CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26
Definite integrals are all about mastering the art of accumulation, it's like how the little changes in areas, distances, and volumes add up over an interval. In exercise 7.10 of the chapter Integrals, we will learn about some properties of definite integrals. These properties will help the students simplify and evaluate problems related to definite integrals with ease. This article on the NCERT Solutions for Exercise 7.10 Class 12 Maths Chapter 7 - Integrals, provides detailed and step-by-step solutions to the problems given in the exercise, so that students will be able to clear any doubts they have and understand the applications of the properties of definite integrals. For syllabus, notes, and PDF, refer to this link: NCERT.
Question 1: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx$ ............................................................. (i)
By using
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :-
$I\ =\ \int_0^\frac{\pi}{2}\cos^2 x dx\ =\ \int_0^\frac{\pi}{2}\cos^2\ (\frac{\pi}{2}- x) dx$
or
$I\ =\ \int_0^\frac{\pi}{2}\sin^2 x dx$ ................................................................ (ii)
Adding both (i) and (ii), we get :-
$\int_0^{\frac{\pi}{2}} \text{cos}^2 x\ dx + \int_0^{\frac{\pi}{2}} \text{sin}^2 x\ dx = 2I$
$\int_0^{\frac{\pi}{2}} (\text{cos}^2 x + \text{sin}^2 x)\ dx = 2I$
$\int_0^\frac{\pi}{2}1. dx\ =\ 2I$
or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$
or $I = \frac{\pi}{4}$
Question 2: By using the properties of definite integrals, evaluate the integral
. $\int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$ .......................................................................... (i)
By using ,
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin (\frac{\pi}{2}-x)}+ \sqrt{\cos (\frac{\pi}{2}-x)}}dx$
or $I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx$ .......................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^\frac{\pi}{2}\frac{\sqrt{\sin x}\ +\ \sqrt{\cos x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx$
$2I\ =\ \int_0^\frac{\pi}{2}1.dx$
or $2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$
or $I = \frac{\pi}{4}$
Question 3: By using the properties of definite integrals, evaluate the integral
$\int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$
Answer:
We have $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ ..................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int^{\frac{\pi}{2}}_0\frac{\sin^{\frac{3}{2}}(\frac{\pi}{2}-x)dx}{\sin^\frac{3}{2}(\frac{\pi}{2}-x) + \cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}$
or $I\ =\ \int^{\frac{\pi}{2}}_0\frac{\cos^{\frac{3}{2}}xdx}{\sin^\frac{3}{2}x + \cos^{\frac{3}{2}}x}$ . ............................................................(ii)
Adding (i) and (ii), we get :
$2I = \int_0^{\frac{\pi}{2}} \frac{\ (\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x)\,dx}{\text{sin}^{\frac{3}{2}}x + \text{cos}^{\frac{3}{2}}x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question 4: By using the properties of definite integrals, evaluate the integral
. $\int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 xdx}{\sin^5x + \cos^5x}$ ..................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2} \frac{\cos^5 (\frac{\pi}{2}-x)dx}{\sin^5(\frac{\pi}{2}-x) + \cos^5(\frac{\pi}{2}-x)}$
or $I\ =\ \int_0^\frac{\pi}{2} \frac{\sin^5 xdx}{\sin^5x + \cos^5x}$ . ............................................................(ii)
Adding (i) and (ii), we get :
$2I = \int_0^{\frac{\pi}{2}} \frac{(\text{sin}^5 x + \text{cos}^5 x)\,dx}{\text{sin}^5 x + \text{cos}^5 x}$
or $2I\ = \int_{0}^{{\frac{\pi}{2}}}1.dx$
or $2I\ = \left [ x \right ]^{\frac{\pi}{2}}_ 0\ =\ {\frac{\pi}{2}}$
Thus $I\ =\ {\frac{\pi}{4}}$
Question 5: By using the properties of definite integrals, evaluate the integral
Answer:
We have, $I\ =\ \int_{-5}^5|x+2|dx$
For opening the modulas we need to define the bracket :
If (x + 2) < 0 then x belongs to (-5, -2). And if (x + 2) > 0 then x belongs to (-2, 5).
