NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

Hitesh SahuUpdated on 16 Jan 2026, 10:05 AM IST

Integrals play a significant role in mathematics. Have you ever thought about how to find the area under a curve, the distance travelled by an object accelerating throughout the distance, or even just the total amount of a quantity accumulated over time? Integrals can be used to find the solution to those types of continuous problems. Within the scope of Class 12 Mathematics, integration is introduced as the anti-derivative, or reverse differentiation, ultimately giving us the ability to retrieve a function from its derivative. In addition, this chapter regarding integration has indefinite integrals, which implies that such a family is represented by an arbitrary constant $\left(\int f(x) d x=F(x)+C\right)$.

LiveCBSE Admit Card 2026 LIVE: Class 10 and 12 theory exam hall tickets soon, exams from February 17Feb 2, 2026 | 9:42 PM IST

The details mentioned in the candidate's CBSE admit card 2026 are as follows:

  1. Student's name
  2. Roll number
  3. Date of birth (only for Class 10 students)
  4. Name of the examination
  5. Name & address of examination centre
  6. School number
  7. Centre number
  8. Student’s photo
  9. Subjects and their codes in which students are appearing
  10. CBSE exam dates
  11. Admit Card ID
  12. Other important instructions
Read More

This Story also Contains

  1. NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals
  2. NCERT Exemplar Class 12 Maths Solutions: Chapter-wise
  3. Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 7
  4. NCERT Solutions for Class 12 Maths: Chapter Wise
  5. NCERT Books and NCERT Syllabus
NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals
NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

To become proficient in this subject, students should work through the NCERT Solutions for Class 12 Maths, which include clear explanations and very easy-to-follow methods for solving integral problems. The NCERT Solutions encompass a breadth of exercises, such as properties of integrals, applications of integration in physics and engineering, as well as the Fundamental Theorem of Calculus, which connects differentiation and integration. The conceptual understanding and work are preparation for the board exam and competitive examinations, like JEE and NEET.

Also, read,

NCERT Exemplar Class 12 Maths Solutions Chapter 7 Integrals

Class 12 Maths Chapter 7 Exemplar Solutions
Exercise: 7.3
Page number: 163-169
Total questions: 63

Question 1:

Verify the following:
$\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C$

Answer:

$\begin{aligned} &\text { To Verify; }\\ &\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C\\ &\text { LHS: } \int \frac{2 x-1}{2 x+3} d x\\ &=\int \frac{2 x+3-4}{2 x+3} d x\\ &=\int \mathrm{dx}-\int \frac{4}{2 \mathrm{x}+3} \mathrm{dx} \end{aligned}$
Let t = 2x + 3
$\\ \Rightarrow \mathrm{dx}=\frac{\mathrm{dt}}{2} \\ =\int \mathrm{dx}-4 \int \frac{ \mathrm{dt}}{\mathrm{2t}} \\ =\mathrm{x}-2 \log |\mathrm{t}|+\mathrm{C} \\ [\because \int \mathrm{dx}=\mathrm{x} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\ $

$=\mathrm{x}-\log \left|(2 \mathrm{x}+3)^{2}\right|+\mathrm{C}=\mathrm{RHS} \\ \left[\because 2 \log |\mathrm{x}|=\log \left|\mathrm{x}^{2}\right|\right]$
Hence Verified

Question 2

Verify the following:
$\int \frac{2 x+3}{x^{2}+3 x} d x=\log \left|x^{2}+3 x\right|+C$

Answer:

To Verify;

$
\begin{aligned}
& \int \frac{2 x+3}{x^2+3 x} d x=\log \left|x^2+3 x\right|+C \\
& \text { LHS }=\int \frac{2 \mathrm{x}+3}{\mathrm{x}^2+3 \mathrm{x}} \mathrm{dx} \text { Let; } t=x^2+3 x \\
& \Rightarrow d t=2 x+3 \\
& =\int \frac{d t}{t}=\log |t|+C \\
& {\left[\because \int \frac{1}{x} d x=\log |x|\right]} \\
& \Rightarrow \log \left|x^2+3 x\right|+C=\text { RHS } \\
& {\left[\because t=x^2+3 x\right]}
\end{aligned}
$

Question 3

Evaluate the following:
$\int \frac{\left(x^{2}+2\right) d x}{x+1}$

Answer:

Given; $\int \frac{\left(x^{2}+2\right) d x}{x+1}$
Let t = x + 1
$\\\Rightarrow dx = dt \\ =\int \frac{\left((\mathrm{t}-1)^{2}+2\right)}{\mathrm{t}} \mathrm{dt} \\$

$ =\int \frac{\mathrm{t}^{2}-2 \mathrm{t}+1+2}{\mathrm{t}} \mathrm{dt} \\ $

$=\int(\mathrm{t}) \mathrm{dt}-\int 2 \mathrm{dt}+\int \frac{3}{\mathrm{t}} \mathrm{dt} \\$

$[ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right]$
$\\ =\frac{t^{2}}{2}-2 t+3 \log |t|+C \\ $

$=\frac{t^{2}}{2}-2 t+\log \left|t^{3}\right|+C \\ $

$=\frac{(x+1)^{2}}{2}-2(x+1)+\log \left|(x+1)^{3}\right|+C$

Question 4

Evaluate the following:
$\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$

Answer:

Given; $\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$
As we know, $n log x = log x^n$

$\begin{aligned} &=\int \frac{e^{\log x^{6}}-e^{\log x^{5}}}{e^{\log x^{4}}-e^{\log x^{2}}} d x\\ &=\int \frac{x^{6}-x^{5}}{x^{4}-x^{3}} d x\\ &\text { Take } x^{3} \text { common out of numerator and denominator to get, }\\ &=\int \frac{x^{3}\left(x^{3}-x^{2}\right)}{x^{3}(x-1)} d x\\ &=\int \frac{\left(x^{3}-x^{2}\right)}{(x-1)} d x \end{aligned}$

$\begin{aligned} &=\int \frac{x^{2}(x-1)}{(x-1)} d x\\ &=\int x^{2} d x\\ &\because \int x^{n} d x=\frac{x^{n+1}}{n+1}\\ &\text { So, }\\ &=\frac{x^{3}}{3}+c \end{aligned}$

Question 5

Evaluate the following:
$\int \frac{(1+\cos x)}{x+\sin x} d x$

Answer:

Given; $\int \frac{(1+\cos x)}{x+\sin x} d x$
Let t = x + sin x
$\\\Rightarrow dt = (1 + cos x) dx \\ =\int \frac{1}{t} d t \\ =\log |t|+C \\ =\log |x+\sin x|+C$

Question 6

Evaluate the following:
$\int \frac{d x}{1+\cos x}$

Answer:

Given; $\int \frac{d x}{1+\cos x}$
$\\ =\int \frac{(1-\cos x)}{(1+\cos x)(1-\cos x)} d x \\ =\int \frac{1-\cos x}{1-\cos ^{2} x} d x \\$

$ =\int \frac{1-\cos x}{\sin ^{2} x} d x \\ {\left[\frac{1}{\sin ^{2} x}=\operatorname{cosec}^{2} x \text { and } \frac{\cos x}{\sin ^{2} x}=\operatorname{cosec} x \cot x\right]}$
$\\\begin{aligned} &=\int\left(\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right) d x\\ &\text { As we know, }\\ &\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c\\ &\int \operatorname{cosec}^{2} x d x=-\cot x+c\\ &=\operatorname{cosec} x-\cot x+C \end{aligned}\\$

Question 7

Evaluate the following:
$\int \tan ^{2} x \sec ^{4} x d x$

Answer:

$\begin{aligned} & \text { Given; } \int \tan ^2 x \sec ^4 x d x=\int \tan ^2 x \sec ^2 x\left(1+\tan ^2 x\right) d x \\ & \text { Let } \tan \mathrm{x}=\mathrm{y} \\ & \Rightarrow \sec ^2 x d x=d y \\ & =\int\left(y^2+y^4\right) d y\end{aligned}$
$\\ =\frac{y^{3}}{3}+\frac{y^{5}}{5}+C $
$ =\frac{\tan ^{3} x}{3}+\frac{\tan ^{5} x}{5}+C$

Question 8

Evaluate the following:
$\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$

Answer:

Given; $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$
$\\ =\int{c} \sin x+\cos x \\ \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\$

$ =\int \frac{\sin x+\cos x}{\sqrt{(\sin x+\cos x)^{2}}} d x $
$ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} $
$ =\int 1 \mathrm{dx} $
$ =x+C$

Question 9

Evaluate the following:
$\int \sqrt{1+\sin x} d x$

Answer:

Given; $\int \sqrt{1+\sin x} d x$

$\\ =\int \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} d x $
$ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} \\ $

$=\int \sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}} d x $
$ =\int\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x $
$ =2 \sin \frac{x}{2}-2 \cos \frac{x}{2}+c$

Question 10

Evaluate the following:
$\int \frac{x}{\sqrt{x}+1} d x \: \: \: (Hint: Put \sqrt{x} = z)$

Answer:

Given;

Let $z = \sqrt{x}$

$
\begin{aligned}
& \Rightarrow x=z^2 \\
& \Rightarrow d x=2 z d z \\
& =\int \frac{z^2}{z+1} 2 z d z \\
& =2 \int \frac{\mathrm{z}^3}{\mathrm{z}+1} \mathrm{~d} z
\end{aligned}
$

Let; $t=z+1$
i.e. $t=\sqrt{x}+1$

$\Rightarrow d t=\mathrm{dz}$

$\\ =2 \int \frac{(\mathrm{t}-1)^{3}}{\mathrm{t}} \mathrm{dt}$
$ =2 \int \frac{\mathrm{t}^{3}-3 \mathrm{t}^{2}+3 \mathrm{t}-1}{\mathrm{t}} \mathrm{dt} $
$ =2 \int\left(\mathrm{t}^{2}-3 \mathrm{t}+3-\frac{1}{\mathrm{t}}\right) \mathrm{dt} \\$
$[ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\$

$\\ =\frac{2 t^{3}}{3}-3 t^{2}+3 t-\log |t|+C \\$

$ =\frac{2(\sqrt{x}+1)^{3}}{3}-3(\sqrt{x}+1)^{2}+3(\sqrt{x}+1)-\log |\sqrt{x}+1|+C$

Question 11

Evaluate the following:
$\int \sqrt{\frac{a+x}{a-x}}$

Answer:

Given, $\int \sqrt{\frac{a+x}{a-x}}$
$\\ =\int \frac{\sqrt{a+x}}{\sqrt{a-x}} \times \frac{\sqrt{a+x}}{\sqrt{a+x}} d x \\ =\int \frac{a+x}{\sqrt{a^{2}-x^{2}}} d x \\ =a \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x-\frac{1}{2} \int \frac{-2 x}{\sqrt{a^{2}-x^{2}}} d x$

