Careers360 Logo
NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

Edited By Ravindra Pindel | Updated on Sep 15, 2022 05:03 PM IST | #CBSE Class 12th

NCERT exemplar Class 12 Maths solutions chapter 7 Integrals is one of the most important subjects for those who want to prepare for the advanced levels of Mathematics and also want to score higher in their exams, studying this chapter is crucial. The NCERT Exemplar solutions for Class 12 Maths chapter 7 holds major importance in both board exams of CBSE and also in competitive exams. Students can utilize the NCERT exemplar Class 12 Maths solutions chapter 7 PDF download function to download the solutions and make learning even more convenient and easy to follow and understand

Question:1

Verify the following:
\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C

Answer:

\begin{aligned} &\text { To Verify; }\\ &\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C\\ &\text { LHS: } \int \frac{2 x-1}{2 x+3} d x\\ &=\int \frac{2 x+3-4}{2 x+3} d x\\ &=\int \mathrm{dx}-\int \frac{4}{2 \mathrm{x}+3} \mathrm{dx} \end{aligned}

Let t = 2x + 3
\\ \Rightarrow \mathrm{dx}=\frac{\mathrm{dt}}{2} \\ =\int \mathrm{dx}-4 \int \frac{ \mathrm{dt}}{\mathrm{2t}} \\ =\mathrm{x}-2 \log |\mathrm{t}|+\mathrm{C} \\ \because \int \mathrm{dx}=\mathrm{x} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\ =\mathrm{x}-\log \left|(2 \mathrm{x}+3)^{2}\right|+\mathrm{C}=\mathrm{RHS} \\ \left[\because 2 \log |\mathrm{x}|=\log \left|\mathrm{x}^{2}\right|\right]

Hence Verified

Question:2

Verify the following:

\int \frac{2 x+3}{x^{2}+3 x} d x=\log \left|x^{2}+3 x\right|+C

Answer:

To Verify;
\\ \int \frac{2 x+3}{x^{2}+3 x} d x=\log \left|x^{2}+3 x\right|+C\\ \mathrm{LHS}=\int \frac{2 \mathrm{x}+3}{\mathrm{x}^{2}+3 \mathrm{x}} \mathrm{dx}Let; t=x^2 + 3x\\ \Rightarrow dt = 2x + 3\\
\\ =\int \frac{d t}{t}=\log |t|+C \\ {\left[\because \int \frac{1}{x} d x=\log |x|\right]} \\ \Rightarrow \log \left|x^{2}+3 x\right|+C=R H S \\

[\because t = x^2 + 3x]

Hence Verified

Question:3

Evaluate the following:
\int \frac{\left(x^{2}+2\right) d x}{x+1}

Answer:

Given; \int \frac{\left(x^{2}+2\right) d x}{x+1}
Let t = x + 1
\\\Rightarrow dx = dt \\ =\int \frac{\left((\mathrm{t}-1)^{2}+2\right)}{\mathrm{t}} \mathrm{dt} \\ =\int \frac{\mathrm{t}^{2}-2 \mathrm{t}+1+2}{\mathrm{t}} \mathrm{dt} \\ =\int(\mathrm{t}) \mathrm{dt}-\int 2 \mathrm{dt}+\int \frac{3}{\mathrm{t}} \mathrm{dt} \\ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right]

\\ =\frac{t^{2}}{2}-2 t+3 \log |t|+C \\ =\frac{t^{2}}{2}-2 t+\log \left|t^{3}\right|+C \\ =\frac{(x+1)^{2}}{2}-2(x+1)+\log \left|(x+1)^{3}\right|+C

Question:4

Evaluate the following:
\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x

Answer:

Given; \int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x
As we know n log x = log x^n

\begin{aligned} &=\int \frac{e^{\log x^{6}}-e^{\log x^{5}}}{e^{\log x^{4}}-e^{\log x^{2}}} d x\\ &=\int \frac{x^{6}-x^{5}}{x^{4}-x^{3}} d x\\ &\text { Take } x^{3} \text { common out of numerator and denominator to get, }\\ &=\int \frac{x^{3}\left(x^{3}-x^{2}\right)}{x^{3}(x-1)} d x\\ &=\int \frac{\left(x^{3}-x^{2}\right)}{(x-1)} d x \end{aligned}

\begin{aligned} &=\int \frac{x^{2}(x-1)}{(x-1)} d x\\ &=\int x^{2} d x\\ &\because \int x^{n} d x=\frac{x^{n+1}}{n+1}\\ &\text { So, }\\ &=\frac{x^{3}}{3}+c \end{aligned}

Question:5

Evaluate the following:
\int \frac{(1+\cos x)}{x+\sin x} d x

Answer:

Given; \int \frac{(1+\cos x)}{x+\sin x} d x
Let t = x + sin x
\\\Rightarrow dt = (1 + cos x) dx \\ =\int \frac{1}{t} d t \\ =\log |t|+C \\ =\log |x+\sin x|+C

Question:6

Evaluate the following:
\int \frac{d x}{1+\cos x}

Answer:

Given; \int \frac{d x}{1+\cos x}
\\ =\int \frac{(1-\cos x)}{(1+\cos x)(1-\cos x)} d x \\ =\int \frac{1-\cos x}{1-\cos ^{2} x} d x \\ =\int \frac{1-\cos x}{\sin ^{2} x} d x \\ {\left[\frac{1}{\sin ^{2} x}=\operatorname{cosec}^{2} x \text { and } \frac{\cos x}{\sin ^{2} x}=\operatorname{cosec} x \cot x\right]}
\\\begin{aligned} &=\int\left(\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right) d x\\ &\text { As we know, }\\ &\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c\\ &\int \operatorname{cosec}^{2} x d x=-\cot x+c\\ &=\operatorname{cosec} x-\cot x+C \end{aligned}\\

Question:7

Evaluate the following:
\int \tan ^{2} x \sec ^{4} x d x

Answer:

Given; $ \int $ tan\textsuperscript{2} x sec\textsuperscript{4} x dx\\=$ \int $ tan\textsuperscript{2} x sec\textsuperscript{2} x (1+ tan\textsuperscript{2} x) dx\\Let; tan x = y
\\$ \Rightarrow $ sec\textsuperscript{2} x dx = dy\\ \\ =$ \int $ (y\textsuperscript{2}+y\textsuperscript{4} )dy\\

\\ =\frac{y^{3}}{3}+\frac{y^{5}}{5}+C \\ =\frac{\tan ^{3} x}{3}+\frac{\tan ^{5} x}{5}+C

Question:8

Evaluate the following:
\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x

Answer:

Given; \int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x
\\ =\int \begin{array}{c} \sin x+\cos x \\ \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\ =\int \frac{\sin x+\cos x}{\sqrt{(\sin x+\cos x)^{2}}} d x \end{array} \\ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} \\ =\int 1 \mathrm{dx} \\ =x+C

Question:9

Evaluate the following:
\int \sqrt{1+\sin x} d x

Answer:

Given; \int \sqrt{1+\sin x} d x

\\ =\int \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} d x \\ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} \\ =\int \sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}} d x \\ =\int\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x \\ =2 \sin \frac{x}{2}-2 \cos \frac{x}{2}+c

Question:10

Evaluate the following:
\int \frac{x}{\sqrt{x}+1} d x \: \: \: (Hint: Put \sqrt{x} = z)

Answer:

Given;

Let z = \sqrt{x}

\\ \Rightarrow x = z\textsuperscript{2}\\ \\ \Rightarrow dx = 2z dz\\ =\int \frac{z^{2}}{z+1} 2 z d z\\ =2 \int \frac{\mathrm{z}^{3}}{\mathrm{z}+1} \mathrm{~d} z$\\ Let; $t=z+1$\\ i.e. $t=\sqrt{x}+1$ \\ \Rightarrow dt $=\mathrm{dz}$ \\ =2 \int \frac{(\mathrm{t}-1)^{3}}{\mathrm{t}} \mathrm{dt} \\ =2 \int \frac{\mathrm{t}^{3}-3 \mathrm{t}^{2}+3 \mathrm{t}-1}{\mathrm{t}} \mathrm{dt} \\ =2 \int\left(\mathrm{t}^{2}-3 \mathrm{t}+3-\frac{1}{\mathrm{t}}\right) \mathrm{dt} \\ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\

\\ =\frac{2 t^{3}}{3}-3 t^{2}+3 t-\log |t|+C \\ =\frac{2(\sqrt{x}+1)^{3}}{3}-3(\sqrt{x}+1)^{2}+3(\sqrt{x}+1)-\log |\sqrt{x}+1|+C

Question:11

Evaluate the following:
\int \sqrt{\frac{a+x}{a-x}}

Answer:

Given, \int \sqrt{\frac{a+x}{a-x}}
\\ =\int \frac{\sqrt{a+x}}{\sqrt{a-x}} \times \frac{\sqrt{a+x}}{\sqrt{a+x}} d x \\ =\int \frac{a+x}{\sqrt{a^{2}-x^{2}}} d x \\ =a \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x-\frac{1}{2} \int \frac{-2 x}{\sqrt{a^{2}-x^{2}}} d x

