Integrals play a significant role in mathematics. Have you ever thought about how to find the area under a curve, the distance travelled by an object accelerating throughout the distance, or even just the total amount of a quantity accumulated over time? Integrals can be used to find the solution to those types of continuous problems. Within the scope of Class 12 Mathematics, integration is introduced as the anti-derivative, or reverse differentiation, ultimately giving us the ability to retrieve a function from its derivative. In addition, this chapter regarding integration has indefinite integrals, which implies that such a family is represented by an arbitrary constant (∫f(x)dx = F(x) + C).
This Story also Contains
To become proficient in this subject, students should work through the NCERT Solutions for Class 12 Maths, which include clear explanations and very easy-to-follow methods for solving integral problems. The NCERT Solutions encompass a breadth of exercises, such as properties of integrals, applications of integration in physics and engineering, as well as the Fundamental Theorem of Calculus, which connects differentiation and integration. The conceptual understanding and work as preparation for the board exam and competitive examinations, like JEE and NEET.
Class 12 Maths Chapter 7 exemplar solutions Exercise: 7.3 Page number: 163-169 Total questions: 63 |
Question:1
Verify the following:
$\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C$
Answer:
$\begin{aligned} &\text { To Verify; }\\ &\int \frac{2 x-1}{2 x+3} d x=x-\log \left|(2 x+3)^{2}\right|+C\\ &\text { LHS: } \int \frac{2 x-1}{2 x+3} d x\\ &=\int \frac{2 x+3-4}{2 x+3} d x\\ &=\int \mathrm{dx}-\int \frac{4}{2 \mathrm{x}+3} \mathrm{dx} \end{aligned}$
Let t = 2x + 3
$\\ \Rightarrow \mathrm{dx}=\frac{\mathrm{dt}}{2} \\ =\int \mathrm{dx}-4 \int \frac{ \mathrm{dt}}{\mathrm{2t}} \\ =\mathrm{x}-2 \log |\mathrm{t}|+\mathrm{C} \\ [\because \int \mathrm{dx}=\mathrm{x} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\ $
$=\mathrm{x}-\log \left|(2 \mathrm{x}+3)^{2}\right|+\mathrm{C}=\mathrm{RHS} \\ \left[\because 2 \log |\mathrm{x}|=\log \left|\mathrm{x}^{2}\right|\right]$
Hence Verified
Question:2
Verify the following:
$\int \frac{2 x+3}{x^{2}+3 x} d x=\log \left|x^{2}+3 x\right|+C$
Answer:
To Verify;
$
\begin{aligned}
& \int \frac{2 x+3}{x^2+3 x} d x=\log \left|x^2+3 x\right|+C \\
& \text { LHS }=\int \frac{2 \mathrm{x}+3}{\mathrm{x}^2+3 \mathrm{x}} \mathrm{dx} \text { Let; } t=x^2+3 x \\
& \Rightarrow d t=2 x+3 \\
& =\int \frac{d t}{t}=\log |t|+C \\
& {\left[\because \int \frac{1}{x} d x=\log |x|\right]} \\
& \Rightarrow \log \left|x^2+3 x\right|+C=\text { RHS } \\
& {\left[\because t=x^2+3 x\right]}
\end{aligned}
$
Question:3
Evaluate the following:
$\int \frac{\left(x^{2}+2\right) d x}{x+1}$
Answer:
Given; $\int \frac{\left(x^{2}+2\right) d x}{x+1}$
Let t = x + 1
$\\\Rightarrow dx = dt \\ =\int \frac{\left((\mathrm{t}-1)^{2}+2\right)}{\mathrm{t}} \mathrm{dt} \\$
$ =\int \frac{\mathrm{t}^{2}-2 \mathrm{t}+1+2}{\mathrm{t}} \mathrm{dt} \\ $
$=\int(\mathrm{t}) \mathrm{dt}-\int 2 \mathrm{dt}+\int \frac{3}{\mathrm{t}} \mathrm{dt} \\$
$[ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right]$
$\\ =\frac{t^{2}}{2}-2 t+3 \log |t|+C \\ $
$=\frac{t^{2}}{2}-2 t+\log \left|t^{3}\right|+C \\ $
$=\frac{(x+1)^{2}}{2}-2(x+1)+\log \left|(x+1)^{3}\right|+C$
Question:4
Evaluate the following:
$\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$
Answer:
Given; $\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$
As we know $n log x = log x^n$
$\begin{aligned} &=\int \frac{e^{\log x^{6}}-e^{\log x^{5}}}{e^{\log x^{4}}-e^{\log x^{2}}} d x\\ &=\int \frac{x^{6}-x^{5}}{x^{4}-x^{3}} d x\\ &\text { Take } x^{3} \text { common out of numerator and denominator to get, }\\ &=\int \frac{x^{3}\left(x^{3}-x^{2}\right)}{x^{3}(x-1)} d x\\ &=\int \frac{\left(x^{3}-x^{2}\right)}{(x-1)} d x \end{aligned}$
$\begin{aligned} &=\int \frac{x^{2}(x-1)}{(x-1)} d x\\ &=\int x^{2} d x\\ &\because \int x^{n} d x=\frac{x^{n+1}}{n+1}\\ &\text { So, }\\ &=\frac{x^{3}}{3}+c \end{aligned}$
Question:5
Evaluate the following:
$\int \frac{(1+\cos x)}{x+\sin x} d x$
Answer:
Given; $\int \frac{(1+\cos x)}{x+\sin x} d x$
Let t = x + sin x
$\\\Rightarrow dt = (1 + cos x) dx \\ =\int \frac{1}{t} d t \\ =\log |t|+C \\ =\log |x+\sin x|+C$
Question:6
Evaluate the following:
$\int \frac{d x}{1+\cos x}$
Answer:
Given; $\int \frac{d x}{1+\cos x}$
$\\ =\int \frac{(1-\cos x)}{(1+\cos x)(1-\cos x)} d x \\ =\int \frac{1-\cos x}{1-\cos ^{2} x} d x \\$
$ =\int \frac{1-\cos x}{\sin ^{2} x} d x \\ {\left[\frac{1}{\sin ^{2} x}=\operatorname{cosec}^{2} x \text { and } \frac{\cos x}{\sin ^{2} x}=\operatorname{cosec} x \cot x\right]}$
$\\\begin{aligned} &=\int\left(\operatorname{cosec}^{2} x-\operatorname{cosec} x \cot x\right) d x\\ &\text { As we know, }\\ &\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c\\ &\int \operatorname{cosec}^{2} x d x=-\cot x+c\\ &=\operatorname{cosec} x-\cot x+C \end{aligned}\\$
Question:7
Evaluate the following:
$\int \tan ^{2} x \sec ^{4} x d x$
Answer:
Given; Let; tan x = y
$\\ =\frac{y^{3}}{3}+\frac{y^{5}}{5}+C \\ =\frac{\tan ^{3} x}{3}+\frac{\tan ^{5} x}{5}+C$
Question:8
Evaluate the following:
$\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$
Answer:
Given; $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} d x$
$\\ =\int{c} \sin x+\cos x \\ \sqrt{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\$
$ =\int \frac{\sin x+\cos x}{\sqrt{(\sin x+\cos x)^{2}}} d x \\ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} \\ =\int 1 \mathrm{dx} \\ =x+C$
Question:9
Evaluate the following:
$\int \sqrt{1+\sin x} d x$
Answer:
Given; $\int \sqrt{1+\sin x} d x$
$\\ =\int \sqrt{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}} d x \\ {\left[\because \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1\right]} \\ $
$=\int \sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}} d x \\ =\int\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x \\ =2 \sin \frac{x}{2}-2 \cos \frac{x}{2}+c$
Question:10
Evaluate the following:
$\int \frac{x}{\sqrt{x}+1} d x \: \: \: (Hint: Put \sqrt{x} = z)$
Answer:
Given;
Let $z = \sqrt{x}$
$\\ =2 \int \frac{(\mathrm{t}-1)^{3}}{\mathrm{t}} \mathrm{dt} \\ =2 \int \frac{\mathrm{t}^{3}-3 \mathrm{t}^{2}+3 \mathrm{t}-1}{\mathrm{t}} \mathrm{dt} \\ =2 \int\left(\mathrm{t}^{2}-3 \mathrm{t}+3-\frac{1}{\mathrm{t}}\right) \mathrm{dt} \\$$[ \because \int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1} \text { and } \left.\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log |\mathrm{x}|\right] \\$