$\\ \begin{aligned} &\text { Let } t=a^{2}-x^{2}\\ & \Rightarrow-2x \mathrm{dx}=\mathrm{dt}\\ &=\mathrm{a} \sin \left(\frac{\mathrm{x}}{\mathrm{a}}\right)-\frac{1}{2} \int \frac{1}{\sqrt{\mathrm{t}}} \mathrm{dt}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]_{\text {and }}\left[\int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}\right]\\ &=a \sin \left(\frac{x}{a}\right)-\frac{1}{2} \times 2 \sqrt{t}\\ &=a \sin \left(\frac{x}{a}\right)-\sqrt{a^{2}-x^{2}}+c \end{aligned}$

Question 12

Evaluate the following:
$\int \frac{x^{\frac{1}{2}}}{1+x^{\frac{3}{4}}} d x$ (Hint : Put x = z4)

Answer:

$\begin{aligned} &\text { Given}\\ &\int \frac{x^{\frac{1}{2}}}{1+x^{\frac{3}{4}}} d x\\ &\text { Let } x=z^{4}\\ &\Rightarrow \mathrm{dx}=4 \mathrm{z}^{3} \mathrm{dz}\\ &=\int \frac{\mathrm{z}^{2}}{1+\mathrm{z}^{3}} 4 \mathrm{z}^{3} \mathrm{~d} z\\ &=4 \int \frac{\mathrm{z}^{5}}{1+\mathrm{z}^{3}} \mathrm{~d} \mathrm{z}\\ &=\frac{4}{3} \int \frac{\mathrm{z}^{3}}{1+\mathrm{z}^{3}} 3 \mathrm{z}^{2} \mathrm{~d} \mathrm{z} \end{aligned}$
$\\ \begin{aligned} &\text { Let } t=1+z^{3}\left[\begin{array}{l} \left.1 . e . t=1+x^{3 / 4}\right] \end{array}\right.\\ &\Rightarrow \mathrm{dt}=3 \mathrm{z}^{2} \mathrm{~d} z\\ &=\frac{4}{3} \int \frac{t-1}{t} d t \end{aligned}$
$\\ =\frac{4}{3} \int \mathrm{dt}-\frac{4}{3} \int \frac{1}{\mathrm{t}} \mathrm{dt} \\ =\frac{4}{3}[\mathrm{t}-\log |\mathrm{t}|]+\mathrm{C} \\ =\frac{4}{3}\left[\left(1+\mathrm{x}^{\frac{3}{4}}\right)-\log \left|1+\mathrm{x}^{\frac{3}{4}}\right|\right]+\mathrm{C}$

Question 13

Evaluate the following:
$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x\\ \end{aligned}$

Answer:

$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x\\ &\text { Let } x=\tan y\\ &\Rightarrow \mathrm{dx}=\sec ^{2} \mathrm{y} \mathrm{dx} \end{aligned}$
$\\ =\int \frac{\sqrt{1+\tan ^{2} y}}{\tan ^{4} y} \sec ^{2} y d y \\$

$ =\int \sec y \times \frac{\cos ^{4} y}{\sin ^{4} y} \times \sec ^{2} y d y \\ $

$=\int \frac{\cos y}{\sin ^{4} y} d y \\$

$ \text { Let } t=\sin y$
$\Rightarrow dt = cos y dy$
$\\ =\int \frac{\mathrm{dt}}{\mathrm{t}^{4}}=-\frac{1}{3 \mathrm{t}^{3}}+\mathrm{C} \\ =-\frac{1}{3 \sin ^{3} \mathrm{y}} \\ =-\frac{1}{3 \sin ^{3}\left(\sin ^{-1} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}}\right)} \\ =-\frac{\left(\mathrm{x}^{2}+1\right)^{\frac{3}{2}}}{3 \mathrm{x}^{3}}$

Question 14

Evaluate the following:
$\int \frac{d x}{\sqrt{16-9 x^{2}}}$

Answer:

$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\mathrm{dx}}{\sqrt{16-9 \mathrm{x}^{2}}}\\ &=\int \frac{d x}{\sqrt{4^{2}-(3 x)^{2}}}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]\\ &=\frac{1}{3} \sin ^{-1} \frac{3 x}{4}+C \end{aligned}$

Question 15

Evaluate the following:
$\\ \int \frac{\mathrm{dt}}{\sqrt{3 \mathrm{t}-2 \mathrm{t}^{2}}}$

Answer:

$\\ \begin{aligned} &\text { Given }\\ &\int \frac{\mathrm{dt}}{\sqrt{3 t-2 t^{2}}}\\ &=\int \frac{\mathrm{dt}}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\frac{3}{2 \sqrt{2}}\right)^{2}+2 \times \sqrt{2} t \times \frac{3}{2 \sqrt{2}}-(\sqrt{2} t)^{2}}} \end{aligned}$
$\\ =\int \frac{d t}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\sqrt{2} t-\frac{3}{2 \sqrt{2}}\right)^{2}}} \\ =2 \sqrt{2} \int \frac{d t}{\sqrt{3^{2}-(4 t-3)^{2}}} \\$$ [\left.\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right] \\$

$ =\frac{1}{\sqrt{2}} \sin ^{-1} \frac{4 t-3}{3}+C$

Question 16

Evaluate the following:
$\int \frac{3 x-1}{\sqrt{x^{2}+9}} d x$

Answer:

$\\ \text { Given; } \frac{3 x-1}{\sqrt{x^{2}+9}} d x \\$

$ =\int \frac{3 x}{\sqrt{x^{2}+3^{2}}} d x-\int \frac{1}{\sqrt{x^{2}+3^{2}}} d x \\$

$ \text { [Let; } x^{2}+9=y \Rightarrow \left.2 x d x=d y\right] \\$

$ =\frac{3}{2} \int \frac{d y}{\sqrt{y}}-\log \left|x+\sqrt{x^{2}+3^{2}}\right|+c \\ $

$=3 \sqrt{x^{2}+9}-\log \left|x+\sqrt{x^{2}+9}\right|+C$

Question 17

Evaluate the following:
$\int \sqrt{5-2 x+x^{2} }d x$

Answer:

$\\ \text { Given; } \int \sqrt{5-2 x+x^{2}} d x \\$

$ =\int \sqrt{(x-1)^{2}+2^{2}} \\$

$ {\left[\because \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|\right.} \\$

$ =\frac{x-1}{2} \sqrt{5-2 x+x^{2}}+2 \log \left|(x+1)+\sqrt{5-2 x+x^{2}}\right|+C$

Question 18

Evaluate the following:
$\int \frac{x}{x^{4}-1} d x$

Answer:

$\\ \text { Given; } \int \frac{x}{x^{4}-1} d x \\$

$ \text { [Let; } t=x^{2}\ \Rightarrow \left.d t=2 x d x\right] \\$

$ =\int \frac{1}{\left(t^{2}-1\right)} \frac{d t}{2}$
$\\ =\frac{1}{2} \int \frac{1}{(t+1)(t-1)} d t \\ =\frac{1}{2} \int \frac{1}{2}\left[\frac{1}{(t-1)}-\frac{1}{(t+1)}\right] d t \\ $${[\because \int \frac{1}{x} d x}={\log |x|}]$

$=\frac{1}{4}(\log |t-1|-\log |t+1|)+C$$\\ {\left[\because \log a-\log b=\log \frac{a}{b}\right]} \\ $

$=\frac{1}{4} \log \left|\frac{t-1}{t+1}\right|+c \\ =\frac{1}{4} \log \left|\frac{x^{2}-1}{x^{2}+1}\right|+c$

Question 19

Evaluate the following:
$\int \frac{x^{2}}{1-x^{4}} d x \text { put } x^{2}=t$

Answer:

Given: $\int \frac{x^{2}}{1-x^{4}} d x$
$\\ =\int \frac{1}{2}\left[\frac{2 x^{2}}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ =\int \frac{1}{2}\left[\frac{x^{2}+x^{2}-1+1}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ $

$=\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)-\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ $

$=\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x-\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right]$
$=\int \frac{1}{2}\left[\frac{1}{\left(1-x^{2}\right)} d x-\frac{1}{\left(1+x^{2}\right)} d x\right]$
As we know,
$\\ \int \frac{1}{\left(a^{2}-x^{2}\right)} d x=\frac{1}{2 a} \log \frac{a+x}{a-x} \\$

$ \int \frac{1}{\left(a^{2}+x^{2}\right)} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\$

$ =\frac{1}{2} \times \frac{1}{2} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c \\ =\frac{1}{4} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c$

Question 20

Evaluate the following:
$\int \sqrt{2 a x-x^{2}} d x$

Answer:

$\\ \text { Given; } \int \sqrt{2 a x-x^{2}} d x \\ =\int \sqrt{a^{2}-a^{2}+2 a x-x^{2}} d x \\$

$ =\int \sqrt{a^{2}-(x-a)^{2}} d x \\$

$ =\frac{(x-a)}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}+c$

Question 21

Evaluate the following:
$\\ \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x$

Answer:

$\\ \begin{aligned}&\text { Given; }\\ &\int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x\\ &\begin{array}{l} \begin{array}{c} \text { Let; } t=\sin ^{-1} x \\ x=\sin t \\ \Rightarrow d t=\frac{1}{\sqrt{1-x^{2}}} d x \end{array} \\ \Rightarrow \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right) \sqrt{\left(1-x^{2}\right)}} d x \\ =\int \frac{t}{\left(1-\sin ^{2} t\right)} d t \\ =\int \frac{t}{\cos ^{2} t} d t \end{array} \end{aligned}$
$\\ =\int t \sec ^{2} t d t\\$
Apply integration by parts
$ \left[\int f(x) \cdot g(x) d x=f(x) \int g(x) d x-\int \frac{d}{d x} f(x)\left[\int g(x) d x\right] d x\right]$
$\\ =\mathrm{t} \int \sec ^{2} \mathrm{t} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{t})\left[\int \sec ^{2} \mathrm{t} \mathrm{dt}\right] \mathrm{dt} \\$

$ =\mathrm{t} \operatorname{tant}-\int \mathrm{tant} \mathrm{dt} \\ =\mathrm{t} \operatorname{tant}+\int \frac{-\sin \mathrm{t}}{\cos t} \mathrm{dt} \\ $

$=\mathrm{t} \operatorname{tant}+\log |\cos t|+\mathrm{C} \\ =\frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}+\log \left|\sqrt{1-\mathrm{x}^{2}}\right|+\mathrm{C}$

Question 22

Evaluate the following:
$\int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} d x$

Answer:

$\\ \text { Given; } \int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} \mathrm{dx} \\ {\left[\cos a+\cos b=2 \cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)\right]} \\$

$ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2}}{1-2 \cos 3 x} d x \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{(1-2 \cos 3 x) \cos \frac{3 x}{2}} d x \\ $

$=\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-2 \cos 3 x \cos \frac{3 x}{2}} d x$

$\\ {[\because 2 \cos a \cos b=\cos (a+b)+\cos (a-b)]} \\ $

$=\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-\cos \frac{9 x}{2}-\cos \frac{3 x}{2}} d x \\ =\int-2 \cos \frac{3 x}{2} \cos \frac{x}{2} d x \\$

$ =\int-\cos 2 x-\cos x d x \\ =-\frac{\sin 2 x}{2}-\sin x+C$

Question 23

Evaluate the following:
$\int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} d x$

Answer:

$\\ \text { Given; } \int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\ $

$=\int \frac{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x\right)}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\$

$ =\int \frac{\left(\sin ^{4} x+\cos ^{4} x-\sin ^{2} x \cos ^{2} x\right)}{\sin ^{2} x \cos ^{2} x} d x \\$

$ =\int \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}-1 d x \\$

$ =\int \tan ^{2} x+\cot ^{2} x-1 d x$
$\\$

$ =\int \sec ^{2} x-1+\operatorname{cosec}^{2} x-1-1 \mathrm{dx} \\ $

$=\tan x-\cot x-3 x+C$

Question 24

Evaluate the following:
$\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x$

Answer:

$\begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x\\ &\left[\text { Let; } t=\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}} \Rightarrow d t=\frac{3 \sqrt{x}}{2 a^{\frac{3}{2}}} d x\right]\\ &=\int \frac{2 a^{\frac{3}{2}} \mathrm{dt}}{3 \sqrt{\mathrm{a}^{3}-\mathrm{a}^{3} \mathrm{t}^{2}}}\\ &=\int \frac{2 \mathrm{dt}}{3 \sqrt{1-\mathrm{t}^{2}}}\\ &=\frac{2}{3} \sin ^{-1} t+C=\frac{2}{3} \sin ^{-1}\left(\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}}\right)+C \end{aligned}$

Question 25

Evaluate the following:
$\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$

Answer:

Given, $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$
$\\ =\int \frac{\cos 2 x-\cos x}{\cos x-1} d x \\ $

$=\int \frac{2 \cos ^{2} x-1-\cos x}{\cos x-1} d x \\ $

$=\int \frac{(2 \cos x+1)(\cos x-1)}{\cos x-1} d x \\ =\int(2 \cos x+1) d x \\ =2 \sin x+x+c$

Question 26

Evaluate the following:
$\int \frac{d x}{x \sqrt{x^{4}-1}}\left(H \text { int }: \text { Put } x^{2}=\sec \theta\right)$

Answer:

$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{d x}{x \sqrt{x^{4}-1}}\\ &\text { [Let; } \left.\mathrm{x}^{2}=\sec \theta \Rightarrow 2 \mathrm{xdx}=\sec \theta \tan \theta \mathrm{d} \theta\right]\\ &=\int \frac{\sec \theta \tan \theta}{2 \sec \theta \sqrt{\sec ^{2} \theta-1}} d \theta=\int \frac{\mathrm{d} \theta}{2}\\ &=\frac{\theta}{2}+c\\ &=\frac{\sec ^{-1} x^{2}}{2}+c \end{aligned}$

Question 27

Evaluate the following as limit of sums:
$\int_{0}^{2}\left(x^{2}+3\right) d x$

Answer:

$\\ \text { Given; } \int_{0}^{2}\left(\mathrm{x}^{2}+3\right) \mathrm{d} \mathrm{x} \\$

$ \text { We know } \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\lim _{\mathrm{h} \rightarrow \infty} \mathrm{h} \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \\$

$ \text { Here } \mathrm{a}=0 . \mathrm{b}=2 \\ \mathrm{~h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}=\frac{2-0}{\mathrm{n}}=\frac{2}{\mathrm{n}} \\$

$\Rightarrow\mathrm{nh}=2$
$\\ =\operatorname{limh}_{h \rightarrow 0} \sum_{r=0}^{n-1} f(r h) \\ =\lim _{h \rightarrow 0} h \sum_{r=0}^{n-1}\left(3+r^{2} h^{2}\right) \\$

$ =\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{(n-1)(n-1+1)(2 n-2+1)}{6}\right)\right.$
$\\ =\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{\left(n^{2}-n\right)(2 n-1)}{6}\right)\right. \\ $

$=\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{2 n^{3}-3 n^{2}+n}{6}\right)\right. \\ =\lim _{h \rightarrow 0}\left(3 n h+\left(\frac{2 n^{3} h^{3}-3 n^{2} h^{3}+n h^{3}}{6}\right)\right.$
$\\ =\lim _{h \rightarrow 0}\left(3.2+\left(\frac{2.2^{3}-3.2^{2}.h+2 h^{2}}{6}\right)\right. \\ =6+\frac{16}{3} \\ =\frac{26}{3}$

Question 28

Evaluate the following as limit of su
$\int_{0}^{2} \mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}$

Answer:

$\\ \text { We know } \int_{a}^{b} f(x) d x=\lim _{h \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \\$

$ \text { Here } a=0, b=2 \\$

$\\ h=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n} \\$

$\Rightarrow h=2$
$\\ =\operatorname{limh}_{h \rightarrow 0} \sum_{r=0}^{n-1} f(r h) \\ =\lim _{h \rightarrow 0} h\left[1+e^{h}+e^{2 h}+\cdots,+e^{(n-1) h}\right] \\ =\lim _{h \rightarrow 0} h\left[\frac{1\left(e^{h}\right)^{n}-1}{e^{h}-1}\right]$
$\\ =\lim _{h \rightarrow 0} h\left[\frac{e^{n h}-1}{e^{h}-1}\right] \\ =\lim _{h \rightarrow 0} h\left[\frac{e^{2}-1}{e^{h}-1}\right] \\ =(e^{2}-1 )\lim _{h \rightarrow 0}\left[\frac{h}{e^{h}-1}\right] \\ =e^{2}-1$

Question 29

Evaluate the following:
$\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}$

Answer:

$\\ \text { Given; } \int_{0}^{1} \frac{d x}{e^{x}+e^{-x}} \\$

$ =\int_{0}^{1} \frac{e^{x} d x}{e^{2 x}+1} \\ =\int_{1}^{e} \frac{d t}{t^{2}+1} \\ \text { [Let; }.t=e^{x}[\text { when } x=0, t=1 \text { and } x=1, t=e] ]$

$\Rightarrow d t=[e^{x} d x] \\ =\left[\tan ^{-1} t\right]_{1}^{e}$
$=\tan ^{-1} \mathrm{e}-\tan ^{-1} 1=\tan ^{-1} \mathrm{e}-\frac{\pi}{4}$

Question 30

Evaluate the following:
$\int_{0}^{\frac{\pi}{2}} \frac{\tan x d x}{1+m^{2} \tan ^{2} x}$

Answer:

$\\ \text { Given; } \int_{0}^{\frac{\pi}{2}} \frac{\tan x}{1+m^{2} \tan ^{2} x} \mathrm{dx} \\ \text { [Let; } \left.t=\tan x \Rightarrow \mathrm{dt}=\sec ^{2} \mathrm{x} \mathrm{dx}\right] \\ $$\qquad \text { [Let; } \left.\mathrm{u}=\mathrm{t}^{2} \Rightarrow \mathrm{du}=2 \mathrm{tdt}\right] \\ $

$\frac{\mathrm{t}}{1+\mathrm{m}^{2} \mathrm{t}^{2}} \frac{\mathrm{dt}}{\sec ^{2} \mathrm{x}}=\int \frac{\mathrm{t}}{\left(1+\mathrm{m}^{2} \mathrm{t}^{2}\right)} \frac{\mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)} \\ $

$=\int \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})} \frac{\mathrm{du}}{2}$
By applying partial fractions;
$\\ \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})}=\frac{\mathrm{A}}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)}+\frac{\mathrm{B}}{(1+\mathrm{u})} \\$

$ 1=\mathrm{A}(1+\mathrm{u})+\mathrm{B}\left(1+\mathrm{m}^{2} \mathrm{u}\right) \\$

$ \mathrm{B}=\frac{1}{1-\mathrm{m}^{2}} \\$

$ \text { When } \mathrm{u}=-1 \\$

$ \text { When } \mathrm{u}=-\frac{1}{\mathrm{~m}^{2}}$
$\\ A=\frac{m^{2}}{m^{2}-1} \\ $

$=\frac{1}{2} \int \frac{m^{2}}{\left(m^{2}-1\right)\left(1+m^{2} u\right)}+\frac{1}{\left(1-m^{2}\right)(1+u)} d u \\ $

$=\frac{1}{2} \times \frac{m^{2}}{m^{2}-1} \times \log \left|1+m^{2} u\right|+\frac{1}{2} \times \frac{1}{1-m^{2}} \times \log |1+u|+C$
$\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1} \times \log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\frac{1}{2} \times \frac{1}{1-\mathrm{m}^{2}} \times \log \left|1+\tan ^{2} \mathrm{x}\right|+\mathrm{C} \\ $

$=\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\log \left|1+\tan ^{2} \mathrm{x}\right|\right]+\mathrm{C} \\ $

$=\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mid\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right)\left(1+\tan ^{2} \mathrm{x}\right) \|+\mathrm{C}\right. \\$

$ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x}\right|\right]+\mathrm{C}$
$\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mathrm{g}\left(\cos ^{2} \mathrm{x}+\mathrm{m}^{2} \sin ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x} \|+\mathrm{C}\right. \\$

$ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \mathrm{x}+1\right|}{2 \mathrm{~m}^{2}-2}+\mathrm{C}$
By applying the given limits 0 to π/2
$\\ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \frac{\pi}{2}+1\right|}{2 \mathrm{~m}^{2}-2}-\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} 0+1\right|}{2 \mathrm{~m}^{2}-2} \\ $

$=\frac{\log \left|\left(\mathrm{m}^{2}\right)\right|}{2 \mathrm{~m}^{2}-2}$

Question 31

Evaluate the following:
$\int_{1}^{2} \frac{d x}{\sqrt{(x-1)(2-x)}}$

Answer:

$
\begin{aligned}
& \text { Given } \int_1^2 \frac{d x}{\sqrt{(x-1)(2-x)}} \\
& \Rightarrow_1^2 \frac{\mathrm{dx}}{\sqrt{(x-1)(2-x)}} \\
& =\int_1^2 \frac{d x}{\sqrt{-\left(x^2-3 x+2\right)}}
\end{aligned}
$
Using a perfect square method for the denominator

$\Rightarrow x^2-3 x+2=x^2-3 x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2$

$\\ \begin{aligned} &=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}\\ &=\int_{1}^{2} \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}}\\ &\text { We know }\\ &\int \frac{\mathrm{dx}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}\\ &=\left[\sin ^{-1}\left(\frac{\left(x-\frac{3}{2}\right)}{\frac{1}{2}}\right)\right]_{1}^{2}=\left[\sin ^{-1}(2 x-3)\right]_{1}^{2} \end{aligned}$
$\\ =\sin ^{-1}(1)-\sin ^{-1}(-1) \\ \text {We know } \sin ^{-1}(-\theta)=-\sin \theta \\ =\frac{\pi}{2}+\frac{\pi}{2} \\ =\pi$

Question 32

Evaluate the following:
$\int_{0}^{1} \frac{\mathrm{xdx}}{\sqrt{1+\mathrm{x}^{2}}}$

Answer:

$\begin{aligned} & \text { Given } \int_0^1 \frac{x d x}{\sqrt{1+x^2}} \\ & \text { Now, put } 1+x^2=t \\ & ⇒2 \mathrm{xdx}=\mathrm{dt} \\ & \text { At x }=0, t=1 \text { and at x }=1, t=2\end{aligned}$

$\\ \Rightarrow \frac{1}{2} \int_{1}^{2} \frac{d t}{\sqrt{t}} \\ =\frac{1}{2}[2 \sqrt{t}]_{1}^{2} \\ =\sqrt{2}-1 \\ \Rightarrow \int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}=\sqrt{2}-1$

Question 33

Evaluate the following:
$\int_{0}^{\pi} x \sin x \cos ^{2} x d x$

Answer:

Using Property

$\\ \int_{2}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\$

$ \text { Let } I=\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\$

$\Rightarrow\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cos ^{2}(\pi-x) d x \\$

$ \operatorname{ses}(\pi-x)=-\cos x$

$\\ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\$

$ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-I \\$

$ {2} I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x$

$\\ \begin{aligned} &\Rightarrow \int_{0}^{\pi} \pi \sin x \cos ^{2} x d x=\pi \int_{0}^{\pi} \sin x \cos ^{2} x d x\\ &\text { Now let } \cos x=t\\ &\Rightarrow-\sin x d x-d t\\ &\text { And, at } x=0, t=1\\ &\text { and at } x=\pi, t=-1 \end{aligned}$

$\\ \Rightarrow 2\mathrm{I}=-\pi \int_{1}^{-1} \mathrm{t}^{2} \mathrm{dt}=-\pi\left[\frac{\mathrm{t}^{2}}{3}\right]_{1}^{-1}=\frac{2 \pi}{3} \\$

$ \Rightarrow{2 \mathrm{I}=\frac{2 \pi}{3}} \\ \Rightarrow{\mathrm{I}=\frac{\pi}{3}} \\$

$ \Rightarrow \int _{0}^{\pi} x \sin x \cos ^{2} x \mathrm{dx}=\frac{\pi}{3}$

Question 34

Evaluate the following:
$\int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}$ (Hint: let x = sin θ)

Answer:

$\\ \text { Given } \int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}} \\ $

$\Rightarrow\text { Let } x=\sin \theta \\$

$\text { At } x=0, \theta=0 \\ \text { and } x=\frac{1}{2}, \theta=\frac{\pi}{6}$
$\\ =\int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}=\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{1-\sin ^{2} \theta}} \\$

$ \text { As } 1-\sin ^{2} \theta=\cos ^{2} \theta \\ =\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{1-\sin ^{2} \theta}}=\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{\cos ^{2} \theta}} \\ =\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \cos \theta}$
$\\ \begin{aligned} &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{d \theta}{\left(1+\sin ^{2} \theta\right)}\\ &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\left(\sec ^{2} \theta+\tan ^{2} \theta\right)}\\ &\Rightarrow\mathrm{As} \sec ^{2} \theta-\tan ^{2} \theta=1\\ &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\left(1+2 \tan ^{2} \theta\right)} \end{aligned}$
$\\ \begin{aligned} &\text { Now put } \tan \theta=t\\ &\Rightarrow\sec ^{2} \theta \mathrm{d} \theta=\mathrm{dt}\\ &\text { At } \theta=0, \mathrm{t}=0\\ &\text { at } \theta=\frac{\pi}{6}, \mathrm{t}=\frac{1}{\sqrt{3}}\\ &=\int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(1+2 t^{2}\right)}=\frac{1}{2} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+t^{2}\right)}\\ &\text{As } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{2} \tan ^{-1}\left(\frac{x}{a}\right)+c \end{aligned}$

$\\ \Rightarrow\int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+t^{2}\right)}=\frac{1}{2}\left[\frac{1}{\frac{1}{\sqrt{2}}} \tan ^{-1}\left(\frac{t}{\frac{1}{\sqrt{2}}}\right)\right]_{0}^{\frac{1}{\sqrt{2}}} \\ =\frac{\sqrt{2}}{2} \tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \\$

$\Rightarrow\int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right)$

Question 35

Evaluate the following:
$\int \frac{x^{2} d x}{x^{4}-x^{2}-12}$

Answer:

$\\ \text { Given: } \int \frac{x^{2} d x}{x^{4}-x^{2}-12} \\ \text { Put } x^{2}=t \\ $

$=>\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{t}{t^{2}-t-12}$
$\\ \Rightarrow \mathrm{t}^{2}-\mathrm{t}-12=(\mathrm{t}+3)(\mathrm{t}-4) \\$

$ \Rightarrow \frac{\mathrm{t}}{(\mathrm{t}+3)(\mathrm{t}-4)}=$

$\frac{\mathrm{A}}{(\mathrm{t}+3)}+\frac{\mathrm{B}}{(\mathrm{t}-4)} \text { (Concept of partial fraction) } \\$

$ \Rightarrow \mathrm{t}=\mathrm{t}(\mathrm{A}+\mathrm{B})+3 \mathrm{~B}-4 \mathrm{~A}$
On comparing the coefficients of ‘t’, we get
$\\ A=\frac{3}{7} \& B=\frac{4}{7}\\ =\frac{t}{(t+3)(t-4)}=\frac{3}{7(t+3)}+\frac{4}{7(t-4)}\\ $

$\Rightarrow\text { Now put } t=x^{2} \text { back in the above eq. }\\$

$\Rightarrow\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)} $

$ \Rightarrow\frac{x^{2} d x}{x^{4}-x^{2}-12}=\int\left(\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)}\right) d x=\frac{1}{7}\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right) \\ $

$\Rightarrow\operatorname{Now} \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)+c \& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\$

$ \Rightarrow7\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right)=\frac{1}{7}\left(\frac{3}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{4}{4} \ln \left(\frac{x-2}{x+2}\right)+c\right) \\ $

$\Rightarrow\int \frac{x^{2} d x}{x^{4}-x^{2}-12}=$

$\frac{\sqrt{3}}{7} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{1}{7} \ln \left(\frac{x-2}{x+2}\right)+c$

Question 36

Evaluate the following:
$\int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$

Answer:

$\\ \text { Given } \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}\\ \text { Put } x^{2}=t\\ $

$\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}\\ $

$\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{A}{\left(t+a^{2}\right)}+\frac{B}{\left(t+b^{2}\right)}(\text { Concept of partial fraction })$

$\Rightarrow t=t(A+B)+a^{2} B+b^{2} A\\ \text { On comparing coefficients of "twe get }\\ $

$\Rightarrow \mathrm{A}=\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \ \mathrm{~B}=\frac{-\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}}$

$\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(t+a^{2}\right)}-\frac{b^{2}}{\left(t+b^{2}\right)}\right)\\ $

$\Rightarrow \text { Now put } t=x^{2} \text { back in the above eq. }\\ $

$\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(x^{2}+a^{2}\right)}-\frac{b^{2}}{\left(x^{2}+b^{2}\right)}\right)\\ $

$\Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right)\\ $

$\Rightarrow_{\text {Now }} \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c $
$\\ =\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right) \\ $

$\Rightarrow=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{a} \tan ^{-1}\left(\frac{x}{a}\right)+\frac{b^{2}}{b} \tan ^{-1}\left(\frac{x}{b}\right)+c\right) \\$

$ \Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(a \tan ^{-1}\left(\frac{x}{a}\right)+b \tan ^{-1}\left(\frac{x}{b}\right)\right)+c$

Question 37

Evaluate the following:
$\int_{0}^{\pi} \frac{x}{1+\sin x}$

Answer:

$\\ Given \int_{0}^{\pi} \frac{x d x}{1+\sin x}$

Let $\mathrm{I}=\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}\\$

Now using Property $\int_{a}^{b} f(x) d x$

$=\int_{a}^{b} f(a+b-x) d x$

$=\int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{(\pi-x) d x}{1+\sin (\pi-x)}$

$\\ \Rightarrow \int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{\pi d x}{1+\sin x}-\int_{0}^{\pi} \frac{x d x}{1+\sin x} \\ \Rightarrow 2 \int_{0}^{\pi} \frac{x d x}{1+\sin x}=2$

$ I=\pi \int_{0}^{\pi} \frac{d x}{1+\sin x} \ldots(1) \\$

$ \Rightarrow \int_{0}^{\pi} \frac{d x}{1+\sin x}=\int_{0}^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}=\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x \\$

$ \Rightarrow 1-\sin ^{2} x=\cos ^{2} x$
$\\ =\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x=\int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x=\int_{0}^{\pi} \frac{d x}{\cos ^{2} x}-\int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x \ldots(2) \\$

$ \Rightarrow \int_{0}^{\pi} \frac{d x}{\cos ^{2} x}=\int_{0}^{\pi} \sec ^{2} x d x=[\tan x]_{0}^{\pi}=0 \\$

And $\text { for } \int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x$
$\text { Put } \cos x=t$
$\\ \Rightarrow-\sin x d x=d t\\ $

$\Rightarrow \mathrm{At}^{\mathrm{x}}=0=>\mathrm{t}=1 \text { and } \mathrm{x}=\pi=>\mathrm{t}=-1$
$ =\int_{1}^{-1}-\frac{d t}{t^{2}}=\left[\frac{1}{t}\right]_{1}^{-1}=-2 \ldots$

$\\ 2\mathrm{I}=\pi \int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{1+\sin \mathrm{x}}=$

$\pi\left(\int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{\cos ^{2} \mathrm{x}}-\int_{0}^{\pi} \frac{\sin \mathrm{x}}{\cos ^{2} \mathrm{x}} \mathrm{dx}\right)=\pi(0-(-2))=2 \pi \\ $

$\quad\mathrm{I}=$$\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}=\pi \\$

Question 38

Evaluate the following:
$\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x$

Answer:

Given:
$\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x$
Using the concept of partial fractions,
$\Rightarrow \frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x-3)}$
$\Rightarrow 2 x-1=x^{2}(A+B+C)+x(C-4 B-A)+(3 B-2 C-6 A)$
Comparing coefficients:
$\Rightarrow A+B+C=0 \ldots(1)\\$
$\\ \begin{aligned} &\Rightarrow C-4 B-A=2 \ldots(2)\\ &\Rightarrow 3 B-2 C-6 A=-1 \ldots(3)\\ &\Rightarrow \text { On solving }(1),(2) \text { and }(3) \text { we get }\\ &\Rightarrow A=-\frac{1}{6}, B=-\frac{1}{3} \text { and } C=\frac{1}{2} \end{aligned}$
$\\ =\frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{-\frac{1}{6}}{(x-1)}+\frac{-\frac{1}{2}}{(x+2)}+\frac{\frac{1}{2}}{(x-3)}$
$ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\int \frac{1}{2(x-3)} d x-\int \frac{1}{3(x+2)} d x-\int \frac{1}{6(x-1)} d x$
$\\ =\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c$
$ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c$

Question 39

Evaluate the following:
$\int \mathrm{e}^{\tan ^{-1} \mathrm{x}}\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{d} \mathrm{x}$

Answer:

Given: $\int \mathrm{e}^{\tan ^{-1} \mathrm{x}}\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{d} \mathrm{x}$
$\\ \text { Put } \tan ^{-1} x=t \\ $

${l} =\frac{d x}{1+x^{2}}=d t $
$ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=\int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t \\$

$ \Rightarrow \operatorname{As} \sec ^{2} \theta-\tan ^{2} \theta=1 \\ $

$\Rightarrow \int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t=\int e^{t}\left(1+\tan t+\sec ^{2} t-1\right) d t$
$\\ \Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t\\ $

$\text { Now using the property. } \int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ $

$\Rightarrow \text { Now in } \int e^{t}\left(\tan t+\sec ^{2} t\right) d t $
$\\=f(t)=\tan t \\ \Rightarrow f^{\prime}(t)=\sec ^{2} x \\ $

$\Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t=e^{t} \tan t+C \\$

$ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=e^{\tan ^{-1} x} x+C$

Question 40

Evaluate the following:
$\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$ (Hint: Put x = a tan2 θ)

Answer:

Given: $\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$
$\\ \Rightarrow \text { Put } x=a \tan ^{2} \theta$
$ \Rightarrow \mathrm{dx}=2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta$
$ \int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x=$$\int \sin ^{-1} \sqrt{\frac{a \tan ^{2} \theta}{a+a \tan ^{2} \theta}} 2 a \tan \theta \sec ^{2} \theta d \theta $
$\\ \Rightarrow \mathrm{As} \sec ^{2} \theta-\tan ^{2} \theta=1 \\$

$ =\int \sin ^{-1} \sqrt{\frac{a \tan ^{2} \theta}{a\left(1+\tan ^{2} \theta\right)}} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta $
$ \Rightarrow \int \sin ^{-1} \sqrt{\frac{\tan ^{2} \theta}{\sec ^{2} \theta}} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta$

$=\int \sin ^{-1} \sqrt{\sin ^{2} \theta} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta \\ $

$\Rightarrow 2 \mathrm{a} \int \theta \tan \theta \sec ^{2} \theta \mathrm{d} \theta$

$\Rightarrow$ $\text{Now put }$
$\tan \theta=t$

$\\ \Rightarrow \sec ^{2} \theta \mathrm{d} \theta=\mathrm{d} t $

$\Rightarrow 2 \mathrm{a} \int \theta \tan \theta \sec ^{2} \theta \mathrm{d} \theta=2 \mathrm{a} \int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt} \ldots$

$\Rightarrow$ $\text{Now apply integration by part on}$
$\int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt}$

Question 41

Evaluate the following:
$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}}$

Answer:

Given: $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x )^{\frac{5}{2}}}$
Using Trigonometric identities:
$\\ \Rightarrow \cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=1-2 \sin ^{2} \mathrm{x} $
$ \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}}=\frac{\sqrt{1+\left(2 \cos ^{2} \frac{x}{2}-1\right)}}{\left(1-\left(1-2 \sin ^{2} \frac{x}{2}\right)\right)^{\frac{5}{2}}} $
$ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}}$
$\\ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}}$
$=\frac{\left(\sqrt{2} \cos \frac{x}{2}\right) }{\left(2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}\right)} $
$ =\frac{\sqrt{2 }\cos \frac{x}{2}}{2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}} =\frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}}$
$\Rightarrow\\ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} d x \\ $

$\text {Put } \sin \left(\frac{x}{2}\right)=t $
$\cos \left(\frac{x}{2}\right) d x=2 d t $
$ \text {At } x=\frac{\pi}{3}$

$\Rightarrow t=\frac{1}{2} \text { and at } x=\frac{\pi}{2}$

$\Rightarrow t=\frac{1}{\sqrt{2}}$
$\Rightarrow\\\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} \mathrm{dx}=\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}$
$\Rightarrow\\ \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}=\frac{1}{2}\left[\frac{t^{-4}}{-4}\right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}=\frac{3}{2} $
$⇒ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\frac{3}{2}$

Question 42

Evaluate the following:
$\int \mathrm{e}^{-3 \mathrm{x}} \cos ^{3} \mathrm{x} \mathrm{d} \mathrm{x}$

Answer:

$\\ \begin{aligned} &\text { Given: } \int e^{-3 x} \cos ^{3} x d x\\ &\text { Using trigonometric identity }\\ &\cos 3 x=4 \cos ^{3} x-3 \cos x\\ &\int e^{-3 x} \cos ^{3} x d x=\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x\\ &\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x=\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x ...(1) \end{aligned}$
$\\ \begin{aligned} &\Rightarrow \text { Using a generalised formula i.e }\\ &\int e^{a x} \cos b x d x=\frac{e^{2 x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)\\ &\int e^{-3 x} \cos 3 x d x=\frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x) \end{aligned}$
$=\\ \frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x)$

$=\frac{e^{-2 x}}{6}(\sin 3 x-\cos 3 x) \ldots(2)\\ \int e^{-3 x} \cos x d x$

$=\frac{e^{-2 x}}{(-3)^{2}+1^{2}}((-3) \cos x+\sin x)$

$=\frac{e^{-2 x}}{10}(\sin x-3 \cos x)\\ =\frac{e^{-2 x}}{10}(\sin x-3 \cos x) \ldots(3)\\ $

$\Rightarrow \text { On putting }(2) \text { and }(3) \text { in }(1)$
$\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x=\frac{e^{-2 x}}{4 \times 6}(\sin 3 x-\cos 3 x)+\frac{3 e^{-2 x}}{4 \times 10}(\sin x- 3 \cos x) \\$

$ \Rightarrow \int e^{-3 x} \cos ^{3} x d x=e^{-3 x}\left\{\frac{(\sin 3 x-\cos 3 x)}{24}+\frac{3(\sin x-3 \cos x)}{40}\right\}+c$

Question 43

Evaluate the following:
$\int \sqrt{\tan x} d x$ (Hint: Put $tan x = t^2$)

Answer:

Given:
$\int \sqrt{\tan x} d x$
Put $tan x = t^2$
$\begin{aligned} &\Rightarrow \sec ^{2} x d x=2 t d t\\ &\Rightarrow \mathrm{dx}=\frac{2 t \mathrm{dt}}{\sec ^{2} x}=\frac{2 \mathrm{tdt}}{1+\tan ^{2} \mathrm{x}}=\frac{2 \mathrm{tdt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \sqrt{\tan \mathrm{x}} \mathrm{d} \mathrm{x}=\int \sqrt{\mathrm{t}^{2}} \frac{2 \mathrm{t} \mathrm{dt}}{1+\mathrm{t}^{4}}=\int \frac{2 \mathrm{t}^{2} \mathrm{dt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \frac{2 t^{2} d t}{1+t^{4}}=\int \frac{\left(2 t^{2}+1-1\right) d t}{1+t^{4}}=\int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t\\ &\Rightarrow \int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t \end{aligned}$
Taking out $t^2$ common in both the numerators
$\\ \Rightarrow \int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} d t+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt} \\ \int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}$

$=\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \ldots . \text { (1) }$
$\\ \Rightarrow \operatorname{Now} t^{2}+\frac{1}{t^{2}}=\left(t \pm \frac{1}{t}\right)^{2} \mp 2 \ldots(3)\\ =\operatorname{for}(a) \int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \text { taking } t-\frac{1}{t}=z\\ $

$\Rightarrow\left(1+\frac{1}{t^{2}}\right) d t=d z$

$\\ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt} \\$

$ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}+2}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{z}{\sqrt{2}}\right)+\mathrm{c} \ldots(2)$
$\\ \text { for (b) } \int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \text { dt taking } t+\frac{1}{t}=z\\ $

$\Rightarrow\left(1-\frac{1}{t^{2}}\right) \mathrm{dt}=\mathrm{dz}\\ =\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1-\frac{1}{\mathrm{t}^{2}}\right)}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}-2} \mathrm{dt}\\ =\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t+\frac{1}{t}\right)^{2}-2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}-2}=\frac{1}{2 \sqrt{2}} \ln \left|\frac{z-\sqrt{2}}{z+\sqrt{2}}\right|+\mathrm{c} \ldots(3) $

Put (2) and (3) in (1)
$\\ =\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\left(t-\frac{1}{t}\right)}{\sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(t+\frac{1}{\mathrm{t}}\right)-\sqrt{2}}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)+\sqrt{2}}\right|+\mathrm{c} \\$

$ \Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t} \sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(\mathrm{t}^{2}+1-\mathrm{t} \sqrt{2}\right.}{\left(\mathrm{t}^{2}+1+\mathrm{t} \sqrt{2}\right.}\right|+\mathrm{C}$
$\\ \Rightarrow \text{Now again putting} t=\sqrt{\tan x}\text{ to obtain the final result} \\$

$ =\int \sqrt{\tan x} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x-1}{\sqrt{2 \tan x}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{(\tan x+1-\sqrt{2 \tan x}}{\tan x+1+\sqrt{2 \tan x}}\right| \\$

Question 44

Evaluate the following:
$\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$
(Hint: Divide Numerator and Denominator by $cos^4x$)

Answer:

Given:$\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$
Dividing Numerator and Denominator by $cos^4x$
$\\ =\int_{0}^{\frac{\pi}{2}} \frac{\left(1 / \cos ^{4} x\right) d x}{\left(\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right) / \cos ^{2} x\right)^{2}} \\$

$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{4} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\$

$ \Rightarrow \text { Put } \tan x=t$
$\\ \Rightarrow \sec ^{2} x d x=d t \\ $

$\Rightarrow A t x=0 ,t=0 \text { and at } x=\frac{\pi}{2},t=\infty \\$

$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}} \\$

$ \Rightarrow \int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}$
$\\ =\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ $

$\Rightarrow \frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\$

$ \Rightarrow \text { Let } I=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \ldots(1)$
$\\ =\operatorname{Let} I_{1}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t \\ =\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t$

$=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t \\ =1_{1}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t$

$=\frac{1}{b^{2}}\left(\frac{b}{a}\right)\left[\tan ^{-1}\left(\frac{b t}{a}\right)\right]_{0}^{\infty}=\frac{\pi}{2 a b} \\ \Rightarrow I_{1}=\frac{\pi}{2 a b} \ldots .(2)$

$\\ \text { Let } I_{2}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ $

$\Rightarrow \text { let } b t=a \tan \theta \\$

$ \Rightarrow b d t=\operatorname{asec}^{2} \theta d \theta \\ =I_{2}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asec}^{2} \theta d \theta}{\left(a^{2}+a^{2} \tan ^{2} \theta\right)^{2}}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{a \sec ^{2} \theta d \theta}{a^{4}\left(1+\tan ^{2} \theta\right)^{2}}=\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta d \theta}{\sec ^{4} \theta}$
$\\ =\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\sec ^{4} \theta}=\frac{1}{a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{d} \theta$$=\frac{1}{2 a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta \\$

$ \Rightarrow \frac{1}{2 a^{3} b} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta=\frac{1}{2 a^{3} b}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4 a^{3} b} \ldots(3) \\$

$ \Rightarrow I=\frac{1}{b^{2}}\left(I_{1}+\left(b^{2}-a^{2}\right) \mathrm{I}_{2}\right)=$

$\frac{1}{b^{2}}\left(\frac{\pi}{2 a b}+\left(b^{2}-a^{2}\right) \frac{\pi}{4 a^{3} b}\right)$
$\\\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$

$=\frac{\pi}{2 a b^{3}}\left(1+\left(\frac{b^{2}}{a^{2}}-1\right) \pi\right)$

Question 45

Evaluate the following:
$\int_{0}^{1} x \log (1+2 x) d x$

Answer:

Given: $\int_{0}^{1} x \log (1+2 x) d x$
$\\ \text { Let } 1+2 \mathrm{x}=\mathrm{t} \\ $

$\Rightarrow 2 \mathrm{dx}=\mathrm{dt} \\ $

$\Rightarrow \mathrm{At} \mathrm{x}=0$

$\mathrm{t}=1 \text { and at } \mathrm{x}=1$

$\Rightarrow\mathrm{t}=3 \\ $

$\Rightarrow \int_{0}^{1} \mathrm{x} \ln (1+2 \mathrm{x}) \mathrm{d} \mathrm{x}=\frac{1}{4}\int_{1}^{3}(\mathrm{t}-1) \ln \mathrm{t} \mathrm{dt}....(i)$

$\Rightarrow \int_{1}^{3}(t-1) \ln t d t=\int_{1}^{3} t \ln t d t-\int_{1}^{3} \ln t d t\\ $

$\Rightarrow \text { Apply Integration by parts }\\ =\int t \operatorname{ln} t d t=\ln t \int t d t-\int \frac{d}{d t}(\ln t)\left(\int t d t\right) d t$

$=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4} \ldots(2)\\ =\int \ln t d t=\ln t \int d t-\int \frac{d}{d t}(\ln t)\left(\int d t\right) d t=t \ln t-t \ldots(3)\\ $
$\\ \Rightarrow \text { Put }(2) \text { and }(3) \text { in }(1)\\ =\frac{1}{4}\int_{1}^{3} t \ln t d t-\frac{1}{4}\int_{1}^{3} \ln t d t=\frac{1}{4}\left[\left(\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right)-(t \ln t-t)\right]_{1}^{3}=\frac{3}{8} \ln 3\\ $

$\Rightarrow \int_{0}^{1} x \ln (1+2 x) d x=\frac{3}{8} \ln 3 $

Question 46

Evaluate the following:
$\int_{0}^{\pi} x \log \sin x d x$

Answer:

Given:$\int_{0}^{\pi} x \log \sin x d x$
$\\ \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ $

$\text { Let } I=\int_{0}^{\pi} x \ln (\sin x) d x \\ =\int_{0}^{\pi}(\pi-x) \ln (\sin (\pi-x)) d x=\int_{0}^{\pi} \pi \ln (\sin x) d x \int_{0}^{\pi} x \ln (\sin x) d x \\$

$ \Rightarrow \text { As } \sin (\pi-x)=\sin x$
$\\ \Rightarrow 2 \mathrm{I}=\int_{0}^{\pi} \pi \ln (\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\pi \int_{0}^{\pi} \ln (\sin \mathrm{x}) \mathrm{dx} \ldots(1)\\ $

$\Rightarrow \text { Now in } \int_{0}^{\pi} \ln (\sin x) d x\\ \text { Using the property}\\ $

$\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x(\text { for } f(2 a-x)=f(x))\\ =\int_{0}^{\pi} \ln (\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \ldots(2) $
$\\ \Rightarrow{\text {Let }} Z=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \\ $

$\Rightarrow \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ $

$\Rightarrow z=\int_{0}^{\frac{\pi}{2}} \ln \left(\sin \left(\frac{\pi}{2}-x\right) d x=\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x \ldots(4)\right. \\ $

$\Rightarrow {2 Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x+\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x \ldots(5)$
$\\ =\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x \\$

$=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x=\int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)-\ln 2) d x \\$

$ \Rightarrow \int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)) d x-\int_{0}^{\frac{\pi}{2}}(\ln 2) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x-\frac{\pi \ln 2}{2} \ldots(6) \\ $

$\Rightarrow \operatorname{Now} \operatorname{in} \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x \text { put } 2 x=t$
$\\ \Rightarrow \text { Now in } \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) \mathrm{d} x \text { put } 2 x=t\\ $

$\Rightarrow 2 \mathrm{dx}=\text { dt and limits changes from } 0 \text { to } \pi\\ $

$\Rightarrow{2 Z}=\frac{1}{2} \int_{0}^{\pi} \ln (\sin t) d t-\frac{\pi \ln 2}{2}$
$\\ \Rightarrow \text{from equation (2)} \frac{1}{2} \int_{0}^{\pi} \ln (\operatorname{sint}) \mathrm{dt} \text{again becomes} \\$

$\Rightarrow 2 Z=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \ln (\sin t) \mathrm{dt}-\frac{\pi \ln 2}{2}\\$
$\\\Rightarrow From eq. (3) \\$

$\Rightarrow 2 \mathrm{Z}=\mathrm{Z}-\frac{\pi \ln 2}{2} \\ $

$\Rightarrow \mathrm{Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin \mathrm{x}) \mathrm{dx}=-\frac{\pi \ln 2}{2} ......(7)$
$\\ \Rightarrow \text{On putting (7) in (2) and the obtained result in(1)} \\$

$\\\Rightarrow 2 \mathrm{I}=-\pi^{2} \ln 2 \\ \quad I=\int_{0}^{\pi} x \ln (\sin x) d x=-\frac{\pi^{2}}{2} \ln 2$

Question 47

Evaluate the following:
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x$

Answer:

Given:$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x$
$\\ \begin{aligned} &\frac{1}{\text { Let }}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x \ldots(1)\\ &\text { Using the property: }\\ &\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\\ &\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin (-x)+\cos (-x)) d x\\ &\Rightarrow \text { As } \sin (-x)=\sin x \text { and } \cos (-x)=\cos x \end{aligned}$
$\\ \begin{aligned} &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos x-\sin x) d x \ldots(2)\\ &\text { Adding equation(1) and(2) }\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin \mathrm{x}+\cos \mathrm{x}) \mathrm{dx}+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \left(\cos ^{2} x-\sin ^{2} x\right) \mathrm{d} x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos 2 x) \mathrm{d} x \end{aligned}$
$\\ \Rightarrow \text { Put } 2 \mathrm{x}=\mathrm{t} \\ $

$\Rightarrow 2 \mathrm{x} \mathrm{dx}=\mathrm{dt} \\ 2 \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}$

$\\ \begin{aligned} &\Rightarrow \text { As } \cos (-x)=\cos x\\ &\text { Using property: }\\&\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x(f o r f(-x)=f(x))\\ &\Rightarrow{2 \mathrm{I}}=2\int_{0}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}\\ &\text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \end{aligned}$
$\\ \begin{aligned} &2I=\int_{0}^{\frac{\pi}{2}} \ln \left(\cos \left(\frac{\pi}{2}-t\right)\right) \mathrm{dt}=\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}\\ &\Rightarrow \text { Now From previous question eq }(7) \text { we obtained }\\ &\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}=-\frac{\pi \ln 2}{2}=2 \mathrm{I}\\ &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=-\frac{\pi \ln 2}{4} \end{aligned}$

Question 48

$\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$ is equal to

$\\A. 2(sinx + xcos \theta) + C\\ B. 2(sinx - xcos \theta) + C\\ C. 2(sinx + 2xcos \theta) + C\\ D. 2(sinx -2x cos \theta) + C\\$

Answer:

A)

$\\ \begin{aligned} &\text { Using Trigonometric identity } \cos 2 x=2 \cos ^{2} x-1\\ &\Rightarrow \int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x \end{aligned}$
$\\ =2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x \\ =2 \int\left(\frac{(\cos x+\cos \theta)(\cos x-\cos \theta)}{\cos x-\cos \theta}\right)$

$ \\ =2\{(\cos x+\cos \theta) d x \\ =2 \int \cos x d x+2 \int \cos \theta d x$
$\\=2 \int \cos x d x+2 \int \cos \theta d x=2(\sin x+x \cos \theta)+c$

Question 49

$\\ \int \frac{d x}{\sin (x-a) \sin (x-b)}$ is equal to

$\begin{aligned} & A \cdot \sin (b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C \\ & B \cdot \operatorname{cosec}(b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C \\ & C \cdot \operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|+C \\ & D \cdot \sin (b-a) \log \left|\frac{\sin (x-a)}{\sin (x-b)}\right|+C\end{aligned}$

Answer:

C)

$\\ \begin{aligned} &\text { Given: } \int \frac{d x}{\sin (x-a) \sin (x-b)}\\ &\text { Multiply } \mathrm{Nr} \text { and } \mathrm{Dr} \text { by } \sin (\mathrm{b}-\mathrm{a})\\ &\Rightarrow \frac{1}{\sin (b-a)} \int \frac{\sin (b-a) d x}{\sin (x-a) \sin (x-b)} \end{aligned}$
$\\ \Rightarrow \sin (b-a)=\sin ((x-a)-(x-b)) \\$

$ \Rightarrow \text { Also } \sin (A-B)=\sin A \cos B-\cos A \sin B \\ $

$\Rightarrow \frac{\sin (b-a)}{\sin (x-a) \sin (x-b)}=\frac{\sin ((x-a)-(x-b))}{\sin (x-a) \sin (x-b)}=\frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)} \\$

$ \Rightarrow \quad \frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)}=\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}$
$\\ =\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}$

$=\cot (x-b)-\cot (x-a) \\ \quad \int \frac{d x}{\sin (x-a) \sin (x-b)}$

$=\frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right) \\$

$ \Rightarrow \operatorname{Now} \int \cot x d x=\ln |\sin x|+c \\$

$ \Rightarrow \frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right)$
$\\ =\frac{1}{\sin (\mathrm{b}-\mathrm{a})}(\ln |\sin (\mathrm{x}-\mathrm{b})|-\ln |\sin (\mathrm{x}-\mathrm{a})|)$
$\\ \Rightarrow \int \frac{\mathrm{dx}}{\sin (\mathrm{x}-\mathrm{a}) \sin (\mathrm{x}-\mathrm{b})}=\frac{1}{\sin (\mathrm{b}-\mathrm{a})} \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)=\operatorname{cosec}(\mathrm{b}-\mathrm{a}) \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)$

Question 50

$\int \tan ^{-1} \sqrt{x} d x$ is equal to
$\begin{aligned} & \text { A. }(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C \\ & \text { B. } x \tan ^{-1} \sqrt{x}-\sqrt{x}+C \\ & \text { C. } \sqrt{x}-x \tan ^{-1} \sqrt{x}+C \\ & \text { D. } \sqrt{x}-(x+1) \tan ^{-1} \sqrt{x}+C\end{aligned}$

Answer:

A)

Given: $\int \tan ^{-1} \sqrt{x} d x$
$\\ \text { Put } x=t^{2} \\ \Rightarrow d x=2 d t \\$

$ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\int 2 \tan ^{-1} \sqrt{t^{2}} d t \\ $

$\Rightarrow 2 \int \tan ^{-1} \operatorname{tdt} \ldots(1)$
$\\ \Rightarrow \text { Now apply integration by part on } \int t \tan ^{-1} t d t\\$

$ \Rightarrow \int t \tan ^{-1} t d t=\tan ^{-1} t \int t d t-\int\left(\frac{d}{d t} \tan ^{-1} t\right)\left(\int t d t\right) d t\\ $

$\Rightarrow \frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2} \int \frac{t^{2}}{1+t^{2}} d t\\ $

$\Rightarrow \text { Now } \int \frac{t^{2}}{1+t^{2}} d t=\int \frac{t^{2}+1-1}{1+t^{2}} d t=\int \frac{t^{2}+1}{1+t^{2}} d t-\int \frac{1}{1+t^{2}} d t$
$\\ \Rightarrow \int \frac{t^{2}+1}{1+t^{2}} \mathrm{dt}-\int \frac{1}{1+t^{2}} \mathrm{dt}=\int \mathrm{dt}-\int \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}=\mathrm{t}-\tan ^{-1} \mathrm{t} \ldots\\$

$ \Rightarrow \text { Put }(3) \text { in }(2) \text { and the resulting equation in (1) }\\ $

$\Rightarrow 2 \int t \tan ^{-1} t d t=2\left(\frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2}\left(t-\tan ^{-1} t\right)\right)\\ $

$\Rightarrow 2 \int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt}=\mathrm{t}^{2} \tan ^{-1} \mathrm{t}-\mathrm{t}+\tan ^{-1} \mathrm{t}$
$\\ \Rightarrow t^{2} \tan ^{-1} t-t+\tan ^{-1} t=\tan ^{-1} t\left(t^{2}+1\right)-t \\$

$ \Rightarrow \tan ^{-1} t\left(t^{2}+1\right)-t=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x} \\$

$ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x}+C$

Question 51

$\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{~d} \mathrm{x}$ is equal to
$\begin{aligned} & A \cdot \frac{e^x}{1+x^2}+C \\ & B \cdot \frac{-\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}^2}+\mathrm{C} \\ & C \cdot \frac{\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^2\right)^2}+\mathrm{C} \\ & D \cdot \frac{-\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{x}^2\right)^2}+\mathrm{C}\end{aligned}$

Answer:

A)

Given: $\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{~d} \mathrm{x}$
$\\ =\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) \mathrm{d} x \\$

$=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) d x=\int e^{x}\left\{\left(\frac{1+x^{2}}{\left(1+x^{2}\right)^{2}}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x \\ $

$=\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x$
$\\ \begin{aligned} &\text { Now using the property: }\\ &\int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{d} \mathrm{x}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ &\Rightarrow \text { Now in } \int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x\\ &f(x)=\frac{1}{\left(1+x^{2}\right)}\\ &\Rightarrow f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \end{aligned}$
$\\ =\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x=\frac{e^{x}}{1+x^{2}}+c \\ \quad \int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\frac{e^{x}}{1+x^{2}}+c$

Question 52

$\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$ is equal to
$\\\begin{aligned} A.&\frac{1}{5 x}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ B.&\frac{1}{5}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ C.&\frac{1}{10 x}(1+4)^{-5}+C\\ D.&\frac{1}{10}\left(\frac{1}{x^{2}}+4\right)^{-5}+C \end{aligned}$

Answer:

D)

Given: $\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$
Taking $x^2$ out from the denominator
$\\ \int\left(\frac{x^{9}}{x^{12}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x\\$

$\Rightarrow \int\left(\frac{1}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}=\int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}\\ $

$\Rightarrow \text { Now put } 4+\frac{1}{x^{2}}=t$
$\\ \Rightarrow-\frac{2}{x^{3}} d x=d t \\ $

$\Rightarrow \quad \int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x=\int-\frac{1}{2t^{6}} d t \\$

$ \Rightarrow \quad-\frac{1}{2}t^{-6} d t=\frac{-t^{-5}}{-5\times 2}+C=\frac{1}{10}\left(4+\frac{1}{x^{2}}\right)^{-5}+C$

Question 53

If $\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+c$ then
$\begin{aligned} & A \cdot a=\frac{-1}{10}, b=\frac{-2}{5} \\ & B \cdot a=\frac{1}{10}, b=-\frac{2}{5} \\ & C \cdot a=\frac{-1}{10}, b=\frac{2}{5} \\ & D \cdot a=\frac{1}{10}, b=\frac{2}{5}\end{aligned}$

Answer:

C)

Given:$\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+c$
Using the concept of partial fractions
$\\ =\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{(x+2)}+\frac{B x+C}{\left(x^{2}+1\right)} \\ \Rightarrow A\left(x^{2}+1\right)+(B x+C)(x+2)=1$
$\\ \Rightarrow x^{2}(A+B)+x(C+2 B)+(A+2 C)=1 \\ $

$\Rightarrow A+B=0 \quad \ldots(1) \\$

$ \Rightarrow C+2 B=0 \quad \ldots(2) \\$

$ \Rightarrow A+2 C=1...(3)$
On solving the above three equations, we get
$\\ \Rightarrow A=\frac{1}{5}, B=-\frac{1}{5} \text { and } C=\frac{2}{5} \\$

$ \Rightarrow \frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)} \\$ $\Rightarrow \frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)}=\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}$
$\\ \int \frac{d x}{(x+2)\left(x^{2}+1\right)}$

$=\int\left(\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}\right) d x \\ $

$=\frac{1}{5} \ln |x+2|-\frac{1}{10} \ln \left|x^{2}+1\right|+\frac{2}{5} \tan ^{-1} x +c \ldots (2)$
On comparing (1) and (2), we get,
$\Rightarrow a=-\frac{1}{10} \text { and } b=\frac{2}{5}$

Question 54

$\int \frac{x^{3}}{x+1}$ is equal to

$\begin{aligned} & A \cdot x+\frac{x^2}{2}+\frac{x^3}{3}-\log |1-x|+C \\ & B \cdot x+\frac{x^2}{2}-\frac{x^3}{3}-\log |1-x|+C \\ & C \cdot x-\frac{x^2}{2}-\frac{x^3}{3}-\log |1+x|+C \\ & D \cdot x-\frac{x^2}{2}+\frac{x^3}{3}-\log |1+x|+C\end{aligned}$

Answer:

D)

Given: $\int \frac{x^{3}}{x+1}$
$\\ \frac{x^{3}}{x+1}=\frac{x^{3}+1-1}{x+1} \\ $

$\Rightarrow \frac{x^{2}+1}{x+1}-\frac{1}{x+1}=\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}-\frac{1}{x+1}$
$\\\Rightarrow \int \frac{x^{3}}{x+1} d x=\int\left(\left(x^{2}-x+1\right)-\frac{1}{x+1}\right) d x \\ $

$\Rightarrow \int\left(x^{2}-x+1\right) d x-\int \frac{1}{x+1} d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\ln |1+x|+c$

Question 55

$\int \frac{x+\sin x}{1+\cos x} d x$ is equal to

$\begin{aligned} & A \cdot \log |1+\cos x|+c \\ & B \cdot \log |\mathrm{x}+\sin \mathrm{x}|+\mathrm{C} \\ & C \cdot x-\tan \frac{x}{2}+C \\ & D \cdot x \cdot \tan \frac{x}{2}+C\end{aligned}$

Answer:

$D \cdot x \cdot \tan \frac{x}{2}+C$

Given: $\int \frac{x+\sin x}{1+\cos x} d x$
As we know
$\sin 2 \mathrm{x}=\frac{2 \tan \mathrm{x}}{1+\tan ^{2} \mathrm{x}}, 1+\tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x} \text { and } \cos 2 \mathrm{x}=\frac{1+\tan ^{2} \mathrm{x}}{1-\tan ^{2} \mathrm{x}}$
$\Rightarrow \frac{x+\sin x}{1+\cos x}$$=\frac{x+\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}}{1+\frac{1+\tan ^{2}\left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)}}$
$\\ \Rightarrow\frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} \\$

$ \Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\int \frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} d x $
$ \Rightarrow \quad \operatorname{let} \frac{x}{2}=t $
​​​​​​​$ \Rightarrow \frac{d x}{2}=d t$

$\\ \begin{aligned} &\Rightarrow \text { Put }(2) \text { in }(1)\\ &\Rightarrow 2\left(\mathrm{t} \text { tant }-\int \tan t \mathrm{dt}\right)+2 \int \operatorname{tant} \mathrm{dt}=2 \mathrm{t} \operatorname{tant}+\mathrm{c}=\operatorname{xtan}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\\ &\Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\operatorname{xtan}\left(\frac{x}{2}\right)+c \end{aligned}$

Question 56

If $\frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$, then
$\begin{aligned} & A \cdot a=\frac{-1}{10}, b=\frac{-2}{5} \\ & B \cdot a=\frac{1}{10}, b=-\frac{2}{5} \\ & C \cdot a=\frac{-1}{10}, b=\frac{2}{5} \\ & D \cdot a=\frac{1}{10}, b=\frac{2}{5}\end{aligned}$

Answer:

D)