\\ \begin{aligned} &\text { Let } t=a^{2}-x^{2}\\ & \Rightarrow-2x \mathrm{dx}=\mathrm{dt}\\ &=\mathrm{a} \sin \left(\frac{\mathrm{x}}{\mathrm{a}}\right)-\frac{1}{2} \int \frac{1}{\sqrt{\mathrm{t}}} \mathrm{dt}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]_{\text {and }}\left[\int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}\right]\\ &=a \sin \left(\frac{x}{a}\right)-\frac{1}{2} \times 2 \sqrt{t}\\ &=a \sin \left(\frac{x}{a}\right)-\sqrt{a^{2}-x^{2}}+c \end{aligned}

Question:13

Evaluate the following:
\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x\\ \end{aligned}

Answer:

\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x\\ &\text { Let } x=\tan y\\ &\Rightarrow \mathrm{dx}=\sec ^{2} \mathrm{y} \mathrm{dx} \end{aligned}
\\ =\int \frac{\sqrt{1+\tan ^{2} y}}{\tan ^{4} y} \sec ^{2} y d y \\ =\int \sec y \times \frac{\cos ^{4} y}{\sin ^{4} y} \times \sec ^{2} y d y \\ =\int \frac{\cos y}{\sin ^{4} y} d y \\ \text { Let } t=\sin y
\Rightarrow dt = cos y dy
\\ =\int \frac{\mathrm{dt}}{\mathrm{t}^{4}}=-\frac{1}{3 \mathrm{t}^{3}}+\mathrm{C} \\ =-\frac{1}{3 \sin ^{3} \mathrm{y}} \\ =-\frac{1}{3 \sin ^{3}\left(\sin ^{-1} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}}\right)} \\ =-\frac{\left(\mathrm{x}^{2}+1\right)^{\frac{3}{2}}}{3 \mathrm{x}^{3}}

Question:14

Evaluate the following:
\int \frac{d x}{\sqrt{16-9 x^{2}}}

Answer:

\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\mathrm{dx}}{\sqrt{16-9 \mathrm{x}^{2}}}\\ &=\int \frac{d x}{\sqrt{4^{2}-(3 x)^{2}}}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]\\ &=\frac{1}{3} \sin ^{-1} \frac{3 x}{4}+C \end{aligned}

Question:15

Evaluate the following:
\\ \int \frac{\mathrm{dt}}{\sqrt{3 \mathrm{t}-2 \mathrm{t}^{2}}}

Answer:

\\ \begin{aligned} &\text { Given }\\ &\int \frac{\mathrm{dt}}{\sqrt{3 t-2 t^{2}}}\\ &=\int \frac{\mathrm{dt}}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\frac{3}{2 \sqrt{2}}\right)^{2}+2 \times \sqrt{2} t \times \frac{3}{2 \sqrt{2}}-(\sqrt{2} t)^{2}}} \end{aligned}
\\ =\int \frac{d t}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\sqrt{2} t-\frac{3}{2 \sqrt{2}}\right)^{2}}} \\ =2 \sqrt{2} \int \frac{d t}{\sqrt{3^{2}-(4 t-3)^{2}}} \\ \left.\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right] \\ =\frac{1}{\sqrt{2}} \sin ^{-1} \frac{4 t-3}{3}+C

Question:16

Evaluate the following:
\int \frac{3 x-1}{\sqrt{x^{2}+9}} d x

Answer:

\\ \text { Given; } \frac{3 x-1}{\sqrt{x^{2}+9}} d x \\ =\int \frac{3 x}{\sqrt{x^{2}+3^{2}}} d x-\int \frac{1}{\sqrt{x^{2}+3^{2}}} d x \\ \text { [Let; } x^{2}+9=y \Rightarrow \left.2 x d x=d y\right] \\ =\frac{3}{2} \int \frac{d y}{\sqrt{y}}-\log \left|x+\sqrt{x^{2}+3^{2}}\right|+c \\ =3 \sqrt{x^{2}+9}-\log \left|x+\sqrt{x^{2}+9}\right|+C

Question:17

Evaluate the following:
\int \sqrt{5-2 x+x^{2} }d x

Answer:

\\ \text { Given; } \int \sqrt{5-2 x+x^{2}} d x \\ =\int \sqrt{(x-1)^{2}+2^{2}} \\ {\left[\because \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|\right.} \\ =\frac{x-1}{2} \sqrt{5-2 x+x^{2}}+2 \log \left|(x+1)+\sqrt{5-2 x+x^{2}}\right|+C

Question:18

Evaluate the following:
\int \frac{x}{x^{4}-1} d x

Answer:

\\ \text { Given; } \int \frac{x}{x^{4}-1} d x \\ \text { [Let; } t=x^{2}\ \Rightarrow \left.d t=2 x d x\right] \\ =\int \frac{1}{\left(t^{2}-1\right)} \frac{d t}{2}
\\ =\frac{1}{2} \int \frac{1}{(t+1)(t-1)} d t \\ =\frac{1}{2} \int \frac{1}{2}\left[\frac{1}{(t-1)}-\frac{1}{(t+1)}\right] d t \\ {\left[\because \int \frac{1}{x} d x=\log |x|\right.} \\ =\frac{1}{4}(\log |t-1|-\log |t+1|)+C
\\ {\left[\because \log a-\log b=\log \frac{a}{b}\right]} \\ =\frac{1}{4} \log \left|\frac{t-1}{t+1}\right|+c \\ =\frac{1}{4} \log \left|\frac{x^{2}-1}{x^{2}+1}\right|+c

Question:19

Evaluate the following:
\int \frac{x^{2}}{1-x^{4}} d x \text { put } x^{2}=t

Answer:

Given: \int \frac{x^{2}}{1-x^{4}} d x
\\ =\int \frac{1}{2}\left[\frac{2 x^{2}}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ =\int \frac{1}{2}\left[\frac{x^{2}+x^{2}-1+1}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ =\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)-\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ =\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x-\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right]
=\int \frac{1}{2}\left[\frac{1}{\left(1-x^{2}\right)} d x-\frac{1}{\left(1+x^{2}\right)} d x\right]
As we know,
\\ \int \frac{1}{\left(a^{2}-x^{2}\right)} d x=\frac{1}{2 a} \log \frac{a+x}{a-x} \\ \int \frac{1}{\left(a^{2}+x^{2}\right)} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\ =\frac{1}{2} \times \frac{1}{2} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c \\ =\frac{1}{4} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c

Question:20

Evaluate the following:
\int \sqrt{2 a x-x^{2}} d x

Answer:

\\ \text { Given; } \int \sqrt{2 a x-x^{2}} d x \\ =\int \sqrt{a^{2}-a^{2}+2 a x-x^{2}} d x \\ =\int \sqrt{a^{2}-(x-a)^{2}} d x \\ =\frac{(x-a)}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}+c

Question:21

Evaluate the following:
\\ \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x

Answer:

\\ \begin{aligned}&\text { Given; }\\ &\int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x\\ &\begin{array}{l} \begin{array}{c} \text { Let; } t=\sin ^{-1} x \\ x=\sin t \\ \Rightarrow d t=\frac{1}{\sqrt{1-x^{2}}} d x \end{array} \\ \Rightarrow \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right) \sqrt{\left(1-x^{2}\right)}} d x \\ =\int \frac{t}{\left(1-\sin ^{2} t\right)} d t \\ =\int \frac{t}{\cos ^{2} t} d t \end{array} \end{aligned}
\\ =\int t \sec ^{2} t d t\\
Apply integration by parts
$$ \left[\int f(x) \cdot g(x) d x=f(x) \int g(x) d x-\int \frac{d}{d x} f(x)\left[\int g(x) d x\right] d x\right]
\\ =\mathrm{t} \int \sec ^{2} \mathrm{t} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{t})\left[\int \sec ^{2} \mathrm{t} \mathrm{dt}\right] \mathrm{dt} \\ =\mathrm{t} \operatorname{tant}-\int \mathrm{tant} \mathrm{dt} \\ =\mathrm{t} \operatorname{tant}+\int \frac{-\sin \mathrm{t}}{\cos t} \mathrm{dt} \\ =\mathrm{t} \operatorname{tant}+\log |\cos t|+\mathrm{C} \\ =\frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}+\log \left|\sqrt{1-\mathrm{x}^{2}}\right|+\mathrm{C}

Question:22

Evaluate the following:
\int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} d x

Answer:

\\ \text { Given; } \int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} \mathrm{dx} \\ {\left[\cos a+\cos b=2 \cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)\right]} \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2}}{1-2 \cos 3 x} d x \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{(1-2 \cos 3 x) \cos \frac{3 x}{2}} d x \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-2 \cos 3 x \cos \frac{3 x}{2}} d x
\\ {[\because 2 \cos a \cos b=\cos (a+b)+\cos (a-b)]} \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-\cos \frac{9 x}{2}-\cos \frac{3 x}{2}} d x \\ =\int-2 \cos \frac{3 x}{2} \cos \frac{x}{2} d x \\ =\int-\cos 2 x-\cos x d x \\ =-\frac{\sin 2 x}{2}-\sin x+C

Question:23

Evaluate the following:
\int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} d x

Answer:

\\ \text { Given; } \int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\ =\int \frac{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x\right)}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\ =\int \frac{\left(\sin ^{4} x+\cos ^{4} x-\sin ^{2} x \cos ^{2} x\right)}{\sin ^{2} x \cos ^{2} x} d x \\ =\int \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}-1 d x \\ =\int \tan ^{2} x+\cot ^{2} x-1 d x
\\ =\int \sec ^{2} x-1+\operatorname{cosec}^{2} x-1-1 \mathrm{dx} \\ =\tan x-\cot x-3 x+C

Question:24

Evaluate the following:
\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x

Answer:

\begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x\\ &\left[\text { Let; } t=\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}} \Rightarrow d t=\frac{3 \sqrt{x}}{2 a^{\frac{3}{2}}} d x\right]\\ &=\int \frac{2 a^{\frac{3}{2}} \mathrm{dt}}{3 \sqrt{\mathrm{a}^{3}-\mathrm{a}^{3} \mathrm{t}^{2}}}\\ &=\int \frac{2 \mathrm{dt}}{3 \sqrt{1-\mathrm{t}^{2}}}\\ &=\frac{2}{3} \sin ^{-1} t+C=\frac{2}{3} \sin ^{-1}\left(\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}}\right)+C \end{aligned}

Question:25

Evaluate the following:
\int \frac{\cos x-\cos 2 x}{1-\cos x} d x

Answer:

Given, \int \frac{\cos x-\cos 2 x}{1-\cos x} d x
\\ =\int \frac{\cos 2 x-\cos x}{\cos x-1} d x \\ =\int \frac{2 \cos ^{2} x-1-\cos x}{\cos x-1} d x \\ =\int \frac{(2 \cos x+1)(\cos x-1)}{\cos x-1} d x \\ =\int(2 \cos x+1) d x \\ =2 \sin x+x+c

Question:26

Evaluate the following:
\int \frac{d x}{x \sqrt{x^{4}-1}}\left(H \text { int }: \text { Put } x^{2}=\sec \theta\right)

Answer:

\\ \begin{aligned} &\text { Given; }\\ &\int \frac{d x}{x \sqrt{x^{4}-1}}\\ &\text { [Let; } \left.\mathrm{x}^{2}=\sec \theta \Rightarrow 2 \mathrm{xdx}=\sec \theta \tan \theta \mathrm{d} \theta\right]\\ &=\int \frac{\sec \theta \tan \theta}{2 \sec \theta \sqrt{\sec ^{2} \theta-1}} d \theta=\int \frac{\mathrm{d} \theta}{2}\\ &=\frac{\theta}{2}+c\\ &=\frac{\sec ^{-1} x^{2}}{2}+c \end{aligned}

Question:29

Evaluate the following:
\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}

Answer:

\\ \text { Given; } \int_{0}^{1} \frac{d x}{e^{x}+e^{-x}} \\ =\int_{0}^{1} \frac{e^{x} d x}{e^{2 x}+1} \\ =\int_{1}^{e} \frac{d t}{t^{2}+1} \\ \text { [Let; } \left.t=e^{x}[\text { when } x=0, t=1 \text { and } x=1, t=e] \Rightarrow d t=e^{x} d x\right] \\ =\left[\tan ^{-1} t\right]_{1}^{e}
=\tan ^{-1} \mathrm{e}-\tan ^{-1} 1=\tan ^{-1} \mathrm{e}-\frac{\pi}{4}

Question:30

Evaluate the following:
\int_{0}^{\frac{\pi}{2}} \frac{\tan x d x}{1+m^{2} \tan ^{2} x}

Answer:

\\ \text { Given; } \int_{0}^{\frac{\pi}{2}} \frac{\tan x}{1+m^{2} \tan ^{2} x} \mathrm{dx} \\ \text { [Let; } \left.t=\tan x \Rightarrow \mathrm{dt}=\sec ^{2} \mathrm{x} \mathrm{dx}\right] \\ \qquad \text { [Let; } \left.\mathrm{u}=\mathrm{t}^{2} \Rightarrow \mathrm{du}=2 \mathrm{tdt}\right] \\ \frac{\mathrm{t}}{1+\mathrm{m}^{2} \mathrm{t}^{2}} \frac{\mathrm{dt}}{\sec ^{2} \mathrm{x}}=\int \frac{\mathrm{t}}{\left(1+\mathrm{m}^{2} \mathrm{t}^{2}\right)} \frac{\mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)} \\ =\int \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})} \frac{\mathrm{du}}{2}
By applying partial fraction;
\\ \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})}=\frac{\mathrm{A}}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)}+\frac{\mathrm{B}}{(1+\mathrm{u})} \\ 1=\mathrm{A}(1+\mathrm{u})+\mathrm{B}\left(1+\mathrm{m}^{2} \mathrm{u}\right) \\ \mathrm{B}=\frac{1}{1-\mathrm{m}^{2}} \\ \text { When } \mathrm{u}=-1 \\ \text { When } \mathrm{u}=-\frac{1}{\mathrm{~m}^{2}}
\\ A=\frac{m^{2}}{m^{2}-1} \\ =\frac{1}{2} \int \frac{m^{2}}{\left(m^{2}-1\right)\left(1+m^{2} u\right)}+\frac{1}{\left(1-m^{2}\right)(1+u)} d u \\ =\frac{1}{2} \times \frac{m^{2}}{m^{2}-1} \times \log \left|1+m^{2} u\right|+\frac{1}{2} \times \frac{1}{1-m^{2}} \times \log |1+u|+C
\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1} \times \log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\frac{1}{2} \times \frac{1}{1-\mathrm{m}^{2}} \times \log \left|1+\tan ^{2} \mathrm{x}\right|+\mathrm{C} \\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\log \left|1+\tan ^{2} \mathrm{x}\right|\right]+\mathrm{C} \\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mid\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right)\left(1+\tan ^{2} \mathrm{x}\right) \|+\mathrm{C}\right. \\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x}\right|\right]+\mathrm{C}
\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mathrm{g}\left(\cos ^{2} \mathrm{x}+\mathrm{m}^{2} \sin ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x} \|+\mathrm{C}\right. \\ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \mathrm{x}+1\right|}{2 \mathrm{~m}^{2}-2}+\mathrm{C}
By applying the given limits 0 to π/2
\\ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \frac{\pi}{2}+1\right|}{2 \mathrm{~m}^{2}-2}-\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} 0+1\right|}{2 \mathrm{~m}^{2}-2} \\ =\frac{\log \left|\left(\mathrm{m}^{2}\right)\right|}{2 \mathrm{~m}^{2}-2}

Question:31

Evaluate the following:
\int_{1}^{2} \frac{d x}{\sqrt{(x-1)(2-x)}}

Answer:

\\ Given \int_{1}^{2} \frac{d x}{\sqrt{(x-1)(2-x)}}$\\ $=>_{1}^{2} \frac{\mathrm{dx}}{\sqrt{(x-1)(2-x)}}$\\ $=\int_{1}^{2} \frac{d x}{\sqrt{-\left(x^{2}-3 x+2\right)}}$Using perfect square method for the denominator\Rightarrow x^{2}-3 x+2=x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2$
\\ \begin{aligned} &=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}\\ &=\int_{1}^{2} \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}}\\ &\text { We know }\\ &\int \frac{\mathrm{dx}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}\\ &=\left[\sin ^{-1}\left(\frac{\left(x-\frac{3}{2}\right)}{\frac{1}{2}}\right)\right]_{1}^{2}=\left[\sin ^{-1}(2 x-3)\right]_{1}^{2} \end{aligned}
\\ =\sin ^{-1}(1)-\sin ^{-1}(-1) \\ \text {We know } \sin ^{-1}(-\theta)=-\sin \theta \\ =\frac{\pi}{2}+\frac{\pi}{2} \\ =\pi

Question:32

Evaluate the following:
\int_{0}^{1} \frac{\mathrm{xdx}}{\sqrt{1+\mathrm{x}^{2}}}

Answer:

\\ Given \int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}$\\ Now put $1+x^{2}=t$\\ $=>2 \mathrm{x} \mathrm{dx}=\mathrm{dt}$\\ At $x=0, t=1$ and at x=1, t=2

\\ \Rightarrow \frac{1}{2} \int_{1}^{2} \frac{d t}{\sqrt{t}} \\ =\frac{1}{2}[2 \sqrt{t}]_{1}^{2} \\ =\sqrt{2}-1 \\ \Rightarrow \int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}=\sqrt{2}-1

Question:33

Evaluate the following:
\int_{0}^{\pi} x \sin x \cos ^{2} x d x

Answer:

Using Property

\\ \int_{2}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ \qquad \begin{array}{l} \text { Let } I=\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\ =>\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cos ^{2}(\pi-x) d x \end{array} \\ \operatorname{ses}(\pi-x)=-\cos x

\\ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-I \\ {2} I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x

\\ \begin{aligned} &\Rightarrow \int_{0}^{\pi} \pi \sin x \cos ^{2} x d x=\pi \int_{0}^{\pi} \sin x \cos ^{2} x d x\\ &\text { Now let } \cos x=t\\ &=>-\sin x d x-d t\\ &\text { And, at } x=0, t=1\\ &\text { and at } x=\pi, t=-1 \end{aligned}