$\\ =\frac{2 t^{3}}{3}-3 t^{2}+3 t-\log |t|+C \\$
$ =\frac{2(\sqrt{x}+1)^{3}}{3}-3(\sqrt{x}+1)^{2}+3(\sqrt{x}+1)-\log |\sqrt{x}+1|+C$
Question:11
Evaluate the following:
$\int \sqrt{\frac{a+x}{a-x}}$
Answer:
Given, $\int \sqrt{\frac{a+x}{a-x}}$
$\\ =\int \frac{\sqrt{a+x}}{\sqrt{a-x}} \times \frac{\sqrt{a+x}}{\sqrt{a+x}} d x \\ =\int \frac{a+x}{\sqrt{a^{2}-x^{2}}} d x \\ =a \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x-\frac{1}{2} \int \frac{-2 x}{\sqrt{a^{2}-x^{2}}} d x$
$\\ \begin{aligned} &\text { Let } t=a^{2}-x^{2}\\ & \Rightarrow-2x \mathrm{dx}=\mathrm{dt}\\ &=\mathrm{a} \sin \left(\frac{\mathrm{x}}{\mathrm{a}}\right)-\frac{1}{2} \int \frac{1}{\sqrt{\mathrm{t}}} \mathrm{dt}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]_{\text {and }}\left[\int \frac{1}{\sqrt{x}} d x=2 \sqrt{x}\right]\\ &=a \sin \left(\frac{x}{a}\right)-\frac{1}{2} \times 2 \sqrt{t}\\ &=a \sin \left(\frac{x}{a}\right)-\sqrt{a^{2}-x^{2}}+c \end{aligned}$
Question:12
Evaluate the following:
$\int \frac{x^{\frac{1}{2}}}{1+x^{\frac{3}{4}}} d x$ (Hint : Put x = z4)
Answer:
$\begin{aligned} &\text { Given}\\ &\int \frac{x^{\frac{1}{2}}}{1+x^{\frac{3}{4}}} d x\\ &\text { Let } x=z^{4}\\ &\Rightarrow \mathrm{dx}=4 \mathrm{z}^{3} \mathrm{dz}\\ &=\int \frac{\mathrm{z}^{2}}{1+\mathrm{z}^{3}} 4 \mathrm{z}^{3} \mathrm{~d} z\\ &=4 \int \frac{\mathrm{z}^{5}}{1+\mathrm{z}^{3}} \mathrm{~d} \mathrm{z}\\ &=\frac{4}{3} \int \frac{\mathrm{z}^{3}}{1+\mathrm{z}^{3}} 3 \mathrm{z}^{2} \mathrm{~d} \mathrm{z} \end{aligned}$
$\\ \begin{aligned} &\text { Let } t=1+z^{3}\left[\begin{array}{l} \left.1 . e . t=1+x^{3 / 4}\right] \end{array}\right.\\ &\Rightarrow \mathrm{dt}=3 \mathrm{z}^{2} \mathrm{~d} z\\ &=\frac{4}{3} \int \frac{t-1}{t} d t \end{aligned}$
$\\ =\frac{4}{3} \int \mathrm{dt}-\frac{4}{3} \int \frac{1}{\mathrm{t}} \mathrm{dt} \\ =\frac{4}{3}[\mathrm{t}-\log |\mathrm{t}|]+\mathrm{C} \\ =\frac{4}{3}\left[\left(1+\mathrm{x}^{\frac{3}{4}}\right)-\log \left|1+\mathrm{x}^{\frac{3}{4}}\right|\right]+\mathrm{C}$
Question:13
Answer:
$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{1+x^{2}}}{x^{4}} d x\\ &\text { Let } x=\tan y\\ &\Rightarrow \mathrm{dx}=\sec ^{2} \mathrm{y} \mathrm{dx} \end{aligned}$
$\\ =\int \frac{\sqrt{1+\tan ^{2} y}}{\tan ^{4} y} \sec ^{2} y d y \\$
$ =\int \sec y \times \frac{\cos ^{4} y}{\sin ^{4} y} \times \sec ^{2} y d y \\ $
$=\int \frac{\cos y}{\sin ^{4} y} d y \\$
$ \text { Let } t=\sin y$
$\Rightarrow dt = cos y dy$
$\\ =\int \frac{\mathrm{dt}}{\mathrm{t}^{4}}=-\frac{1}{3 \mathrm{t}^{3}}+\mathrm{C} \\ =-\frac{1}{3 \sin ^{3} \mathrm{y}} \\ =-\frac{1}{3 \sin ^{3}\left(\sin ^{-1} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+1}}\right)} \\ =-\frac{\left(\mathrm{x}^{2}+1\right)^{\frac{3}{2}}}{3 \mathrm{x}^{3}}$
Question:14
Evaluate the following:
$\int \frac{d x}{\sqrt{16-9 x^{2}}}$
Answer:
$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{\mathrm{dx}}{\sqrt{16-9 \mathrm{x}^{2}}}\\ &=\int \frac{d x}{\sqrt{4^{2}-(3 x)^{2}}}\\ &\left[\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right]\\ &=\frac{1}{3} \sin ^{-1} \frac{3 x}{4}+C \end{aligned}$
Question:15
Evaluate the following:
$\\ \int \frac{\mathrm{dt}}{\sqrt{3 \mathrm{t}-2 \mathrm{t}^{2}}}$
Answer:
$\\ \begin{aligned} &\text { Given }\\ &\int \frac{\mathrm{dt}}{\sqrt{3 t-2 t^{2}}}\\ &=\int \frac{\mathrm{dt}}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\frac{3}{2 \sqrt{2}}\right)^{2}+2 \times \sqrt{2} t \times \frac{3}{2 \sqrt{2}}-(\sqrt{2} t)^{2}}} \end{aligned}$
$\\ =\int \frac{d t}{\sqrt{\left(\frac{3}{2 \sqrt{2}}\right)^{2}-\left(\sqrt{2} t-\frac{3}{2 \sqrt{2}}\right)^{2}}} \\ =2 \sqrt{2} \int \frac{d t}{\sqrt{3^{2}-(4 t-3)^{2}}} \\$$ [\left.\because \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}\right] \\$
$ =\frac{1}{\sqrt{2}} \sin ^{-1} \frac{4 t-3}{3}+C$
Question:16
Evaluate the following:
$\int \frac{3 x-1}{\sqrt{x^{2}+9}} d x$
Answer:
$\\ \text { Given; } \frac{3 x-1}{\sqrt{x^{2}+9}} d x \\$
$ =\int \frac{3 x}{\sqrt{x^{2}+3^{2}}} d x-\int \frac{1}{\sqrt{x^{2}+3^{2}}} d x \\$
$ \text { [Let; } x^{2}+9=y \Rightarrow \left.2 x d x=d y\right] \\$
$ =\frac{3}{2} \int \frac{d y}{\sqrt{y}}-\log \left|x+\sqrt{x^{2}+3^{2}}\right|+c \\ $
$=3 \sqrt{x^{2}+9}-\log \left|x+\sqrt{x^{2}+9}\right|+C$
Question:17
Evaluate the following:
$\int \sqrt{5-2 x+x^{2} }d x$
Answer:
$\\ \text { Given; } \int \sqrt{5-2 x+x^{2}} d x \\$
$ =\int \sqrt{(x-1)^{2}+2^{2}} \\$
$ {\left[\because \int \sqrt{x^{2}+a^{2}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|\right.} \\$
$ =\frac{x-1}{2} \sqrt{5-2 x+x^{2}}+2 \log \left|(x+1)+\sqrt{5-2 x+x^{2}}\right|+C$
Question:18
Evaluate the following:
$\int \frac{x}{x^{4}-1} d x$
Answer:
$\\ \text { Given; } \int \frac{x}{x^{4}-1} d x \\$
$ \text { [Let; } t=x^{2}\ \Rightarrow \left.d t=2 x d x\right] \\$
$ =\int \frac{1}{\left(t^{2}-1\right)} \frac{d t}{2}$
$\\ =\frac{1}{2} \int \frac{1}{(t+1)(t-1)} d t \\ =\frac{1}{2} \int \frac{1}{2}\left[\frac{1}{(t-1)}-\frac{1}{(t+1)}\right] d t \\ $${[\because \int \frac{1}{x} d x}={\log |x|}]$
$=\frac{1}{4}(\log |t-1|-\log |t+1|)+C$$\\ {\left[\because \log a-\log b=\log \frac{a}{b}\right]} \\ $
$=\frac{1}{4} \log \left|\frac{t-1}{t+1}\right|+c \\ =\frac{1}{4} \log \left|\frac{x^{2}-1}{x^{2}+1}\right|+c$
Question:19
Evaluate the following:
$\int \frac{x^{2}}{1-x^{4}} d x \text { put } x^{2}=t$
Answer:
Given: $\int \frac{x^{2}}{1-x^{4}} d x$
$\\ =\int \frac{1}{2}\left[\frac{2 x^{2}}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ =\int \frac{1}{2}\left[\frac{x^{2}+x^{2}-1+1}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ $
$=\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)-\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right] \\ $
$=\int \frac{1}{2}\left[\frac{\left(1+x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x-\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)\left(1-x^{2}\right)} d x\right]$
$=\int \frac{1}{2}\left[\frac{1}{\left(1-x^{2}\right)} d x-\frac{1}{\left(1+x^{2}\right)} d x\right]$
As we know,
$\\ \int \frac{1}{\left(a^{2}-x^{2}\right)} d x=\frac{1}{2 a} \log \frac{a+x}{a-x} \\$
$ \int \frac{1}{\left(a^{2}+x^{2}\right)} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\$
$ =\frac{1}{2} \times \frac{1}{2} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c \\ =\frac{1}{4} \log \frac{1+x}{1-x}-\frac{1}{2} \tan ^{-1} x+c$
Question:20
Evaluate the following:
$\int \sqrt{2 a x-x^{2}} d x$
Answer:
$\\ \text { Given; } \int \sqrt{2 a x-x^{2}} d x \\ =\int \sqrt{a^{2}-a^{2}+2 a x-x^{2}} d x \\$
$ =\int \sqrt{a^{2}-(x-a)^{2}} d x \\$
$ =\frac{(x-a)}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x-a}{a}+c$
Question:21
