac{1}{\sqrt {9 - 25 x^2 }}$
Let assume 5x =t,
then 5dx = dt

$\Rightarrow \int \frac{1}{\sqrt{9-25x^2}}=\frac{1}{5}\int \frac{1}{\sqrt{9-t^2}}dt$
$\\=\frac{1}{5}\int \frac{1}{\sqrt{3^2-t^2}}dt\\ =\frac{1}{5}\sin^{-1}(\frac{t}{3})+C\\ =\frac{1}{5}\sin^{-1}(\frac{5x}{3})+C$

The above result is obtained using the identity

$\\\int \frac{1}{\sqrt{a^2-x^2}}dt\\ =\frac{1}{a}sin^{-1}\frac{x}{a}$

Question 5: Integrate the function $\frac{3x }{1+ 2 x ^ 4 }$

Answer:

$\frac{3x }{1+ 2 x ^ 4 }$

Let ${\sqrt{2}}x^2 = t$
$\therefore$ $2\sqrt{2}xdx =dt$

The integration can be done as follows

$\Rightarrow \int \frac{3x}{1+2x^4}= \frac{3}{2\sqrt{2}}\int \frac{dt}{1+t^2}$
$\\= \frac{3}{2\sqrt{2}}[\tan^{-1}t]+C\\ =\frac{3}{2\sqrt{2}}[\tan^{-1}(\sqrt{2}x^2)]+C$

Question 6: Integrate the function $\frac{x ^ 2 }{1- x ^ 6 }$

Answer:

$\frac{x ^ 2 }{1- x ^ 6 }$

let $x^3 =t$
then $3x^2dx =dt$

Using the special identities, we can simplify the integral as follows

$\int \frac{x^2}{1-x^6}dx =\frac{1}{3}\int \frac{dt}{1-t^2}$
$=\frac{1}{3}[\frac{1}{2}\log\left | \frac{1+t}{1-t} \right |]+C\\ =\frac{1}{6}\log\left | \frac{1+x^3}{1-x^3} \right |+C$

Question 7: Integrate the function $\frac{x-1 }{\sqrt { x^2 -1 }}$

Answer:
We can write above eq as
$\frac{x-1 }{\sqrt { x^2 -1 }}$ $=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$ ............................................(i)

for $\int \frac{x}{\sqrt{x^2-1}}dx$ let $x^2-1 = t \Rightarrow 2xdx =dt$

$\therefore \int \frac{x}{\sqrt{x^2-1}}dx=\frac{1}{2}\int \frac{dt}{\sqrt{t}}$
$\\=\frac{1}{2}\int t^{1/2}dt\\ =\frac{1}{2}[2t^{1/2}]\\ =\sqrt{t}\\ =\sqrt{x^2-1}$
Now, by using eq (i)
$=\int \frac{x}{\sqrt{x^2-1}}dx-\int \frac{1}{\sqrt{x^2-1}}dx$
$\\=\sqrt{x^2-1}-\int \frac{1}{\sqrt{x^2}-1}dx\\ =\sqrt{x^2-1}-\log\left | x+\sqrt{x^2-1} \right |+C$

Question 8: Integrate the functions $\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$

Answer:

The integration can be down as follows

$\frac{x ^ 2 }{\sqrt { x^6 + a ^ 6 }}$
let $x^3 = t \Rightarrow 3x^2dx =dt$

$\therefore \frac{x^2}{\sqrt{x^6+a^6}}=\frac{1}{3}\int \frac{dt}{\sqrt{t^2+(a^3)^2}}$
$\\=\frac{1}{3}\log\left | t+\sqrt{t^2+a^6} \right |+C\\ =\frac{1}{3}\log\left | x^3+\sqrt{x^6+a^6} \right |+C$ ........................using $\int \frac{dx}{\sqrt{x^2+a^2}} = \log\left | x+\sqrt{x^2+a^2} \right |$

Question 9: Integrate the function $\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x+ 4 }}$

Answer:

The integral can be evaluated as follows

$\frac{\sec ^ 2 x }{\sqrt { \tan ^ 2 x + 4 }}$
let $\tan x =t \Rightarrow sec^2x dx =dt$

$\Rightarrow \int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx = \int \frac{dt}{\sqrt{t^2+2^2}}$
$\\= \log\left | t+\sqrt{t^2+4} \right |+C\\ =\log \left | \tan x+\sqrt{ tan^2x+4} \right |+C$

Question 10: Integrate the function $\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$

Answer:

$\frac{1 }{ \sqrt { x ^ 2 + 2 x + 2 }}$
the above equation can be also written as,
$=\int\frac{1}{\sqrt{(1+x)^2+1^2}}dx$
let 1+x = t
then dx = dt
therefore,

$\\=\int\frac{1}{\sqrt{t^2+1^2}}dx\\ =\log\left | t+\sqrt{t^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(1+x)^2+1} \right |+C\\ =\log\left | (1+x)+\sqrt{(x^2+2x+2} \right |+C$

Question 11: Integrate the function $\frac{1}{9 x ^2 + 6x + 5 }$

Answer:

$\frac{1}{9 x ^2 + 6x + 5 }$
this denominator can be written as
$9x^2+6x+5=9[x^2+\frac{2}{3}x+\frac{5}{9}]\\=9[(x+\frac{1}{3})^2+(\frac{2}{3})^2]$ Now,
$\frac{1}{9}\int \frac{1}{(x+\frac{1}{3})^2+(\frac{2}{3})^2}dx =\frac{1}{9} [\frac{3}{2}\tan^{-1}(\frac{(x+1/3)}{2/3})] +C\\=\frac{1}{6} \tan^{-1}(\frac{3x+1}{2})] +C$
......................................by using the form $(\int \frac{1}{x^2+a^2}=\frac{1}{a}\tan^{-1}(\frac{x}{a}))$

Question 12: Integrate the function $\frac{1}{\sqrt{ 7-6x - x ^ 2 }}$

Answer:

The denominator can also be written as,
$7-6x-x^2=16-(x^2+6x+9)$
$=4^2-(x+3)^2$

therefore

$\int \frac{1}{\sqrt{7-6x-x^2}}dx=\int \frac{1}{\sqrt{4^2-(x+3)^2}}dx$
Let x+3 = t
then dx =dt

$\Rightarrow \int \frac{1}{\sqrt{4^2-(x+3)^2}}dx=\int \frac{1}{\sqrt{4^2-t^2}}dt$ ......................................using formula $\int \frac{1}{\sqrt{a^2-x^2}}=\sin^{-1}(\frac{x}{a})$
$\\= sin^{-1}(\frac{t}{4})+C\\ =\sin^{-1}(\frac{x+3}{4})+C$

Question 13: Integrate the function $\frac{1}{\sqrt { ( x-1)( x-2 )}}$

Answer:

(x-1)(x-2) can be also written as
= $x^2-3x+2$
= $(x-\frac{3}{2})^2-(\frac{1}{2})^2$

therefore

$\int \frac{1}{\sqrt{(x-1)(x-2)}}dx= \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx$
let suppose
$x-3/2 = t \Rightarrow dx =dt$
Now,

$\Rightarrow \int \frac{1}{\sqrt{(x-\frac{3}{2})^2-(\frac{1}{2})^2}}dx = \int \frac{1}{\sqrt{t^2-(\frac{1}{2})^2}}dt$ .............by using formula $\int \frac{1}{\sqrt{x^2-a^2}}=\log\left | x+\sqrt{x^2+a^2} \right |$
$\\= \log \left | t+\sqrt{t^2-(1/2)^2} \right |+C\\ = \log \left | (x-\frac{3}{2})+\sqrt{x^2-3x+2} \right |+C$

Question 14: Integrate the function $\frac{1}{\sqrt { 8 + 3 x - x ^ 2 }}$

Answer:

We can write denominator as
$\\=8-(x^2-3x+\frac{9}{4}-\frac{9}{4})\\ =\frac{41}{4}-(x-\frac{3}{2})^2$

therefore
$\Rightarrow \int \frac{1}{\sqrt{8+3x-x^2}}dx= \int \frac{1}{\sqrt{\frac{41}{4}-(x-\frac{3}{2})^2}}$
let $x-3/2 = t \Rightarrow dx =dt$

$\therefore$
$\\=\int \frac{1}{\sqrt{(\frac{\sqrt{41}}{2})^2-t^2}}dt\\ =\sin^{-1}(\frac{t}{\frac{\sqrt{41}}{2}})+C\\ =\sin^{-1}(\frac{2x-3}{\sqrt{41}})+C$

Question15: Integrate the function $\frac{1}{\sqrt {(x-a)( x-b )}}$

Answer:

(x-a)(x-b) can be written as $x^2-(a+b)x+ab$
$\\x^2-(a+b)x+ab+\frac{(a+b)^2}{4}-\frac{(a+b)^2}{4}\\ (x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}$

$\Rightarrow \int\frac{1}{\sqrt{(x-a)(x-b)}}dx=\int \frac{1}{\sqrt{(x-\frac{(a+b)}{2}^2)^2-\frac{(a-b)^2}{4}}}dx$
let
$x-\frac{(a+b)}{2}=t \Rightarrow dx =dt$
So,
$\\=\int \frac{1}{\sqrt{t^2-(\frac{a-b}{2})^2}}dt\\ =\log \left | t+\sqrt{t^2-(\frac{a-b}{2})^2} \right |+C\\ =\log \left | x-(\frac{a+b}{2})+\sqrt{(x-a)(x-b)} \right |+C$

Question 16: Integrate the function $\frac{4x+1 }{\sqrt {2x ^ 2 + x -3 }}$

Answer:

let
$\\4x+1 = A\frac{d}{dx}(2x^2+x-3)+B\\ 4x+1=A(4x+1)+B\\ 4x+1=4Ax+A+B$

By equating the coefficient of x and constant term on each side, we get
A = 1 and B=0

Let $(2x^2+x-3) = t\Rightarrow (4x+1)dx =dt$

$\therefore \int \frac{4x+1}{\sqrt{2x^2+x-3}}dx= \int\frac{1}{\sqrt{t}}dt$
$\\= 2\sqrt{t}+C\\ =2\sqrt{2x^2+x-3}+C$

Question 17: Integrate the function $\frac{x+ 2 }{\sqrt { x ^2 -1 }}$

Answer:

let $x+2 =A\frac{d}{dx}(x^2-1)+B=A(2x)+B$
By comparing the coefficients and constant term on both sides, we get;

A=1/2 and B=2
then $x+2 = \frac{1}{2}(2x)+2$

$\int \frac{x+2}{\sqrt{x^2-1}}dx =\int\frac{1/2(2x)+2}{x^2-1}dx$
$\\=\frac{1}{2}\int\frac{(2x)}{\sqrt{x^2-1}}dx+\int \frac{2}{\sqrt{x^2-1}}dx\\ =\frac{1}{2}[2\sqrt{x^2-1}]+2\log\left | x+\sqrt{x^2-1} \right |+C\\ =\sqrt{x^2-1}+2\log\left | x+\sqrt{x^2-1} \right |+C$

Question 18: Integrate the function $\frac{5x -2 }{1+ 2x +3x^2 }$

Answer:

let
$\\5x+2 = A\frac{d}{dx}(1+2x+3x^2)+B\\ 5x+2= A(2+6x)+B = 2A+B+6Ax$
By comparing the coefficients and constants we get the value of A and B

A = $5/6$ and B = $-11/3$

NOW,
$I = \frac{5}{6}\int \frac{6x+2}{3x^2+2x+1}dx-\frac{11}{3}\int \frac{dx}{3x^2+2x+1}$
$I = I_{1}-\frac{11}{3}I_{2}$ ...........................(i)

put $3x^2+2x+1 =t \Rightarrow (6x+2)dx =dt$
Thus
$I_{1}=\frac{5}{6}\int \frac{dt}{t} =\frac{5}{6}\log t =\frac{5}{6}\log (3x^2+2x+1)+c1$
$I_{2}= \int \frac{dx}{3x^2+2x+1} = \frac{1}{3}\int\frac{dx}{(x+1/3)^2+(\sqrt{2}/3)^2}$
$\\=\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt{2}})+c2$

$\therefore I = I_1+I_2$
$I = \frac{5}{6}\log(3x^2+2x+1)-\frac{11}{3}\frac{1}{\sqrt{2}}\tan^{-1}(\frac{3x+1}{\sqrt2})+C$

Question 19: Integrate the function $\frac{6x + 7 }{\sqrt {( x-5 )( x-4)}}$

Answer:

let
$6x+7 = A\frac{d}{dx}(x^2-9x+20)+B =A(2x-9)+B$
By comparing the coefficients and constants on both sides, we get
A =3 and B =34

$I =\int \frac{6x+7}{\sqrt{x^2-9x+20}}dx = \int \frac{3(2x+9)}{\sqrt{x^2-9x+20}}dx+34\int\frac{dx}{\sqrt{x^2-9x+20}}$ $I = I_1+I_2$ ....................................(i)

Considering $I_1$

$I_1 =\int \frac{2x-9}{\sqrt{x^2-9x+20}}dx$ let $x^2-9x+20 = t \Rightarrow (2x-9)dx =dt$

$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{x^2-9x+20}$

Now consider $I_2$

$I_2=\int \frac{dx}{\sqrt{x^2-9x+20}}$
here the denominator can be also written as
Dr = $(x-\frac{9}{2})^2-(\frac{1}{2})^2$