\\ \Rightarrow 2\mathrm{I}=-\pi \int_{1}^{-1} \mathrm{t}^{2} \mathrm{dt}=-\pi\left[\frac{\mathrm{t}^{2}}{3}\right]_{1}^{-1}=\frac{2 \pi}{3} \\ \Rightarrow{2 \mathrm{I}=\frac{2 \pi}{3}} \\ \Rightarrow{\mathrm{I}=\frac{\pi}{3}} \\ \Rightarrow \int _{0}^{\pi} x \sin x \cos ^{2} x \mathrm{dx}=\frac{\pi}{3}

Question:35

Evaluate the following:
\int \frac{x^{2} d x}{x^{4}-x^{2}-12}

Answer:

\\ \text { Given: } \int \frac{x^{2} d x}{x^{4}-x^{2}-12} \\ \text { Put } x^{2}=t \\ =>\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{t}{t^{2}-t-12}
\\ \Rightarrow \mathrm{t}^{2}-\mathrm{t}-12=(\mathrm{t}+3)(\mathrm{t}-4) \\ \Rightarrow \frac{\mathrm{t}}{(\mathrm{t}+3)(\mathrm{t}-4)}=\frac{\mathrm{A}}{(\mathrm{t}+3)}+\frac{\mathrm{B}}{(\mathrm{t}-4)} \text { (Concept of partial fraction) } \\ \Rightarrow \mathrm{t}=\mathrm{t}(\mathrm{A}+\mathrm{B})+3 \mathrm{~B}-4 \mathrm{~A}
On comparing coefficients of ‘t’ we get
\\ \begin{aligned} &A=\frac{3}{7} \& B=\frac{4}{7}\\ &=\frac{t}{(t+3)(t-4)}=\frac{3}{7(t+3)}+\frac{4}{7(t-4)}\\ &\Rightarrow\text { Now put } t=x^{2} \text { back in the above eq. }\\ &\Rightarrow\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)} \end{aligned}
\\ \Rightarrow\frac{x^{2} d x}{x^{4}-x^{2}-12}=\int\left(\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)}\right) d x=\frac{1}{7}\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right) \\ \Rightarrow\operatorname{Now} \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)+c \& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\ \Rightarrow7\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right)=\frac{1}{7}\left(\frac{3}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{4}{4} \ln \left(\frac{x-2}{x+2}\right)+c\right) \\ \Rightarrow\int \frac{x^{2} d x}{x^{4}-x^{2}-12}=\frac{\sqrt{3}}{7} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{1}{7} \ln \left(\frac{x-2}{x+2}\right)+c

Question:36

Evaluate the following:
\int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}

Answer:

\\ \begin{aligned} &\text { Given } \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}\\ &\text { Put } x^{2}=t\\ &\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}\\ &\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{A}{\left(t+a^{2}\right)}+\frac{B}{\left(t+b^{2}\right)}(\text { Concept of partial fraction }) \end{aligned}
\\ \begin{aligned} &\Rightarrow t=t(A+B)+a^{2} B+b^{2} A\\ &\text { On comparing coefficients of "twe get }\\ &\Rightarrow \mathrm{A}=\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \& \mathrm{~B}=\frac{-\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \end{aligned}
\\ \begin{aligned} &\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(t+a^{2}\right)}-\frac{b^{2}}{\left(t+b^{2}\right)}\right)\\ &\Rightarrow \text { Now put } t=x^{2} \text { back in the above eq. }\\ &\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(x^{2}+a^{2}\right)}-\frac{b^{2}}{\left(x^{2}+b^{2}\right)}\right)\\ &\Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right)\\ &\Rightarrow_{\text {Now }} \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \end{aligned}
\\ =\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right) \\ \Rightarrow=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{a} \tan ^{-1}\left(\frac{x}{a}\right)+\frac{b^{2}}{b} \tan ^{-1}\left(\frac{x}{b}\right)+c\right) \\ \Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(a \tan ^{-1}\left(\frac{x}{a}\right)+b \tan ^{-1}\left(\frac{x}{b}\right)\right)+c

Question:37

Evaluate the following:
\int_{0}^{\pi} \frac{x}{1+\sin x}

Answer:

\\ Given \int_{0}^{\pi} \frac{x d x}{1+\sin x}$\\ Let $\mathrm{I}=\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}$\\ Now using Property $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$\\ $=\int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{(\pi-x) d x}{1+\sin (\pi-x)}$ \\ \Rightarrow \int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{\pi d x}{1+\sin x}-\int_{0}^{\pi} \frac{x d x}{1+\sin x} \\ \Rightarrow 2 \int_{0}^{\pi} \frac{x d x}{1+\sin x}=2 I=\pi \int_{0}^{\pi} \frac{d x}{1+\sin x} \ldots(1) \\ \Rightarrow \int_{0}^{\pi} \frac{d x}{1+\sin x}=\int_{0}^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}=\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x \\ \Rightarrow 1-\sin ^{2} x=\cos ^{2} x
\\ =\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x=\int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x=\int_{0}^{\pi} \frac{d x}{\cos ^{2} x}-\int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x \ldots(2) \\ \Rightarrow \int_{0}^{\pi} \frac{d x}{\cos ^{2} x}=\int_{0}^{\pi} \sec ^{2} x d x=[\tan x]_{0}^{\pi}=0 \\ \quad=^{\text {And }} \text { for } \int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x \\ \text { Put } \cos x=t
\\ \begin{aligned} &\Rightarrow-\sin x d x=d t\\ &\Rightarrow \mathrm{At}^{\mathrm{x}}=0=>\mathrm{t}=1 \text { and } \mathrm{x}=\pi=>\mathrm{t}=-1\\ &=\int_{1}^{-1}-\frac{d t}{t^{2}}=\left[\frac{1}{t}\right]_{1}^{-1}=-2 \ldots \end{aligned}
\\ 2\mathrm{I}=\pi \int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{1+\sin \mathrm{x}}=\pi\left(\int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{\cos ^{2} \mathrm{x}}-\int_{0}^{\pi} \frac{\sin \mathrm{x}}{\cos ^{2} \mathrm{x}} \mathrm{dx}\right)=\pi(0-(-2))=2 \pi \\ \quad\mathrm{I}=\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}=\pi \\

Question:38

Evaluate the following:
\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x

Answer:

Given:
\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x
Using the concept of partial fractions,
\\ \Rightarrow \frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x-3)}$\\ $\Rightarrow 2 x-1=x^{2}(A+B+C)+x(C-4 B-A)+(3 B-2 C-6 A)$\\ Comparing coefficients:\\ $\Rightarrow A+B+C=0 \ldots(1)\\
\\ \begin{aligned} &\Rightarrow C-4 B-A=2 \ldots(2)\\ &\Rightarrow 3 B-2 C-6 A=-1 \ldots(3)\\ &\Rightarrow \text { On solving }(1),(2) \text { and }(3) \text { we get }\\ &\Rightarrow A=-\frac{1}{6}, B=-\frac{1}{3} \text { and } C=\frac{1}{2} \end{aligned}
\\ =\frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{-\frac{1}{6}}{(x-1)}+\frac{-\frac{1}{2}}{(x+2)}+\frac{\frac{1}{2}}{(x-3)} \\ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\int \frac{1}{2(x-3)} d x-\int \frac{1}{3(x+2)} d x-\int \frac{1}{6(x-1)} d x
\\ =\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c \\ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c

Question:39

Evaluate the following:
\int \mathrm{e}^{\tan ^{-1} \mathrm{x}}\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{d} \mathrm{x}

Answer:

Given: \int \mathrm{e}^{\tan ^{-1} \mathrm{x}}\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{d} \mathrm{x}
\\ \text { Put } \tan ^{-1} x=t \\ \qquad \begin{array}{l} =\frac{d x}{1+x^{2}}=d t \\ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=\int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t \\ \Rightarrow \operatorname{As} \sec ^{2} \theta-\tan ^{2} \theta=1 \end{array} \\ \Rightarrow \int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t=\int e^{t}\left(1+\tan t+\sec ^{2} t-1\right) d t
\\ \begin{aligned} &\Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t\\ &\text { Now using the property. } \int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ &\Rightarrow \text { Now in } \int e^{t}\left(\tan t+\sec ^{2} t\right) d t \end{aligned}
\\=f(t)=\tan t \\ \Rightarrow f^{\prime}(t)=\sec ^{2} x \\ \Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t=e^{t} \tan t+C \\ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=e^{\tan ^{-1} x} x+C

Question:41

Evaluate the following:
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}}

Answer:

Given: \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x )^{\frac{5}{2}}}
Using Trigonometric identities:
\\ \Rightarrow \cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=1-2 \sin ^{2} \mathrm{x} \\ \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}}=\frac{\sqrt{1+\left(2 \cos ^{2} \frac{x}{2}-1\right)}}{\left(1-\left(1-2 \sin ^{2} \frac{x}{2}\right)\right)^{\frac{5}{2}}} \\ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}}
\\ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}} \\ =\left(\sqrt{2} \cos \frac{x}{2}\right) /\left(2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}\right) \\ =\frac{\sqrt{2 }\cos \frac{x}{2}}{2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}} \\ =\frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}}
\\ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} d x \\ \text { Put } \sin \left(\frac{x}{2}\right)=t \\ \cos \left(\frac{x}{2}\right) d x=2 d t \\ \text { At } x=\frac{\pi}{3}=>t=\frac{1}{2} \text { and at } x=\frac{\pi}{2}=>t=\frac{1}{\sqrt{2}}
\\\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} \mathrm{dx}=\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}
\\ \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}=\frac{1}{2}\left[\frac{t^{-4}}{-4}\right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}=\frac{3}{2} \\ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\frac{3}{2}

Question:42

Evaluate the following:
\int \mathrm{e}^{-3 \mathrm{x}} \cos ^{3} \mathrm{x} \mathrm{d} \mathrm{x}

Answer:

\\ \begin{aligned} &\text { Given: } \int e^{-3 x} \cos ^{3} x d x\\ &\text { Using trigonometric identity }\\ &\cos 3 x=4 \cos ^{3} x-3 \cos x\\ &\int e^{-3 x} \cos ^{3} x d x=\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x\\ &\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x=\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x ...(1) \end{aligned}
\\ \begin{aligned} &\Rightarrow \text { Using a generalised formula i.e }\\ &\int e^{a x} \cos b x d x=\frac{e^{2 x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)\\ &\int e^{-3 x} \cos 3 x d x=\frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x) \end{aligned}
\\ \begin{aligned} &\frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x)=\frac{e^{-2 x}}{6}(\sin 3 x-\cos 3 x) \ldots(2)\\ &\int e^{-3 x} \cos x d x=\frac{e^{-2 x}}{(-3)^{2}+1^{2}}((-3) \cos x+\sin x)=\frac{e^{-2 x}}{10}(\sin x-3 \cos x)\\ &=\frac{e^{-2 x}}{10}(\sin x-3 \cos x) \ldots(3)\\ &\Rightarrow \text { On putting }(2) \text { and }(3) \text { in }(1) \end{aligned}
\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x=\frac{e^{-2 x}}{4 \times 6}(\sin 3 x-\cos 3 x)+\frac{3 e^{-2 x}}{4 \times 10}(\sin x- 3 \cos x) \\ \Rightarrow \int e^{-3 x} \cos ^{3} x d x=e^{-3 x}\left\{\frac{(\sin 3 x-\cos 3 x)}{24}+\frac{3(\sin x-3 \cos x)}{40}\right\}+c

Question:43

Evaluate the following:
\int \sqrt{\tan x} d x (Hint: Put tan x = t^2)

Answer:

Given:
\int \sqrt{\tan x} d x
Put tan x = t^2
\begin{aligned} &\Rightarrow \sec ^{2} x d x=2 t d t\\ &\Rightarrow \mathrm{dx}=\frac{2 t \mathrm{dt}}{\sec ^{2} x}=\frac{2 \mathrm{tdt}}{1+\tan ^{2} \mathrm{x}}=\frac{2 \mathrm{tdt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \sqrt{\tan \mathrm{x}} \mathrm{d} \mathrm{x}=\int \sqrt{\mathrm{t}^{2}} \frac{2 \mathrm{t} \mathrm{dt}}{1+\mathrm{t}^{4}}=\int \frac{2 \mathrm{t}^{2} \mathrm{dt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \frac{2 t^{2} d t}{1+t^{4}}=\int \frac{\left(2 t^{2}+1-1\right) d t}{1+t^{4}}=\int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t\\ &\Rightarrow \int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t \end{aligned}
Taking out t^2 common in both the numerators
\\ \Rightarrow \int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} d t+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt} \\ \int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}=\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \ldots . \text { (1) }
\\ \begin{aligned} &\Rightarrow \operatorname{Now} t^{2}+\frac{1}{t^{2}}=\left(t \pm \frac{1}{t}\right)^{2} \mp 2 \ldots(3)\\ &=\operatorname{for}(a) \int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \text { taking } t-\frac{1}{t}=z\\ &\Rightarrow\left(1+\frac{1}{t^{2}}\right) d t=d z \end{aligned}
\\ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt} \\ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}+2}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{z}{\sqrt{2}}\right)+\mathrm{c} \ldots(2)
\\ \begin{aligned} &\text { for (b) } \int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \text { dt taking } t+\frac{1}{t}=z\\ &\Rightarrow\\ &\Rightarrow\left(1-\frac{1}{t^{2}}\right) \mathrm{dt}=\mathrm{dz}\\ &=\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1-\frac{1}{\mathrm{t}^{2}}\right)}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}-2} \mathrm{dt}\\ &=\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t+\frac{1}{t}\right)^{2}-2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}-2}=\frac{1}{2 \sqrt{2}} \ln \left|\frac{z-\sqrt{2}}{z+\sqrt{2}}\right|+\mathrm{c} \ldots(3) \end{aligned}


Put (2) and (3) in (1)
\\ =\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\left(t-\frac{1}{t}\right)}{\sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(t+\frac{1}{\mathrm{t}}\right)-\sqrt{2}}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)+\sqrt{2}}\right|+\mathrm{c} \\ \Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t} \sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(\mathrm{t}^{2}+1-\mathrm{t} \sqrt{2}\right.}{\left(\mathrm{t}^{2}+1+\mathrm{t} \sqrt{2}\right.}\right|+\mathrm{C}
\\ \Rightarrow \text{Now again putting} t=\sqrt{\tan x}\text{ to obtain the final result} \\ =\int \sqrt{\tan x} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x-1}{\sqrt{2 \tan x}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{(\tan x+1-\sqrt{2 \tan x}}{\tan x+1+\sqrt{2 \tan x}}\right| \\

Question:44

Evaluate the following:
\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}
(Hint: Divide Numerator and Denominator by cos^4x)

Answer:

Given:\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}
Dividing Numerator and Denominator by cos^4x
\\ =\int_{0}^{\frac{\pi}{2}} \frac{\left(1 / \cos ^{4} x\right) d x}{\left(\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right) / \cos ^{2} x\right)^{2}} \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{4} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\ \Rightarrow \text { Put } \tan x=t
\\ \Rightarrow \sec ^{2} x d x=d t \\ \Rightarrow A t x=0=>t=0 \text { and at } x=\frac{\pi}{2}=>t=\infty \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}} \\ \Rightarrow \int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}
\\ =\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ \Rightarrow \frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ \Rightarrow \text { Let } I=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \ldots(1)
\\ =\operatorname{Let} I_{1}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t \\ =\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t \\ =1_{1}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t=\frac{1}{b^{2}}\left(\frac{b}{a}\right)\left[\tan ^{-1}\left(\frac{b t}{a}\right)\right]_{0}^{\infty}=\frac{\pi}{2 a b} \\ \Rightarrow I_{1}=\frac{\pi}{2 a b} \ldots .(2)

\\ \text { Let } I_{2}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ \Rightarrow \text { let } b t=a \tan \theta \\ \Rightarrow b d t=\operatorname{asec}^{2} \theta d \theta \\ =I_{2}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asec}^{2} \theta d \theta}{\left(a^{2}+a^{2} \tan ^{2} \theta\right)^{2}}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{a \sec ^{2} \theta d \theta}{a^{4}\left(1+\tan ^{2} \theta\right)^{2}}=\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta d \theta}{\sec ^{4} \theta}
\\ =\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\sec ^{4} \theta}=\frac{1}{a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{d} \theta=\frac{1}{2 a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta \\ \Rightarrow \frac{1}{2 a^{3} b} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta=\frac{1}{2 a^{3} b}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4 a^{3} b} \ldots(3) \\ \Rightarrow I=\frac{1}{b^{2}}\left(I_{1}+\left(b^{2}-a^{2}\right) \mathrm{I}_{2}\right)=\frac{1}{b^{2}}\left(\frac{\pi}{2 a b}+\left(b^{2}-a^{2}\right) \frac{\pi}{4 a^{3} b}\right)
\\\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}=\frac{\pi}{2 a b^{3}}\left(1+\left(\frac{b^{2}}{a^{2}}-1\right) \pi\right)

Question:45

Evaluate the following:
\int_{0}^{1} x \log (1+2 x) d x

Answer:

Given: \int_{0}^{1} x \log (1+2 x) d x
\\ \text { Let } 1+2 \mathrm{x}=\mathrm{t} \\ \Rightarrow 2 \mathrm{dx}=\mathrm{dt} \\ \Rightarrow \mathrm{At} \mathrm{x}=0=>\mathrm{t}=1 \text { and at } \mathrm{x}=1=>\mathrm{t}=3 \\ \Rightarrow \int_{0}^{1} \mathrm{x} \ln (1+2 \mathrm{x}) \mathrm{d} \mathrm{x}=\frac{1}{4}\int_{1}^{3}(\mathrm{t}-1) \ln \mathrm{t} \mathrm{dt}....(i)
\\ \begin{aligned} &\Rightarrow \int_{1}^{3}(t-1) \ln t d t=\int_{1}^{3} t \ln t d t-\int_{1}^{3} \ln t d t\\ &\Rightarrow \text { Apply Integration by parts }\\ &=\int t \operatorname{ln} t d t=\ln t \int t d t-\int \frac{d}{d t}(\ln t)\left(\int t d t\right) d t=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4} \ldots(2)\\ &=\int \ln t d t=\ln t \int d t-\int \frac{d}{d t}(\ln t)\left(\int d t\right) d t=t \ln t-t \ldots(3)\\ \end{aligned}
\\ \begin{aligned} &\Rightarrow \text { Put }(2) \text { and }(3) \text { in }(1)\\ &=\frac{1}{4}\int_{1}^{3} t \ln t d t-\frac{1}{4}\int_{1}^{3} \ln t d t=\frac{1}{4}\left[\left(\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right)-(t \ln t-t)\right]_{1}^{3}=\frac{3}{8} \ln 3\\ &\Rightarrow \int_{0}^{1} x \ln (1+2 x) d x=\frac{3}{8} \ln 3 \end{aligned}

