CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Definite integrals are all about mastering the art of accumulation, it's like how the little changes in areas, distances, and volumes add up over an interval. In exercise 7.10 of the chapter Integrals, we will learn about some properties of definite integrals. These properties will help the students simplify and evaluate problems related to definite integrals with ease. This article on the NCERT Solutions for Exercise 7.10 Class 12 Maths Chapter 7 - Integrals, provides detailed and step-by-step solutions to the problems given in the exercise, so that students will be able to clear any doubts they have and understand the applications of the properties of definite integrals. For syllabus, notes, and PDF, refer to this link: NCERT.
Question 1: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)
By using
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :-
$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$
or
$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)
Adding both (i) and (ii), we get :-
$\int_0^{\frac{\pi}{2}} \text{cos}^2 x\ dx + \int_0^{\frac{\pi}{2}} \text{sin}^2 x\ dx = 2I$
$\int_0^{\frac{\pi}{2}} (\text{cos}^2 x + \text{sin}^2 x)\ dx = 2I$
$\int_0^\frac{\pi}{2}1. dx\ =\ 2I$
or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$
or $I = \frac{\pi}{4}$
Question 2: By using the properties of definite integrals, evaluate the integral
. $\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .......................................................................... (i)
By using ,
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$
or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
$2I\ =\ \int_0^\frac{\pi}{2}1.dx$
or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$
or $I = \frac{\pi}{4}$
Question 3: By using the properties of definite integrals, evaluate the integral
$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$
Answer:
We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ ..................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$
or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ . ............................................................(ii)
Adding (i) and (ii), we get :
$2I = \int_0^{\frac{\pi}{2}} \frac{\ (\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x)\,dx}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question 4: By using the properties of definite integrals, evaluate the integral
. $\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ..................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$
or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)
Adding (i) and (ii), we get :
$2I = \int_0^{\frac{\pi}{2}} \frac{(\text{sin}^5 x + \text{cos}^5 x)\,dx}{\text{sin}^5 x + \text{cos}^5 x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question 5: By using the properties of definite integrals, evaluate the integral
Answer:
We have, $I\ =\ \int_{-5}^5|x+2|dx$
For opening the modulas we need to define the bracket :
If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).
So the integral becomes :-
$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$
This gives $I\ =\ 29$
Question 6: By using the properties of definite integrals, evaluate the integral
Answer:
We have, $I\ =\ \int_{2}^8|x-5|dx$
For opening the modulas we need to define the bracket :
If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).
So the integral becomes:-
$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$
This gives $I\ =\ 9$
Question 7: By using the properties of definite integrals, evaluate the integral
Answer:
We have $I\ =\ \int^1_0x(1-x)^ndx$
Using the property : -
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get : -
$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$
$I\ =\ \int^1_0(1-x)x^n\ dx$
or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$
$=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$
$=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$
or $I\ =\ \frac{1}{(n+1)(n+2)}$
Question 8: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$
$I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$
$I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$
$I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$
or $2I\ =\ \left [ x\log2 \right ]^{\frac{\pi }{4}}_0$
or $I\ =\ \frac{\pi }{8}\log2$
Question 9: By using the properties of definite integrals, evaluate the integral
Answer:
We have $I\ =\ \int_0^2x\sqrt{2-x}dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :
$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$
or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$
or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$
or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$
or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$
or $I\ =\ \frac{16\sqrt{2}}{15}$
Question 10: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)
By using the identity :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :
$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)
Adding (i) and (ii) we get :-
$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$
or $I\ =\ -\log 2\left [ \frac{\pi }{2} \right ]$
or $I\ =\ \frac{\pi }{2}\log\frac{1}{2}$
Question 11: By using the properties of definite integrals, evaluate the integral.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.
Also,
$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$
So,
$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$
or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\pi }{2}}_0$
or $I\ =\ \frac{\pi }{2}$
Question 12: By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\pi\frac{xdx}{1+\sin x}$
Answer:
We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)
By using the identity :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin (\pi -x)}$
or $I\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin x}$ ............................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\frac{\pi}{1+\sin x} dx$
or $2I\ =\ \pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$
or $2I\ =\ \pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$
or $I\ =\ \pi$
Question 13: By using the properties of definite integrals, evaluate the integral.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
We know that $\sin^7x$ is an odd function.
So the following property holds here:-
$\int_{-a}^{a}f(x)dx\ =\ 0$
Hence
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$
Question 14: By using the properties of definite integrals, evaluate the integral.
Answer:
We have $I\ =\ \int_0^{2\pi}\cos^5xdx$
It is known that :-
$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f (2a - x) = f(x)
$=\ 0$ If f (2a - x) = - f(x)
Now, using the above property
$\cos^5(\pi - x)\ =\ - \cos^5x$
Therefore, $I\ =\ 0$
Question 15: By using the properties of definite integrals, evaluate the integral.
$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx$
Answer:
We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................................................................(i)
By using the property :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get ,
$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$
or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ......................................................................(ii)
Adding both (i) and (ii), we get
$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$
Thus $I = 0$
Question 16: By using the properties of definite integrals, evaluate the integral.
$\int_0^\pi\log(1 +\cos x)dx$
Answer:
We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)
By using the property:-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
or
$I = \int_0^\pi \log(1 + \cos(\pi - x))\,dx$
$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$
or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$
or $2I\ =\ 2\int_0^\pi\log \sin xdx$
or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)
Adding (iv) and (v) we get,
$I\ =\ -\pi \log2$
Question 17: By using the properties of definite integrals, evaluate the integral.
$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$
Answer:
We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ................................................................................(i)
By using, we get
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .................................................................(ii)
Adding (i) and (ii) we get :
$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$
or $2I\ =\ \left [ x \right ]^a_0 = a$
or $I\ =\ \frac{a}{2}$
Question 18: By using the properties of definite integrals, evaluate the integral.
Answer:
We have, $I\ =\ \int_{0}^4|x-1|dx$
For opening the modulas we need to define the bracket :
If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).
So the integral becomes:-
$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$
or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$
This gives $I\ =\ 5$
Answer:
Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)
This can also be written as :
$I\ =\ \int_0^a f(a-x)g(a-x)dx$
or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$
$2I\ =\ \int_0^a f(x)4dx$
or $I\ =\ 2\int_0^a f(x)dx$
Question 20: Choose the correct answer
The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is
(A) 0
(B) 2
(C) $\pi$
(D) 1
Answer:
We have
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$
This can be written as :
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$
Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$
And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$
Using the above property I become:-
$I = 0 + 0 + 0 + 2\int_0^{\frac{\pi}{2}} 1\,dx$
$I = 2\left[ x \right]_0^{\frac{\pi}{2}}$
$I = \pi$
Thus, correct answer is $\pi$.
Question 21: Choose the correct answer
The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is
(A) 2
(B) 3/4
(C) 0
(D) -2
Answer:
We have
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ .................................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$
or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ .............................................................................(ii)
Adding (i) and (ii), we get:
$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$
or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$
Thus, $I\ =\ 0$
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.10 is:
Some properties of definite integrals: Some useful properties of definite integrals are given below that will help evaluate definite integrals easily.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Two types of integration are Definite and indefinite Integrals.
It can be anything in which the given function is real.
Integrals are used in finding area, volume, displacement etc.
No, one should do this exercise as 5 marks questions can be asked in the Board examination.
Some definite integrals of advance level are discussed in this exercise.
Yes, provided it fulfills the demand of the question.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters