NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals

Upcoming Event

CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 10:57 AM IST

Integrals help us find the total accumulation of a quantity, like the total distance covered or the area under a curve. Definite integrals take this one step further and give us the total accumulation over a specific interval, like the total distance covered between two specific points. In exercise 7.8 of the chapter Integrals, we will deep dive into the world of definite integrals, where we will learn how definite integrals act as the limit of a sum. This article on the NCERT Solutions for Exercise 7.8 of Class 12 Maths, Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to the problems given in the exercise, which will help the students clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.8 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise 7.8
  3. Topics covered in Chapter 7, Integrals: Exercise 7.8
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 7 Exercise 7.8 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.8

Question 1: Evaluate the definite integral

$\int_{-1}^{1} (x+1)dx$

Answer:

Given integral: $I = \int_{-1}^{1} (x+1)dx$

Consider the integral $\int (x+1)dx$

$\int (x+1)dx = \frac{x^2}{2}+x$

So, we have the function of $x$ , $f(x) = \frac{x^2}{2}+x$

Now, by 4the Second fundamental theorem of calculus, we have

$I = f(1)-f(-1)$

$= \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{2} - 1 \right)$

$= \frac{1}{2} + 1 - \frac{1}{2} + 1$

$= 2$

Question 2: Evaluate the definite integral

$\int_2^3\frac{1}{x}dx$

Answer:

Given integral: $I = \int_2^3\frac{1}{x}dx$

Consider the integral $\int_2^3\frac{1}{x}dx$

$\int \frac{1}{x}dx = \log|x|$

So, we have the function of $x$ , $f(x) = \log|x|$

Now, by Second fundamental theorem of calculus, we have

$I = f(3)-f(2)$

$=\log|3|-\log|2| = \log \frac{3}{2}$

Question 3: Evaluate the definite integral

$\int_1^2(4x^3-5x^2 + 6x +9)dx$

Answer:

Given integral: $I = \int_1^2(4x^3-5x^2 + 6x +9)dx$

Consider the integral $I = \int (4x^3-5x^2 + 6x +9)dx$

$\int (4x^3-5x^2 + 6x +9)dx = 4\frac{x^4}{4} -5\frac{x^3}{3}+6\frac{x^2}{2}+9x$

$= x^4 -\frac{5x^3}{3}+3x^2+9x$

So, we have the function of $x$ , $f(x) = x^4 -\frac{5x^3}{3}+3x^2+9x$

Now, by Second fundamental theorem of calculus, we have

$I = f(2)-f(1)$

$=\left \{ 2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right \} - \left \{ 1^4-\frac{5(1)^3}{3}+3(1)^2+9(1) \right \}$

$=\left \{ 16-\frac{40}{3}+12+18\right \} - \left \{ 1-\frac{5}{3}+3+9 \right \}$

$=\left \{ 46-\frac{40}{3}\right \} - \left \{ 13-\frac{5}{3}\right \}$

$=\left \{ 33-\frac{35}{3} \right \} = \left \{ \frac{99-35}{3} \right \}$

$= \frac{64}{3}$

Question 4: Evaluate the definite integral

$\int_0^\frac{\pi}{4}\sin 2x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{4}\sin 2x dx$

Consider the integral $\int \sin 2x dx$

$\int \sin 2x dx = \frac{-\cos 2x }{2}$

So, we have the function of $x$ , $f(x) = \frac{-\cos 2x }{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4})-f(0)$

$= \frac{-\cos 2(\frac{\pi}{4})}{2} + \frac{\cos 0}{2}$

$=\frac{1}{2} - 0$

$= \frac{1}{2}$

Question 5: Evaluate the definite integral

$\int_0^\frac{\pi}{2}\cos 2x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{2}\cos 2x dx$

Consider the integral $\int \cos 2x dx$

$\int \cos 2x dx = \frac{\sin 2x }{2}$

So, we have the function of $x$ , $f(x) = \frac{\sin 2x }{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{2})-f(0)$