So the integral becomes :-
$I\ =\ \int_{-5}^{-2} -(x+2)dx\ +\ \int_{-2}^{5} (x+2)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ +\ 2x \right ]^{-2} _{-5}\ +\ \left [ \frac{x^2}{2}\ +\ 2x \right ]^{5} _{-2}$
This gives $I\ =\ 29$
Question 6: By using the properties of definite integrals, evaluate the integral
Answer:
We have, $I\ =\ \int_{2}^8|x-5|dx$
For opening the modulas we need to define the bracket :
If (x - 5) < 0 then x belongs to (2, 5). And if (x - 5) > 0 then x belongs to (5, 8).
So the integral becomes:-
$I\ =\ \int_{2}^{5} -(x-5)dx\ +\ \int_{5}^{8} (x-5)dx$
or $I\ =\ -\left [ \frac{x^2}{2}\ -\ 5x \right ]^{5} _{2}\ +\ \left [ \frac{x^2}{2}\ -\ 5x \right ]^{8} _{5}$
This gives $I\ =\ 9$
Question 7: By using the properties of definite integrals, evaluate the integral
Answer:
We have $I\ =\ \int^1_0x(1-x)^ndx$
Using the property : -
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get : -
$I\ =\ \int^1_0x(1-x)^ndx\ =\ \int^1_0(1-x)(1-(1-x))^ndx$
$I\ =\ \int^1_0(1-x)x^n\ dx$
or $I\ =\ \int^1_0(x^n\ -\ x^{n+1}) \ dx$
$=\ \left [ \frac{x^{n+1}}{n+1}\ -\ \frac{x^{n+2}}{n+2} \right ]^1_0$
$=\ \left [ \frac{1}{n+1}\ -\ \frac{1}{n+2} \right ]$
or $I\ =\ \frac{1}{(n+1)(n+2)}$
Question 8: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{4}\log(1+\tan x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{4}\log(1+\tan x)dx\ =\ \int_0^\frac{\pi}{4}\log(1+\tan (\frac{\pi}{4}-x))dx$
$I\ =\ \int_0^\frac{\pi}{4}\log(1+\frac{1-\tan x}{1+\tan x})dx$
$I\ =\ \int_0^\frac{\pi}{4}\log(\frac{2}{1+\tan x})dx$
$I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ \int_0^\frac{\pi}{4}\log(1+ \tan x)dx$
or $I\ =\ \int_0^\frac{\pi}{4}\log{2}dx\ -\ I$
or $2I\ =\ \left [ x\log2 \right ]^{\frac{\pi }{4}}_0$
or $I\ =\ \frac{\pi }{8}\log2$
Question 9: By using the properties of definite integrals, evaluate the integral
Answer:
We have $I\ =\ \int_0^2x\sqrt{2-x}dx$
By using the identity
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :
$I\ =\ \int_0^2x\sqrt{2-x}dx\ =\ \int_0^2(2-x)\sqrt{2-(2-x)}dx$
or $I\ =\ \int_0^2(2-x)\sqrt{x}dx$
or $I\ =\ \int_0^2(2\sqrt{x}\ -\ x^\frac{3}{2} dx$
or $=\ \left [ \frac{4}{3}x^\frac{3}{2}\ -\ \frac{2}{5}x^\frac{5}{2} \right ]^2_0$
or $=\ \frac{4}{3}(2)^\frac{3}{2}\ -\ \frac{2}{5}(2)^\frac{5}{2}$
or $I\ =\ \frac{16\sqrt{2}}{15}$
Question 10: By using the properties of definite integrals, evaluate the integral
$\int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
Answer:
We have $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log\sin 2x)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (2\log\sin x- \log(2\sin x\cos x))dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\sin x- \log\cos x\ -\ \log2)dx$ ..............................................................(i)
By using the identity :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get :
$I\ =\ \int_0^\frac{\pi}{2} (\log\sin (\frac{\pi}{2}-x)- \log\cos (\frac{\pi}{2}-x)\ -\ \log2)dx$
or $I\ =\ \int_0^\frac{\pi}{2} (\log\cos x- \log\sin x\ -\ \log2)dx$ ....................................................................(ii)
Adding (i) and (ii) we get :-
$2I\ =\ \int_0^\frac{\pi}{2} (- \log 2 -\ \log 2)dx$
or $I\ =\ -\log 2\left [ \frac{\pi }{2} \right ]$
or $I\ =\ \frac{\pi }{2}\log\frac{1}{2}$
Question 11: By using the properties of definite integrals, evaluate the integral.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^2 x dx$
We know that sin 2 x is an even function. i.e., sin 2 (-x) = (-sinx) 2 = sin 2 x.
