NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.11 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 24 Apr 2025, 03:04 PM IST

Definite integrals are all about mastering the art of accumulation, it's like how the little changes in areas, distances, and volumes add up over an interval. In exercise 7.10 of the chapter Integrals, we will learn about some properties of definite integrals. These properties will help the students simplify and evaluate problems related to definite integrals with ease. This article on the NCERT Solutions for Exercise 7.10 Class 12 Maths Chapter 7 - Integrals, provides detailed and step-by-step solutions to the problems given in the exercise, so that students will be able to clear any doubts they have and understand the applications of the properties of definite integrals. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 7 Exercise 7.10 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.10

Question 1: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2}\cos^2 x dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)

By using

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :-

$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$

or

$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)

Adding both (i) and (ii), we get :-

$\int_0^{\frac{\pi}{2}} \text{cos}^2 x\ dx + \int_0^{\frac{\pi}{2}} \text{sin}^2 x\ dx = 2I$

$\int_0^{\frac{\pi}{2}} (\text{cos}^2 x + \text{sin}^2 x)\ dx = 2I$

$\int_0^\frac{\pi}{2}1. dx\ =\ 2I$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 2: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .......................................................................... (i)

By using ,

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$

or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$

$2I\ =\ \int_0^\frac{\pi}{2}1.dx$

or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$

or $I = \frac{\pi}{4}$

Question 3: By using the properties of definite integrals, evaluate the integral

$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$

Answer:

We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$

or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{\ (\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x)\,dx}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 4: By using the properties of definite integrals, evaluate the integral

. $\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ..................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$

or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)

Adding (i) and (ii), we get :

$2I = \int_0^{\frac{\pi}{2}} \frac{(\text{sin}^5 x + \text{cos}^5 x)\,dx}{\text{sin}^5 x + \text{cos}^5 x}$

or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$

or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$

Thus $I\ =\ {\frac{\pi}{4}}$

Question 5: By using the properties of definite integrals, evaluate the integral

$\int_{-5}^5|x+2|dx$

Answer:

We have, $I\ =\ \int_{-5}^5|x+2|dx$

For opening the modulas we need to define the bracket :

If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).

So the integral becomes :-

$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$

This gives $I\ =\ 29$

Question 6: By using the properties of definite integrals, evaluate the integral

$\int_2^8|x-5|dx$

Answer:

We have, $I\ =\ \int_{2}^8|x-5|dx$

For opening the modulas we need to define the bracket :

If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).

So the integral becomes:-

$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$

or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$

This gives $I\ =\ 9$

Question 7: By using the properties of definite integrals, evaluate the integral

$\int^1_0x(1-x)^ndx$

Answer:

We have $I\ =\ \int^1_0x(1-x)^ndx$

Using the property : -

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get : -

$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$

$I\ =\ \int^1_0(1-x)x^n\ dx$

or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$

$=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$

$=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$

or $I\ =\ \frac{1}{(n+1)(n+2)}$

Question 8: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$

$I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$

or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$

or $2I\ =\ \left [ x\log2 \right ]^{\frac{\pi }{4}}_0$

or $I\ =\ \frac{\pi }{8}\log2$

Question 9: By using the properties of definite integrals, evaluate the integral

$\int_0^2x\sqrt{2-x}dx$

Answer:

We have $I\ =\ \int_0^2x\sqrt{2-x}dx$

By using the identity

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$

or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$

or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$

or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$

or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$

or $I\ =\ \frac{16\sqrt{2}}{15}$

Question 10: By using the properties of definite integrals, evaluate the integral

$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

Answer:

We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)

By using the identity :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get :

$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$

or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)

Adding (i) and (ii) we get :-

$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$

or $I\ =\ -\log 2\left [ \frac{\pi }{2} \right ]$

or $I\ =\ \frac{\pi }{2}\log\frac{1}{2}$

Question 11: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$

We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.

Also,

$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$

So,

$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$

or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\pi }{2}}_0$

or $I\ =\ \frac{\pi }{2}$

Question 12: By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

$\int_0^\pi\frac{xdx}{1+\sin x}$

Answer:

We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)

By using the identity :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin (\pi -x)}$

or $I\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin x}$ ............................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\frac{\pi}{1+\sin x} dx$

or $2I\ =\ \pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$

or $2I\ =\ \pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$

or $I\ =\ \pi$

Question 13: By using the properties of definite integrals, evaluate the integral.

$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

Answer:

We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$

We know that $\sin^7x$ is an odd function.

So the following property holds here:-

$\int_{-a}^{a}f(x)dx\ =\ 0$

Hence

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$

Question 14: By using the properties of definite integrals, evaluate the integral.