Question:46

Evaluate the following:
\int_{0}^{\pi} x \log \sin x d x

Answer:

Given:\int_{0}^{\pi} x \log \sin x d x
\\ \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ \qquad \begin{array}{l} \text { Let } 1=\int_{0}^{\pi} x \ln (\sin x) d x \\ =\int_{0}^{\pi}(\pi-x) \ln (\sin (\pi-x)) d x=\int_{0}^{\pi} \pi \ln (\sin x) d x \int_{0}^{\pi} x \ln (\sin x) d x \end{array} \\ \Rightarrow \text { As } \sin (\pi-x)=\sin x
\\ \begin{aligned} &\Rightarrow 2 \mathrm{I}=\int_{0}^{\pi} \pi \ln (\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\pi \int_{0}^{\pi} \ln (\sin \mathrm{x}) \mathrm{dx} \ldots(1)\\ &\Rightarrow \text { Now in } \int_{0}^{\pi} \ln (\sin x) d x\\ &\text { Using the property}\\ &\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x(\text { for } f(2 a-x)=f(x))\\ &=\int_{0}^{\pi} \ln (\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \ldots(2) \end{aligned}
\\ \Rightarrow_{\text {Let }} Z=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \\ \Rightarrow \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ \Rightarrow \quad z=\int_{0}^{\frac{\pi}{2}} \ln \left(\sin \left(\frac{\pi}{2}-x\right) d x=\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x \ldots(4)\right. \\ \Rightarrow {2 Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x+\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x \ldots(5)
\\ =\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x \\ \quad=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x=\int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)-\ln 2) d x \\ \Rightarrow \int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)) d x-\int_{0}^{\frac{\pi}{2}}(\ln 2) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x-\frac{\pi \ln 2}{2} \ldots(6) \\ \Rightarrow \operatorname{Now} \operatorname{in} \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x \text { put } 2 x=t
\\ \begin{aligned} &\Rightarrow \text { Now in } \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) \mathrm{d} x \text { put } 2 x=t\\ &\Rightarrow 2 \mathrm{dx}=\text { dt and limits changes from } 0 \text { to } \pi\\ &\Rightarrow{2 Z}=\frac{1}{2} \int_{0}^{\pi} \ln (\sin t) d t-\frac{\pi \ln 2}{2} \end{aligned}
\\ \Rightarrow \text{from equation (2)} \frac{1}{2} \int_{0}^{\pi} \ln (\operatorname{sint}) \mathrm{dt} \text{again becomes} \\\Rightarrow 2 Z=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \ln (\sin t) \mathrm{dt}-\frac{\pi \ln 2}{2}\\
\\\Rightarrow From eq. (3) \\\Rightarrow 2 \mathrm{Z}=\mathrm{Z}-\frac{\pi \ln 2}{2} \\ \Rightarrow \mathrm{Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin \mathrm{x}) \mathrm{dx}=-\frac{\pi \ln 2}{2} ......(7)
\\ \Rightarrow \text{On putting (7) in (2) and the obtainedresult in(1)} \\

\\\Rightarrow 2 \mathrm{I}=-\pi^{2} \ln 2 \\ \quad I=\int_{0}^{\pi} x \ln (\sin x) d x=-\frac{\pi^{2}}{2} \ln 2

Question:47

Evaluate the following:
\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x

Answer:

Given:\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x
\\ \begin{aligned} &\frac{1}{\text { Let }}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x \ldots(1)\\ &\text { Using the property: }\\ &\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\\ &\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin (-x)+\cos (-x)) d x\\ &\Rightarrow \text { As } \sin (-x)=\sin x \text { and } \cos (-x)=\cos x \end{aligned}
\\ \begin{aligned} &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos x-\sin x) d x \ldots(2)\\ &\text { Adding equation(1) and(2) }\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin \mathrm{x}+\cos \mathrm{x}) \mathrm{dx}+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \left(\cos ^{2} x-\sin ^{2} x\right) \mathrm{d} x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos 2 x) \mathrm{d} x \end{aligned}
\\ \Rightarrow \text { Put } 2 \mathrm{x}=\mathrm{t} \\ \Rightarrow 2 \mathrm{x} \mathrm{dx}=\mathrm{dt} \\ 2 \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}

\\ \begin{aligned} &\Rightarrow \text { As } \cos (-x)=\cos x\\ &\text { Using property: }\\&\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x(f o r f(-x)=f(x))\\ &\Rightarrow{2 \mathrm{I}}=2\int_{0}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}\\ &\text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \end{aligned}
\\ \begin{aligned} &2I=\int_{0}^{\frac{\pi}{2}} \ln \left(\cos \left(\frac{\pi}{2}-t\right)\right) \mathrm{dt}=\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}\\ &\Rightarrow \text { Now From previous question eq }(7) \text { we obtained }\\ &\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}=-\frac{\pi \ln 2}{2}=2 \mathrm{I}\\ &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=-\frac{\pi \ln 2}{4} \end{aligned}

Question:48

\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d xis equal to

\\A. 2(sinx + xcos \theta) + C\\ B. 2(sinx - xcos \theta) + C\\ C. 2(sinx + 2xcos \theta) + C\\ D. 2(sinx -2x cos \theta) + C\\

Answer:

A)
\\ \begin{aligned} &\text { Using Trigonometric identity } \cos 2 x=2 \cos ^{2} x-1\\ &\Rightarrow \int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x \end{aligned}
\\ =2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x \\ =2 \int\left(\frac{(\cos x+\cos \theta)(\cos x-\cos \theta)}{\cos x-\cos \theta}\right) \\ =2\{(\cos x+\cos \theta) d x \\ =2 \int \cos x d x+2 \int \cos \theta d x
\\=2 \int \cos x d x+2 \int \cos \theta d x=2(\sin x+x \cos \theta)+c

Question:49

\\ \int \frac{d x}{\sin (x-a) \sin (x-b)} is equal to

\\ A. \sin (b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C$\\\\ B. $\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C$\\\\ C. $\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C$\\\\ D. $\sin (b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C$\\

Answer:

C)
\\ \begin{aligned} &\text { Given: } \int \frac{d x}{\sin (x-a) \sin (x-b)}\\ &\text { Multiply } \mathrm{Nr} \text { and } \mathrm{Dr} \text { by } \sin (\mathrm{b}-\mathrm{a})\\ &\Rightarrow \frac{1}{\sin (b-a)} \int \frac{\sin (b-a) d x}{\sin (x-a) \sin (x-b)} \end{aligned}
\\ \Rightarrow \sin (b-a)=\sin ((x-a)-(x-b)) \\ \Rightarrow \text { Also } \sin (A-B)=\sin A \cos B-\cos A \sin B \\ \Rightarrow \frac{\sin (b-a)}{\sin (x-a) \sin (x-b)}=\frac{\sin ((x-a)-(x-b))}{\sin (x-a) \sin (x-b)}=\frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)} \\ \Rightarrow \quad \frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)}=\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}
\\ =\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}=\cot (x-b)-\cot (x-a) \\ \quad \int \frac{d x}{\sin (x-a) \sin (x-b)}=\frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right) \\ \Rightarrow \operatorname{Now} \int \cot x d x=\ln |\sin x|+c \\ \Rightarrow \frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right)
\\ =\frac{1}{\sin (\mathrm{b}-\mathrm{a})}(\ln |\sin (\mathrm{x}-\mathrm{b})|-\ln |\sin (\mathrm{x}-\mathrm{a})|) \\ \Rightarrow \int \frac{\mathrm{dx}}{\sin (\mathrm{x}-\mathrm{a}) \sin (\mathrm{x}-\mathrm{b})}=\frac{1}{\sin (\mathrm{b}-\mathrm{a})} \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)=\operatorname{cosec}(\mathrm{b}-\mathrm{a}) \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)

Question:50

\int \tan ^{-1} \sqrt{x} d x is equal to
\\A.(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C$\\ B. $x \tan ^{-1} \sqrt{x}-\sqrt{x}+C$\\ C. $\sqrt{x}-x \tan ^{-1} \sqrt{x}+C$\\ D. $\sqrt{x}-(x+1) \tan ^{-1} \sqrt{x}+C$

Answer:

A)
Given: \int \tan ^{-1} \sqrt{x} d x
\\ \text { Put } x=t^{2} \\ \Rightarrow d x=2 d t \\ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\int 2 \tan ^{-1} \sqrt{t^{2}} d t \\ \Rightarrow 2 \int \tan ^{-1} \operatorname{tdt} \ldots(1)
\\ \begin{aligned} &\Rightarrow \text { Now apply integration by part on } \int t \tan ^{-1} t d t\\ &\Rightarrow \int t \tan ^{-1} t d t=\tan ^{-1} t \int t d t-\int\left(\frac{d}{d t} \tan ^{-1} t\right)\left(\int t d t\right) d t\\ &\Rightarrow \frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2} \int \frac{t^{2}}{1+t^{2}} d t\\ &\Rightarrow \text { Now } \int \frac{t^{2}}{1+t^{2}} d t=\int \frac{t^{2}+1-1}{1+t^{2}} d t=\int \frac{t^{2}+1}{1+t^{2}} d t-\int \frac{1}{1+t^{2}} d t \end{aligned}
\\\begin{aligned} &\Rightarrow \int \frac{t^{2}+1}{1+t^{2}} \mathrm{dt}-\int \frac{1}{1+t^{2}} \mathrm{dt}=\int \mathrm{dt}-\int \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}=\mathrm{t}-\tan ^{-1} \mathrm{t} \ldots\\ &\Rightarrow \text { Put }(3) \text { in }(2) \text { and the resulting equation in (1) }\\ &\Rightarrow 2 \int t \tan ^{-1} t d t=2\left(\frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2}\left(t-\tan ^{-1} t\right)\right)\\ &\Rightarrow 2 \int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt}=\mathrm{t}^{2} \tan ^{-1} \mathrm{t}-\mathrm{t}+\tan ^{-1} \mathrm{t} \end{aligned}
\\ \Rightarrow t^{2} \tan ^{-1} t-t+\tan ^{-1} t=\tan ^{-1} t\left(t^{2}+1\right)-t \\ \Rightarrow \tan ^{-1} t\left(t^{2}+1\right)-t=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x} \\ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x}+C

Question:51

\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{~d} \mathrm{x} is equal to
\\A. \frac{e^{x}}{1+x^{2}}+C \\ B. \frac{-\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}^{2}}+\mathrm{C}$\\ C.$\frac{\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}+\mathrm{C}$\\ D. $\frac{-\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^{2}\right)^{2}}+\mathrm{C}$

Answer:

A)
Given: \int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{~d} \mathrm{x}
\\ =\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) \mathrm{d} x \\ \quad=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) d x=\int e^{x}\left\{\left(\frac{1+x^{2}}{\left(1+x^{2}\right)^{2}}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x \\ =\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x
\\ \begin{aligned} &\text { Now using the property: }\\ &\int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{d} \mathrm{x}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ &\Rightarrow \text { Now in } \int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x\\ &f(x)=\frac{1}{\left(1+x^{2}\right)}\\ &\Rightarrow f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \end{aligned}
\\ =\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x=\frac{e^{x}}{1+x^{2}}+c \\ \quad \int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\frac{e^{x}}{1+x^{2}}+c

Question:52

\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x is equal to
\\\begin{aligned} A.&\frac{1}{5 x}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ B.&\frac{1}{5}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ C.&\frac{1}{10 x}(1+4)^{-5}+C\\ D.&\frac{1}{10}\left(\frac{1}{x^{2}}+4\right)^{-5}+C \end{aligned}

Answer:

D)
Given: \int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x
Taking x^2 out from the denominator
\\ \begin{aligned} &\int\left(\frac{x^{9}}{x^{12}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x\\ &\int\left(\frac{1}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}=\int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}\\ &\Rightarrow \text { Now put } 4+\frac{1}{x^{2}}=t \end{aligned}
\\ \Rightarrow-\frac{2}{x^{3}} d x=d t \\ \Rightarrow \quad \int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x=\int-\frac{1}{2t^{6}} d t \\ \Rightarrow \quad-\frac{1}{2}t^{-6} d t=\frac{-t^{-5}}{-5\times 2}+C=\frac{1}{10}\left(4+\frac{1}{x^{2}}\right)^{-5}+C

Question:53

If \int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+c then
\\ A.a=\frac{-1}{10}, b=\frac{-2}{5}$\\ B. $a=\frac{1}{10}, b=-\frac{2}{5}$\\ C. $\mathrm{a}=\frac{-1}{10}, \mathrm{~b}=\frac{2}{5}$\\ D. $a=\frac{1}{10}, b=\frac{2}{5}$\\

Answer:

C)
Given:\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+c
Using concept of partial fractions
\\ =\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{(x+2)}+\frac{B x+C}{\left(x^{2}+1\right)} \\ \Rightarrow A\left(x^{2}+1\right)+(B x+C)(x+2)=1
\\ \Rightarrow x^{2}(A+B)+x(C+2 B)+(A+2 C)=1 \\ \Rightarrow A+B=0 \quad \ldots(1) \\ \Rightarrow C+2 B=0 \quad \ldots(2) \\ \Rightarrow A+2 C=1...(3)
On solving the above three equations we get
\\ \Rightarrow A=\frac{1}{5}, B=-\frac{1}{5} \text { and } C=\frac{2}{5} \\ \Rightarrow \frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)} \\ \Rightarrow \frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)}=\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}
\\ \int \frac{d x}{(x+2)\left(x^{2}+1\right)}=\int\left(\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}\right) d x \\ =\frac{1}{5} \ln |x+2|-\frac{1}{10} \ln \left|x^{2}+1\right|+\frac{2}{5} \tan ^{-1} x +c \ldots (2)
On comparing (1) and (2) we get,
\Rightarrow a=-\frac{1}{10} \text { and } b=\frac{2}{5}

Question:54

\int \frac{x^{3}}{x+1} is equal to

\\A. x+\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1-x|+C$\\ B. $x+\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1-x|+C$\\ C. $x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\log |1+x|+C$\\ D. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$\\

Answer:

D)
Given: \int \frac{x^{3}}{x+1}
\\ \frac{x^{3}}{x+1}=\frac{x^{3}+1-1}{x+1} \\ \Rightarrow \frac{x^{2}+1}{x+1}-\frac{1}{x+1}=\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}-\frac{1}{x+1}
\\ \int \frac{x^{3}}{x+1} d x=\int\left(\left(x^{2}-x+1\right)-\frac{1}{x+1}\right) d x \\ \Rightarrow \int\left(x^{2}-x+1\right) d x-\int \frac{1}{x+1} d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\ln |1+x|+c

Question:55

\int \frac{x+\sin x}{1+\cos x} d x is equal to

\\A. \log |1+\cos x|+c$\\ B. $\log |\mathrm{x}+\sin \mathrm{x}|+\mathrm{C}$\\ C. $x-\tan \frac{x}{2}+C$\\ D. $x \cdot \tan \frac{x}{2}+C$\\

Answer:

D. x \cdot \tan \frac{x}{2}+C$\\


Given: \int \frac{x+\sin x}{1+\cos x} d x
As we know
\sin 2 \mathrm{x}=\frac{2 \tan \mathrm{x}}{1+\tan ^{2} \mathrm{x}}, 1+\tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x} \text { and } \cos 2 \mathrm{x}=\frac{1+\tan ^{2} \mathrm{x}}{1-\tan ^{2} \mathrm{x}}
\Rightarrow \frac{x+\sin x}{1+\cos x}=\frac{x+\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}}{1+\frac{1+\tan ^{2}\left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)}}
\\ \Rightarrow=\frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} \\ \Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\int \frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} d x \\ \Rightarrow \quad \operatorname{let} \frac{x}{2}=t \\ \Rightarrow \frac{d x}{2}=d t
\Rightarrow \int \left(2 t+2 t \tan ^{2} t+2 \tan t\right) d t=2 \int \left(t+t \tan ^{2 }t+\tan t \right) d t \\ \Rightarrow 2 \int \mathrm{tdt}+2 \int \mathrm{t} \left( \sec ^{2} \mathrm{t}-1 \right) \mathrm{dt}+2 \int \left(\tan \mathrm{t} \mathrm{dt}\right) \\ \Rightarrow 2 \int operatorname{tdt}+2 \int t \sec ^{2} t d t-2 \int operatorname{tdt}+2 \int \tan t d t\\ \Rightarrow 2 \int \mathrm{t} \sec ^{2} \mathrm{t} \mathrm{dt}+2 \int \text{ tant } \mathrm{dt} \ldots .(1)\\\text{Applying Integration by parts on } \int \mathrm{t} \sec ^{2} \mathrm{t} dt \\ \Rightarrow \int t \sec ^{2} t d t=t \int \sec ^{2} t d t-\int\left(\frac{d}{d t} t\right)\left(\int \sec ^{2} t d t\right) d t $$\\ \begin{aligned} &\Rightarrow \int \mathrm{t} \sec ^{2} \mathrm{t} \mathrm{dt}=\mathrm{t} \tan \mathrm{t}-\int \mathrm{tan} \mathrm{t} \mathrm{dt} \ldots(2)\\ \end{aligned} \\ \begin{aligned} &\Rightarrow \text { Put }(2) \text { in }(1)\\ &\Rightarrow 2\left(\mathrm{t} \text { tant }-\int \tan t \mathrm{dt}\right)+2 \int \operatorname{tant} \mathrm{dt}=2 \mathrm{t} \operatorname{tant}+\mathrm{c}=\operatorname{xtan}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\\ &\Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\operatorname{xtan}\left(\frac{x}{2}\right)+c \end{aligned}