$= \frac{1}{2}\left \{ \sin 2(\frac{\pi}{2}) - \sin 0 \right \}$

$= \frac{1}{2}\left \{ 0 - 0 \right \} = 0$

Question 6: Evaluate the definite integral

$\int_4^5 e^x dx$

Answer:

Given integral: $\int_4^5 e^x dx$

Consider the integral $\int e^x dx$

$\int e^x dx = e^x$

So, we have the function of $x$ , $f(x) = e^x$

Now, by Second fundamental theorem of calculus, we have

$I = f(5) -f(4)$

$= e^5 -e^4$

$= e^4(e-1)$

Question 7: Evaluate the definite integral

$\int^\frac{\pi}{4}_0 \tan x dx$

Answer:

Given integral: $\int^\frac{\pi}{4}_0 \tan x dx$

Consider the integral $\int \tan x dx$

$\int \tan x dx = -\log|\cos x |$

So, we have the function of $x$ , $f(x) = -\log|\cos x |$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(0)$

$= -\log\left | \cos \frac{\pi}{4} \right | +\log|\cos 0|$

$= -\log\left | \cos \frac{1}{\sqrt2} \right | +\log|1|$

$= -\log\left | \frac{1}{\sqrt2} \right | + 0 = -\log (2)^{-\frac{1}{2}}$

$= \frac{1}{2}\log (2)$

Question 8: Evaluate the definite integral

$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \text{cosec}\,x\,dx$

Answer:

Given integral: $\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec} x dx$

Consider the integral $\int\textup{cosec} x dx$

$\int \text{cosec}\,x\,dx = \log|\text{cosec}\,x - \text{cot}\,x|$

So, we have the function of $x$ , $f(x) = \log|\text{cosec}\,x - \text{cot}\,x|$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(\frac{\pi}{6})$

$= \log|\text{cosec}\,\frac{\pi}{4} - \text{cot}\,\frac{\pi}{4}| - \log|\text{cosec}\,\frac{\pi}{6} - \text{cot}\,\frac{\pi}{6}|$

$= \log|\sqrt2 -1 | - \log|2 -\sqrt3 |$

$= \log \left ( \frac{\sqrt2 -1}{2-\sqrt3} \right )$

Question 9: Evaluate the definite integral

$\int_0^1\frac{dx}{\sqrt{1-x^2}}$

Answer:

Given integral: $\int_0^1\frac{dx}{\sqrt{1-x^2}}$

Consider the integral $\int \frac{dx}{\sqrt{1-x^2}}$

$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$

So, we have the function of $x$ , $f(x) = \sin^{-1}x$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \sin^{-1}(1) -\sin^{-1}(0)$

$= \frac{\pi}{2} - 0$

$= \frac{\pi}{2}$

Question 10: Evaluate the definite integral

$\int_0^1\frac{dx}{1 + x^2}$

Answer:

Given integral: $\int_0^1\frac{dx}{1 + x^2}$

Consider the integral $\int\frac{dx}{1 + x^2}$

$\int\frac{dx}{1 + x^2} = \tan^{-1}x$

So, we have the function of $x$ , $f(x) =\tan^{-1}x$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \tan^{-1}(1) -\tan^{-1}(0)$

$= \frac{\pi}{4} - 0$

$= \frac{\pi}{4}$

Question 11: Evaluate the definite integral

$\int_2^3 \frac{dx}{x^2 -1 }$

Answer:

Given integral: $\int_2^3 \frac{dx}{x^2 -1 }$

Consider the integral $\int \frac{dx}{x^2 -1 }$

$\int \frac{dx}{x^2 -1 } = \frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$

Now, by Second fundamental theorem of calculus, we have

$I = f(3) -f(2)$

$= \frac{1}{2}\left \{ \log\left | \frac{3-1}{3+1} \right | - \log\left | \frac{2-1}{2+1} \right | \right \}$

$= \frac{1}{2}\left \{ \log\left | \frac{2}{4} \right | -\log\left | \frac{1}{3} \right | \right \}$

