Careers360 Logo
NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

Edited By Komal Miglani | Updated on Mar 31, 2025 03:53 AM IST | #CBSE Class 12th

Integrals play a significant role in mathematics. Have you ever thought about how to find the area under a curve, the distance travelled by an object accelerating throughout the distance, or even just the total amount of a quantity accumulated over time? Integrals can be used to find the solution to those types of continuous problems. Within the scope of Class 12 Mathematics, integration is introduced as the anti-derivative, or reverse differentiation, ultimately giving us the ability to retrieve a function from its derivative. In addition, this chapter regarding integration has indefinite integrals, which implies that such a family is represented by an arbitrary constant (∫f(x)dx = F(x) + C).

This Story also Contains
  1. NCERT Exemplar Class 12 Maths Solutions Chapter 7
  2. NCERT Exemplar Class 12 Maths Solutions
  3. Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 7
  4. NCERT Solutions for Class 12 Maths: Chapter Wise
  5. NCERT solutions of class 12 - Subject-wise
  6. NCERT Notes of class 12 - Subject Wise
  7. NCERT Books and NCERT Syllabus
  8. NCERT Exemplar Class 12 Solutions - Subject Wise
LiveCBSE Board Result 2025 LIVE: Class 10th, 12th results soon on cbse.gov.in; marksheets, DigiLocker codeMay 9, 2025 | 10:58 PM IST

Students can follow the steps given below to check the CBSE Class 10, 12 result 2025 through DigiLocker.

  • Visit the official DigiLocker website or open the mobile app.
  • Log in using your registered mobile number.
  • On the homepage, either search for ‘CBSE’ or go to the ‘Education’ category.
  • Select the ‘CBSE’ option from the list.
  • Choose the result option for Class 10 or Class 12.
  • In the next window, click on ‘Results’.
  • Enter the required details and click on ‘Submit’.
  • The CBSE 2025 result will appear on the screen.
Read More

To become proficient in this subject, students should work through the NCERT Solutions for Class 12 Maths, which include clear explanations and very easy-to-follow methods for solving integral problems. The NCERT Solutions encompass a breadth of exercises, such as properties of integrals, applications of integration in physics and engineering, as well as the Fundamental Theorem of Calculus, which connects differentiation and integration. The conceptual understanding and work as preparation for the board exam and competitive examinations, like JEE and NEET.

NCERT Exemplar Class 12 Maths Solutions Chapter 7

Class 12 Maths Chapter 7 exemplar solutions Exercise: 7.3
Page number: 163-169
Total questions: 63
NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

Question:1

Verify the following:
2x12x+3dx=xlog|(2x+3)2|+C

Answer:

 To Verify; 2x12x+3dx=xlog|(2x+3)2|+C LHS: 2x12x+3dx=2x+342x+3dx=dx42x+3dx
Let t = 2x + 3
dx=dt2=dx4dt2t=x2log|t|+C[dx=x and 1xdx=log|x|]

=xlog|(2x+3)2|+C=RHS[2log|x|=log|x2|]
Hence Verified

Question:2

Verify the following:
2x+3x2+3xdx=log|x2+3x|+C

Answer:

To Verify;

2x+3x2+3xdx=log|x2+3x|+C LHS =2x+3x2+3xdx Let; t=x2+3xdt=2x+3=dtt=log|t|+C[1xdx=log|x|]log|x2+3x|+C= RHS [t=x2+3x]

Question:3

Evaluate the following:
(x2+2)dxx+1

Answer:

Given; (x2+2)dxx+1
Let t = x + 1
dx=dt=((t1)2+2)tdt

=t22t+1+2tdt

=(t)dt2dt+3tdt

[xndx=xn+1n+1 and 1xdx=log|x|]
=t222t+3log|t|+C

=t222t+log|t3|+C

=(x+1)222(x+1)+log|(x+1)3|+C

Question:4

Evaluate the following:
e6logxe5logxe4logxe3logxdx

Answer:

Given; e6logxe5logxe4logxe3logxdx
As we know nlogx=logxn

=elogx6elogx5elogx4elogx2dx=x6x5x4x3dx Take x3 common out of numerator and denominator to get, =x3(x3x2)x3(x1)dx=(x3x2)(x1)dx

=x2(x1)(x1)dx=x2dxxndx=xn+1n+1 So, =x33+c

Question:5

Evaluate the following:
(1+cosx)x+sinxdx

Answer:

Given; (1+cosx)x+sinxdx
Let t = x + sin x
dt=(1+cosx)dx=1tdt=log|t|+C=log|x+sinx|+C

Question:6

Evaluate the following:
dx1+cosx

Answer:

Given; dx1+cosx
=(1cosx)(1+cosx)(1cosx)dx=1cosx1cos2xdx

=1cosxsin2xdx[1sin2x=cosec2x and cosxsin2x=cosecxcotx]
=(cosec2xcosecxcotx)dx As we know, cosecxcotxdx=cosecx+ccosec2xdx=cotx+c=cosecxcotx+C

Question:7

Evaluate the following:
tan2xsec4xdx

Answer:

Given; $ \int $ tan\textsuperscript{2} x sec\textsuperscript{4} x dx\\=$ \int $ tan\textsuperscript{2} x sec\textsuperscript{2} x (1+ tan\textsuperscript{2} x) dx\\Let; tan x = y
\\$ \Rightarrow $ sec\textsuperscript{2} x dx = dy\\ \\ =$ \int $ (y\textsuperscript{2}+y\textsuperscript{4} )dy\\

=y33+y55+C=tan3x3+tan5x5+C

Question:8

Evaluate the following:
sinx+cosx1+sin2xdx

Answer:

Given; sinx+cosx1+sin2xdx
=csinx+cosxsin2x+cos2x+2sinxcosx

=sinx+cosx(sinx+cosx)2dx[sin2x=2sinxcosx and sin2x+cos2x=1]=1dx=x+C

Question:9

Evaluate the following:
1+sinxdx

Answer:

Given; 1+sinxdx

=sin2x2+cos2x2+2sinx2cosx2dx[sin2x=2sinxcosx and sin2x+cos2x=1]

