Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
Integrals help us find the total accumulation of a quantity, like the total distance covered or the area under a curve. Definite integrals take this one step further and give us the total accumulation over a specific interval, like the total distance covered between two specific points. In exercise 7.8 of the chapter Integrals, we will deep dive into the world of definite integrals, where we will learn how definite integrals act as the limit of a sum. This article on the NCERT Solutions for Exercise 7.8 of Class 12 Maths, Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to the problems given in the exercise, which will help the students clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Evaluate the definite integral
Answer:
Given integral: $I = \int_{-1}^{1} (x+1)dx$
Consider the integral $\int (x+1)dx$
$\int (x+1)dx = \frac{x^2}{2}+x$
So, we have the function of $x$ , $f(x) = \frac{x^2}{2}+x$
Now, by 4the Second fundamental theorem of calculus, we have
$I = f(1)-f(-1)$
$= \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{2} - 1 \right)$
$= \frac{1}{2} + 1 - \frac{1}{2} + 1$
$= 2$
Question 2: Evaluate the definite integral
Answer:
Given integral: $I = \int_2^3\frac{1}{x}dx$
Consider the integral $\int_2^3\frac{1}{x}dx$
$\int \frac{1}{x}dx = \log|x|$
So, we have the function of $x$ , $f(x) = \log|x|$
Now, by Second fundamental theorem of calculus, we have
$I = f(3)-f(2)$
$=\log|3|-\log|2| = \log \frac{3}{2}$
Question 3: Evaluate the definite integral
$\int_1^2(4x^3-5x^2 + 6x +9)dx$
Answer:
Given integral: $I = \int_1^2(4x^3-5x^2 + 6x +9)dx$
Consider the integral $I = \int (4x^3-5x^2 + 6x +9)dx$
$\int (4x^3-5x^2 + 6x +9)dx = 4\frac{x^4}{4} -5\frac{x^3}{3}+6\frac{x^2}{2}+9x$
$= x^4 -\frac{5x^3}{3}+3x^2+9x$
So, we have the function of $x$ , $f(x) = x^4 -\frac{5x^3}{3}+3x^2+9x$
Now, by Second fundamental theorem of calculus, we have
$I = f(2)-f(1)$
$=\left \{ 2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right \} - \left \{ 1^4-\frac{5(1)^3}{3}+3(1)^2+9(1) \right \}$
$=\left \{ 16-\frac{40}{3}+12+18\right \} - \left \{ 1-\frac{5}{3}+3+9 \right \}$
$=\left \{ 46-\frac{40}{3}\right \} - \left \{ 13-\frac{5}{3}\right \}$
$=\left \{ 33-\frac{35}{3} \right \} = \left \{ \frac{99-35}{3} \right \}$
$= \frac{64}{3}$
Question 4: Evaluate the definite integral
$\int_0^\frac{\pi}{4}\sin 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}\sin 2x dx$
Consider the integral $\int \sin 2x dx$
$\int \sin 2x dx = \frac{-\cos 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{-\cos 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4})-f(0)$
$= \frac{-\cos 2(\frac{\pi}{4})}{2} + \frac{\cos 0}{2}$
$=\frac{1}{2} - 0$
$= \frac{1}{2}$
Question 5: Evaluate the definite integral
$\int_0^\frac{\pi}{2}\cos 2x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos 2x dx$
Consider the integral $\int \cos 2x dx$
$\int \cos 2x dx = \frac{\sin 2x }{2}$
So, we have the function of $x$ , $f(x) = \frac{\sin 2x }{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2})-f(0)$
$= \frac{1}{2}\left \{ \sin 2(\frac{\pi}{2}) - \sin 0 \right \}$
$= \frac{1}{2}\left \{ 0 - 0 \right \} = 0$
Question 6: Evaluate the definite integral
Answer:
Given integral: $\int_4^5 e^x dx$
Consider the integral $\int e^x dx$
$\int e^x dx = e^x$
So, we have the function of $x$ , $f(x) = e^x$
Now, by Second fundamental theorem of calculus, we have
$I = f(5) -f(4)$
$= e^5 -e^4$
$= e^4(e-1)$
Question 7: Evaluate the definite integral
$\int^\frac{\pi}{4}_0 \tan x dx$
Answer:
Given integral: $\int^\frac{\pi}{4}_0 \tan x dx$
Consider the integral $\int \tan x dx$
$\int \tan x dx = -\log|\cos x |$
So, we have the function of $x$ , $f(x) = -\log|\cos x |$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= -\log\left | \cos \frac{\pi}{4} \right | +\log|\cos 0|$
$= -\log\left | \cos \frac{1}{\sqrt2} \right | +\log|1|$
$= -\log\left | \frac{1}{\sqrt2} \right | + 0 = -\log (2)^{-\frac{1}{2}}$
$= \frac{1}{2}\log (2)$
Question 8: Evaluate the definite integral
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \text{cosec}\,x\,dx$
Answer:
Given integral: $\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec} x dx$
Consider the integral $\int\textup{cosec} x dx$
$\int \text{cosec}\,x\,dx = \log|\text{cosec}\,x - \text{cot}\,x|$
So, we have the function of $x$ , $f(x) = \log|\text{cosec}\,x - \text{cot}\,x|$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(\frac{\pi}{6})$
$= \log|\text{cosec}\,\frac{\pi}{4} - \text{cot}\,\frac{\pi}{4}| - \log|\text{cosec}\,\frac{\pi}{6} - \text{cot}\,\frac{\pi}{6}|$
$= \log|\sqrt2 -1 | - \log|2 -\sqrt3 |$
$= \log \left ( \frac{\sqrt2 -1}{2-\sqrt3} \right )$
Question 9: Evaluate the definite integral
$\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Answer:
Given integral: $\int_0^1\frac{dx}{\sqrt{1-x^2}}$
Consider the integral $\int \frac{dx}{\sqrt{1-x^2}}$
$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$
So, we have the function of $x$ , $f(x) = \sin^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \sin^{-1}(1) -\sin^{-1}(0)$
$= \frac{\pi}{2} - 0$
$= \frac{\pi}{2}$
Question 10: Evaluate the definite integral
Answer:
Given integral: $\int_0^1\frac{dx}{1 + x^2}$
Consider the integral $\int\frac{dx}{1 + x^2}$
$\int\frac{dx}{1 + x^2} = \tan^{-1}x$
So, we have the function of $x$ , $f(x) =\tan^{-1}x$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \tan^{-1}(1) -\tan^{-1}(0)$
$= \frac{\pi}{4} - 0$
$= \frac{\pi}{4}$
Question 11: Evaluate the definite integral
$\int_2^3 \frac{dx}{x^2 -1 }$
Answer:
Given integral: $\int_2^3 \frac{dx}{x^2 -1 }$
Consider the integral $\int \frac{dx}{x^2 -1 }$
$\int \frac{dx}{x^2 -1 } = \frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log\left | \frac{3-1}{3+1} \right | - \log\left | \frac{2-1}{2+1} \right | \right \}$
$= \frac{1}{2}\left \{ \log\left | \frac{2}{4} \right | -\log\left | \frac{1}{3} \right | \right \}$
$= \frac{1}{2} \left\{ \log \frac{1}{2} - \log \frac{1}{3} \right\}$
$= \frac{1}{2} \log \frac{3}{2}$
Question 12: Evaluate the definite integral
$\int_0^\frac{\pi}{2}\cos^2 x dx$
Answer:
Given integral: $\int_0^\frac{\pi}{2}\cos^2 x dx$
Consider the integral $\int \cos^2 x dx$
$\int \cos^2 x dx = \int \frac{1+\cos 2x}{2} dx = \frac{x}{2}+\frac{\sin 2x }{4}$
$= \frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{2}) -f(0)$
$= \frac{1}{2}\left \{ \left ( \frac{\pi}{2}-\frac{\sin \pi}{2} \right ) -\left ( 0+\frac{\sin 0}{2} \right ) \right \}$
$= \frac{1}{2}\left \{ \frac{\pi}{2}+0-0-0 \right \}$
$= \frac{\pi}{4}$
Question 13: Evaluate the definite integral
Answer:
Given integral: $\int_2^3\frac{xdx}{x^2+1}$
Consider the integral $\int \frac{xdx}{x^2+1}$
$\int \frac{x\,dx}{x^2+1}$
$= \frac{1}{2} \int \frac{2x}{x^2+1}\,dx$
$= \frac{1}{2} \log(1 + x^2)$
So, we have the function of $x$ , $f(x) =\frac{1}{2}\log(1+x^2)$
Now, by Second fundamental theorem of calculus, we have
$I = f(3) -f(2)$
$= \frac{1}{2}\left \{ \log(1+(3)^2)-\log(1+(2)^2) \right \}$
$= \frac{1}{2} \left\{ \log(10) - \log(5) \right\}$
$= \frac{1}{2} \log\left( \frac{10}{5} \right)$
$= \frac{1}{2} \log 2$
Question 14: Evaluate the definite integral
$\int_0^1\frac{2x+3}{5x^2+1}dx$
Answer:
Given integral: $\int_0^1\frac{2x+3}{5x^2+1}dx$
Consider the integral $\int \frac{2x+3}{5x^2+1}dx$
Multiplying by 5 both in numerator and denominator:
$\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx$
$=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx$
$= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx$
$= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}$
$= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
So, we have the function of $x$ , $f(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}$
$= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}$
Question 15: Evaluate the definite integral
Answer:
Given integral: $\int_0^1xe^{x^2}dx$
Consider the integral $\int xe^{x^2}dx$
Putting $x^2 = t$ which gives, $2xdx =dt$
As, $x\rightarrow0 ,t \rightarrow0$ and as $x\rightarrow1 ,t \rightarrow1$ .
So, we have now:
$\therefore I = \frac{1}{2}\int_0^1 e^t dt$
$= \frac{1}{2}\int e^t dt = \frac{1}{2} e^t$
So, we have the function of $x$ , $f(x) = \frac{1}{2} e^t$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) -f(0)$
$= \frac{1}{2}e^1 - \frac{1}{2}e^0$
$= \frac{1}{2}(e - 1)$
Question 16: Evaluate the definite integral
$\int_1^2\frac{5x^2}{x^2 + 4x +3}$
Answer:
Given integral: $I = \int_1^2\frac{5x^2}{x^2 + 4x +3}$
So, we can rewrite the integral as;
$I = \int_1^2 \frac{5x^2}{x^2 + 4x +3}= \int_1^2 \left ( 5 - \frac{20x+15}{x^2 + 4x +3} \right ) dx$
$= \int_1^2 5 dx - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$= [5x]_1^2 - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
$I = 5-I_1$ where $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$ . ................(1)
Now, consider $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$
Take numerator $20x+15 = A \frac{d}{dx}\left ( x^2+4x+3 \right )+B$
$= 2A x+(4A+B)$
We now equate the coefficients of x and constant term, we get
A=10 and B=-25
$\Rightarrow I_1 = 10\int_1^2 \frac{2x+4}{x^2+4x+3}dx -25\int_1^2 \frac{dx}{x^2+4x+3}$
Now take denominator $x^2+4x+3 = t$
Then we have $(2x+4)dx =dt$
$\Rightarrow I_{1} =10\int \frac{dt}{t} -25\int \frac{dx}{(x+2)^2-1^2}$
$= 10\log t -25\left [ \frac{1}{2}\log\left ( \frac{x+2-1}{x+2+1} \right ) \right ]$
$=[10\log(x^2+4x+3)]_1^2 -25 \left [ \frac{1}{2}\log\left ( \frac{x+1}{x+3} \right ) \right ]_1^2$
$= \left [ 10\log15 -10\log 8 \right ] -25 \left [ \frac{1}{2}\log\frac{3}{5} -\frac{1}{2}\log\frac{2}{4} \right ]$
$= \left [ 10\log5 +10\log3 -10\log4-10\log2 \right ] -\frac{25}{2}\left [ \log3 -\log5-\log2+\log4 \right ]$ $= \left ( 10+\frac{25}{2} \right )\log5 + \left ( -10-\frac{25}{2} \right )\log 4 + \left ( 10-\frac{25}{2} \right )\log 3 + \left ( -10+\frac{25}{2} \right )\log 2$ $= \frac{45}{2}\log5 -\frac{45}{2}\log4 - \frac{5}{2}\log3 +\frac{5}{2}\log2$
$= \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log \frac{3}{2}$
Then substituting the value of $I_{1}$ in equation (1), we get
$I= 5 -\left ( \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log\frac{3}{2} \right )$
$= 5 -\frac{5}{2}\left ( 9\log\frac{5}{4}-\log\frac{3}{2} \right )$
Question 17: Evaluate the definite integral
$\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Answer:
Given integral: $\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$
Consider the integral $\int (2\sec^2x + x^3 + 2)dx$
$\int (2\sec^2x + x^3 + 2)dx = 2\tan x +\frac{x^4}{4}+2x$
So, we have the function of $x$ , $f(x) = 2\tan x +\frac{x^4}{4}+2x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\frac{\pi}{4}) -f(0)$
$= \left \{ \left ( 2\tan\frac{\pi}{4}+\frac{1}{4}\left ( \frac{\pi}{4} \right )^4+2\frac{\pi}{4} \right ) - \left ( 2\tan 0 +0 +0 \right ) \right \}$
$=2\tan\frac{\pi}{4} +\frac{\pi^4}{4^5} +\frac{\pi}{2}$
$+2+\frac{\pi}{2}+\frac{\pi^4}{1024}$
Question 18: Evaluate the definite integral
$\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Answer:
Given integral: $\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
Consider the integral $\int (\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$
can be rewritten as: $-\int (\cos^2\frac{x}{2} - \sin^2\frac{x}{2})dx = -\int_0^{\pi} \cos x dx$
$= \sin x$
So, we have the function of $x$ , $f(x) =\sin x$
Now, by Second fundamental theorem of calculus, we have
$I = f(\pi) - f(0)$
$\Rightarrow \sin \pi - \sin 0$
$= 0 - 0$
$= 0$
Question 19: Evaluate the definite integral
Answer:
Given integral: $\int_0^2\frac{6x+3}{x^2+ 4}$
Consider the integral $\int \frac{6x+3}{x^2+ 4}$
can be rewritten as: $\int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx$
$= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx$
$= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
So, we have the function of $x$ , $f(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$
Now, by Second fundamental theorem of calculus, we have
$I = f(2) - f(0)$
$= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}$ $=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0$
$=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0$
$=3\log \frac{8}{4} +\frac{3\pi}{8}$
or we have $=3\log 2 +\frac{3\pi}{8}$
Question 20: Evaluate the definite integral
$\int_0^1 \left( x e^x + \text{sin}\,\frac{\pi x}{4} \right) dx$
Answer:
Given integral: $\int_0^1 \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$
Consider the integral $\int \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$
can be rewritten as: $x\int e^x dx - \int \left \{ \left ( \frac{d}{dx}x \right )\int e^x dx \right \}dx +\left \{ \frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}} \right \}$
$= xe^x -\int e^x dx -\frac{4\pi}{\pi} \cos \frac{x}{4}$
$= xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
So, we have the function of $x$ , $f(x) = xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$
Now, by Second fundamental theorem of calculus, we have
$I = f(1) - f(0)$
$= \left (1.e^t-e^t - \frac{4}{\pi}\cos \frac{\pi}{4} \right ) - \left ( 0.e^0 -e^0 -\frac{4}{\pi}\cos 0 \right )$
$= e-e -\frac{4}{\pi}\left ( \frac{1}{\sqrt2} \right )+1+\frac{4}{\pi}$
Question 21: Choose the correct answer
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$ equals
(A) $\frac{\pi}{3}$
(B) $\frac{2\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{12}$
Answer:
Given definite integral $\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$
Consider $\int \frac{dx}{1 +x^2} = \tan^{-1}x$
we have then the function of x, as $f(x) = \tan^{-1}x$
By applying the second fundamental theorem of calculus, we will get
$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2} = f(\sqrt3) - f(1)$
$= \tan^{-1}\sqrt{3} - \tan^{-1}1$
$=\frac{\pi}{3} - \frac{\pi}{4}$
$= \frac{\pi}{12}$
Therefore the correct answer is $\frac{\pi}{12}$ .
Question 22: Choose the correct answer
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$ equals
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{12}$
(C) $\frac{\pi}{24}$
(D) $\frac{\pi}{4}$
Answer:
Given definite integral $\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$
Consider $\int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}$
Now, putting $3x = t$
we get, $3dx=dt$
Therefore we have, $\int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}$
$= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
we have the function of x , as $f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$
So, by applying the second fundamental theorem of calculus, we get
$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)$
$= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0$
$= \frac{1}{6}\tan^{-1}1 - 0$
$= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}$
Therefore the correct answer is $\frac{\pi}{24}$.
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.8 is:
Take Aakash iACST and get instant scholarship on coaching programs.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Indefinite integrals are defined without upper and lower limits i.e its range is not defined.
Direct questions from this exercise are asked in the Board examination. Hence this exercise cannot be avoided at any cost.
After learning Application of integrals, one can easily find the quantities of area, volume, displacement etc.
Questions are moderate to difficult but regular practice can help get through the difficulty.
Exercise 7.9 Class 12 Maths discusses maily evaluation of definite integrals.
Exercise 7.9 Class 12 Maths has 22 questions.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.