Also,
$I\ =\ \int_{-a}^af(x) dx\ =\ 2\int_{0}^af(x) dx$
So,
$I\ =\ 2\int_0^\frac{\pi}{2}\sin^2 x dx\ =\ 2\int_0^\frac{\pi}{2}\frac{(1-\cos2x)}{2} dx$
or $=\ \left [ x\ -\ \frac{\sin2x}{2} \right ]^{\frac{\pi }{2}}_0$
or $I\ =\ \frac{\pi }{2}$
Question 12: By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
$\int_0^\pi\frac{xdx}{1+\sin x}$
Answer:
We have $I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}$ ..........................................................................(i)
By using the identity :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\pi\frac{xdx}{1+\sin x}\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin (\pi -x)}$
or $I\ =\ \int_0^\pi\frac{(\pi -x)dx}{1+\sin x}$ ............................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\frac{\pi}{1+\sin x} dx$
or $2I\ =\ \pi \int_0^\pi\frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx\ =\ \pi \int_0^\pi\frac{1-\sin x}{\cos^2 x} dx$
or $2I\ =\ \pi \int_0^\pi (\sec^2\ -\ \tan x \sec x) x dx$
or $I\ =\ \pi$
Question 13: By using the properties of definite integrals, evaluate the integral.
$\int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
Answer:
We have $I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx$
We know that $\sin^7x$ is an odd function.
So the following property holds here:-
$\int_{-a}^{a}f(x)dx\ =\ 0$
Hence
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}\sin^7xdx\ =\ 0$
Question 14: By using the properties of definite integrals, evaluate the integral.
Answer:
We have $I\ =\ \int_0^{2\pi}\cos^5xdx$
It is known that :-
$\int_0^{2a}f(x)dx\ =\ 2\int_0^{a}f(x)dx$ If f (2a - x) = f(x)
$=\ 0$ If f (2a - x) = - f(x)
Now, using the above property
$\cos^5(\pi - x)\ =\ - \cos^5x$
Therefore, $I\ =\ 0$
Question 15: By using the properties of definite integrals, evaluate the integral.
$\int_0^{\frac{\pi}{2}} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx$
Answer:
We have $I\ =\ \int^\frac{\pi}{2} _0\frac{\sin x - \cos x }{1+\sin x\cos x}dx$ ................................................................(i)
By using the property :-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get ,
$I\ =\ \int^\frac{\pi}{2} _0\frac{\sin (\frac{\pi}{2}-x) - \cos (\frac{\pi}{2}-x) }{1+\sin (\frac{\pi}{2}-x)\cos (\frac{\pi}{2}-x)}dx$
or $I\ =\ \int^\frac{\pi}{2} _0\frac{\cos x - \sin x }{1+\sin x\cos x}dx$ ......................................................................(ii)
Adding both (i) and (ii), we get
$2I\ =\ \int^\frac{\pi}{2} _0\frac{0 }{1+\sin x\cos x}dx$
Thus $I = 0$
Question 16: By using the properties of definite integrals, evaluate the integral.
$\int_0^\pi\log(1 +\cos x)dx$
Answer:
We have $I\ =\ \int_0^\pi\log(1 +\tan x)dx$ .....................................................................................(i)
By using the property:-
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
or
$I = \int_0^\pi \log(1 + \cos(\pi - x))\,dx$
$I\ =\ \int_0^\pi\log(1 -\cos x)dx$ ....................................................................(ii)
Adding both (i) and (ii) we get,
$2I\ =\ \int_0^\pi\log(1 +\cos x)dx\ +\ \int_0^\pi\log(1 -\cos x)dx$
or $2I\ =\ \int_0^\pi\log(1 -\cos^2 x)dx\ =\ \int_0^\pi\log \sin^2 xdx$
or $2I\ =\ 2\int_0^\pi\log \sin xdx$
or $I\ =\ \int_0^\pi\log \sin xdx$ ........................................................................(iii)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \sin xdx$ ........................................................................(iv)
or $I\ =\ 2\int_0^ \frac{\pi}{2} \log \cos xdx$ .....................................................................(v)
Adding (iv) and (v) we get,
$I\ =\ -\pi \log2$
Question 17: By using the properties of definite integrals, evaluate the integral.
