NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.9 Class 12 Maths Chapter 7 - Integrals

Komal MiglaniUpdated on 25 Apr 2025, 10:57 AM IST

Integrals help us find the total accumulation of a quantity, like the total distance covered or the area under a curve. Definite integrals take this one step further and give us the total accumulation over a specific interval, like the total distance covered between two specific points. In exercise 7.8 of the chapter Integrals, we will deep dive into the world of definite integrals, where we will learn how definite integrals act as the limit of a sum. This article on the NCERT Solutions for Exercise 7.8 of Class 12 Maths, Chapter 7 - Integrals, offers detailed and easy-to-understand solutions to the problems given in the exercise, which will help the students clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE Admit Card 2026 LIVE: Class 10 and 12 theory exam hall tickets soon, exams from February 17Feb 2, 2026 | 6:27 PM IST

Students must follow the general exam day instructions listed in the Class 10th date sheet 2025–2026:

  1. At least thirty minutes before the reporting time, arrive at the examination location.
  2. For every exam day, bring your Class 10 admit card or hall pass.
  3. During the exam, refrain from any malpractice.
  4. Pens, pencils, erasers, and rulers are examples of necessary stationery.
  5. Electronic devices and gadgets are not permitted inside the examination centre, so leave them at home.
Read More

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.8 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise 7.8
  3. Topics covered in Chapter 7, Integrals: Exercise 7.8
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 7 Exercise 7.8 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.8

Question 1: Evaluate the definite integral

$\int_{-1}^{1} (x+1)dx$

Answer:

Given integral: $I = \int_{-1}^{1} (x+1)dx$

Consider the integral $\int (x+1)dx$

$\int (x+1)dx = \frac{x^2}{2}+x$

So, we have the function of $x$ , $f(x) = \frac{x^2}{2}+x$

Now, by 4the Second fundamental theorem of calculus, we have

$I = f(1)-f(-1)$

$= \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{2} - 1 \right)$

$= \frac{1}{2} + 1 - \frac{1}{2} + 1$

$= 2$

Question 2: Evaluate the definite integral

$\int_2^3\frac{1}{x}dx$

Answer:

Given integral: $I = \int_2^3\frac{1}{x}dx$

Consider the integral $\int_2^3\frac{1}{x}dx$

$\int \frac{1}{x}dx = \log|x|$

So, we have the function of $x$ , $f(x) = \log|x|$

Now, by Second fundamental theorem of calculus, we have

$I = f(3)-f(2)$

$=\log|3|-\log|2| = \log \frac{3}{2}$

Question 3: Evaluate the definite integral

$\int_1^2(4x^3-5x^2 + 6x +9)dx$

Answer:

Given integral: $I = \int_1^2(4x^3-5x^2 + 6x +9)dx$

Consider the integral $I = \int (4x^3-5x^2 + 6x +9)dx$

$\int (4x^3-5x^2 + 6x +9)dx = 4\frac{x^4}{4} -5\frac{x^3}{3}+6\frac{x^2}{2}+9x$

$= x^4 -\frac{5x^3}{3}+3x^2+9x$

So, we have the function of $x$ , $f(x) = x^4 -\frac{5x^3}{3}+3x^2+9x$

Now, by Second fundamental theorem of calculus, we have

$I = f(2)-f(1)$

$=\left \{ 2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right \} - \left \{ 1^4-\frac{5(1)^3}{3}+3(1)^2+9(1) \right \}$

$=\left \{ 16-\frac{40}{3}+12+18\right \} - \left \{ 1-\frac{5}{3}+3+9 \right \}$

$=\left \{ 46-\frac{40}{3}\right \} - \left \{ 13-\frac{5}{3}\right \}$

$=\left \{ 33-\frac{35}{3} \right \} = \left \{ \frac{99-35}{3} \right \}$

$= \frac{64}{3}$

Question 4: Evaluate the definite integral

$\int_0^\frac{\pi}{4}\sin 2x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{4}\sin 2x dx$

Consider the integral $\int \sin 2x dx$

$\int \sin 2x dx = \frac{-\cos 2x }{2}$

So, we have the function of $x$ , $f(x) = \frac{-\cos 2x }{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4})-f(0)$

$= \frac{-\cos 2(\frac{\pi}{4})}{2} + \frac{\cos 0}{2}$

$=\frac{1}{2} - 0$

$= \frac{1}{2}$

Question 5: Evaluate the definite integral

$\int_0^\frac{\pi}{2}\cos 2x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{2}\cos 2x dx$

Consider the integral $\int \cos 2x dx$

$\int \cos 2x dx = \frac{\sin 2x }{2}$

So, we have the function of $x$ , $f(x) = \frac{\sin 2x }{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{2})-f(0)$

$= \frac{1}{2}\left \{ \sin 2(\frac{\pi}{2}) - \sin 0 \right \}$

$= \frac{1}{2}\left \{ 0 - 0 \right \} = 0$

Question 6: Evaluate the definite integral

$\int_4^5 e^x dx$

Answer:

Given integral: $\int_4^5 e^x dx$

Consider the integral $\int e^x dx$

$\int e^x dx = e^x$

So, we have the function of $x$ , $f(x) = e^x$

Now, by Second fundamental theorem of calculus, we have

$I = f(5) -f(4)$

$= e^5 -e^4$

$= e^4(e-1)$

Question 7: Evaluate the definite integral

$\int^\frac{\pi}{4}_0 \tan x dx$

Answer:

Given integral: $\int^\frac{\pi}{4}_0 \tan x dx$

Consider the integral $\int \tan x dx$

$\int \tan x dx = -\log|\cos x |$

So, we have the function of $x$ , $f(x) = -\log|\cos x |$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(0)$

$= -\log\left | \cos \frac{\pi}{4} \right | +\log|\cos 0|$

$= -\log\left | \cos \frac{1}{\sqrt2} \right | +\log|1|$

$= -\log\left | \frac{1}{\sqrt2} \right | + 0 = -\log (2)^{-\frac{1}{2}}$

$= \frac{1}{2}\log (2)$

Question 8: Evaluate the definite integral

$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \text{cosec}\,x\,dx$

Answer:

Given integral: $\int_\frac{\pi}{6}^\frac{\pi}{4}\textup{cosec} x dx$

Consider the integral $\int\textup{cosec} x dx$

$\int \text{cosec}\,x\,dx = \log|\text{cosec}\,x - \text{cot}\,x|$

So, we have the function of $x$ , $f(x) = \log|\text{cosec}\,x - \text{cot}\,x|$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(\frac{\pi}{6})$

$= \log|\text{cosec}\,\frac{\pi}{4} - \text{cot}\,\frac{\pi}{4}| - \log|\text{cosec}\,\frac{\pi}{6} - \text{cot}\,\frac{\pi}{6}|$

$= \log|\sqrt2 -1 | - \log|2 -\sqrt3 |$

$= \log \left ( \frac{\sqrt2 -1}{2-\sqrt3} \right )$

Question 9: Evaluate the definite integral

$\int_0^1\frac{dx}{\sqrt{1-x^2}}$

Answer:

Given integral: $\int_0^1\frac{dx}{\sqrt{1-x^2}}$

Consider the integral $\int \frac{dx}{\sqrt{1-x^2}}$

$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x$

So, we have the function of $x$ , $f(x) = \sin^{-1}x$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \sin^{-1}(1) -\sin^{-1}(0)$

$= \frac{\pi}{2} - 0$

$= \frac{\pi}{2}$

Question 10: Evaluate the definite integral

$\int_0^1\frac{dx}{1 + x^2}$

Answer:

Given integral: $\int_0^1\frac{dx}{1 + x^2}$

Consider the integral $\int\frac{dx}{1 + x^2}$

$\int\frac{dx}{1 + x^2} = \tan^{-1}x$

So, we have the function of $x$ , $f(x) =\tan^{-1}x$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \tan^{-1}(1) -\tan^{-1}(0)$

$= \frac{\pi}{4} - 0$

$= \frac{\pi}{4}$

Question 11: Evaluate the definite integral

$\int_2^3 \frac{dx}{x^2 -1 }$

Answer:

Given integral: $\int_2^3 \frac{dx}{x^2 -1 }$

Consider the integral $\int \frac{dx}{x^2 -1 }$

$\int \frac{dx}{x^2 -1 } = \frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\log\left | \frac{x-1}{x+1} \right |$

Now, by Second fundamental theorem of calculus, we have

$I = f(3) -f(2)$

$= \frac{1}{2}\left \{ \log\left | \frac{3-1}{3+1} \right | - \log\left | \frac{2-1}{2+1} \right | \right \}$

$= \frac{1}{2}\left \{ \log\left | \frac{2}{4} \right | -\log\left | \frac{1}{3} \right | \right \}$

$= \frac{1}{2} \left\{ \log \frac{1}{2} - \log \frac{1}{3} \right\}$

$= \frac{1}{2} \log \frac{3}{2}$

Question 12: Evaluate the definite integral

$\int_0^\frac{\pi}{2}\cos^2 x dx$

Answer:

Given integral: $\int_0^\frac{\pi}{2}\cos^2 x dx$

Consider the integral $\int \cos^2 x dx$

$\int \cos^2 x dx = \int \frac{1+\cos 2x}{2} dx = \frac{x}{2}+\frac{\sin 2x }{4}$

$= \frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\left ( x+\frac{\sin 2x}{2} \right )$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{2}) -f(0)$

$= \frac{1}{2}\left \{ \left ( \frac{\pi}{2}-\frac{\sin \pi}{2} \right ) -\left ( 0+\frac{\sin 0}{2} \right ) \right \}$

$= \frac{1}{2}\left \{ \frac{\pi}{2}+0-0-0 \right \}$

$= \frac{\pi}{4}$

Question 13: Evaluate the definite integral

$\int_2^3\frac{xdx}{x^2+1}$

Answer:

Given integral: $\int_2^3\frac{xdx}{x^2+1}$

Consider the integral $\int \frac{xdx}{x^2+1}$

$\int \frac{x\,dx}{x^2+1}$

$= \frac{1}{2} \int \frac{2x}{x^2+1}\,dx$

$= \frac{1}{2} \log(1 + x^2)$

So, we have the function of $x$ , $f(x) =\frac{1}{2}\log(1+x^2)$

Now, by Second fundamental theorem of calculus, we have

$I = f(3) -f(2)$

$= \frac{1}{2}\left \{ \log(1+(3)^2)-\log(1+(2)^2) \right \}$

$= \frac{1}{2} \left\{ \log(10) - \log(5) \right\}$

$= \frac{1}{2} \log\left( \frac{10}{5} \right)$

$= \frac{1}{2} \log 2$

Question 14: Evaluate the definite integral

$\int_0^1\frac{2x+3}{5x^2+1}dx$

Answer:

Given integral: $\int_0^1\frac{2x+3}{5x^2+1}dx$

Consider the integral $\int \frac{2x+3}{5x^2+1}dx$

Multiplying by 5 both in numerator and denominator:

$\int \frac{2x+3}{5x^2+1}dx = \frac{1}{5}\int \frac{5(2x+3)}{5x^2+1}dx$

$=\frac{1}{5}\int \frac{10x+15}{5x^2+1}dx$

$= \frac{1}{5} \int \frac{10x}{5x^2+1} dx +3\int \frac{1}{5x^2+1} dx$

$= \frac{1}{5}\int \frac{10x}{5x^2+1}+3\int \frac{1}{5\left ( x^2+\frac{1}{5} \right )}dx$

$= \frac{1}{5}\log(5x^2+1) +\frac{3}{5}\times \frac{1}{\frac{1}{\sqrt5}} \tan^{-1}\frac{x}{\frac{1}{\sqrt5}}$

$= \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$

So, we have the function of $x$ , $f(x) = \frac{1}{5}\log(5x^2+1) +\frac{3}{\sqrt5}\tan^{-1}(\sqrt5 x )$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \left \{ \frac{1}{5}\log(1+5)+\frac{3}{\sqrt5}\tan^{-1}(\sqrt5) \right \} - \left \{ \frac{1}{5}\log(1)+\frac{3}{\sqrt5}\tan^{-1}(0) \right \}$

$= \frac{1}{5}\log 6 +\frac{3}{\sqrt 5}\tan^{-1}{\sqrt5}$

Question 15: Evaluate the definite integral

$\int_0^1xe^{x^2}dx$

Answer:

Given integral: $\int_0^1xe^{x^2}dx$

Consider the integral $\int xe^{x^2}dx$

Putting $x^2 = t$ which gives, $2xdx =dt$

As, $x\rightarrow0 ,t \rightarrow0$ and as $x\rightarrow1 ,t \rightarrow1$ .

So, we have now:

$\therefore I = \frac{1}{2}\int_0^1 e^t dt$

$= \frac{1}{2}\int e^t dt = \frac{1}{2} e^t$

So, we have the function of $x$ , $f(x) = \frac{1}{2} e^t$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) -f(0)$

$= \frac{1}{2}e^1 - \frac{1}{2}e^0$

$= \frac{1}{2}(e - 1)$

Question 16: Evaluate the definite integral

$\int_1^2\frac{5x^2}{x^2 + 4x +3}$

Answer:

Given integral: $I = \int_1^2\frac{5x^2}{x^2 + 4x +3}$

So, we can rewrite the integral as;

$I = \int_1^2 \frac{5x^2}{x^2 + 4x +3}= \int_1^2 \left ( 5 - \frac{20x+15}{x^2 + 4x +3} \right ) dx$

$= \int_1^2 5 dx - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

$= [5x]_1^2 - \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

$I = 5-I_1$ where $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$ . ................(1)

Now, consider $I = \int_1^2 \frac{20x+15}{x^2+4x+3}dx$

Take numerator $20x+15 = A \frac{d}{dx}\left ( x^2+4x+3 \right )+B$

$= 2A x+(4A+B)$

We now equate the coefficients of x and constant term, we get

A=10 and B=-25

$\Rightarrow I_1 = 10\int_1^2 \frac{2x+4}{x^2+4x+3}dx -25\int_1^2 \frac{dx}{x^2+4x+3}$

Now take denominator $x^2+4x+3 = t$

Then we have $(2x+4)dx =dt$

$\Rightarrow I_{1} =10\int \frac{dt}{t} -25\int \frac{dx}{(x+2)^2-1^2}$

$= 10\log t -25\left [ \frac{1}{2}\log\left ( \frac{x+2-1}{x+2+1} \right ) \right ]$

$=[10\log(x^2+4x+3)]_1^2 -25 \left [ \frac{1}{2}\log\left ( \frac{x+1}{x+3} \right ) \right ]_1^2$

$= \left [ 10\log15 -10\log 8 \right ] -25 \left [ \frac{1}{2}\log\frac{3}{5} -\frac{1}{2}\log\frac{2}{4} \right ]$

$= \left [ 10\log5 +10\log3 -10\log4-10\log2 \right ] -\frac{25}{2}\left [ \log3 -\log5-\log2+\log4 \right ]$ $= \left ( 10+\frac{25}{2} \right )\log5 + \left ( -10-\frac{25}{2} \right )\log 4 + \left ( 10-\frac{25}{2} \right )\log 3 + \left ( -10+\frac{25}{2} \right )\log 2$ $= \frac{45}{2}\log5 -\frac{45}{2}\log4 - \frac{5}{2}\log3 +\frac{5}{2}\log2$

$= \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log \frac{3}{2}$

Then substituting the value of $I_{1}$ in equation (1), we get

$I= 5 -\left ( \frac{45}{2}\log\frac{5}{4}-\frac{5}{2}\log\frac{3}{2} \right )$

$= 5 -\frac{5}{2}\left ( 9\log\frac{5}{4}-\log\frac{3}{2} \right )$

Question 17: Evaluate the definite integral

$\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$

Answer:

Given integral: $\int_0^\frac{\pi}{4}(2\sec^2x + x^3 + 2)dx$

Consider the integral $\int (2\sec^2x + x^3 + 2)dx$

$\int (2\sec^2x + x^3 + 2)dx = 2\tan x +\frac{x^4}{4}+2x$

So, we have the function of $x$ , $f(x) = 2\tan x +\frac{x^4}{4}+2x$

Now, by Second fundamental theorem of calculus, we have

$I = f(\frac{\pi}{4}) -f(0)$

$= \left \{ \left ( 2\tan\frac{\pi}{4}+\frac{1}{4}\left ( \frac{\pi}{4} \right )^4+2\frac{\pi}{4} \right ) - \left ( 2\tan 0 +0 +0 \right ) \right \}$

$=2\tan\frac{\pi}{4} +\frac{\pi^4}{4^5} +\frac{\pi}{2}$

$+2+\frac{\pi}{2}+\frac{\pi^4}{1024}$

Question 18: Evaluate the definite integral

$\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

Answer:

Given integral: $\int^\pi_0(\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

Consider the integral $\int (\sin^2\frac{x}{2} - \cos^2\frac{x}{2})dx$

can be rewritten as: $-\int (\cos^2\frac{x}{2} - \sin^2\frac{x}{2})dx = -\int_0^{\pi} \cos x dx$

$= \sin x$

So, we have the function of $x$ , $f(x) =\sin x$

Now, by Second fundamental theorem of calculus, we have

$I = f(\pi) - f(0)$

$\Rightarrow \sin \pi - \sin 0$

$= 0 - 0$

$= 0$

Question 19: Evaluate the definite integral

$\int_0^2\frac{6x+3}{x^2+ 4}$

Answer:

Given integral: $\int_0^2\frac{6x+3}{x^2+ 4}$

Consider the integral $\int \frac{6x+3}{x^2+ 4}$

can be rewritten as: $\int \frac{6x+3}{x^2+ 4} = 3\int \frac{2x+1}{x^2+4}dx$

$= 3\int \frac{2x}{x^2+4}dx +3\int \frac{1}{x^2+4}dx$

$= 3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$

So, we have the function of $x$ , $f(x) =3\log (x^2+4) +\frac{3}{2}\tan^{-1}\frac{x}{2}$

Now, by Second fundamental theorem of calculus, we have

$I = f(2) - f(0)$

$= \left \{ 3\log(2^2+4)+\frac{3}{2}\tan^{-1}\left ( \frac{2}{2} \right ) \right \}- \left \{ 3\log(0+4)+\frac{3}{2}\tan^{-1}\left ( \frac{0}{2} \right ) \right \}$ $=3\log 8 +\frac{3}{2}\tan^{-1}1 -3\log 4 -\frac{3}{2}\tan^{-1} 0$

$=3\log 8 +\frac{3}{2}\times\frac{\pi}{4} -3\log 4 -0$

$=3\log \frac{8}{4} +\frac{3\pi}{8}$

or we have $=3\log 2 +\frac{3\pi}{8}$

Question 20: Evaluate the definite integral

$\int_0^1 \left( x e^x + \text{sin}\,\frac{\pi x}{4} \right) dx$

Answer:

Given integral: $\int_0^1 \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$

Consider the integral $\int \left( xe^x + \text{sin}\, \frac{\pi x}{4} \right) dx$

can be rewritten as: $x\int e^x dx - \int \left \{ \left ( \frac{d}{dx}x \right )\int e^x dx \right \}dx +\left \{ \frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}} \right \}$

$= xe^x -\int e^x dx -\frac{4\pi}{\pi} \cos \frac{x}{4}$

$= xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$

So, we have the function of $x$ , $f(x) = xe^x -e^x -\frac{4\pi}{\pi} \cos \frac{x}{4}$

Now, by Second fundamental theorem of calculus, we have

$I = f(1) - f(0)$

$= \left (1.e^t-e^t - \frac{4}{\pi}\cos \frac{\pi}{4} \right ) - \left ( 0.e^0 -e^0 -\frac{4}{\pi}\cos 0 \right )$

$= e-e -\frac{4}{\pi}\left ( \frac{1}{\sqrt2} \right )+1+\frac{4}{\pi}$

Question 21: Choose the correct answer

$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$ equals

(A) $\frac{\pi}{3}$

(B) $\frac{2\pi}{3}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{12}$

Answer:

Given definite integral $\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2}$

Consider $\int \frac{dx}{1 +x^2} = \tan^{-1}x$

we have then the function of x, as $f(x) = \tan^{-1}x$

By applying the second fundamental theorem of calculus, we will get

$\int^{\sqrt{3}}_{1} \frac{dx}{1 +x^2} = f(\sqrt3) - f(1)$

$= \tan^{-1}\sqrt{3} - \tan^{-1}1$

$=\frac{\pi}{3} - \frac{\pi}{4}$

$= \frac{\pi}{12}$

Therefore the correct answer is $\frac{\pi}{12}$ .

Question 22: Choose the correct answer

$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$ equals

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{12}$

(C) $\frac{\pi}{24}$

(D) $\frac{\pi}{4}$

Answer:

Given definite integral $\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2}$

Consider $\int \frac{dx}{4+ 9x^2} = \int \frac{dx}{2^2+(3x)^2}$

Now, putting $3x = t$

we get, $3dx=dt$

Therefore we have, $\int \frac{dx}{2^2+(3x)^2} = \frac{1}{3}\int \frac{dt}{2^2+t^2}$

$= \frac{1}{3}\left ( \frac{1}{2}\tan^{-1}\frac{t}{2} \right ) = \frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$

we have the function of x , as $f(x) =\frac{1}{6}\tan^{-1}\left ( \frac{3x}{2} \right )$

So, by applying the second fundamental theorem of calculus, we get

$\int_0^\frac{2}{3}\frac{dx}{4+ 9x^2} = f(\frac{2}{3}) - f(0)$

$= \frac{1}{6}\tan^{-1}\left ( \frac{3}{2}.\frac{2}{3} \right ) -\frac{1}{6}\tan^{-1}0$

$= \frac{1}{6}\tan^{-1}1 - 0$

$= \frac{1}{6}\times \frac{\pi}{4} = \frac{\pi}{24}$

Therefore the correct answer is $\frac{\pi}{24}$.


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.8

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.8 is:

  • Definite integrals: A definite integral is an integral with an upper limit and a lower limit, and it is represented as the total accumulation between these limits. It is denoted as $\int_a^b f(x) d x$, where $a$ is the lower limit and $b$ is the upper limit, and $f(x)$ is the function being integrated.
  • First fundamental theorem of integral calculus: Let $f$ be a continuous function on the closed interval $[a, b]$ and let $\mathrm{A}(x)$ be the area function. Then $\mathrm{A}^{\prime}(x)=f(x)$, for all $x \in[a, b]$.
  • Second fundamental theorem of integral calculus: Let $f$ be a continuous function defined on the closed interval $[a, b]$ and let F be an antiderivative of $f$. Then $\int_a^b f(x) d x=[\mathbf{F}(x)]_a^b=\mathbf{F}(b)-\mathbf{F}(a)$.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What do you mean by definite integrals ?
A:

Indefinite integrals are defined without upper and lower limits i.e its range is not defined. 

Q: What is the importance of Exercise 7.9 Class 12 Maths?
A:

Direct questions from this exercise are asked in the Board examination. Hence this exercise cannot be avoided at any cost. 

Q: What is the use of learning applications of Integrals ?
A:

After learning Application of integrals, one can easily find the quantities of area, volume, displacement etc. 

Q: What is the difficulty level of questions of Exercise 7.9 Class 12 Maths?
A:

Questions are moderate to difficult but regular practice can help get through the difficulty. 

Q: Which topics are mainly discussed in the Exercise 7.9 Class 12 Maths?
A:

Exercise 7.9 Class 12 Maths discusses maily evaluation of definite integrals. 

Q: How many questions are there in Exercise 7.9 Class 12 Maths?
A:

Exercise 7.9 Class 12 Maths has 22 questions.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.