Given:$\frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$...........(1)
$\\ \begin{aligned} &\text { Put }\\ &1+x^{2}=t\\ &\Rightarrow 2 x d x=d t\\ &\Rightarrow \int \frac{x^{3} d x}{\sqrt{1+x^{2}}}=\int \frac{x^{2} \cdot x d x}{\sqrt{1+x^{2}}} \end{aligned}$
$\\ \Rightarrow=\frac{1}{2} \int \frac{(t-1) \mathrm{dt}}{\sqrt{t}} \\$

$ \Rightarrow \frac{1}{2} \int \frac{(t-1) \mathrm{d} t}{\sqrt{t}} \\$

$ \Rightarrow=\frac{1}{2} \int \frac{t \mathrm{dt}}{\sqrt{t}}-\frac{1}{2} \int \frac{\mathrm{dt}}{\sqrt{t}} \\ $

$\Rightarrow=\frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)$
$\Rightarrow \frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)=\frac{1}{2}\left(\frac{2}{3} \mathrm{t}^{\frac{3}{2}}-2 \sqrt{\mathrm{t}}+\mathrm{c}\right)\\ $

$\Rightarrow\left(\frac{1}{3} t^{\frac{3}{2}}-\sqrt{t}+c\right)=\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-1 \sqrt{1+x^{2}}+c\\ \text { Comparing (1) and (3) }\\ $

$\Rightarrow a=\frac{1}{3} \text { and } b=-1 $

Question 57

$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer:

A)

Given: $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}$
Using trigonometric identities:
$\\ \cos ^{2} x+\sin ^{2} x=1 \text { and } \cos 2 x=\cos ^{2} x-\sin ^{2} x \\$

$ \frac{1}{1+\cos 2 x}=\frac{1}{\left(\cos ^{2} x+\sin ^{2} x+\cos ^{2} x-\sin ^{2} x\right)} \\ =\frac{1}{2 \cos ^{2} x}$
$\\ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{1+\cos 2 x}\right)=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{2 \cos ^{2} x}\right)=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x \\$

$=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x=\frac{1}{2}[\tan x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\ =\frac{1+1}{2}=1$

Question 58

$\int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x$ is equal to
A. $2\sqrt2$
B. $2(\sqrt2 + 1)$
C. $2$
D. $2 (\sqrt2 -1)$

Answer:

D)
As

$\\ \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1 \\ $

$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x} d x \\$

$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{(\cos x-\sin x)^{2}} d x=\int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x$
$\\ \text { From } 0<x<\frac{\pi}{4}, \cos x>\sin x \text { and } \\ \text { from } \frac{\pi}{4}<x<\frac{\pi}{2}, \cos x<\sin x \\ $

$\Rightarrow \int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x$
$=2[\sin x+\cos x]_{0}^{\pi / 4}$
On solving the Above Integral, we get $2 (\sqrt2 -1)$

Question 59

Fill in the blanks in each of the following
$\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} d x$ is equal to ___________.

Answer:

$e{-1}$
Given: $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} d x$
$\\ \text { Put } \sin x=t \\ \Rightarrow \cos x d x=d t \\$

$ \Rightarrow \operatorname{At} x=0$

$\Rightarrow t=0 \text { and } x=\frac{\pi}{2}$

$\Rightarrow t=1 \\ $

$\Rightarrow \int_{0}^{1} e^{t} d t=\left[e^{t}\right]_{0}^{1}=e-1$

Question 60

Fill in the blanks in each of the following
$\int \frac{x+3}{(x+4)^{2}} e^{x} d x=$ ___________.

Answer:

$\\ \begin{aligned} &\frac{e^{x}}{x+4}+c\\ &\text { Given }\\ &\int \frac{x+3}{(x+4)^{2}} e^{x} d x\\ &=\int \frac{x+3}{(x+4)^{2}} e^{x} d x=\int \frac{(x+3)+1-1}{(x+4)^{2}} e^{x} d x=\int \frac{(x+4)-1}{(x+4)^{2}} e^{x} d x\\ &=\int \frac{(x+4)-1}{(x+4)^{2}} e^{x} d x=\int e^{x}\left(\frac{(x+4)}{(x+4)^{2}}-\frac{1}{(x+4)^{2}}\right) \mathrm{d} x \end{aligned}$
$\\\begin{aligned} &\int e^{x}\left(\frac{(x+4)}{(x+4)^{2}}-\frac{1}{(x+4)^{2}}\right) d x=\int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) d x\\ &\text { Now using the property: }\\ &\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)\\ &\Rightarrow \text { Now in } \int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) \mathrm{dx} \end{aligned}$
$\\ \Rightarrow f(x)=\frac{1}{x+4} \\ $

$ \Rightarrow f^{\prime}(x)=-\frac{1}{(x+4)^{2}} \\$

$ \Rightarrow \int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) d x=\frac{e^{x}}{x+4}+c \\ $

$\Rightarrow \int \frac{x+3}{(x+4)^{2}} e^{x} d x=\frac{e^{x}}{x+4}+c$

Question 61

Fill in the blanks in each of the following
If $\int_{0}^{a} \frac{1}{1+4 x^{2}} d x=\frac{\pi}{8}$, then a = ____________.

Answer:

$\\ \mathrm{a}=\frac{1}{2} \\$

$ \text { Given: } \int_{0}^{\mathrm{a}} \frac{1}{1+4 \mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{8} \\$

$ \frac{1}{1+4 \mathrm{x}^{2}}=\frac{\frac{1}{4}}{\frac{1}{4}+\mathrm{x}^{2}}=\frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+\mathrm{x}^{2}} \\ $

$\int_{0}^{\mathrm{a}} \frac{1}{1+4 \mathrm{x}^{2}} \mathrm{dx}=\int_{0}^{a} \frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+\mathrm{x}^{2}} \mathrm{dx}$
$\\ \text { Now } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\$

$ \int_{0}^{a} \frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+x^{2}} d x=\frac{\frac{1}{4}}{\frac{1}{2}} \tan ^{-1}\left(\frac{x}{\frac{1}{2}}\right) \\$

$ =\left[\frac{1}{2} \tan ^{-1}(2 x)\right]_{0}^{a}\\ =\frac{\pi}{8} \\ $

$\frac{1}{2} \tan ^{-1}(2 a)=\frac{\pi}{8} \\$

$ 2 a=\tan \left(\frac{\pi}{4}\right)=1 \\$

$ a=\frac{1}{2}$

Question 62

Fill in the blanks in each of the following
$\int \frac{\sin x}{3+4 \cos ^{2} x} d x=$ __________.

Answer:

$\\ \begin{aligned} &-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+\mathrm{c}\\ &\text { Given }\\ &\int \frac{\sin x}{3+4 \cos ^{2} x} d x\\ &\Rightarrow \text { Now let } \cos \mathrm{x}=\mathrm{t} \end{aligned}$
$\\ \Rightarrow-\sin \mathrm{xdx}=\mathrm{dt} \\$

$ \Rightarrow \quad \int \frac{\sin \mathrm{x}}{3+4 \cos ^{2} \mathrm{x}} \mathrm{dx}=\int \frac{-\mathrm{dt}}{3+4 \mathrm{t}^{2}}=\frac{1}{4} \int \frac{-\mathrm{dt}}{\frac{3}{4}+\mathrm{t}^{2}} \\ $

$\Rightarrow \quad \frac{1}{4} \int \frac{-\mathrm{dt}}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\mathrm{t}^{2}}$
$\\ \Rightarrow \text { Now } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\ \quad=\frac{1}{4} \int \frac{-d t}{\left(\frac{2}{2}\right)^{2}+t^{2}}=\frac{-\frac{1}{4}}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{2 t}{\sqrt{3}}\right)+c \\$

$ \Rightarrow \int \frac{\sin x}{3+4 \cos ^{2} x} d x=-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+c$

Question 63

Fill in the blanks in each of the following
The value of $\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x$ is ____________.

Answer:

0

Using the property: $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$\\ \text { Let } I=\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x \\ $

$\Rightarrow \int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x=\int_{-\pi}^{\pi} \sin ^{3}(\pi+(-\pi)-x) \cos ^{2}(\pi+(-\pi)-x) d x \\ $

$\Rightarrow \text { As } \sin (-x)=-\sin x \text { and } \cos (-x)=\cos x$
$\\ =\int_{-\pi}^{\pi} \sin ^{3}(\pi+(-\pi)-\mathrm{x}) \cos ^{2}(\pi+(-\pi)-\mathrm{x}) \mathrm{d} \mathrm{x}=\int_{-\pi}^{\pi} \sin ^{3}(-\mathrm{x}) \cos ^{2}(-\mathrm{x}) \mathrm{dx} \\$

$ \Rightarrow \int_{-\pi}^{\pi} \sin ^{3}(-\mathrm{x}) \cos ^{2}(-\mathrm{x}) \mathrm{dx}=-\int_{-\pi}^{\pi} \sin ^{3} \mathrm{x} \cos ^{2} \mathrm{x} \mathrm{dx}=-\mathrm{I} \\ $

$\Rightarrow \mathrm{I}=-\mathrm{I} \\ \Rightarrow 2 \mathrm{I}=0$
$\Rightarrow I=\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x=0$

Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 7

Class 12 Maths NCERT Exemplar Solutions Chapter 7 Integrals touches upon an exhaustive explanation of how we do integration by using properties.

  • These Solutions provide a wide range of problems that will help students during their exams.
  • These Solutions are easy to understand as they are well-explained.
  • These also cover some major properties and rules, like King's property and Leibniz's rule.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions for Class 12 Maths: Chapter Wise

Careers360 has put all NCERT Class 12 Maths Solutions in one place to help students. Use the links below to open them.

NCERT Solutions of Class 12 - Subject-wise

Here are the subject-wise links for the NCERT Solutions of Class 12:

NCERT Notes of Class 12 - Subject Wise

Given below are the subject-wise NCERT Notes of Class 12 :

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Books and NCERT Syllabus

To plan studies effectively, students should review the latest syllabus before the academic year starts. Find the updated syllabus links and recommended reference books below.

NCERT Exemplar Class 12 Solutions - Subject Wise

Given below are the subject-wise Exemplar Solutions of Class 12 NCERT:

Frequently Asked Questions (FAQs)

Q: Are these solutions helpful for competitive examinations?
A:

Indeed, the Class 12 Maths NCERT exemplar solutions chapter 7 covers the syllabus of the competitive exams like NEET and JEE Main to help you ace them.

Q: What are the important topics of this chapter?
A:

Methods of Integration, Integration by Parts and Fundamental Theorem of Calculus are some of the important topics of this chapter. However, rest should not be neglected either.

Q: How many questions are there in this chapter?
A:

The NCERT exemplar solutions for Class 12 Maths chapter 7 consists of 1 exercise with 63 distinct questions for practice.

Q: How many times should one need to read the NCERT books?
A:

Students should read the books enough times months before your exam for better remembering. They can also take help of NCERT exemplar Class 12 Maths solutions chapter 7 pdf download using  an online webpage to pdf tool.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.