=(sinx2+cosx2)2dx=(sinx2+cosx2)dx=2sinx22cosx2+c

Question:10

Evaluate the following:
xx+1dx(Hint:Putx=z)

Answer:

Given;

Let z=x

\\ \Rightarrow x = z\textsuperscript{2}\\ \\ \Rightarrow dx = 2z dz\\ =\int \frac{z^{2}}{z+1} 2 z d z\\ =2 \int \frac{\mathrm{z}^{3}}{\mathrm{z}+1} \mathrm{~d} z$

\\ Let; $t=z+1$\\ i.e. $t=\sqrt{x}+1$ \\ \Rightarrow dt $=\mathrm{dz}$
=2(t1)3tdt=2t33t2+3t1tdt=2(t23t+31t)dt[xndx=xn+1n+1 and 1xdx=log|x|]

=2t333t2+3tlog|t|+C

=2(x+1)333(x+1)2+3(x+1)log|x+1|+C

Question:11

Evaluate the following:
a+xax

Answer:

Given, a+xax
=a+xax×a+xa+xdx=a+xa2x2dx=a1a2x2dx122xa2x2dx

 Let t=a2x22xdx=dt=asin(xa)121tdt[dxa2x2=sin1xa]and [1xdx=2x]=asin(xa)12×2t=asin(xa)a2x2+c

Question:12

Evaluate the following:
x121+x34dx (Hint : Put x = z4)

Answer:

 Givenx121+x34dx Let x=z4dx=4z3dz=z21+z34z3 dz=4z51+z3 dz=43z31+z33z2 dz
 Let t=1+z3[1.e.t=1+x3/4]dt=3z2 dz=43t1tdt
=43dt431tdt=43[tlog|t|]+C=43[(1+x34)log|1+x34|]+C

Question:13

Evaluate the following:
 Given; 1+x2x4dx

Answer:

 Given; 1+x2x4dx Let x=tanydx=sec2ydx
=1+tan2ytan4ysec2ydy

=secy×cos4ysin4y×sec2ydy

=cosysin4ydy

 Let t=siny
dt=cosydy
=dtt4=13t3+C=13sin3y=13sin3(sin1xx2+1)=(x2+1)323x3

Question:14

Evaluate the following:
dx169x2

Answer:

 Given; dx169x2=dx42(3x)2[dxa2x2=sin1xa]=13sin13x4+C

Question:15

Evaluate the following:
dt3t2t2

Answer:

 Given dt3t2t2=dt(322)2(322)2+2×2t×322(2t)2
=dt(322)2(2t322)2=22dt32(4t3)2[dxa2x2=sin1xa]

=12sin14t33+C

Question:16

Evaluate the following:
3x1x2+9dx

Answer:

 Given; 3x1x2+9dx

=3xx2+32dx1x2+32dx

 [Let; x2+9=y2xdx=dy]

=32dyylog|x+x2+32|+c

=3x2+9log|x+x2+9|+C

Question:17

Evaluate the following:
52x+x2dx

Answer:

 Given; 52x+x2dx

=(x1)2+22

[x2+a2=x2x2+a2+a22log|x+x2+a2|

=x1252x+x2+2log|(x+1)+52x+x2|+C

Question:18

Evaluate the following:
xx41dx

Answer:

 Given; xx41dx

 [Let; t=x2 dt=2xdx]

=1(t21)dt2
=121(t+1)(t1)dt=1212[1(t1)1(t+1)]dt[1xdx=log|x|]

=14(log|t1|log|t+1|)+C[logalogb=logab]

=14log|t1t+1|+c=14log|x21x2+1|+c

Question:19

Evaluate the following:
x21x4dx put x2=t

Answer:

Given: x21x4dx
=12[2x2(1+x2)(1x2)dx]=12[x2+x21+1(1+x2)(1x2)dx]

=12[(1+x2)(1x2)(1+x2)(1x2)dx]

=12[(1+x2)(1+x2)(1x2)dx(1x2)(1+x2)(1x2)dx]
=12[1(1x2)dx1(1+x2)dx]
As we know,
1(a2x2)dx=12aloga+xax

1(a2+x2)dx=1atan1xa

=12×12log1+x1x12tan1x+c=14log1+x1x12tan1x+c

Question:20

Evaluate the following:
2axx2dx

Answer:

 Given; 2axx2dx=a2a2+2axx2dx

=a2(xa)2dx

=(xa)22axx2+a22sin1xaa+c

Question:21

Evaluate the following:
sin1x(1x2)32dx

Answer:

 Given; sin1x(1x2)32dx Let; t=sin1xx=sintdt=11x2dxsin1x(1x2)(1x2)dx=t(1sin2t)dt=tcos2tdt
=tsec2tdt
Apply integration by parts
[f(x)g(x)dx=f(x)g(x)dxddxf(x)[g(x)dx]dx]
=tsec2tdtddt(t)[sec2tdt]dt

=ttanttantdt=ttant+sintcostdt

=ttant+log|cost|+C=xsin1x1x2+log|1x2|+C

Question:22

Evaluate the following:
(cos5x+cos4x)12cos3xdx

Answer:

 Given; (cos5x+cos4x)12cos3xdx[cosa+cosb=2cos12(a+b)cos12(ab)]

=2cos9x2cosx212cos3xdx=2cos9x2cosx2cos3x2(12cos3x)cos3x2dx

=2cos9x2cosx2cos3x2cos3x22cos3xcos3x2dx

[2cosacosb=cos(a+b)+cos(ab)]

=2cos9x2cosx2cos3x2cos3x2cos9x2cos3x2dx=2cos3x2cosx2dx

=cos2xcosxdx=sin2x2sinx+C

Question:23

Evaluate the following:
sin6x+cos6xsin2xcos2xdx

Answer:

 Given; sin6x+cos6xsin2xcos2xdx

=(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)sin2xcos2xdx

=(sin4x+cos4xsin2xcos2x)sin2xcos2xdx

=sin2xcos2x+cos2xsin2x1dx

=tan2x+cot2x1dx

=sec2x1+cosec2x11dx

=tanxcotx3x+C

Question:24

Evaluate the following:
xa3x3dx

Answer:

 Given; xa3x3dx[ Let; t=x32a32dt=3x2a32dx]=2a32dt3a3a3t2=2dt31t2=23sin1t+C=23sin1(x32a32)+C

Question:25

Evaluate the following:
cosxcos2x1cosxdx

Answer:

Given, cosxcos2x1cosxdx
=cos2xcosxcosx1dx

=2cos2x1cosxcosx1dx

=(2cosx+1)(cosx1)cosx1dx=(2cosx+1)dx=2sinx+x+c

Question:26

Evaluate the following:
dxxx41(H int : Put x2=secθ)

Answer:

 Given; dxxx41 [Let; x2=secθ2xdx=secθtanθdθ]=secθtanθ2secθsec2θ1dθ=dθ2=θ2+c=sec1x22+c

Question:27

Evaluate the following as limit of sums:
02(x2+3)dx

Answer:

 Given; 02(x2+3)dx

 We know abf(x)dx=limhhr=0n1f(a+rh)

 Here a=0.b=2 h=ban=20n=2n

nh=2
=limhh0r=0n1f(rh)=limh0hr=0n1(3+r2h2)

=limhh0h(3n+h2((n1)(n1+1)(2n2+1)6)
=limhh0h(3n+h2((n2n)(2n1)6)

=limhh0h(3n+h2(2n33n2+n6)=limh0(3nh+(2n3h33n2h3+nh36)
=limh0(3.2+(2.233.22.h+2h26)=6+163=263

Question:28

Evaluate the following as limit of su
02exdx

Answer:

 We know abf(x)dx=limhhr=0n1f(a+rh)

 Here a=0,b=2

h=ban=20n=2n

h=2
=limhh0r=0n1f(rh)=limh0h[1+eh+e2h+,+e(n1)h]=limh0h[1(eh)n1eh1]
=limh0h[enh1eh1]=limh0h[e21eh1]=(e21)limh0[heh1]=e21

Question:29

Evaluate the following:
01dxex+ex

Answer:

 Given; 01dxex+ex

=01exdxe2x+1=1edtt2+1 [Let; .t=ex[ when x=0,t=1 and x=1,t=e]]

dt=[exdx]=[tan1t]1e
=tan1etan11=tan1eπ4

Question:30

Evaluate the following:
0π2tanxdx1+m2tan2x

Answer:

 Given; 0π2tanx1+m2tan2xdx [Let; t=tanxdt=sec2xdx] [Let; u=t2du=2tdt]

t1+m2t2dtsec2x=t(1+m2t2)dt(1+t2)

=1(1+m2u)(1+u)du2
By applying partial fraction;
1(1+m2u)(1+u)=A(1+m2u)+B(1+u)

1=A(1+u)+B(1+m2u)

B=11m2

 When u=1

 When u=1 m2
A=m2m21

=12m2(m21)(1+m2u)+1(1m2)(1+u)du

=12×m2m21×log|1+m2u|+12×11m2×log|1+u|+C
=12×m2 m21×log|1+m2tan2x|+12×11m2×log|1+tan2x|+C

=12×m2 m21[log|1+m2tan2x|+log|1+tan2x|]+C

=12×m2 m21[log(1+m2tan2x)(1+tan2x)+C

=12×m2 m21[log|(1+m2tan2x)sec2x|]+C
=12×m2 m21[logg(cos2x+m2sin2x)sec2x+C

=log|(m21)sin2x+1|2 m22+C
By applying the given limits 0 to π/2
=log|(m21)sin2π2+1|2 m22log|(m21)sin20+1|2 m22

=log|(m2)|2 m22

Question:31

Evaluate the following:
12dx(x1)(2x)

Answer:

\\ Given \int_{1}^{2} \frac{d x}{\sqrt{(x-1)(2-x)}}$\\ $=>_{1}^{2} \frac{\mathrm{dx}}{\sqrt{(x-1)(2-x)}}$\\ $=\int_{1}^{2} \frac{d x}{\sqrt{-\left(x^{2}-3 x+2\right)}}$
Using a perfect square method for the denominator
\Rightarrow x^{2}-3 x+2=x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2$
=(x32)214=12dx(12)2(x32)2 We know dxa2x2=sin1(xa)+C=[sin1((x32)12)]12=[sin1(2x3)]12
=sin1(1)sin1(1)We know sin1(θ)=sinθ=π2+π2=π

Question:32

Evaluate the following:
01xdx1+x2

Answer:

\\ Given \int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}$\\ Now put $1+x^{2}=t$\\ $=>2 \mathrm{x} \mathrm{dx}=\mathrm{dt}$\\ At $x=0, t=1$ and at x=1, t=2

1212dtt=12[2t]12=2101xdx1+x2=21

Question:33

Evaluate the following:
0πxsinxcos2xdx

Answer:

Using Property

2bf(x)dx=abf(a+bx)dx

 Let I=0πxsinxcos2xdx

0πxsinxcos2xdx=0π(πx)sin(πx)cos2(πx)dx

ses(πx)=cosx

I=0ππsinxcos2xdx0πxsinxcos2xdx

I=0ππsinxcos2xdxI

2I=0ππsinxcos2xdx

0ππsinxcos2xdx=π0πsinxcos2xdx Now let cosx=tsinxdxdt And, at x=0,t=1 and at x=π,t=1

2I=π11t2dt=π[t23]11=2π3

2I=2π3I=π3

0πxsinxcos2xdx=π3

Question:34

Evaluate the following:
012dx(1+x2)1x2 (Hint: let x = sin θ)

Answer:

 Given 012dx(1+x2)1x2

 Let x=sinθ

 At x=0,θ=0 and x=12,θ=π6
=012dx(1+x2)1x2=0π6cosθdθ(1+sin2θ)1sin2θ

 As 1sin2θ=cos2θ=0π6cosθdθ(1+sin2θ)1sin2θ=0π6cosθdθ(1+sin2θ)cos2θ=0π6cosθdθ(1+sin2θ)cosθ
0π6dθ(1+sin2θ)0π6sec2θdθ(sec2θ+tan2θ)Assec2θtan2θ=10π6sec2θdθ(1+2tan2θ)
 Now put tanθ=tsec2θdθ=dt At θ=0,t=0 at θ=π6,t=13=012dt(1+2t2)=12012dt((12)2+t2)As dxx2+a2=12tan1(xa)+c