$\therefore I_2 = \int \frac{dx}{\sqrt{(x-\frac{9}{2})^2-(\frac{1}{2})^2}}$
$\\= \log\left | (x-\frac{9}{2})^2+\sqrt{x^2-9x+20} \right |$

Now put the values of $I_1$ and $I_2$ in eq (i)

$\\I = 3I_1+34I_2\\ I=6\sqrt{x^2-9x+20}+34\log\left | (x-\frac{9}{2})+\sqrt{x^2-9x+20} \right |+C$

Question 20: Integrate the function $\frac{x +2 }{\sqrt { 4x - x ^ 2 }}$

Answer:

let
$x+2 = A\frac{d}{dx}(4x-x^2)+B = A(4-2x)+B$
By equating the coefficients and constant term on both sides we get

A = -1/2 and B = 4

(x+2) = -1/2(4-2x)+4

$\\\therefore \int \frac{x+2}{\sqrt{4x-x^2}}dx = -\frac{1}{2}\int \frac{4-2x}{\sqrt{4x-x^2}}+4\int \frac{dx}{\sqrt{4x-x^2}}\\ \ I =\frac{-1}{2}I_1+4I_2$ ....................(i)

Considering $I_1$
$\int \frac{4-2x}{\sqrt{4x-x^2}}dx$
let $4x-x^2 =t \Rightarrow (4-2x)dx =dt$
$I_1=\int \frac{dt}{\sqrt{t}} = 2\sqrt{t}=2\sqrt{4x-x^2}$
now, $I_2$

$I_2 =\int \frac{dx}{\sqrt{4x-x^2}} = \int \frac{dx}{\sqrt{2^2-(x-2)^2}}$
$=\sin^{-1}(\frac{x-2}{2})$

put the value of $I_1$ and $I_2$

$I =-\sqrt{4x-x^2}+4\sin^{-1}(\frac{x-2}{2})+C$

Question 21: Integrate the function $\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$

Answer:

$\frac{x +2 }{\sqrt { x^ 2 + 2x +3 }}$
$\int \frac{x+2}{\sqrt{x^2+2x+3}}dx = \frac{1}{2}\int \frac{2(x+2)}{\sqrt{x^2+2x+3}}dx$
$\\= \frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\frac{1}{2}\int \frac{2}{\sqrt{x^2+2x+3}}dx\\ =\frac{1}{2}\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx+\int \frac{1}{\sqrt{x^2+2x+3}}dx\\ I=\frac{1}{2}I_1+I_2$ ...........(i)

take $I_1$

$\int \frac{2x+2}{\sqrt{x^2+2x+3}}dx$
let $x^2+2x+3 = t \Rightarrow (2x+2)dx =dt$

$I_1=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+2x+3}$
considering $I_2$

$= \int \frac{dx}{\sqrt{x^2+2x+3}}= \int \frac{dx}{\sqrt{(x+1)^2+(\sqrt{2})^2}}$
$= \log \left | (x+1)+\sqrt{x^2+2x+3} \right |$
putting the values in equation (i)

$I=\sqrt{x^2+2x+3} +\log \left | (x+1)+\sqrt{x^2+2x+3} \right |+C$

Question 22: Integrate the function $\frac{x + 3 }{x ^ 2 - 2x - 5 }$

Answer:

Let $(x+3) =A\frac{d}{dx}(x^2-2x+5)+B= A(2x-2)+B$

By comparing the coefficients and constant term, we get;

A = 1/2 and B =4

$\\\int \frac{x+3}{x^2-2x+5}dx = \frac{1}{2}\int \frac{2x-2}{x^2-2x+5}dx +4\int \frac{1}{x^2-2x+5}dx\\ I=I_1+I_2$ ..............(i)

$\\\Rightarrow I_1\\ =\int \frac{2x-2}{x^2-2x-5}dx$
put $x^2-2x-5 =t \Rightarrow (2x-2)dx =dt$

$=\int \frac{dt}{t} = \log t = \log (x^2-2x-5)$

$\\\Rightarrow I_2\\ = \int \frac{1}{x^2-2x-5}dx\\ =\int \frac{1}{(x-1)^2+(\sqrt{6})^2}dx\\ =\frac{1}{2\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})$

$I=I_1+I_2$

$=\frac{1}{2}\log\left | x^2-2x-5 \right |+\frac{2}{\sqrt{6}}\log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}})+C$