$= \frac{1}{2} \left\{ \log \frac{1}{2} - \log \frac{1}{3} \right\}$

$= \frac{1}{2} \log \frac{3}{2}$

Question 12: Evaluate the definite integral

$\int_0^\frac{\pi}{2}\cos^2 x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{2}\cos^2 x dx$

Consider the integral $\int \cos^2 x dx$

$\int \cos^2 x dx = \int \frac{1+\cos 2x}{2} dx = \frac{x}{2}+\frac{\sin 2x }{4}$

$= \frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{2}) -f(0)$

$= \frac{1}{2}\left \{ \left ( \frac{\pi}{2}-\frac{\sin \pi}{2} \right ) -\left ( 0+\frac{\sin 0}{2} \right ) \right \}$

$= \frac{1}{2}\left \{ \frac{\pi}{2}+0-0-0 \right \}$

$= \frac{\pi}{4}$

Question 13: Evaluate the definite integral

$\int_2^3\frac{xdx}{x^2+1}$

Answer:

Given integral: $\int_2^3\frac{xdx}{x^2+1}$

Consider the integral $\int \frac{xdx}{x^2+1}$

$\int \frac{x\,dx}{x^2+1}$

$= \frac{1}{2} \int \frac{2x}{x^2+1}\,dx$

$= \frac{1}{2} \log(1 + x^2)$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\log(1+x^2)$

Now, by Second fundamental theorem of calculus, we have

$I = f(3) -f(2)$

$= \frac{1}{2}\left \{ \log(1+(3)^2)-\log(1+(2)^2) \right \}$

$= \frac{1}{2} \left\{ \log(10) - \log(5) \right\}$

$= \frac{1}{2} \log\left( \frac{10}{5} \right)$

$= \frac{1}{2} \log 2$

Question 14: Evaluate the definite integral

$\int_0^1\frac{2x+3}{5x^2+1}dx$

Answer:

Given integral: $\int_0^1\frac{2x+3}{5x^2+1}dx$

Consider the integral $\int \frac{2x+3}{5x^2+1}dx$

Multiplying by 5 both in numerator and denominator:

$\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx$

$=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx$

$= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx$

$= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx$

$= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}$

$= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$

So, we have the function of $x$ , $f(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}$

$= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}$

Question 15: Evaluate the definite integral

$\int_0^1xe^{x^2}dx$

Answer:

Given integral: $\int_0^1xe^{x^2}dx$

Consider the integral $\int xe^{x^2}dx$

Putting $x^2 = t$ which gives, $2xdx =dt$

As, $x\rightarrow0 ,t \rightarrow0$ and as $x\rightarrow1 ,t \rightarrow1$ .

So, we have now:

$\therefore I = \frac{1}{2}\int_0^1 e^t dt$

$= \frac{1}{2}\int e^t dt = \frac{1}{2} e^t$

So, we have the function of $x$ , $f(x) = \frac{1}{2} e^t$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \frac{1}{2}e^1 - \frac{1}{2}e^0$

$= \frac{1}{2}(e - 1)$

Question 16: Evaluate the definite integral

$\int_1^2\frac{5x^2}{x^2 + 4x +3}$

Answer:

Given integral: $I = \int_1^2\frac{5x^2}{x^2 + 4x +3}$

So, we can rewrite the integral as;

$I = \int_1^2 \frac{5x^2}{x^2 + 4x +3}= \int_1^2 \left ( 5 - \frac{20x+15}{x^2 + 4x +3} \right ) dx$

$= \int_1^2 5 dx - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

$= [5x]_1^2 - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

$I = 5-I_1$ where $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$ . ................(1)

Now, consider $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

Take numerator $20x+15 = A \frac{d}{dx}\left ( x^2+4x+3 \right )+B$

$= 2A x+(4A+B)$

We now equate the coefficients of x and constant term, we get

A=10 and B=-25

$\Rightarrow I_1 = 10\int_1^2 \frac{2x+4}{x^2+4x+3}dx -25\int_1^2 \frac{dx}{x^2+4x+3}$

Now take denominator $x^2+4x+3 = t$

Then we have $(2x+4)dx =dt$

$\Rightarrow I_{1} =10\int \frac{dt}{t} -25\int \frac{dx}{(x+2)^2-1^2}$

$= 10\log t -25\left [ \frac{1}{2}\log\left ( \frac{x+2-1}{x+2+1} \right ) \right ]$

$=[10\log(x^2+4x+3)]_1^2 -25 \left [ \frac{1}{2}\log\left ( \frac{x+1}{x+3} \right ) \right ]_1^2$

$= \left [ 10\log15 -10\log 8 \right ] -25 \left [ \frac{1}{2}\log\frac{3}{5} -\frac{1}{2}\log\frac{2}{4} \right ]$

$= \left [ 10\log5 +10\log3 -10\log4-10\log2 \right ] -\frac{25}{2}\left [ \log3 -\log5-\log2+\log4 \right ]$ $= \left ( 10+\frac{25}{2} \right )\log5 + \left ( -10-\frac{25}{2} \right )\log 4 + \left ( 10-\frac{25}{2} \right )\log 3 + \left ( -10+\frac{25}{2} \right )\log 2$ $= \frac{45}{2}\log5 -\frac{45}{2}\log4 - \frac{5}{2}\log3 +\frac{5}{2}\log2$

$= \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log \frac{3}{2}$

Then substituting the value of $I_{1}$ in equation (1), we get

$I= 5 -\left ( \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log\frac{3}{2} \right )$

$= 5 -\frac{5}{2}\left ( 9\log\frac{5}{4}-\log\frac{3}{2} \right )$

Question 17: Evaluate the definite integral

$\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$

Answer:

Given integral: $\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$

Consider the integral $\int (2\sec^2x + x^3 + 2)dx$

$\int (2\sec^2x + x^3 + 2)dx = 2\tan x +\frac{x^4}{4}+2x$

So, we have the function of $x$ , $f(x) = 2\tan x +\frac{x^4}{4}+2x$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(0)$

$= \left \{ \left ( 2\tan\frac{\pi}{4}+\frac{1}{4}\left ( \frac{\pi}{4} \right )^4+2\frac{\pi}{4} \right ) - \left ( 2\tan 0 +0 +0 \right ) \right \}$

$=2\tan\frac{\pi}{4} +\frac{\pi^4}{4^5} +\frac{\pi}{2}$

$+2+\frac{\pi}{2}+\frac{\pi^4}{1024}$

Question 18: Evaluate the definite integral

$\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

Answer:

Given integral: $\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

Consider the integral $\int (\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

can be rewritten as: $-\int (\cos^2\frac{x}{2} - \sin^2\frac{x}{2})dx = -\int_0^{\pi} \cos x dx$

$= \sin x$

So, we have the function of $x$ , $f(x) =\sin x$

Now, by Second fundamental theorem of calculus, we have

$I = f(\pi) - f(0)$

$\Rightarrow \sin \pi - \sin 0$

$= 0 - 0$

$= 0$

Question 19: Evaluate the definite integral

$\int_0^2\frac{6x+3}{x^2+ 4}$

Answer:

Given integral: $\int_0^2\frac{6x+3}{x^2+ 4}$

Consider the integral $\int \frac{6x+3}{x^2+ 4}$

can be rewritten as: $\int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx$

$= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx$

$= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$

So, we have the function of $x$ , $f(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(2) - f(0)$

$= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}$ $=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0$

$=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0$

$=3\log \frac{8}{4} +\frac{3\pi}{8}$

or we have $=3\log 2 +\frac{3\pi}{8}$

Question 20: Evaluate the definite integral

$\int_0^1 \left( x e^x + \text{sin}\,\frac{\pi x}{4} \right) dx$

Answer:

Given integral: $\int_0^1 \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$

Consider the integral $\int \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$

can be rewritten as: $x\int e^x dx - \int \left \{ \left ( \frac{d}{dx}x \right )\int e^x dx \right \}dx +\left \{ \frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}} \right \}$

$= xe^x -\int e^x dx -\frac{4\pi}{\pi} \cos \frac{x}{4}$

$= xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$

So, we have the function of $x$ , $f(x) = xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) - f(0)$

$= \left (1.e^t-e^t - \frac{4}{\pi}\cos \frac{\pi}{4} \right ) - \left ( 0.e^0 -e^0 -\frac{4}{\pi}\cos 0 \right )$

$= e-e -\frac{4}{\pi}\left ( \frac{1}{\sqrt2} \right )+1+\frac{4}{\pi}$

Question 21: Choose the correct answer

$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$ equals

(A) $\frac{\pi}{3}$

(B) $\frac{2\pi}{3}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{12}$

Answer:

Given definite integral $\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$

Consider $\int \frac{dx}{1 +x^2} = \tan^{-1}x$

we have then the function of x, as $f(x) = \tan^{-1}x$

By applying the second fundamental theorem of calculus, we will get

$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2} = f(\sqrt3) - f(1)$

$= \tan^{-1}\sqrt{3} - \tan^{-1}1$

$=\frac{\pi}{3} - \frac{\pi}{4}$

$= \frac{\pi}{12}$

Therefore the correct answer is $\frac{\pi}{12}$ .

Question 22: Choose the correct answer

$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$ equals

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{12}$

(C) $\frac{\pi}{24}$

(D) $\frac{\pi}{4}$

Answer:

Given definite integral $\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$

Consider $\int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}$

Now, putting $3x = t$

we get, $3dx=dt$

Therefore we have, $\int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}$

$= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$

we have the function of x , as $f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$

So, by applying the second fundamental theorem of calculus, we get

$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)$

$= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0$

$= \frac{1}{6}\tan^{-1}1 - 0$

$= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}$

Therefore the correct answer is $\frac{\pi}{24}$.


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.8

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.8 is:

  • Definite integrals: A definite integral is an integral with an upper limit and a lower limit, and it is represented as the total accumulation between these limits. It is denoted as $\int_a^b f(x) d x$, where $a$ is the lower limit and $b$ is the upper limit, and $f(x)$ is the function being integrated.
  • First fundamental theorem of integral calculus: Let $f$ be a continuous function on the closed interval $[a, b]$ and let $\mathrm{A}(x)$ be the area function. Then $\mathrm{A}^{\prime}(x)=f(x)$, for all $x \in[a, b]$.
  • Second fundamental theorem of integral calculus: Let $f$ be a continuous function defined on the closed interval $[a, b]$ and let F be an antiderivative of $f$. Then $\int_a^b f(x) d x=[\mathbf{F}(x)]_a^b=\mathbf{F}(b)-\mathbf{F}(a)$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Which topics are mainly discussed in the Exercise 7.9 Class 12 Maths?
A:

Exercise 7.9 Class 12 Maths discusses maily evaluation of definite integrals. 

Q: How many questions are there in Exercise 7.9 Class 12 Maths?
A:

Exercise 7.9 Class 12 Maths has 22 questions.

Q: What do you mean by definite integrals ?
A:

Indefinite integrals are defined without upper and lower limits i.e its range is not defined. 

Q: What is the importance of Exercise 7.9 Class 12 Maths?
A:

Direct questions from this exercise are asked in the Board examination. Hence this exercise cannot be avoided at any cost. 

Q: What is the use of learning applications of Integrals ?
A:

After learning Application of integrals, one can easily find the quantities of area, volume, displacement etc. 

Q: What is the difficulty level of questions of Exercise 7.9 Class 12 Maths?
A:

Questions are moderate to difficult but regular practice can help get through the difficulty. 

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Goa Board HSSC Late Fee Application Date

11 Nov'25 - 5 Dec'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.

LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.