012dt((12)2+t2)=12[112tan1(t12)]012=22tan1(23)

012dx(1+x2)1x2=12tan1(23)

Question:35

Evaluate the following:
x2dxx4x212

Answer:

 Given: x2dxx4x212 Put x2=t

=>x2x4x212=tt2t12
t2t12=(t+3)(t4)

t(t+3)(t4)=

A(t+3)+B(t4) (Concept of partial fraction) 

t=t(A+B)+3 B4 A
On comparing coefficients of ‘t’ we get
A=37&B=47=t(t+3)(t4)=37(t+3)+47(t4)

 Now put t=x2 back in the above eq. 

x2x4x212=37(x2+3)+47(x24)

x2dxx4x212=(37(x2+3)+47(x24))dx=17(3dx(x2+3)+4dx(x24))

Nowdxx2a2=12aln(xax+a)+c&dxx2+a2=1atan1(xa)+c

7(3dx(x2+3)+4dx(x24))=17(33tan1(x3)+44ln(x2x+2)+c)

x2dxx4x212=

37tan1(x3)+17ln(x2x+2)+c

Question:36

Evaluate the following:
x2dx(x2+a2)(x2+b2)

Answer:

 Given x2dx(x2+a2)(x2+b2) Put x2=t

x2(x2+a2)(x2+b2)=t(t+a2)(t+b2)

t(t+a2)(t+b2)=A(t+a2)+B(t+b2)( Concept of partial fraction )

t=t(A+B)+a2B+b2A On comparing coefficients of "twe get 

A=a2a2b2  B=b2a2b2

t(t+a2)(t+b2)=1a2b2(a2(t+a2)b2(t+b2))

 Now put t=x2 back in the above eq. 

x2(x2+a2)(x2+b2)=1a2b2(a2(x2+a2)b2(x2+b2))

x2dx(x2+a2)(x2+b2)=1a2b2(a2dx(x2+a2)b2dx(x2+b2))

Now dxx2+a2=1atan1(xa)+c
=1a2b2(a2dx(x2+a2)b2dx(x2+b2))

⇒=1a2b2(a2atan1(xa)+b2btan1(xb)+c)

x2dx(x2+a2)(x2+b2)=1a2b2(atan1(xa)+btan1(xb))+c

Question:37

Evaluate the following:
0πx1+sinx

Answer:

Given0πxdx1+sinx\$

Let I=0πxdx1+sinx

NowusingProperty\int_{a}^{b} f(x) d x$

=abf(a+bx)dx

=0πxdx1+sinx=0π(πx)dx1+sin(πx)

0πxdx1+sinx=0ππdx1+sinx0πxdx1+sinx20πxdx1+sinx=2

I=π0πdx1+sinx(1)

0πdx1+sinx=0π11+sinx×1sinx1sinx=0π1sinx1sin2xdx

1sin2x=cos2x
=0π1sinx1sin2xdx=0π1sinxcos2xdx=0πdxcos2x0πsinxcos2xdx(2)

0πdxcos2x=0πsec2xdx=[tanx]0π=0

And  for 0πsinxcos2xdx Put cosx=t
sinxdx=dt

Atx=0=>t=1 and x=π=>t=1=11dtt2=[1t]11=2

2I=π0πdx1+sinx=

π(0πdxcos2x0πsinxcos2xdx)=π(0(2))=2π

I=0πxdx1+sinx=π

Question:38

Evaluate the following:
2x1(x1)(x+2)(x3)dx

Answer:

Given:
2x1(x1)(x+2)(x3)dx
Using the concept of partial fractions,
2x1(x1)(x+2)(x3)=A(x1)+B(x+2)+C(x3)\ 2x1=x2(A+B+C)+x(C4BA)+(3B2C6A)\ Comparing coefficients:\ A+B+C=0(1)
C4BA=2(2)3B2C6A=1(3) On solving (1),(2) and (3) we get A=16,B=13 and C=12
=2x1(x1)(x+2)(x3)=16(x1)+12(x+2)+12(x3)2x1(x1)(x+2)(x3)dx=12(x3)dx13(x+2)dx16(x1)dx
=12ln(x3)13ln(x+2)16ln(x1)+c2x1(x1)(x+2)(x3)dx=12ln(x3)13ln(x+2)16ln(x1)+c

Question:39

Evaluate the following:
etan1x(1+x+x21+x2)dx

Answer:

Given: etan1x(1+x+x21+x2)dx
 Put tan1x=t

l=dx1+x2=dtetan1x(1+x+x21+x2)dx=et(1+tant+tan2t)dt

Assec2θtan2θ=1

et(1+tant+tan2t)dt=et(1+tant+sec2t1)dt
et(tant+sec2t)dt

 Now using the property. ex(f(x)+f(x))dx=exf(x)

 Now in et(tant+sec2t)dt
=f(t)=tantf(t)=sec2x

et(tant+sec2t)dt=ettant+C

etan1x(1+x+x21+x2)dx=etan1xx+C

Question:40

Evaluate the following:
sin1xa+xdx (Hint: Put x = a tan2 θ)

Answer:

Given: sin1xa+xdx
 Put x=atan2θdx=2atanθsec2θdθsin1xa+xdx=sin1atan2θa+atan2θ2atanθsec2θdθ
Assec2θtan2θ=1

=sin1atan2θa(1+tan2θ)2atanθsec2θdθsin1tan2θsec2θ2atanθsec2θdθ

=sin1sin2θ2atanθsec2θdθ

2aθtanθsec2θdθ

Now put tanθ=t

sec2θdθ=dt

2aθtanθsec2θdθ=2attan1tdt

Now apply integration by part onttan1tdt

Question:41

Evaluate the following:
π3π21+cosx(1cosx)52

Answer:

Given: π3π21+cosx(1cosx)52
Using Trigonometric identities:
cos2x=2cos2x1=12sin2x1+cosx(1cosx)52=1+(2cos2x21)(1(12sin2x2))52=2cos2x2(2sin2x2)52
=2cos2x2(2sin2x2)52=(2cosx2)/(252sin5x2)=2cosx2252sin5x2=14cosx2sin5x2
π3π21+cosx(1cosx)52dx=π3π214cosx2sin5x2dx

 Put sin(x2)=tcos(x2)dx=2dt At x=π3

t=12 and at x=π2

t=12
π3π214cosx2sin5x2dx=121212dtt5
121212dtt5=12[t44]1212=32π3π21+cosx(1cosx)52dx=32

Question:42

Evaluate the following:
e3xcos3xdx

Answer:

 Given: e3xcos3xdx Using trigonometric identity cos3x=4cos3x3cosxe3xcos3xdx=14e3x(cos3x+3cosx)dx14e3x(cos3x+3cosx)dx=14e3xcos3xdx+34e3xcosxdx...(1)
 Using a generalised formula i.e eaxcosbxdx=e2xa2+b2(acosbx+bsinbx)e3xcos3xdx=e2x(3)2+32((3)cos3x+3sin3x)
=e2x(3)2+32((3)cos3x+3sin3x)

=e2x6(sin3xcos3x)(2)e3xcosxdx

=e2x(3)2+12((3)cosx+sinx)

=e2x10(sinx3cosx)=e2x10(sinx3cosx)(3)

 On putting (2) and (3) in (1)
14e3xcos3xdx+34e3xcosxdx=e2x4×6(sin3xcos3x)+3e2x4×10(sinx3cosx)

e3xcos3xdx=e3x{(sin3xcos3x)24+3(sinx3cosx)40}+c

Question:43

Evaluate the following:
tanxdx (Hint: Put tanx=t2)

Answer:

Given:
tanxdx
Put tanx=t2
sec2xdx=2tdtdx=2tdtsec2x=2tdt1+tan2x=2tdt1+t4tanxdx=t22tdt1+t4=2t2dt1+t42t2dt1+t4=(2t2+11)dt1+t4=(t2+1)+(t21)1+t4dt(t2+1)+(t21)1+t4dt=(t2+1)1+t4dt+(t21)1+t4dt
Taking out t2 common in both the numerators
(t2+1)1+t4dt+(t21)1+t4dt=t2(1+(1t2))1+t4dt+t2(1(1t2))1+t4dtt2(1+(1t2))1+t4dt+t2(1(1t2))1+t4dt

=(1+(1t2))1t2+t2dt+(1(1t2))1t2+t2dt. (1) 
Nowt2+1t2=(t±1t)22(3)=for(a)(1+(1t2))1t2+t2dt taking t1t=z

(1+1t2)dt=dz

=(1+1t2)1t2+t2dt=(1+1t2)(t1t)2+2dt

=(1+1t2)(t1t)2+2dt=dzz2+2=12tan1(z2)+c(2)
 for (b) (1(1t2))1t2+t2 dt taking t+1t=z

(11t2)dt=dz=(11t2)1t2+t2dt=(11t2)(t+1t)22dt=(11t2)(t+1t)22dt=dzz22=122ln|z2z+2|+c(3)

Put (2) and (3) in (1)
=(1+(1t2))1t2+t2dt+(1(1t2))1t2+t2dt=12tan1((t1t)2)+122ln|(t+1t)2(t+1t)+2|+c

12tan1(t21t2)+122ln|(t2+1t2(t2+1+t2|+C
Now again puttingt=tanx to obtain the final result

=tanxdx=12tan1(tanx12tanx)+122ln|(tanx+12tanxtanx+1+2tanx|

Question:44

Evaluate the following:
0π2dx(a2cos2x+b2sin2x)2
(Hint: Divide Numerator and Denominator by cos4x)

Answer:

Given:0π2dx(a2cos2x+b2sin2x)2
Dividing Numerator and Denominator by cos4x
=0π2(1/cos4x)dx((a2cos2x+b2sin2x)/cos2x)2

0π2sec4xdx(a2+b2tan2x)20π2sec2xsec2xdx(a2+b2tan2x)2=0π2(1+tan2x)sec2xdx(a2+b2tan2x)2

 Put tanx=t
sec2xdx=dt

Atx=0,t=0 and at x=π2,t=

0π2(1+tan2x)sec2xdx(a2+b2tan2x)2=0(1+t2)dt(a2+b2t2)2

0(1+t2)dt(a2+b2t2)2=1b20(b2+b2t2)dt(a2+b2t2)2
=1b20(b2+b2t2)dt(a2+b2t2)2=1b20(a2+b2t2)+(b2a2)(a2+b2t2)2dt

1b20(a2+b2t2)+(b2a2)(a2+b2t2)2dt=1b201(a2+b2t2)dt+1b20(b2a2)(a2+b2t2)2dt

 Let I=1b201(a2+b2t2)dt+1b20(b2a2)(a2+b2t2)2dt(1)
=LetI1=01(a2+b2t2)dt=01(a2+b2t2)dt

=1b201((a2/b2)+t2)dt=11=1b201((a2/b2)+t2)dt

=1b2(ba)[tan1(bta)]0=π2abI1=π2ab.(2)

 Let I2=01(a2+b2t2)2dt

 let bt=atanθ

bdt=asec2θdθ=I2=1b0π2asec2θdθ(a2+a2tan2θ)2=1b0π2asec2θdθa4(1+tan2θ)2=1a3b0π2sec2θdθsec4θ
=1a3b0π2sec2θdθsec4θ=1a3 b0π2cos2θdθ=12a3 b0π2(1+cos2θ)dθ

12a3b0π2(1+cos2θ)dθ=12a3b[θ+sin2θ2]0π2=π4a3b(3)

I=1b2(I1+(b2a2)I2)=

1b2(π2ab+(b2a2)π4a3b)
I=0π2dx(a2cos2x+b2sin2x)2

=π2ab3(1+(b2a21)π)

Question:45

Evaluate the following:
01xlog(1+2x)dx

Answer:

Given: 01xlog(1+2x)dx
 Let 1+2x=t

2dx=dt

Atx=0

t=1 and at x=1

t=3

01xln(1+2x)dx=1413(t1)lntdt....(i)

13(t1)lntdt=13tlntdt13lntdt

 Apply Integration by parts =tlntdt=lnttdtddt(lnt)(tdt)dt

=t22lntt24(2)=lntdt=lntdtddt(lnt)(dt)dt=tlntt(3)
 Put (2) and (3) in (1)=1413tlntdt1413lntdt=14[(t22lntt24)(tlntt)]13=38ln3

01xln(1+2x)dx=38ln3

Question:46

Evaluate the following:
0πxlogsinxdx

Answer:

Given:0πxlogsinxdx
 Using the property: abf(x)dx=abf(a+bx)dx

 Let I=0πxln(sinx)dx=0π(πx)ln(sin(πx))dx=0ππln(sinx)dx0πxln(sinx)dx

 As sin(πx)=sinx
2I=0ππln(sinx)dx=π0πln(sinx)dx(1)

 Now in 0πln(sinx)dx Using the property

02af(x)dx=20af(x)dx( for f(2ax)=f(x))=0πln(sinx)dx=20π2ln(sinx)dx(2)
Let Z=0π2ln(sinx)dx

 Using the property: abf(x)dx=abf(a+bx)dx

z=0π2ln(sin(π2x)dx=0π2ln(cosx)dx(4)

2Z=0π2ln(sinx)dx+0π2ln(cosx)dx=0π2ln(sinxcosx)dx(5)
=0π2ln(sinxcosx)dx=0π2ln(2sinxcosx2)dx

=0π2ln(2sinxcosx2)dx=0π2(ln(sin2x)ln2)dx

0π2(ln(sin2x))dx0π2(ln2)dx=0π2ln(sin2x)dxπln22(6)

Nowin0π2ln(sin2x)dx put 2x=t
 Now in 0π2ln(sin2x)dx put 2x=t

2dx= dt and limits changes from 0 to π

2Z=120πln(sint)dtπln22
from equation (2)120πln(sint)dtagain becomes

2Z=220π2ln(sint)dtπln22
Fromeq.(3)

2Z=Zπln22

Z=0π2ln(sinx)dx=πln22......(7)
On putting (7) in (2) and the obtained result in(1)

2I=π2ln2I=0πxln(sinx)dx=π22ln2

Question:47

Evaluate the following:
π4π4log(sinx+cosx)dx

Answer:

Given:π4π4log(sinx+cosx)dx
1 Let =π4π4ln(sinx+cosx)dx(1) Using the property: abf(x)dx=abf(a+bx)dxπ4π4ln(sinx+cosx)dx=π4π4ln(sin(x)+cos(x))dx As sin(x)=sinx and cos(x)=cosx
I=π4π4ln(cosxsinx)dx(2) Adding equation(1) and(2) 2I=π4π4ln(sinx+cosx)dx+π4π4ln(cosxsinx)dx2I=π4π4ln(cos2xsin2x)dx=π4π4ln(cos2x)dx
 Put 2x=t

2xdx=dt2I=π2π2ln(cost)dt

 As cos(x)=cosx Using property: aaf(x)dx=20af(x)dx(forf(x)=f(x))2I=20π2ln(cost)dt Using the property: abf(x)dx=abf(a+bx)dx
2I=0π2ln(cos(π2t))dt=0π2ln(sint)dt Now From previous question eq (7) we obtained 0π2ln(sint)dt=πln22=2II=π4π4ln(sinx+cosx)dx=πln24

Question:48

cos2xcos2θcosxcosθdxis equal to

A.2(sinx+xcosθ)+CB.2(sinxxcosθ)+CC.2(sinx+2xcosθ)+CD.2(sinx2xcosθ)+C

Answer:

A)

 Using Trigonometric identity cos2x=2cos2x1cos2xcos2θcosxcosθdx=(2cos2x1)(2cos2θ1)cosxcosθdx
=2cos2xcos2θcosxcosθdx=2((cosx+cosθ)(cosxcosθ)cosxcosθ)

=2{(cosx+cosθ)dx=2cosxdx+2cosθdx
=2cosxdx+2cosθdx=2(sinx+xcosθ)+c

Question:49

dxsin(xa)sin(xb) is equal to

\\ A. \sin (b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C$\\\\ B. $\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C$\\\\ C. $\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C$\\\\ D. $\sin (b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C$\\

Answer:

C)

 Given: dxsin(xa)sin(xb) Multiply Nr and Dr by sin(ba)1sin(ba)sin(ba)dxsin(xa)sin(xb)
sin(ba)=sin((xa)(xb))

 Also sin(AB)=sinAcosBcosAsinB

sin(ba)sin(xa)sin(xb)=sin((xa)(xb))sin(xa)sin(xb)=sin(xa)cos(xb)cos(xa)sin(xb)sin(xa)sin(xb)

sin(xa)cos(xb)cos(xa)sin(xb)sin(xa)sin(xb)=cos(xb)sin(xb)cos(xa)sin(xa)
=cos(xb)sin(xb)cos(xa)sin(xa)

=cot(xb)cot(xa)dxsin(xa)sin(xb)

=1sin(ba)(cot(xb)dxcot(xa)dx)

Nowcotxdx=ln|sinx|+c

1sin(ba)(cot(xb)dxcot(xa)dx)
=1sin(ba)(ln|sin(xb)|ln|sin(xa)|) dxsin(xa)sin(xb)=1sin(ba)ln(sin(xb)sin(xa))=cosec(ba)ln(sin(xb)sin(xa))

Question:50

tan1xdx is equal to
\\A.(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C$\\ B. $x \tan ^{-1} \sqrt{x}-\sqrt{x}+C$\\ C. $\sqrt{x}-x \tan ^{-1} \sqrt{x}+C$\\ D. $\sqrt{x}-(x+1) \tan ^{-1} \sqrt{x}+C$

Answer:

A)

Given: tan1xdx
 Put x=t2dx=2dt

tan1xdx=2tan1t2dt

2tan1tdt(1)
 Now apply integration by part on ttan1tdt

ttan1tdt=tan1ttdt(ddttan1t)(tdt)dt

t22tan1t12t21+t2dt

 Now t21+t2dt=t2+111+t2dt=t2+11+t2dt11+t2dt
t2+11+t2dt11+t2dt=dt11+t2dt=ttan1t

 Put (3) in (2) and the resulting equation in (1) 

2ttan1tdt=2(t22tan1t12(ttan1t))

2ttan1tdt=t2tan1tt+tan1t
t2tan1tt+tan1t=tan1t(t2+1)t

tan1t(t2+1)t=tan1x(x+1)x

tan1xdx=tan1x(x+1)x+C

Question:51

ex(1x1+x2)2 dx is equal to
\\A. \frac{e^{x}}{1+x^{2}}+C \\ B. \frac{-\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}^{2}}+\mathrm{C}$\\ C.$\frac{\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}+\mathrm{C}$\\ D. $\frac{-\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}+\mathrm{C}$

Answer:

A)

Given: ex(1x1+x2)2 dx
=ex(1x1+x2)2dx=ex(1+x22x(1+x2)2)dx

=ex(1+x22x(1+x2)2)dx=ex{(1+x2(1+x2)2)+(2x(1+x2)2)}dx

=ex{(1(1+x2))+(2x(1+x2)2)}dx
 Now using the property: ex(f(x)+f(x))dx=exf(x) Now in ex{(1(1+x2))+(2x(1+x2)2)}dxf(x)=1(1+x2)f(x)=2x(1+x2)2
=ex{(1(1+x2))+(2x(1+x2)2)}dx=ex1+x2+cex(1x1+x2)2dx=ex1+x2+c

Question:52

x9(4x2+1)6dx is equal to
A.15x(4+1x2)5+CB.15(4+1x2)5+CC.110x(1+4)5+CD.110(1x2+4)5+C

Answer:

D)

Given: x9(4x2+1)6dx
Taking x2 out from the denominator
(x9x12(4+1x2)6)dx

(1x3(4+1x2)6)dx=(1x3(4+1x2)6)dx

 Now put 4+1x2=t
2x3dx=dt

(1x3(4+1x2)6)dx=12t6dt

12t6dt=t55×2+C=110(4+1x2)5+C

Question:53

If dx(x+2)(x2+1)=alog|1+x2|+btan1x+15log|x+2|+c then
\\ A.a=\frac{-1}{10}, b=\frac{-2}{5}$\\ B. $a=\frac{1}{10}, b=-\frac{2}{5}$\\ C. $\mathrm{a}=\frac{-1}{10}, \mathrm{~b}=\frac{2}{5}$\\ D. $a=\frac{1}{10}, b=\frac{2}{5}$\\

Answer:

C)

Given:dx(x+2)(x2+1)=alog|1+x2|+btan1x+15log|x+2|+c
Using concept of partial fractions
=1(x+2)(x2+1)=A(x+2)+Bx+C(x2+1)A(x2+1)+(Bx+C)(x+2)=1
x2(A+B)+x(C+2B)+(A+2C)=1

A+B=0(1)

C+2B=0(2)

A+2C=1...(3)
On solving the above three equations we get
A=15,B=15 and C=25

1(x+2)(x2+1)=15(x+2)+15x+25(x2+1) 15(x+2)+15x+25(x2+1)=15(x+2)x5(x2+1)+25(x2+1)
dx(x+2)(x2+1)

=(15(x+2)x5(x2+1)+25(x2+1))dx

=15ln|x+2|110ln|x2+1|+25tan1x+c(2)
On comparing (1) and (2) we get,
a=110 and b=25

Question:54

x3x+1 is equal to

\\A. x+\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1-x|+C$\\ B. $x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1-x|+C$\\ C. $x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1+x|+C$\\ D. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$\\

Answer:

D)

Given: x3x+1
x3x+1=x3+11x+1

x2+1x+11x+1=(x+1)(x2x+1)x+11x+1
x3x+1dx=((x2x+1)1x+1)dx

(x2x+1)dx1x+1dx=x33x22+xln|1+x|+c

Question:55

x+sinx1+cosxdx is equal to

\\A. \log |1+\cos x|+c$\\ B. $\log |\mathrm{x}+\sin \mathrm{x}|+\mathrm{C}$\\ C. $x-\tan \frac{x}{2}+C$\\ D. $x \cdot \tan \frac{x}{2}+C$\\

Answer:

D. x \cdot \tan \frac{x}{2}+C$\\

Given: x+sinx1+cosxdx
As we know
sin2x=2tanx1+tan2x,1+tan2x=sec2x and cos2x=1+tan2x1tan2x
x+sinx1+cosx=x+2tan(x2)1+tan2(x2)1+1+tan2(x2)1tan2(x2)
x+xtan2(x2)+2tan(x2)2

x+sinx1+cosxdx=x+xtan2(x2)+2tan(x2)2dxletx2=tdx2=dt
\Rightarrow \int \left(2 t+2 t \tan ^{2} t+2 \tan t\right) d t=2 \int \left(t+t \tan ^{2 }t+\tan t \right) d t \\ \Rightarrow 2 \int \mathrm{tdt}+2 \int \mathrm{t} \left( \sec ^{2} \mathrm{t}-1 \right) \mathrm{dt}+2 \int \left(\tan \mathrm{t} \mathrm{dt}\right) \\ \Rightarrow 2 \int operatorname{tdt}+2 \int t \sec ^{2} t d t-2 \int operatorname{tdt}+2 \int \tan t d t\\ \Rightarrow 2 \int \mathrm{t} \sec ^{2} \mathrm{t} \mathrm{dt}+2 \int \text{ tant } \mathrm{dt} \ldots .(1)\\\text{Applying Integration by parts on } \int \mathrm{t} \sec ^{2} \mathrm{t} dt \\ \Rightarrow \int t \sec ^{2} t d t=t \int \sec ^{2} t d t-\int\left(\frac{d}{d t} t\right)\left(\int \sec ^{2} t d t\right) d t $$\\ \begin{aligned} &\Rightarrow \int \mathrm{t} \sec ^{2} \mathrm{t} \mathrm{dt}=\mathrm{t} \tan \mathrm{t}-\int \mathrm{tan} \mathrm{t} \mathrm{dt} \ldots(2)\\ \end{aligned}

 Put (2) in (1)2(t tant tantdt)+2tantdt=2ttant+c=xtan(x2)+cx+sinx1+cosxdx=xtan(x2)+c

Question:56

If x3dx1+x2=a(1+x2)32+b1+x2+C, then
\\ A.a=\frac{1}{3}, b=1$\\ B. $a=\frac{-1}{3}, b=1$\\ C.$a=\frac{-1}{3}, b=-1$\\ D. $a=\frac{1}{3}, b=-1$\\

Answer:

D)

Given:x3dx1+x2=a(1+x2)32+b1+x2+C...........(1)
 Put 1+x2=t2xdx=dtx3dx1+x2=x2xdx1+x2
⇒=12(t1)dtt

12(t1)dtt

⇒=12tdtt12dtt

⇒=12(tdt(1t)dt)
12(tdt(1t)dt)=12(23t322t+c)

(13t32t+c)=13(1+x2)3211+x2+c Comparing (1) and (3) 

a=13 and b=1

Question:57

π4π4dx1+cos2x is equal to
A. 1
B. 2
C. 3
D. 4

Answer:

A)

Given: π4π4dx1+cos2x
Using trigonometric identities:
cos2x+sin2x=1 and cos2x=cos2xsin2x

11+cos2x=1(cos2x+sin2x+cos2xsin2x)=12cos2x
π4π4(dx1+cos2x)=π4π4(dx2cos2x)=12π4π4sec2xdx

=12π4π4sec2xdx=12[tanx]π4π4=1+12=1

Question:58

0π21sin2xdx is equal to
A. 22
B. 2(2+1)
C. 2
D. 2(21)

Answer:

D)
As

sin2x=2sinxcosx and sin2x+cos2x=1

0π21sin2xdx=0π2sin2x+cos2x2sinxcosxdx

0π2(cosxsinx)2dx=0π2|(cosxsinx)|dx
 From 0<x<π4,cosx>sinx and  from π4<x<π2,cosx<sinx

0π2|(cosxsinx)|dx=0π4(cosxsinx)dx+π4π2(sinxcosx)dx
=2[sinx+cosx]0π/4
On solving the Above Integral we get 2(21)

Question:59

Fill in the blanks in each of the following
0π2cosxesinxdx is equal to ___________.

Answer:

e1
Given: 0π2cosxesinxdx
 Put sinx=tcosxdx=dt

Atx=0

t=0 and x=π2

t=1

01etdt=[et]01=e1

Question:60

Fill in the blanks in each of the following
x+3(x+4)2exdx= ___________.

Answer:

exx+4+c Given x+3(x+4)2exdx=x+3(x+4)2exdx=(x+3)+11(x+4)2exdx=(x+4)1(x+4)2exdx=(x+4)1(x+4)2exdx=ex((x+4)(x+4)21(x+4)2)dx
ex((x+4)(x+4)21(x+4)2)dx=ex(1(x+4)1(x+4)2)dx Now using the property: ex(f(x)+f(x))dx=exf(x) Now in ex(1(x+4)1(x+4)2)dx
f(x)=1x+4

f(x)=1(x+4)2

ex(1(x+4)1(x+4)2)dx=exx+4+c

x+3(x+4)2exdx=exx+4+c

Question:61

Fill in the blanks in each of the following
If 0a11+4x2dx=π8, then a = ____________.

Answer:

a=12

 Given: 0a11+4x2dx=π8

11+4x2=1414+x2=14(12)2+x2

0a11+4x2dx=0a14(12)2+x2dx
 Now dxx2+a2=1atan1(xa)+c

0a14(12)2+x2dx=1412tan1(x12)

=[12tan1(2x)]0a=π8

12tan1(2a)=π8

2a=tan(π4)=1

a=12

Question:62

Fill in the blanks in each of the following
sinx3+4cos2xdx= __________.

Answer:

123tan1(2cosx3)+c Given sinx3+4cos2xdx Now let cosx=t
sinxdx=dt

sinx3+4cos2xdx=dt3+4t2=14dt34+t2

14dt(32)2+t2
 Now dxx2+a2=1atan1(xa)+c=14dt(22)2+t2=1432tan1(2t3)+c

sinx3+4cos2xdx=123tan1(2cosx3)+c

Question:63

Fill in the blanks in each of the following
The value of ππsin3xcos2xdx is ____________.

Answer:

0

Using the property: abf(x)dx=abf(a+bx)dx
 Let I=ππsin3xcos2xdx

ππsin3xcos2xdx=ππsin3(π+(π)x)cos2(π+(π)x)dx

 As sin(x)=sinx and cos(x)=cosx
=ππsin3(π+(π)x)cos2(π+(π)x)dx=ππsin3(x)cos2(x)dx

ππsin3(x)cos2(x)dx=ππsin3xcos2xdx=I

I=I2I=0
I=ππsin3xcos2xdx=0

NCERT Exemplar Class 12 Maths Solutions

Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 7

Class 12 Maths NCERT exemplar solutions Chapter 7 Integrals touches upon an exhaustive explanation of how we do integration by using properties.

  • These solutions provide a wide range of problems that will help students during their exams.
  • These solutions are easy to understand as they are well explained.
  • These also cover some major properties and rules, like King's property and Leibnitz's rule.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT solutions of class 12 - Subject-wise

Here are the subject-wise links for the NCERT solutions of class 12:

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

NCERT Notes of class 12 - Subject Wise

Given below are the subject-wise NCERT Notes of class 12 :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 12:

NCERT Exemplar Class 12 Solutions - Subject Wise

Given below are the subject-wise exemplar solutions of class 12 NCERT:

Frequently Asked Questions (FAQs)

1. Are these solutions helpful for competitive examinations?

Indeed, the Class 12 Maths NCERT exemplar solutions chapter 7 covers the syllabus of the competitive exams like NEET and JEE Main to help you ace them.

2. What are the important topics of this chapter?

Methods of Integration, Integration by Parts and Fundamental Theorem of Calculus are some of the important topics of this chapter. However, rest should not be neglected either.

3. How many questions are there in this chapter?

The NCERT exemplar solutions for Class 12 Maths chapter 7 consists of 1 exercise with 63 distinct questions for practice.

4. How many times should one need to read the NCERT books?

Students should read the books enough times months before your exam for better remembering. They can also take help of NCERT exemplar Class 12 Maths solutions chapter 7 pdf download using  an online webpage to pdf tool.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top