Question 23: Integrate the function $\frac{5x + 3 }{\sqrt { x^2 + 4x +10 }}$

Answer:

let
$5x+3 = A\frac{d}{dx}(x^2+4x+10)+B = A(2x+4)+B$
On comparing, we get

A =5/2 and B = -7

$\int \frac{5x+3}{\sqrt{x^2+4x+10}}dx = \frac{5}{2}\int \frac{2x+4}{\sqrt{x^2+4x+10}}dx-7\int \frac{dx}{\sqrt{x^2+4x+10}}dx$ $I = 5/2I_1-7I_2$ ...........................................(i)

$\\\Rightarrow I_1\\ \int \frac{2x+4}{\sqrt{x^2+4x+10}}dx$
put
$x^2+4x+10= t \Rightarrow (2x+4)dx = dt$

$=\int \frac{dt}{\sqrt{t}}=2\sqrt{t}=2\sqrt{x^2+4x+10}$

$\\\Rightarrow I_2\\ =\int \frac{1}{\sqrt{x^2+4x+10}}dx \\ =\int \frac{1}{\sqrt{(x+2)^2+(\sqrt{6})^2}}dx\\ =\log \left | (x+2)+\sqrt{x^2+4x+10} \right |$

$I = 5\sqrt{x^2+4x+10}-7\log\left | (x+2)+\sqrt{x^2+4x+10} \right |+C$

Question 24: Choose the correct answer

$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$

$(A) x \tan^{-1} (x + 1) + C\\\\ (B) \tan^{-1} (x + 1) + C\\\\ (C) (x + 1) \tan^{-1}x + C \\\\ (D) \tan^{-1}x + C$

Answer:

The correct option is (B)

$\int \frac{dx }{x^2 + 2x +2 }\: \: equals$
the denominator can be written as $(x+1)^2+1$
now, $\int \frac{dx}{(x+1)^2+1} = tan^{-1}(x+1)+C$

Question 25: Choose the correct answer $\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$

$A) \frac{1}{9} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\B ) \frac{1}{2} \sin ^{-1}\left ( \frac{8x-9}{9} \right )+ C \\\\ C) \frac{1}{3} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C \\\\ D ) \frac{1}{2} \sin ^{-1}\left ( \frac{9x-8}{8} \right )+ C$

Answer:

The following integration can be done as

$\int \frac{dx }{\sqrt { 9x - 4x ^2 }} \: \: equals$
$\int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x)}}= \int \frac{1}{\sqrt{-4(x^2-\frac{9}{4}x+81/64-81/64)}}dx$
$\\= \int \frac{1}{\sqrt{-4[(x-9/8)^2-(9/8)^2]}}dx\\ =\frac{1}{2}\int \frac{1}{\sqrt{-(x-9/8)^2+(9/8)^2}}dx\\ =\frac{1}{2}[\sin^{-1}(\frac{x-9/8}{9/8})]+C\\ =\frac{1}{2}\sin^{-1}(\frac{8x-9}{9})+C$

The correct option is (B)


Also, read

Topics covered in Chapter 1 Integrals: Exercise 7.4

In this section of the chapter, we will learn about some important formulas of integrals mentioned below and apply them for integrating many other related standard integrals.

(1) $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+\mathrm{C}$

(2) $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+\mathrm{C}$

(3) $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+\mathrm{C}$

(4) $\int \frac{d x}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+\mathrm{C}$

(5) $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1} \frac{x}{a}+\mathrm{C}$

(6) $\int \frac{d x}{\sqrt{x^2+a^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+\mathrm{C}$

Also, read,

Subject-Wise NCERT Exemplar Solutions

Tap into the links below to access step-by-step NCERT exemplar solutions of other subjects.

Frequently Asked Questions (FAQs)

Q: Which areas are focusses in this chapter ?
A:

Topics like finding Integration, area under simple curve etc. are discussed in this chapter in detail. The NCERT syllabus of integration is important for board exam as well as JEE Main exam.

Q: What is the role of limits put on the integrals ?
A:

Limit basically represents the range in which the domain of the given function lies. 

Q: Is this exercise Helpful for the examination ?
A:

Yes, questions which involve finding an area under a simple curve are important for this exercise. 

Q: Which portions are most important in this chapter for examination?
A:

Topics which include finding the area under a simple curve, integration by parts etc. are important for the exam. 

Q: Mention two different types of integrals in Maths ?
A:

Two types of Integrals include Definite and Indefinite Integrals. 

Q: How many total questions are there in chapter 7 exercise 7.4 ?
A:

There are 25 questions in this chapter 7 exercise 7.4. For more questions NCERT exemplar questions can be used.

Articles
|
Upcoming School Exams
Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12