$\int_0^{2\pi}\cos^5xdx$

Answer:

We have $I\ =\ \int_0^{2\pi}\cos^5xdx$

It is known that :-

$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f (2a - x) = f(x)

$=\ 0$ If f (2a - x) = - f(x)

Now, using the above property

$\cos^5(\pi - x)\ =\ - \cos^5x$

Therefore, $I\ =\ 0$

Question 15: By using the properties of definite integrals, evaluate the integral.

$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx$

Answer:

We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................................................................(i)

By using the property :-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get ,

$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$

or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ......................................................................(ii)

Adding both (i) and (ii), we get

$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$

Thus $I = 0$

Question 16: By using the properties of definite integrals, evaluate the integral.

$\int_0^\pi\log(1 +\cos x)dx$

Answer:

We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)

By using the property:-

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

or

$I = \int_0^\pi \log(1 + \cos(\pi - x))\,dx$

$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)

Adding both (i) and (ii) we get,

$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$

or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$

or $2I\ =\ 2\int_0^\pi\log \sin xdx$

or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)

or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)

Adding (iv) and (v) we get,

$I\ =\ -\pi \log2$

Question 17: By using the properties of definite integrals, evaluate the integral.

$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$

Answer:

We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ................................................................................(i)

By using, we get

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .................................................................(ii)

Adding (i) and (ii) we get :

$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$

or $2I\ =\ \left [ x \right ]^a_0 = a$

or $I\ =\ \frac{a}{2}$

Question 18: By using the properties of definite integrals, evaluate the integral.

$\int_0^4 |x-1|dx$

Answer:

We have, $I\ =\ \int_{0}^4|x-1|dx$

For opening the modulas we need to define the bracket :

If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).

So the integral becomes:-

$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$

or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$

This gives $I\ =\ 5$

Question 19: Show that $\int_0^a f(x)g(x)dx = 2\int_0^af(x)dx$ if $f$ and $g$ are defined as $f(x) = f(a-x)$ and $g(x) + g(a-x) = 4$

Answer:

Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)

This can also be written as :

$I\ =\ \int_0^a f(a-x)g(a-x)dx$

or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)

Adding (i) and (ii), we get,

$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$

$2I\ =\ \int_0^a f(x)4dx$

or $I\ =\ 2\int_0^a f(x)dx$

Question 20: Choose the correct answer

The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is

(A) 0

(B) 2

(C) $\pi$

(D) 1

Answer:

We have

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$

This can be written as :

$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$

Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$

And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$

Using the above property I become:-

$I = 0 + 0 + 0 + 2\int_0^{\frac{\pi}{2}} 1\,dx$

$I = 2\left[ x \right]_0^{\frac{\pi}{2}}$

$I = \pi$

Thus, correct answer is $\pi$.

Question 21: Choose the correct answer

The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is

(A) 2

(B) 3/4

(C) 0

(D) -2

Answer:

We have

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ .................................................................................(i)

By using :

$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$

We get,

$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$

or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ .............................................................................(ii)

Adding (i) and (ii), we get:

$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$

or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$

Thus, $I\ =\ 0$


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.10

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.10 is:

Some properties of definite integrals: Some useful properties of definite integrals are given below that will help evaluate definite integrals easily.

  • $\int_a^b f(x) d x=\int_a^b f(t) d t$
  • $\int_a^b f(x) d x=-\int_b^a f(x) d x$
  • $\int_a^a f(x) d x=0$
  • $\int_a^b f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) dx$
  • $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
  • $\int_0^a f(x) d x=\int_0^a f(a-x) dx$
  • $\int_{-a}^a f(x) d x=2 \int_0^a f(x) d x$, if $f$ is an even function, i.e., if $f(-x)=f(x)$.
  • $\int_{-a}^a f(x) d x=0$, if $f$ is an odd function, i.e., if $f(-x)=-f(x)$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Two types of integration are …………. And ………….. ?
A:

Two types of integration are Definite and indefinite Integrals. 

Q: What can be the limit of an integral ?
A:

It can be anything in which the given function is real. 

Q: Integrals are used in …………... ?
A:

Integrals are used in finding area, volume, displacement etc. 

Q: Can one skip exercise 7.11 Class 12 Maths ?
A:

No, one should do this exercise as 5 marks questions can be asked in the Board examination. 

Q: Which topics are dealt in Exercise 7.11 Class 12 Maths?
A:

Some definite integrals of advance level are discussed in this exercise. 

Q: Can we take some assumptions in proof related questions ?
A:

Yes, provided it fulfills the demand of the question.

Articles
|
Upcoming School Exams
Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12