$\int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$
Answer:
We have $I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx$ ................................................................................(i)
By using, we get
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^a \frac{\sqrt x}{\sqrt x + \sqrt{a-x}}dx\ =\ \int_0^a \frac{\sqrt {(a-x)}}{\sqrt {(a-x)} + \sqrt{x}}dx$ .................................................................(ii)
Adding (i) and (ii) we get :
$2I\ =\ \int_0^a \frac{\sqrt x\ +\ \sqrt{a-x}}{\sqrt x + \sqrt{a-x}}dx$
or $2I\ =\ \left [ x \right ]^a_0 = a$
or $I\ =\ \frac{a}{2}$
Question 18: By using the properties of definite integrals, evaluate the integral.
Answer:
We have, $I\ =\ \int_{0}^4|x-1|dx$
For opening the modulas we need to define the bracket :
If (x - 1) < 0 then x belongs to (0, 1). And if (x - 1) > 0 then x belongs to (1, 4).
So the integral becomes:-
$I\ =\ \int_{0}^{1} -(x-1)dx\ +\ \int_{1}^{4} (x-1)dx$
or $I\ =\ \left [ x\ -\ \frac{x^2}{2}\ \right ]^{1} _{0}\ +\ \left [ \frac{x^2}{2}\ -\ x \right ]^{4} _{1}$
This gives $I\ =\ 5$
Answer:
Let $I\ =\ \int_0^a f(x)g(x)dx$ ........................................................(i)
This can also be written as :
$I\ =\ \int_0^a f(a-x)g(a-x)dx$
or $I\ =\ \int_0^a f(x)g(a-x)dx$ ................................................................(ii)
Adding (i) and (ii), we get,
$2I\ =\ \int_0^a f(x)g(a-x)dx +\ \int_0^a f(x)g(x)dx$
$2I\ =\ \int_0^a f(x)4dx$
or $I\ =\ 2\int_0^a f(x)dx$
Question 20: Choose the correct answer
The value of is $\int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$ is
(A) 0
(B) 2
(C) $\pi$
(D) 1
Answer:
We have
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}(x^3 + x\cos x + \tan^5 x + 1)dx$
This can be written as :
$I\ =\ \int_\frac{-\pi}{2}^\frac{\pi}{2}x^3dx +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} x\cos x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} \tan^5 x +\ \int_\frac{-\pi}{2}^\frac{\pi}{2} 1dx$
Also if a function is even function then $\int_{-a}^{a}f(x)\ dx\ =\ 2\int_{0}^{a}f(x)\ dx$
And if the function is an odd function then : $\int_{-a}^{a}f(x)\ dx\ =\ 0$
Using the above property I become:-
$I = 0 + 0 + 0 + 2\int_0^{\frac{\pi}{2}} 1\,dx$
$I = 2\left[ x \right]_0^{\frac{\pi}{2}}$
$I = \pi$
Thus, correct answer is $\pi$.
Question 21: Choose the correct answer
The value of $\int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ is
(A) 2
(B) 3/4
(C) 0
(D) -2
Answer:
We have
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx$ .................................................................................(i)
By using :
$\ \int_0^a\ f(x) dx\ =\ \ \int_0^a\ f(a-x) dx$
We get,
$I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin (\frac{\pi}{2}-x)}{4+3\cos (\frac{\pi}{2}-x)} \right )dx$
or $I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$ .............................................................................(ii)
Adding (i) and (ii), we get:
$2I\ =\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\sin x}{4+3\cos x} \right )dx\ +\ \int_0^\frac{\pi}{2}\log\left(\frac{4+3\cos x}{4+3\sin x} \right )dx$
or $2I\ =\ \int_0^\frac{\pi}{2}\log1.dx$
Thus, $I\ =\ 0$
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.10 is:
Some properties of definite integrals: Some useful properties of definite integrals are given below that will help evaluate definite integrals easily.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Two types of integration are Definite and indefinite Integrals.
It can be anything in which the given function is real.
Integrals are used in finding area, volume, displacement etc.
No, one should do this exercise as 5 marks questions can be asked in the Board examination.
Some definite integrals of advance level are discussed in this exercise.
Yes, provided it fulfills the demand of the question.
On Question asked by student community
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.
LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters