NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

Komal MiglaniUpdated on 24 Apr 2025, 03:04 PM IST

Definite integrals are all about mastering the art of accumulation, it's like how the little changes in areas, distances, and volumes add up over an interval. In exercise 7.10 of the chapter Integrals, we will learn about some properties of definite integrals. These properties will help the students simplify and evaluate problems related to definite integrals with ease. This article on the NCERT Solutions for Exercise 7.10 Class 12 Maths Chapter 7 - Integrals, provides detailed and step-by-step solutions to the problems given in the exercise, so that students will be able to clear any doubts they have and understand the applications of the properties of definite integrals. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE Admit Card 2026 LIVE: Class 10 and 12 theory exam hall tickets soon, exams from February 17Feb 2, 2026 | 10:36 PM IST

The Central Board of Secondary Education (CBSE) is the exam conducting authority of the CBSE board examination 2026.

Read More

Class 12 Maths Chapter 7 Exercise 7.10 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.10

Question 1: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2}\cos^2 x dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)

By using

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :-

$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$

or

$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)

Adding both (i) and (ii), we get :-

$\int_0^{\frac{\pi}{2}} \text{cos}^2 x\ dx + \int_0^{\frac{\pi}{2}} \text{sin}^2 x\ dx = 2I$

$\int_0^{\frac{\pi}{2}} (\text{cos}^2 x + \text{sin}^2 x)\ dx = 2I$

$\int_0^\frac{\pi}{2}1. dx\ =\ 2I$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 2: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .......................................................................... (i)

By using ,

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$

or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

$2I\ =\ \int_0^\frac{\pi}{2}1.dx$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 3: By using the properties of definite integrals, evaluate the integral

$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$

Answer:

We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$

or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{\ (\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x)\,dx}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 4: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$

or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{(\text{sin}^5 x + \text{cos}^5 x)\,dx}{\text{sin}^5 x + \text{cos}^5 x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 5: By using the properties of definite integrals, evaluate the integral

$\int_{-5}^5|x+2|dx$

Answer:

We have, $I\ =\ \int_{-5}^5|x+2|dx$

For opening the modulas we need to define the bracket :

If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).

So the integral becomes :-

$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$

This gives $I\ =\ 29$

Question 6: By using the properties of definite integrals, evaluate the integral

$\int_2^8|x-5|dx$

Answer:

We have, $I\ =\ \int_{2}^8|x-5|dx$

For opening the modulas we need to define the bracket :

If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).

So the integral becomes:-

$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$

This gives $I\ =\ 9$

Question 7: By using the properties of definite integrals, evaluate the integral

$\int^1_0x(1-x)^ndx$

Answer:

We have $I\ =\ \int^1_0x(1-x)^ndx$

Using the property : -

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get : -

$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$

$I\ =\ \int^1_0(1-x)x^n\ dx$

or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$

$=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$

$=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$

or $I\ =\ \frac{1}{(n+1)(n+2)}$

Question 8: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$

or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$

or $2I\ =\ \left [ x\log2 \right ]^{\frac{\pi }{4}}_0$

or $I\ =\ \frac{\pi }{8}\log2$

Question 9: By using the properties of definite integrals, evaluate the integral

$\int_0^2x\sqrt{2-x}dx$

Answer:

We have $I\ =\ \int_0^2x\sqrt{2-x}dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$

or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$

or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$

or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$

or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$

or $I\ =\ \frac{16\sqrt{2}}{15}$

Question 10: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)

By using the identity :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)

Adding (i) and (ii) we get :-

$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$

or $I\ =\ -\log 2\left [ \frac{\pi }{2} \right ]$

or $I\ =\ \frac{\pi }{2}\log\frac{1}{2}$

Question 11: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.

Also,

$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$

So,

$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$

or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\pi }{2}}_0$

or $I\ =\ \frac{\pi }{2}$

Question 12: By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

$\int_0^\pi\frac{xdx}{1+\sin x}$

Answer:

We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)

By using the identity :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin (\pi -x)}$

or $I\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin x}$ ............................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\frac{\pi}{1+\sin x} dx$

or $2I\ =\ \pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$

or $2I\ =\ \pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$

or $I\ =\ \pi$

Question 13: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

We know that $\sin^7x$ is an odd function.

So the following property holds here:-

$\int_{-a}^{a}f(x)dx\ =\ 0$

Hence

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$

Question 14: By using the properties of definite integrals, evaluate the integral.

$\int_0^{2\pi}\cos^5xdx$

Answer:

We have $I\ =\ \int_0^{2\pi}\cos^5xdx$

It is known that :-

$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f (2a - x) = f(x)

$=\ 0$ If f (2a - x) = - f(x)

Now, using the above property

$\cos^5(\pi - x)\ =\ - \cos^5x$

Therefore, $I\ =\ 0$

Question 15: By using the properties of definite integrals, evaluate the integral.

$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx$

Answer:

We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................................................................(i)

By using the property :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get ,

$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$

or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ......................................................................(ii)

Adding both (i) and (ii), we get

$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$

Thus $I = 0$

Question 16: By using the properties of definite integrals, evaluate the integral.

$\int_0^\pi\log(1 +\cos x)dx$

Answer:

We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)

By using the property:-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

or

$I = \int_0^\pi \log(1 + \cos(\pi - x))\,dx$

$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$

or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$

or $2I\ =\ 2\int_0^\pi\log \sin xdx$

or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)

Adding (iv) and (v) we get,

$I\ =\ -\pi \log2$

Question 17: By using the properties of definite integrals, evaluate the integral.

$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$

Answer:

We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ................................................................................(i)

By using, we get

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .................................................................(ii)

Adding (i) and (ii) we get :

$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$

or $2I\ =\ \left [ x \right ]^a_0 = a$

or $I\ =\ \frac{a}{2}$

Question 18: By using the properties of definite integrals, evaluate the integral.

$\int_0^4 |x-1|dx$

Answer:

We have, $I\ =\ \int_{0}^4|x-1|dx$

For opening the modulas we need to define the bracket :

If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).

So the integral becomes:-

$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$

or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$

This gives $I\ =\ 5$

Question 19: Show that $\int_0^a f(x)g(x)dx = 2\int_0^af(x)dx$ if $f$ and $g$ are defined as $f(x) = f(a-x)$ and $g(x) + g(a-x) = 4$

Answer:

Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)

This can also be written as :

$I\ =\ \int_0^a f(a-x)g(a-x)dx$

or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$

$2I\ =\ \int_0^a f(x)4dx$

or $I\ =\ 2\int_0^a f(x)dx$

Question 20: Choose the correct answer

The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is

(A) 0

(B) 2

(C) $\pi$

(D) 1

Answer:

We have

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$

This can be written as :

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$

Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$

And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$

Using the above property I become:-

$I = 0 + 0 + 0 + 2\int_0^{\frac{\pi}{2}} 1\,dx$

$I = 2\left[ x \right]_0^{\frac{\pi}{2}}$

$I = \pi$

Thus, correct answer is $\pi$.

Question 21: Choose the correct answer

The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is

(A) 2

(B) 3/4

(C) 0

(D) -2

Answer:

We have

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ .................................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$

or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ .............................................................................(ii)

Adding (i) and (ii), we get:

$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$

or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$

Thus, $I\ =\ 0$


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.10

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.10 is:

Some properties of definite integrals: Some useful properties of definite integrals are given below that will help evaluate definite integrals easily.

  • $\int_a^b f(x) d x=\int_a^b f(t) d t$
  • $\int_a^b f(x) d x=-\int_b^a f(x) d x$
  • $\int_a^a f(x) d x=0$
  • $\int_a^b f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) dx$
  • $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
  • $\int_0^a f(x) d x=\int_0^a f(a-x) dx$
  • $\int_{-a}^a f(x) d x=2 \int_0^a f(x) d x$, if $f$ is an even function, i.e., if $f(-x)=f(x)$.
  • $\int_{-a}^a f(x) d x=0$, if $f$ is an odd function, i.e., if $f(-x)=-f(x)$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Two types of integration are …………. And ………….. ?
A:

Two types of integration are Definite and indefinite Integrals. 

Q: What can be the limit of an integral ?
A:

It can be anything in which the given function is real. 

Q: Integrals are used in …………... ?
A:

Integrals are used in finding area, volume, displacement etc. 

Q: Can one skip exercise 7.11 Class 12 Maths ?
A:

No, one should do this exercise as 5 marks questions can be asked in the Board examination. 

Q: Which topics are dealt in Exercise 7.11 Class 12 Maths?
A:

Some definite integrals of advance level are discussed in this exercise. 

Q: Can we take some assumptions in proof related questions ?
A:

Yes, provided it fulfills the demand of the question.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Ongoing Dates
CBSE Class 12th Exam Date

1 Jan'26 - 14 Feb'26 (Offline)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.