Question:56

If \frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C, then
\\ A.a=\frac{1}{3}, b=1$\\ B. $a=\frac{-1}{3}, b=1$\\ C.$a=\frac{-1}{3}, b=-1$\\ D. $a=\frac{1}{3}, b=-1$\\

Answer:

D)
Given:\frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C...........(1)
\\ \begin{aligned} &\text { Put }\\ &1+x^{2}=t\\ &\Rightarrow 2 x d x=d t\\ &\Rightarrow \int \frac{x^{3} d x}{\sqrt{1+x^{2}}}=\int \frac{x^{2} \cdot x d x}{\sqrt{1+x^{2}}} \end{aligned}
\\ \Rightarrow=\frac{1}{2} \int \frac{(t-1) \mathrm{dt}}{\sqrt{t}} \\ \Rightarrow \frac{1}{2} \int \frac{(t-1) \mathrm{d} t}{\sqrt{t}} \\ \Rightarrow=\frac{1}{2} \int \frac{t \mathrm{dt}}{\sqrt{t}}-\frac{1}{2} \int \frac{\mathrm{dt}}{\sqrt{t}} \\ \Rightarrow=\frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)
\\ \begin{aligned} &\Rightarrow \frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)=\frac{1}{2}\left(\frac{2}{3} \mathrm{t}^{\frac{3}{2}}-2 \sqrt{\mathrm{t}}+\mathrm{c}\right)\\ &\Rightarrow\left(\frac{1}{3} t^{\frac{3}{2}}-\sqrt{t}+c\right)=\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-1 \sqrt{1+x^{2}}+c\\ &\text { Comparing (1) and (3) }\\ &\Rightarrow a=\frac{1}{3} \text { and } b=-1 \end{aligned}

Question:57

\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x} is equal to
A. 1
B. 2
C. 3
D. 4

Answer:

A)
Given: \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}
Using trigonometric identities:
\\ \cos ^{2} x+\sin ^{2} x=1 \text { and } \cos 2 x=\cos ^{2} x-\sin ^{2} x \\ \frac{1}{1+\cos 2 x}=\frac{1}{\left(\cos ^{2} x+\sin ^{2} x+\cos ^{2} x-\sin ^{2} x\right)} \\ =\frac{1}{2 \cos ^{2} x}
\\ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{1+\cos 2 x}\right)=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{2 \cos ^{2} x}\right)=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x \\ \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x=\frac{1}{2}[\tan x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\ =\frac{1+1}{2}=1

Question:58

\int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x is equal to
A. 2\sqrt2
B. 2(\sqrt2 + 1)
C. 2
D. 2 (\sqrt2 -1)

Answer:

D)
As
\\ \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1 \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x} d x \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{(\cos x-\sin x)^{2}} d x=\int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x
\\ \text { From } 0<x<\frac{\pi}{4}, \cos x>\sin x \text { and } \\ \text { from } \frac{\pi}{4}<x<\frac{\pi}{2}, \cos x<\sin x \\ \Rightarrow \int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x
=2[\sin x+\cos x]_{0}^{\pi / 4}
On solving the Above Integral we get 2 (\sqrt2 -1)

More About NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

Calculus can pose to be a difficult part of mathematics for many, but if one knows what to study and how to study then it can be simplified easily. NCERT exemplar Class 12 Maths solutions chapter 7 are not only crucial for mathematics and higher education point of view. It is also one of the highly scoring chapters of NCERT Class 12 Maths Solutions.

But it is also needed to study physics. In physics integrals play a major role, as it is used in topics like gravitation, work, probability, kinetic energy etc. therefore, the students must pay attention to what integrals are and how it is applied.

NCERT Exemplar Solutions For Class 12 Maths Chapter 7 Integrals Sub-Topics Covered

The sub topics covered in NCERT exemplar Class 12 Maths chapter 7 solutions are:

  • Introduction

Apply to Aakash iACST Scholarship Test 2024

Applications for Admissions are open.
  • Integration as an inverse process of differentiation
Tallentex 2025 - ALLEN's Talent Encouragement Exam

Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

  • Geometric interpretation of indefinite integral
  • Some properties of indefinite integral
  • Comparison between integration and differentiation
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
  • Methods of integration
  • Integration by substitution
  • Integration by trigonometric identities
  • Integrals of some particular functions
  • Integration of partial functions
  • Integration by parts
  • Integral of the typefxf'xdx
  • Integral of some other types
  • Definite integrals
  • Definite integral as a limit of a sum
  • The fundamental theorem of calculus
  • Area function
  • First fundamental theorem of integral calculus
  • Second fundamental theorem of integral calculus
  • Evaluation of definite integrals by substitution
  • Some properties of definite integrals

What can you learn in Class 12 Maths NCERT Exemplar Solutions Chapter 7?

In NCERT exemplar Class 12 Mathematics chapter 7 Integrals, students will get a better picture of what are integrals and how it is used in advanced calculus. Here, they will learn about integration and geometric representation of the same using graphs. One will learn in detail about various methods of integration, the difference between differentiation and integration, and indefinite integral properties.

Many students tend to find integrals as a chapter that is difficult and hassling. But they should remember that if one wants to score well in exams and also pursue a career in engineering, then understanding and studying integrals is crucial. Therefore, one should ask as many questions as possible to get a hang of the topic.

NCERT exemplar solutions for Class 12 Maths chapter 7 will help in tackling the questions asked in this topic. One should practice the questions as much as possible and should use the Class 12 Maths NCERT exemplar solutions chapter 7 as reference. This will not only make the student confident about integrals but also for tackling any numerical they get in the exam.

NCERT Exemplar Class 12 Maths Solutions

Benefits of NCERT Exemplar Class 12 Maths Solutions Chapter 7

  • In NCERT exemplar Class 12 Maths solutions chapter 7, there are a variety of concepts and topics covered. The main aim is to make the students well aware of integrals and its operations, so much so that any question can be solved easily. Students will learn how to find integrals for various types of functions.
  • Integrals are the opposite of derivatives of a function and are denoted by the area under the function curve. When it comes to integrals, it can be stated as the opposite of differential calculus. In simple words, integrals describe the numerical value of any type of change like distance like displacement, volume, area and work.
  • NCERT exemplar Class 12 Maths chapter 7 solutions deals with the important topics coming for the exams which are the methods, functions and operations.
JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

NCERT Exemplar Class 12 Solutions

Also, check NCERT Solutions for questions given in the book:

Must Read NCERT Solution subject wise

Read more NCERT Notes subject wise

Also Check NCERT Books and NCERT Syllabus here

Frequently Asked Question (FAQs)

1. Are these solutions helpful for competitive examinations?

Indeed, the Class 12 Maths NCERT exemplar solutions chapter 7 covers the syllabus of the competitive exams like NEET and JEE Main to help you ace them.

2. What are the important topics of this chapter?

Methods of Integration, Integration by Parts and Fundamental Theorem of Calculus are some of the important topics of this chapter. However, rest should not be neglected either.

3. How many questions are there in this chapter?

The NCERT exemplar solutions for Class 12 Maths chapter 7 consists of 1 exercise with 63 distinct questions for practice.

4. How many times should one need to read the NCERT books?

Students should read the books enough times months before your exam for better remembering. They can also take help of NCERT exemplar Class 12 Maths solutions chapter 7 pdf download using  an online webpage to pdf tool.

Articles

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD
Lancaster University, Lancaster
 Bailrigg, Lancaster LA1 4YW

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

Hello student,

If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:

  • No school admission needed! Register directly with CBSE. (But if you want to attend the school then you can take admission in any private school of your choice but it will be waste of money)
  • You have to appear for the 2025 12th board exams.
  • Registration for class 12th board exam starts around September 2024 (check CBSE website for exact dates).
  • Aim to register before late October to avoid extra fees.
  • Schools might not offer classes for private students, so focus on self-study or coaching.

Remember , these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.

I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.

Good luck with your studies!

Hello Aspirant , Hope your doing great . As per your query , your eligible for JEE mains in the year of 2025 , Every candidate can appear for the JEE Main exam 6 times over three consecutive years . The JEE Main exam is held two times every year, in January and April.

Hi there,

Hope you are doing fine

Yes you are certainly eligible for giving the jee exam in the year 2025. You must pass the maths exam with at least 75% criteria as required by jee and provide the marksheet and the passing certificate while registering for the exam.


Pursuing maths as an additional subject while taking biology as your main subject does not offer any hindrance in you appearing for the jee examination. It is indeed an privilege to pursue both maths and biology as the subjects and prepare for the same.

There will be no issue in filling the form while registering for the exam as it will only require your basic details and marksheet which you can provide by attaching the marksheet of maths also. Also, a detailed roadmap is also available on the official websites on how to fill the registration form. So you can fill the form easily.


Hope this resolves your query.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top