Evaluate the following:
$\\ \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x$
Answer:
$\\ \begin{aligned}&\text { Given; }\\ &\int \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x\\ &\begin{array}{l} \begin{array}{c} \text { Let; } t=\sin ^{-1} x \\ x=\sin t \\ \Rightarrow d t=\frac{1}{\sqrt{1-x^{2}}} d x \end{array} \\ \Rightarrow \int \frac{\sin ^{-1} x}{\left(1-x^{2}\right) \sqrt{\left(1-x^{2}\right)}} d x \\ =\int \frac{t}{\left(1-\sin ^{2} t\right)} d t \\ =\int \frac{t}{\cos ^{2} t} d t \end{array} \end{aligned}$
$\\ =\int t \sec ^{2} t d t\\$
Apply integration by parts
$ \left[\int f(x) \cdot g(x) d x=f(x) \int g(x) d x-\int \frac{d}{d x} f(x)\left[\int g(x) d x\right] d x\right]$
$\\ =\mathrm{t} \int \sec ^{2} \mathrm{t} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{t})\left[\int \sec ^{2} \mathrm{t} \mathrm{dt}\right] \mathrm{dt} \\$
$ =\mathrm{t} \operatorname{tant}-\int \mathrm{tant} \mathrm{dt} \\ =\mathrm{t} \operatorname{tant}+\int \frac{-\sin \mathrm{t}}{\cos t} \mathrm{dt} \\ $
$=\mathrm{t} \operatorname{tant}+\log |\cos t|+\mathrm{C} \\ =\frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}+\log \left|\sqrt{1-\mathrm{x}^{2}}\right|+\mathrm{C}$
Question:22
Evaluate the following:
$\int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} d x$
Answer:
$\\ \text { Given; } \int \frac{(\cos 5 x+\cos 4 x)}{1-2 \cos 3 x} \mathrm{dx} \\ {\left[\cos a+\cos b=2 \cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b)\right]} \\$
$ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2}}{1-2 \cos 3 x} d x \\ =\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{(1-2 \cos 3 x) \cos \frac{3 x}{2}} d x \\ $
$=\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-2 \cos 3 x \cos \frac{3 x}{2}} d x$
$\\ {[\because 2 \cos a \cos b=\cos (a+b)+\cos (a-b)]} \\ $
$=\int \frac{2 \cos \frac{9 x}{2} \cos \frac{x}{2} \cos \frac{3 x}{2}}{\cos \frac{3 x}{2}-\cos \frac{9 x}{2}-\cos \frac{3 x}{2}} d x \\ =\int-2 \cos \frac{3 x}{2} \cos \frac{x}{2} d x \\$
$ =\int-\cos 2 x-\cos x d x \\ =-\frac{\sin 2 x}{2}-\sin x+C$
Question:23
Evaluate the following:
$\int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} d x$
Answer:
$\\ \text { Given; } \int \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\ $
$=\int \frac{\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{4} x-\sin ^{2} x \cos ^{2} x+\cos ^{4} x\right)}{\sin ^{2} x \cos ^{2} x} \mathrm{dx} \\$
$ =\int \frac{\left(\sin ^{4} x+\cos ^{4} x-\sin ^{2} x \cos ^{2} x\right)}{\sin ^{2} x \cos ^{2} x} d x \\$
$ =\int \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}-1 d x \\$
$ =\int \tan ^{2} x+\cot ^{2} x-1 d x$
$\\$
$ =\int \sec ^{2} x-1+\operatorname{cosec}^{2} x-1-1 \mathrm{dx} \\ $
$=\tan x-\cot x-3 x+C$
Question:24
Evaluate the following:
$\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x$
Answer:
$\begin{aligned} &\text { Given; }\\ &\int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x\\ &\left[\text { Let; } t=\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}} \Rightarrow d t=\frac{3 \sqrt{x}}{2 a^{\frac{3}{2}}} d x\right]\\ &=\int \frac{2 a^{\frac{3}{2}} \mathrm{dt}}{3 \sqrt{\mathrm{a}^{3}-\mathrm{a}^{3} \mathrm{t}^{2}}}\\ &=\int \frac{2 \mathrm{dt}}{3 \sqrt{1-\mathrm{t}^{2}}}\\ &=\frac{2}{3} \sin ^{-1} t+C=\frac{2}{3} \sin ^{-1}\left(\frac{x^{\frac{3}{2}}}{a^{\frac{3}{2}}}\right)+C \end{aligned}$
Question:25
Evaluate the following:
$\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$
Answer:
Given, $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$
$\\ =\int \frac{\cos 2 x-\cos x}{\cos x-1} d x \\ $
$=\int \frac{2 \cos ^{2} x-1-\cos x}{\cos x-1} d x \\ $
$=\int \frac{(2 \cos x+1)(\cos x-1)}{\cos x-1} d x \\ =\int(2 \cos x+1) d x \\ =2 \sin x+x+c$
Question:26
Answer:
$\\ \begin{aligned} &\text { Given; }\\ &\int \frac{d x}{x \sqrt{x^{4}-1}}\\ &\text { [Let; } \left.\mathrm{x}^{2}=\sec \theta \Rightarrow 2 \mathrm{xdx}=\sec \theta \tan \theta \mathrm{d} \theta\right]\\ &=\int \frac{\sec \theta \tan \theta}{2 \sec \theta \sqrt{\sec ^{2} \theta-1}} d \theta=\int \frac{\mathrm{d} \theta}{2}\\ &=\frac{\theta}{2}+c\\ &=\frac{\sec ^{-1} x^{2}}{2}+c \end{aligned}$
Question:27
Evaluate the following as limit of sums:
$\int_{0}^{2}\left(x^{2}+3\right) d x$
Answer:
$\\ \text { Given; } \int_{0}^{2}\left(\mathrm{x}^{2}+3\right) \mathrm{d} \mathrm{x} \\$
$ \text { We know } \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\lim _{\mathrm{h} \rightarrow \infty} \mathrm{h} \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \\$
$ \text { Here } \mathrm{a}=0 . \mathrm{b}=2 \\ \mathrm{~h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}=\frac{2-0}{\mathrm{n}}=\frac{2}{\mathrm{n}} \\$
$\Rightarrow\mathrm{nh}=2$
$\\ =\operatorname{limh}_{h \rightarrow 0} \sum_{r=0}^{n-1} f(r h) \\ =\lim _{h \rightarrow 0} h \sum_{r=0}^{n-1}\left(3+r^{2} h^{2}\right) \\$
$ =\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{(n-1)(n-1+1)(2 n-2+1)}{6}\right)\right.$
$\\ =\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{\left(n^{2}-n\right)(2 n-1)}{6}\right)\right. \\ $
$=\operatorname{limh}_{h \rightarrow 0} h\left(3 n+h^{2}\left(\frac{2 n^{3}-3 n^{2}+n}{6}\right)\right. \\ =\lim _{h \rightarrow 0}\left(3 n h+\left(\frac{2 n^{3} h^{3}-3 n^{2} h^{3}+n h^{3}}{6}\right)\right.$
$\\ =\lim _{h \rightarrow 0}\left(3.2+\left(\frac{2.2^{3}-3.2^{2}.h+2 h^{2}}{6}\right)\right. \\ =6+\frac{16}{3} \\ =\frac{26}{3}$
Question:28
Evaluate the following as limit of su
$\int_{0}^{2} \mathrm{e}^{\mathrm{x}} \mathrm{d} \mathrm{x}$
Answer:
$\\ \text { We know } \int_{a}^{b} f(x) d x=\lim _{h \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \\$
$ \text { Here } a=0, b=2 \\$
$\\ h=\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n} \\$
$\Rightarrow h=2$
$\\ =\operatorname{limh}_{h \rightarrow 0} \sum_{r=0}^{n-1} f(r h) \\ =\lim _{h \rightarrow 0} h\left[1+e^{h}+e^{2 h}+\cdots,+e^{(n-1) h}\right] \\ =\lim _{h \rightarrow 0} h\left[\frac{1\left(e^{h}\right)^{n}-1}{e^{h}-1}\right]$
$\\ =\lim _{h \rightarrow 0} h\left[\frac{e^{n h}-1}{e^{h}-1}\right] \\ =\lim _{h \rightarrow 0} h\left[\frac{e^{2}-1}{e^{h}-1}\right] \\ =(e^{2}-1 )\lim _{h \rightarrow 0}\left[\frac{h}{e^{h}-1}\right] \\ =e^{2}-1$
Question:29
Evaluate the following:
$\int_{0}^{1} \frac{d x}{e^{x}+e^{-x}}$
Answer:
$\\ \text { Given; } \int_{0}^{1} \frac{d x}{e^{x}+e^{-x}} \\$
$ =\int_{0}^{1} \frac{e^{x} d x}{e^{2 x}+1} \\ =\int_{1}^{e} \frac{d t}{t^{2}+1} \\ \text { [Let; }.t=e^{x}[\text { when } x=0, t=1 \text { and } x=1, t=e] ]$
$\Rightarrow d t=[e^{x} d x] \\ =\left[\tan ^{-1} t\right]_{1}^{e}$
$=\tan ^{-1} \mathrm{e}-\tan ^{-1} 1=\tan ^{-1} \mathrm{e}-\frac{\pi}{4}$
Question:30
Evaluate the following:
$\int_{0}^{\frac{\pi}{2}} \frac{\tan x d x}{1+m^{2} \tan ^{2} x}$
Answer:
$\\ \text { Given; } \int_{0}^{\frac{\pi}{2}} \frac{\tan x}{1+m^{2} \tan ^{2} x} \mathrm{dx} \\ \text { [Let; } \left.t=\tan x \Rightarrow \mathrm{dt}=\sec ^{2} \mathrm{x} \mathrm{dx}\right] \\ $$\qquad \text { [Let; } \left.\mathrm{u}=\mathrm{t}^{2} \Rightarrow \mathrm{du}=2 \mathrm{tdt}\right] \\ $
$\frac{\mathrm{t}}{1+\mathrm{m}^{2} \mathrm{t}^{2}} \frac{\mathrm{dt}}{\sec ^{2} \mathrm{x}}=\int \frac{\mathrm{t}}{\left(1+\mathrm{m}^{2} \mathrm{t}^{2}\right)} \frac{\mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)} \\ $
$=\int \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})} \frac{\mathrm{du}}{2}$
By applying partial fraction;
$\\ \frac{1}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)(1+\mathrm{u})}=\frac{\mathrm{A}}{\left(1+\mathrm{m}^{2} \mathrm{u}\right)}+\frac{\mathrm{B}}{(1+\mathrm{u})} \\$
$ 1=\mathrm{A}(1+\mathrm{u})+\mathrm{B}\left(1+\mathrm{m}^{2} \mathrm{u}\right) \\$
$ \mathrm{B}=\frac{1}{1-\mathrm{m}^{2}} \\$
$ \text { When } \mathrm{u}=-1 \\$
$ \text { When } \mathrm{u}=-\frac{1}{\mathrm{~m}^{2}}$
$\\ A=\frac{m^{2}}{m^{2}-1} \\ $
$=\frac{1}{2} \int \frac{m^{2}}{\left(m^{2}-1\right)\left(1+m^{2} u\right)}+\frac{1}{\left(1-m^{2}\right)(1+u)} d u \\ $
$=\frac{1}{2} \times \frac{m^{2}}{m^{2}-1} \times \log \left|1+m^{2} u\right|+\frac{1}{2} \times \frac{1}{1-m^{2}} \times \log |1+u|+C$
$\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1} \times \log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\frac{1}{2} \times \frac{1}{1-\mathrm{m}^{2}} \times \log \left|1+\tan ^{2} \mathrm{x}\right|+\mathrm{C} \\ $
$=\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right|+\log \left|1+\tan ^{2} \mathrm{x}\right|\right]+\mathrm{C} \\ $
$=\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mid\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right)\left(1+\tan ^{2} \mathrm{x}\right) \|+\mathrm{C}\right. \\$
$ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \left|\left(1+\mathrm{m}^{2} \tan ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x}\right|\right]+\mathrm{C}$
$\\ =\frac{1}{2} \times \frac{\mathrm{m}^{2}}{\mathrm{~m}^{2}-1}\left[\log \mathrm{g}\left(\cos ^{2} \mathrm{x}+\mathrm{m}^{2} \sin ^{2} \mathrm{x}\right) \sec ^{2} \mathrm{x} \|+\mathrm{C}\right. \\$
$ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \mathrm{x}+1\right|}{2 \mathrm{~m}^{2}-2}+\mathrm{C}$
By applying the given limits 0 to π/2
$\\ =\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} \frac{\pi}{2}+1\right|}{2 \mathrm{~m}^{2}-2}-\frac{\log \left|\left(\mathrm{m}^{2}-1\right) \sin ^{2} 0+1\right|}{2 \mathrm{~m}^{2}-2} \\ $
$=\frac{\log \left|\left(\mathrm{m}^{2}\right)\right|}{2 \mathrm{~m}^{2}-2}$
Question:31
Evaluate the following:
$\int_{1}^{2} \frac{d x}{\sqrt{(x-1)(2-x)}}$
Answer:
Using a perfect square method for the denominator
$\\ \begin{aligned} &=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4}\\ &=\int_{1}^{2} \frac{d x}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}}\\ &\text { We know }\\ &\int \frac{\mathrm{dx}}{\sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}\right)+\mathrm{C}\\ &=\left[\sin ^{-1}\left(\frac{\left(x-\frac{3}{2}\right)}{\frac{1}{2}}\right)\right]_{1}^{2}=\left[\sin ^{-1}(2 x-3)\right]_{1}^{2} \end{aligned}$
$\\ =\sin ^{-1}(1)-\sin ^{-1}(-1) \\ \text {We know } \sin ^{-1}(-\theta)=-\sin \theta \\ =\frac{\pi}{2}+\frac{\pi}{2} \\ =\pi$
Question:32
Evaluate the following:
$\int_{0}^{1} \frac{\mathrm{xdx}}{\sqrt{1+\mathrm{x}^{2}}}$
Answer:
$\\ \Rightarrow \frac{1}{2} \int_{1}^{2} \frac{d t}{\sqrt{t}} \\ =\frac{1}{2}[2 \sqrt{t}]_{1}^{2} \\ =\sqrt{2}-1 \\ \Rightarrow \int_{0}^{1} \frac{x d x}{\sqrt{1+x^{2}}}=\sqrt{2}-1$
Question:33
Evaluate the following:
$\int_{0}^{\pi} x \sin x \cos ^{2} x d x$
Answer:
Using Property
$\\ \int_{2}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\$
$ \text { Let } I=\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\$
$\Rightarrow\int_{0}^{\pi} x \sin x \cos ^{2} x d x=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cos ^{2}(\pi-x) d x \\$
$ \operatorname{ses}(\pi-x)=-\cos x$
$\\ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-\int_{0}^{\pi} x \sin x \cos ^{2} x d x \\$
$ I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x-I \\$
$ {2} I=\int_{0}^{\pi} \pi \sin x \cos ^{2} x d x$
$\\ \begin{aligned} &\Rightarrow \int_{0}^{\pi} \pi \sin x \cos ^{2} x d x=\pi \int_{0}^{\pi} \sin x \cos ^{2} x d x\\ &\text { Now let } \cos x=t\\ &\Rightarrow-\sin x d x-d t\\ &\text { And, at } x=0, t=1\\ &\text { and at } x=\pi, t=-1 \end{aligned}$
$\\ \Rightarrow 2\mathrm{I}=-\pi \int_{1}^{-1} \mathrm{t}^{2} \mathrm{dt}=-\pi\left[\frac{\mathrm{t}^{2}}{3}\right]_{1}^{-1}=\frac{2 \pi}{3} \\$
$ \Rightarrow{2 \mathrm{I}=\frac{2 \pi}{3}} \\ \Rightarrow{\mathrm{I}=\frac{\pi}{3}} \\$
$ \Rightarrow \int _{0}^{\pi} x \sin x \cos ^{2} x \mathrm{dx}=\frac{\pi}{3}$
Question:34
Answer:
$\\ \text { Given } \int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}} \\ $
$\Rightarrow\text { Let } x=\sin \theta \\$
$\text { At } x=0, \theta=0 \\ \text { and } x=\frac{1}{2}, \theta=\frac{\pi}{6}$
$\\ =\int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}=\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{1-\sin ^{2} \theta}} \\$
$ \text { As } 1-\sin ^{2} \theta=\cos ^{2} \theta \\ =\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{1-\sin ^{2} \theta}}=\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \sqrt{\cos ^{2} \theta}} \\ =\int_{0}^{\frac{\pi}{6}} \frac{\cos \theta d \theta}{\left(1+\sin ^{2} \theta\right) \cos \theta}$
$\\ \begin{aligned} &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{d \theta}{\left(1+\sin ^{2} \theta\right)}\\ &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\left(\sec ^{2} \theta+\tan ^{2} \theta\right)}\\ &\Rightarrow\mathrm{As} \sec ^{2} \theta-\tan ^{2} \theta=1\\ &\Rightarrow\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\left(1+2 \tan ^{2} \theta\right)} \end{aligned}$
$\\ \begin{aligned} &\text { Now put } \tan \theta=t\\ &\Rightarrow\sec ^{2} \theta \mathrm{d} \theta=\mathrm{dt}\\ &\text { At } \theta=0, \mathrm{t}=0\\ &\text { at } \theta=\frac{\pi}{6}, \mathrm{t}=\frac{1}{\sqrt{3}}\\ &=\int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(1+2 t^{2}\right)}=\frac{1}{2} \int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+t^{2}\right)}\\ &\text{As } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{2} \tan ^{-1}\left(\frac{x}{a}\right)+c \end{aligned}$
$\\ \Rightarrow\int_{0}^{\frac{1}{\sqrt{2}}} \frac{d t}{\left(\left(\frac{1}{\sqrt{2}}\right)^{2}+t^{2}\right)}=\frac{1}{2}\left[\frac{1}{\frac{1}{\sqrt{2}}} \tan ^{-1}\left(\frac{t}{\frac{1}{\sqrt{2}}}\right)\right]_{0}^{\frac{1}{\sqrt{2}}} \\ =\frac{\sqrt{2}}{2} \tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \\$
$\Rightarrow\int_{0}^{\frac{1}{2}} \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{3}}\right)$
Question:35
Evaluate the following:
$\int \frac{x^{2} d x}{x^{4}-x^{2}-12}$
Answer:
$\\ \text { Given: } \int \frac{x^{2} d x}{x^{4}-x^{2}-12} \\ \text { Put } x^{2}=t \\ $
$=>\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{t}{t^{2}-t-12}$
$\\ \Rightarrow \mathrm{t}^{2}-\mathrm{t}-12=(\mathrm{t}+3)(\mathrm{t}-4) \\$
$ \Rightarrow \frac{\mathrm{t}}{(\mathrm{t}+3)(\mathrm{t}-4)}=$
$\frac{\mathrm{A}}{(\mathrm{t}+3)}+\frac{\mathrm{B}}{(\mathrm{t}-4)} \text { (Concept of partial fraction) } \\$
$ \Rightarrow \mathrm{t}=\mathrm{t}(\mathrm{A}+\mathrm{B})+3 \mathrm{~B}-4 \mathrm{~A}$
On comparing coefficients of ‘t’ we get
$\\ A=\frac{3}{7} \& B=\frac{4}{7}\\ =\frac{t}{(t+3)(t-4)}=\frac{3}{7(t+3)}+\frac{4}{7(t-4)}\\ $
$\Rightarrow\text { Now put } t=x^{2} \text { back in the above eq. }\\$
$\Rightarrow\frac{x^{2}}{x^{4}-x^{2}-12}=\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)} $
$ \Rightarrow\frac{x^{2} d x}{x^{4}-x^{2}-12}=\int\left(\frac{3}{7\left(x^{2}+3\right)}+\frac{4}{7\left(x^{2}-4\right)}\right) d x=\frac{1}{7}\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right) \\ $
$\Rightarrow\operatorname{Now} \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)+c \& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\$
$ \Rightarrow7\left(\int \frac{3 d x}{\left(x^{2}+3\right)}+\int \frac{4 d x}{\left(x^{2}-4\right)}\right)=\frac{1}{7}\left(\frac{3}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{4}{4} \ln \left(\frac{x-2}{x+2}\right)+c\right) \\ $
$\Rightarrow\int \frac{x^{2} d x}{x^{4}-x^{2}-12}=$
$\frac{\sqrt{3}}{7} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+\frac{1}{7} \ln \left(\frac{x-2}{x+2}\right)+c$
Question:36
Evaluate the following:
$\int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$
Answer:
$\\ \text { Given } \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}\\ \text { Put } x^{2}=t\\ $
$\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}\\ $
$\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{A}{\left(t+a^{2}\right)}+\frac{B}{\left(t+b^{2}\right)}(\text { Concept of partial fraction })$
$\Rightarrow t=t(A+B)+a^{2} B+b^{2} A\\ \text { On comparing coefficients of "twe get }\\ $
$\Rightarrow \mathrm{A}=\frac{\mathrm{a}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \ \mathrm{~B}=\frac{-\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}}$
$\Rightarrow \frac{t}{\left(t+a^{2}\right)\left(t+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(t+a^{2}\right)}-\frac{b^{2}}{\left(t+b^{2}\right)}\right)\\ $
$\Rightarrow \text { Now put } t=x^{2} \text { back in the above eq. }\\ $
$\Rightarrow \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{\left(x^{2}+a^{2}\right)}-\frac{b^{2}}{\left(x^{2}+b^{2}\right)}\right)\\ $
$\Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right)\\ $
$\Rightarrow_{\text {Now }} \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c $
$\\ =\frac{1}{a^{2}-b^{2}}\left(\int \frac{a^{2} d x}{\left(x^{2}+a^{2}\right)}-\int \frac{b^{2} d x}{\left(x^{2}+b^{2}\right)}\right) \\ $
$\Rightarrow=\frac{1}{a^{2}-b^{2}}\left(\frac{a^{2}}{a} \tan ^{-1}\left(\frac{x}{a}\right)+\frac{b^{2}}{b} \tan ^{-1}\left(\frac{x}{b}\right)+c\right) \\$
$ \Rightarrow \int \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{1}{a^{2}-b^{2}}\left(a \tan ^{-1}\left(\frac{x}{a}\right)+b \tan ^{-1}\left(\frac{x}{b}\right)\right)+c$
Question:37
Evaluate the following:
$\int_{0}^{\pi} \frac{x}{1+\sin x}$
Answer:
$\\ Given \int_{0}^{\pi} \frac{x d x}{1+\sin x}$\\$
Let $\mathrm{I}=\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}\\$
$ Now using Property $\int_{a}^{b} f(x) d x$
$=\int_{a}^{b} f(a+b-x) d x$
$=\int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{(\pi-x) d x}{1+\sin (\pi-x)}$
$\\ \Rightarrow \int_{0}^{\pi} \frac{x d x}{1+\sin x}=\int_{0}^{\pi} \frac{\pi d x}{1+\sin x}-\int_{0}^{\pi} \frac{x d x}{1+\sin x} \\ \Rightarrow 2 \int_{0}^{\pi} \frac{x d x}{1+\sin x}=2$
$ I=\pi \int_{0}^{\pi} \frac{d x}{1+\sin x} \ldots(1) \\$
$ \Rightarrow \int_{0}^{\pi} \frac{d x}{1+\sin x}=\int_{0}^{\pi} \frac{1}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}=\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x \\$
$ \Rightarrow 1-\sin ^{2} x=\cos ^{2} x$
$\\ =\int_{0}^{\pi} \frac{1-\sin x}{1-\sin ^{2} x} d x=\int_{0}^{\pi} \frac{1-\sin x}{\cos ^{2} x} d x=\int_{0}^{\pi} \frac{d x}{\cos ^{2} x}-\int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x \ldots(2) \\$
$ \Rightarrow \int_{0}^{\pi} \frac{d x}{\cos ^{2} x}=\int_{0}^{\pi} \sec ^{2} x d x=[\tan x]_{0}^{\pi}=0 \\$
And $\text { for } \int_{0}^{\pi} \frac{\sin x}{\cos ^{2} x} d x \\ \text { Put } \cos x=t$
$\\ \Rightarrow-\sin x d x=d t\\ $
$\Rightarrow \mathrm{At}^{\mathrm{x}}=0=>\mathrm{t}=1 \text { and } \mathrm{x}=\pi=>\mathrm{t}=-1\\ =\int_{1}^{-1}-\frac{d t}{t^{2}}=\left[\frac{1}{t}\right]_{1}^{-1}=-2 \ldots$
$\\ 2\mathrm{I}=\pi \int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{1+\sin \mathrm{x}}=$
$\pi\left(\int_{0}^{\pi} \frac{\mathrm{d} \mathrm{x}}{\cos ^{2} \mathrm{x}}-\int_{0}^{\pi} \frac{\sin \mathrm{x}}{\cos ^{2} \mathrm{x}} \mathrm{dx}\right)=\pi(0-(-2))=2 \pi \\ $
$\quad\mathrm{I}=$$\int_{0}^{\pi} \frac{\mathrm{xdx}}{1+\sin \mathrm{x}}=\pi \\$
Question:38
Evaluate the following:
$\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x$
Answer:
Given:
$\int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x$
Using the concept of partial fractions,
$\\ \Rightarrow \frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{C}{(x-3)}$\\ $\Rightarrow 2 x-1=x^{2}(A+B+C)+x(C-4 B-A)+(3 B-2 C-6 A)$\\ Comparing coefficients:\\ $\Rightarrow A+B+C=0 \ldots(1)\\$
$\\ \begin{aligned} &\Rightarrow C-4 B-A=2 \ldots(2)\\ &\Rightarrow 3 B-2 C-6 A=-1 \ldots(3)\\ &\Rightarrow \text { On solving }(1),(2) \text { and }(3) \text { we get }\\ &\Rightarrow A=-\frac{1}{6}, B=-\frac{1}{3} \text { and } C=\frac{1}{2} \end{aligned}$
$\\ =\frac{2 x-1}{(x-1)(x+2)(x-3)}=\frac{-\frac{1}{6}}{(x-1)}+\frac{-\frac{1}{2}}{(x+2)}+\frac{\frac{1}{2}}{(x-3)} \\ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\int \frac{1}{2(x-3)} d x-\int \frac{1}{3(x+2)} d x-\int \frac{1}{6(x-1)} d x$
$\\ =\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c \\ \Rightarrow \int \frac{2 x-1}{(x-1)(x+2)(x-3)} d x=\frac{1}{2} \ln (x-3)-\frac{1}{3} \ln (x+2)-\frac{1}{6} \ln (x-1)+c$
Question:39
Answer:
Given: $\int \mathrm{e}^{\tan ^{-1} \mathrm{x}}\left(\frac{1+\mathrm{x}+\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{d} \mathrm{x}$
$\\ \text { Put } \tan ^{-1} x=t \\ $
${l} =\frac{d x}{1+x^{2}}=d t \\ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=\int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t \\$
$ \Rightarrow \operatorname{As} \sec ^{2} \theta-\tan ^{2} \theta=1 \\ $
$\Rightarrow \int e^{t}\left(1+\tan t+\tan ^{2} t\right) d t=\int e^{t}\left(1+\tan t+\sec ^{2} t-1\right) d t$
$\\ \Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t\\ $
$\text { Now using the property. } \int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{dx}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ $
$\Rightarrow \text { Now in } \int e^{t}\left(\tan t+\sec ^{2} t\right) d t $
$\\=f(t)=\tan t \\ \Rightarrow f^{\prime}(t)=\sec ^{2} x \\ $
$\Rightarrow \int e^{t}\left(\tan t+\sec ^{2} t\right) d t=e^{t} \tan t+C \\$
$ \Rightarrow \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=e^{\tan ^{-1} x} x+C$
Question:40
Evaluate the following:
$\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$ (Hint: Put x = a tan2 θ)
Answer:
Given: $\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x$
$\\ \Rightarrow \text { Put } x=a \tan ^{2} \theta\\ \Rightarrow \mathrm{dx}=2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta\\ \int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x=$$\int \sin ^{-1} \sqrt{\frac{a \tan ^{2} \theta}{a+a \tan ^{2} \theta}} 2 a \tan \theta \sec ^{2} \theta d \theta $
$\\ \Rightarrow \mathrm{As} \sec ^{2} \theta-\tan ^{2} \theta=1 \\$
$ =\int \sin ^{-1} \sqrt{\frac{a \tan ^{2} \theta}{a\left(1+\tan ^{2} \theta\right)}} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta \\ \Rightarrow \int \sin ^{-1} \sqrt{\frac{\tan ^{2} \theta}{\sec ^{2} \theta}} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta$
$=\int \sin ^{-1} \sqrt{\sin ^{2} \theta} 2 \mathrm{a} \tan \theta \sec ^{2} \theta \mathrm{d} \theta \\ $
$\Rightarrow 2 \mathrm{a} \int \theta \tan \theta \sec ^{2} \theta \mathrm{d} \theta$
$\Rightarrow$ $\text{Now put }$$\tan \theta=t$
$\\ \Rightarrow \sec ^{2} \theta \mathrm{d} \theta=\mathrm{d} t $
$\Rightarrow 2 \mathrm{a} \int \theta \tan \theta \sec ^{2} \theta \mathrm{d} \theta=2 \mathrm{a} \int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt} \ldots$
$\Rightarrow$ $\text{Now apply integration by part on}$$\int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt}$
Question:41
Answer:
Given: $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x )^{\frac{5}{2}}}$
Using Trigonometric identities:
$\\ \Rightarrow \cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=1-2 \sin ^{2} \mathrm{x} \\ \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}}=\frac{\sqrt{1+\left(2 \cos ^{2} \frac{x}{2}-1\right)}}{\left(1-\left(1-2 \sin ^{2} \frac{x}{2}\right)\right)^{\frac{5}{2}}} \\ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}}$
$\\ =\frac{\sqrt{2 \cos ^{2} \frac{x}{2}}}{\left(2 \sin ^{2} \frac{x}{2}\right)^{\frac{5}{2}}} \\ =\left(\sqrt{2} \cos \frac{x}{2}\right) /\left(2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}\right) \\ =\frac{\sqrt{2 }\cos \frac{x}{2}}{2^{\frac{5}{2}} \sin ^{5} \frac{x}{2}} \\ =\frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}}$
$\Rightarrow\\ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} d x \\ $
$\text { Put } \sin \left(\frac{x}{2}\right)=t \\ \cos \left(\frac{x}{2}\right) d x=2 d t \\ \text { At } x=\frac{\pi}{3}$
$\Rightarrow t=\frac{1}{2} \text { and at } x=\frac{\pi}{2}$
$\Rightarrow t=\frac{1}{\sqrt{2}}$
$\Rightarrow\\\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{4} \frac{\cos \frac{x}{2}}{\sin ^{5} \frac{x}{2}} \mathrm{dx}=\frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}$
$\Rightarrow\\ \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{d t}{t^{5}}=\frac{1}{2}\left[\frac{t^{-4}}{-4}\right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}}=\frac{3}{2} \\ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1+\cos x}}{(1-\cos x)^{\frac{5}{2}}} d x=\frac{3}{2}$
Question:42
Evaluate the following:
$\int \mathrm{e}^{-3 \mathrm{x}} \cos ^{3} \mathrm{x} \mathrm{d} \mathrm{x}$
Answer:
$\\ \begin{aligned} &\text { Given: } \int e^{-3 x} \cos ^{3} x d x\\ &\text { Using trigonometric identity }\\ &\cos 3 x=4 \cos ^{3} x-3 \cos x\\ &\int e^{-3 x} \cos ^{3} x d x=\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x\\ &\frac{1}{4} \int e^{-3 x}(\cos 3 x+3 \cos x) d x=\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x ...(1) \end{aligned}$
$\\ \begin{aligned} &\Rightarrow \text { Using a generalised formula i.e }\\ &\int e^{a x} \cos b x d x=\frac{e^{2 x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)\\ &\int e^{-3 x} \cos 3 x d x=\frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x) \end{aligned}$
$=\\ \frac{e^{-2 x}}{(-3)^{2}+3^{2}}((-3) \cos 3 x+3 \sin 3 x)$
$=\frac{e^{-2 x}}{6}(\sin 3 x-\cos 3 x) \ldots(2)\\ \int e^{-3 x} \cos x d x$
$=\frac{e^{-2 x}}{(-3)^{2}+1^{2}}((-3) \cos x+\sin x)$
$=\frac{e^{-2 x}}{10}(\sin x-3 \cos x)\\ =\frac{e^{-2 x}}{10}(\sin x-3 \cos x) \ldots(3)\\ $
$\Rightarrow \text { On putting }(2) \text { and }(3) \text { in }(1)$
$\frac{1}{4} \int e^{-3 x} \cos 3 x d x+\frac{3}{4} \int e^{-3 x} \cos x d x=\frac{e^{-2 x}}{4 \times 6}(\sin 3 x-\cos 3 x)+\frac{3 e^{-2 x}}{4 \times 10}(\sin x- 3 \cos x) \\$
$ \Rightarrow \int e^{-3 x} \cos ^{3} x d x=e^{-3 x}\left\{\frac{(\sin 3 x-\cos 3 x)}{24}+\frac{3(\sin x-3 \cos x)}{40}\right\}+c$
Question:43
Evaluate the following:
$\int \sqrt{\tan x} d x$ (Hint: Put $tan x = t^2$)
Answer:
Given:
$\int \sqrt{\tan x} d x$
Put $tan x = t^2$
$\begin{aligned} &\Rightarrow \sec ^{2} x d x=2 t d t\\ &\Rightarrow \mathrm{dx}=\frac{2 t \mathrm{dt}}{\sec ^{2} x}=\frac{2 \mathrm{tdt}}{1+\tan ^{2} \mathrm{x}}=\frac{2 \mathrm{tdt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \sqrt{\tan \mathrm{x}} \mathrm{d} \mathrm{x}=\int \sqrt{\mathrm{t}^{2}} \frac{2 \mathrm{t} \mathrm{dt}}{1+\mathrm{t}^{4}}=\int \frac{2 \mathrm{t}^{2} \mathrm{dt}}{1+\mathrm{t}^{4}}\\ &\Rightarrow \int \frac{2 t^{2} d t}{1+t^{4}}=\int \frac{\left(2 t^{2}+1-1\right) d t}{1+t^{4}}=\int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t\\ &\Rightarrow \int \frac{\left(t^{2}+1\right)+\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t \end{aligned}$
Taking out $t^2$ common in both the numerators
$\\ \Rightarrow \int \frac{\left(t^{2}+1\right)}{1+t^{4}} d t+\int \frac{\left(t^{2}-1\right)}{1+t^{4}} d t=\int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} d t+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt} \\ \int \frac{t^{2}\left(1+\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}+\int \frac{t^{2}\left(1-\left(\frac{1}{t^{2}}\right)\right)}{1+t^{4}} \mathrm{dt}$
$=\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \ldots . \text { (1) }$
$\\ \Rightarrow \operatorname{Now} t^{2}+\frac{1}{t^{2}}=\left(t \pm \frac{1}{t}\right)^{2} \mp 2 \ldots(3)\\ =\operatorname{for}(a) \int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt} \text { taking } t-\frac{1}{t}=z\\ $
$\Rightarrow\left(1+\frac{1}{t^{2}}\right) d t=d z$
$\\ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt} \\$
$ =\int \frac{\left(1+\frac{1}{t^{2}}\right)}{\left(t-\frac{1}{t}\right)^{2}+2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}+2}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{z}{\sqrt{2}}\right)+\mathrm{c} \ldots(2)$
$\\ \text { for (b) } \int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \text { dt taking } t+\frac{1}{t}=z\\ $
$\Rightarrow\left(1-\frac{1}{t^{2}}\right) \mathrm{dt}=\mathrm{dz}\\ =\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\int \frac{\left(1-\frac{1}{\mathrm{t}^{2}}\right)}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}-2} \mathrm{dt}\\ =\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t+\frac{1}{t}\right)^{2}-2} \mathrm{dt}=\int \frac{\mathrm{d} z}{z^{2}-2}=\frac{1}{2 \sqrt{2}} \ln \left|\frac{z-\sqrt{2}}{z+\sqrt{2}}\right|+\mathrm{c} \ldots(3) $
Put (2) and (3) in (1)
$\\ =\int \frac{\left(1+\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}+\int \frac{\left(1-\left(\frac{1}{t^{2}}\right)\right)}{\frac{1}{t^{2}}+t^{2}} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\left(t-\frac{1}{t}\right)}{\sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(t+\frac{1}{\mathrm{t}}\right)-\sqrt{2}}{\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)+\sqrt{2}}\right|+\mathrm{c} \\$
$ \Rightarrow \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\mathrm{t}^{2}-1}{\mathrm{t} \sqrt{2}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{\left(\mathrm{t}^{2}+1-\mathrm{t} \sqrt{2}\right.}{\left(\mathrm{t}^{2}+1+\mathrm{t} \sqrt{2}\right.}\right|+\mathrm{C}$
$\\ \Rightarrow \text{Now again putting} t=\sqrt{\tan x}\text{ to obtain the final result} \\$
$ =\int \sqrt{\tan x} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x-1}{\sqrt{2 \tan x}}\right)+\frac{1}{2 \sqrt{2}} \ln \left|\frac{(\tan x+1-\sqrt{2 \tan x}}{\tan x+1+\sqrt{2 \tan x}}\right| \\$
Question:44
Answer:
Given:$\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$
Dividing Numerator and Denominator by $cos^4x$
$\\ =\int_{0}^{\frac{\pi}{2}} \frac{\left(1 / \cos ^{4} x\right) d x}{\left(\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right) / \cos ^{2} x\right)^{2}} \\$
$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{4} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}} \\$
$ \Rightarrow \text { Put } \tan x=t$
$\\ \Rightarrow \sec ^{2} x d x=d t \\ $
$\Rightarrow A t x=0 ,t=0 \text { and at } x=\frac{\pi}{2},t=\infty \\$
$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} x\right) \sec ^{2} x d x}{\left(a^{2}+b^{2} \tan ^{2} x\right)^{2}}=\int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}} \\$
$ \Rightarrow \int_{0}^{\infty} \frac{\left(1+t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}$
$\\ =\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}+b^{2} t^{2}\right) d t}{\left(a^{2}+b^{2} t^{2}\right)^{2}}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ $
$\Rightarrow \frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(a^{2}+b^{2} t^{2}\right)+\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\$
$ \Rightarrow \text { Let } I=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t+\frac{1}{b^{2}} \int_{0}^{\infty} \frac{\left(b^{2}-a^{2}\right)}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \ldots(1)$
$\\ =\operatorname{Let} I_{1}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t \\ =\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)} d t$
$=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t \\ =1_{1}=\frac{1}{b^{2}} \int_{0}^{\infty} \frac{1}{\left(\left(a^{2} / b^{2}\right)+t^{2}\right)} d t$
$=\frac{1}{b^{2}}\left(\frac{b}{a}\right)\left[\tan ^{-1}\left(\frac{b t}{a}\right)\right]_{0}^{\infty}=\frac{\pi}{2 a b} \\ \Rightarrow I_{1}=\frac{\pi}{2 a b} \ldots .(2)$
$\\ \text { Let } I_{2}=\int_{0}^{\infty} \frac{1}{\left(a^{2}+b^{2} t^{2}\right)^{2}} d t \\ $
$\Rightarrow \text { let } b t=a \tan \theta \\$
$ \Rightarrow b d t=\operatorname{asec}^{2} \theta d \theta \\ =I_{2}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{\operatorname{asec}^{2} \theta d \theta}{\left(a^{2}+a^{2} \tan ^{2} \theta\right)^{2}}=\frac{1}{b} \int_{0}^{\frac{\pi}{2}} \frac{a \sec ^{2} \theta d \theta}{a^{4}\left(1+\tan ^{2} \theta\right)^{2}}=\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta d \theta}{\sec ^{4} \theta}$
$\\ =\frac{1}{a^{3} b} \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} \theta \mathrm{d} \theta}{\sec ^{4} \theta}=\frac{1}{a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{d} \theta$$=\frac{1}{2 a^{3} \mathrm{~b}} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta \\$
$ \Rightarrow \frac{1}{2 a^{3} b} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) \mathrm{d} \theta=\frac{1}{2 a^{3} b}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4 a^{3} b} \ldots(3) \\$
$ \Rightarrow I=\frac{1}{b^{2}}\left(I_{1}+\left(b^{2}-a^{2}\right) \mathrm{I}_{2}\right)=$
$\frac{1}{b^{2}}\left(\frac{\pi}{2 a b}+\left(b^{2}-a^{2}\right) \frac{\pi}{4 a^{3} b}\right)$
$\\\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}$
$=\frac{\pi}{2 a b^{3}}\left(1+\left(\frac{b^{2}}{a^{2}}-1\right) \pi\right)$
Question:45
Evaluate the following:
$\int_{0}^{1} x \log (1+2 x) d x$
Answer:
Given: $\int_{0}^{1} x \log (1+2 x) d x$
$\\ \text { Let } 1+2 \mathrm{x}=\mathrm{t} \\ $
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt} \\ $
$\Rightarrow \mathrm{At} \mathrm{x}=0$
$\mathrm{t}=1 \text { and at } \mathrm{x}=1$
$\Rightarrow\mathrm{t}=3 \\ $
$\Rightarrow \int_{0}^{1} \mathrm{x} \ln (1+2 \mathrm{x}) \mathrm{d} \mathrm{x}=\frac{1}{4}\int_{1}^{3}(\mathrm{t}-1) \ln \mathrm{t} \mathrm{dt}....(i)$
$\Rightarrow \int_{1}^{3}(t-1) \ln t d t=\int_{1}^{3} t \ln t d t-\int_{1}^{3} \ln t d t\\ $
$\Rightarrow \text { Apply Integration by parts }\\ =\int t \operatorname{ln} t d t=\ln t \int t d t-\int \frac{d}{d t}(\ln t)\left(\int t d t\right) d t$
$=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4} \ldots(2)\\ =\int \ln t d t=\ln t \int d t-\int \frac{d}{d t}(\ln t)\left(\int d t\right) d t=t \ln t-t \ldots(3)\\ $
$\\ \Rightarrow \text { Put }(2) \text { and }(3) \text { in }(1)\\ =\frac{1}{4}\int_{1}^{3} t \ln t d t-\frac{1}{4}\int_{1}^{3} \ln t d t=\frac{1}{4}\left[\left(\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}\right)-(t \ln t-t)\right]_{1}^{3}=\frac{3}{8} \ln 3\\ $
$\Rightarrow \int_{0}^{1} x \ln (1+2 x) d x=\frac{3}{8} \ln 3 $
Question:46
Evaluate the following:
$\int_{0}^{\pi} x \log \sin x d x$
Answer:
Given:$\int_{0}^{\pi} x \log \sin x d x$
$\\ \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ $
$\text { Let } I=\int_{0}^{\pi} x \ln (\sin x) d x \\ =\int_{0}^{\pi}(\pi-x) \ln (\sin (\pi-x)) d x=\int_{0}^{\pi} \pi \ln (\sin x) d x \int_{0}^{\pi} x \ln (\sin x) d x \\$
$ \Rightarrow \text { As } \sin (\pi-x)=\sin x$
$\\ \Rightarrow 2 \mathrm{I}=\int_{0}^{\pi} \pi \ln (\sin \mathrm{x}) \mathrm{d} \mathrm{x}=\pi \int_{0}^{\pi} \ln (\sin \mathrm{x}) \mathrm{dx} \ldots(1)\\ $
$\Rightarrow \text { Now in } \int_{0}^{\pi} \ln (\sin x) d x\\ \text { Using the property}\\ $
$\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x(\text { for } f(2 a-x)=f(x))\\ =\int_{0}^{\pi} \ln (\sin x) d x=2 \int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \ldots(2) $
$\\ \Rightarrow{\text {Let }} Z=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \\ $
$\Rightarrow \text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \\ $
$\Rightarrow z=\int_{0}^{\frac{\pi}{2}} \ln \left(\sin \left(\frac{\pi}{2}-x\right) d x=\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x \ldots(4)\right. \\ $
$\Rightarrow {2 Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x+\int_{0}^{\frac{\pi}{2}} \ln (\cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x \ldots(5)$
$\\ =\int_{0}^{\frac{\pi}{2}} \ln (\sin x \cos x) d x=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x \\$
$=\int_{0}^{\frac{\pi}{2}} \ln \left(\frac{2 \sin x \cos x}{2}\right) d x=\int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)-\ln 2) d x \\$
$ \Rightarrow \int_{0}^{\frac{\pi}{2}}(\ln (\sin 2 x)) d x-\int_{0}^{\frac{\pi}{2}}(\ln 2) d x=\int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x-\frac{\pi \ln 2}{2} \ldots(6) \\ $
$\Rightarrow \operatorname{Now} \operatorname{in} \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) d x \text { put } 2 x=t$
$\\ \Rightarrow \text { Now in } \int_{0}^{\frac{\pi}{2}} \ln (\sin 2 x) \mathrm{d} x \text { put } 2 x=t\\ $
$\Rightarrow 2 \mathrm{dx}=\text { dt and limits changes from } 0 \text { to } \pi\\ $
$\Rightarrow{2 Z}=\frac{1}{2} \int_{0}^{\pi} \ln (\sin t) d t-\frac{\pi \ln 2}{2}$
$\\ \Rightarrow \text{from equation (2)} \frac{1}{2} \int_{0}^{\pi} \ln (\operatorname{sint}) \mathrm{dt} \text{again becomes} \\$
$\Rightarrow 2 Z=\frac{2}{2} \int_{0}^{\frac{\pi}{2}} \ln (\sin t) \mathrm{dt}-\frac{\pi \ln 2}{2}\\$
$\\\Rightarrow From eq. (3) \\$
$\Rightarrow 2 \mathrm{Z}=\mathrm{Z}-\frac{\pi \ln 2}{2} \\ $
$\Rightarrow \mathrm{Z}=\int_{0}^{\frac{\pi}{2}} \ln (\sin \mathrm{x}) \mathrm{dx}=-\frac{\pi \ln 2}{2} ......(7)$
$\\ \Rightarrow \text{On putting (7) in (2) and the obtained result in(1)} \\$
$\\\Rightarrow 2 \mathrm{I}=-\pi^{2} \ln 2 \\ \quad I=\int_{0}^{\pi} x \ln (\sin x) d x=-\frac{\pi^{2}}{2} \ln 2$
Question:47
Evaluate the following:
$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x$
Answer:
Given:$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log (\sin x+\cos x) d x$
$\\ \begin{aligned} &\frac{1}{\text { Let }}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x \ldots(1)\\ &\text { Using the property: }\\ &\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\\ &\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin (-x)+\cos (-x)) d x\\ &\Rightarrow \text { As } \sin (-x)=\sin x \text { and } \cos (-x)=\cos x \end{aligned}$
$\\ \begin{aligned} &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos x-\sin x) d x \ldots(2)\\ &\text { Adding equation(1) and(2) }\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin \mathrm{x}+\cos \mathrm{x}) \mathrm{dx}+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}\\ &2 \mathrm{I}=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \left(\cos ^{2} x-\sin ^{2} x\right) \mathrm{d} x=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\cos 2 x) \mathrm{d} x \end{aligned}$
$\\ \Rightarrow \text { Put } 2 \mathrm{x}=\mathrm{t} \\ $
$\Rightarrow 2 \mathrm{x} \mathrm{dx}=\mathrm{dt} \\ 2 \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}$
$\\ \begin{aligned} &\Rightarrow \text { As } \cos (-x)=\cos x\\ &\text { Using property: }\\&\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x(f o r f(-x)=f(x))\\ &\Rightarrow{2 \mathrm{I}}=2\int_{0}^{\frac{\pi}{2}} \ln (\cos t) \mathrm{dt}\\ &\text { Using the property: } \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \end{aligned}$
$\\ \begin{aligned} &2I=\int_{0}^{\frac{\pi}{2}} \ln \left(\cos \left(\frac{\pi}{2}-t\right)\right) \mathrm{dt}=\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}\\ &\Rightarrow \text { Now From previous question eq }(7) \text { we obtained }\\ &\int_{0}^{\frac{\pi}{2}} \ln (\operatorname{sint}) \mathrm{dt}=-\frac{\pi \ln 2}{2}=2 \mathrm{I}\\ &I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln (\sin x+\cos x) d x=-\frac{\pi \ln 2}{4} \end{aligned}$
Question:48
$\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$is equal to
$\\A. 2(sinx + xcos \theta) + C\\ B. 2(sinx - xcos \theta) + C\\ C. 2(sinx + 2xcos \theta) + C\\ D. 2(sinx -2x cos \theta) + C\\$
Answer:
A)
$\\ \begin{aligned} &\text { Using Trigonometric identity } \cos 2 x=2 \cos ^{2} x-1\\ &\Rightarrow \int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x \end{aligned}$
$\\ =2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x \\ =2 \int\left(\frac{(\cos x+\cos \theta)(\cos x-\cos \theta)}{\cos x-\cos \theta}\right)$
$ \\ =2\{(\cos x+\cos \theta) d x \\ =2 \int \cos x d x+2 \int \cos \theta d x$
$\\=2 \int \cos x d x+2 \int \cos \theta d x=2(\sin x+x \cos \theta)+c$
Question:49
$\\ \int \frac{d x}{\sin (x-a) \sin (x-b)}$ is equal to
Answer:
C)
$\\ \begin{aligned} &\text { Given: } \int \frac{d x}{\sin (x-a) \sin (x-b)}\\ &\text { Multiply } \mathrm{Nr} \text { and } \mathrm{Dr} \text { by } \sin (\mathrm{b}-\mathrm{a})\\ &\Rightarrow \frac{1}{\sin (b-a)} \int \frac{\sin (b-a) d x}{\sin (x-a) \sin (x-b)} \end{aligned}$
$\\ \Rightarrow \sin (b-a)=\sin ((x-a)-(x-b)) \\$
$ \Rightarrow \text { Also } \sin (A-B)=\sin A \cos B-\cos A \sin B \\ $
$\Rightarrow \frac{\sin (b-a)}{\sin (x-a) \sin (x-b)}=\frac{\sin ((x-a)-(x-b))}{\sin (x-a) \sin (x-b)}=\frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)} \\$
$ \Rightarrow \quad \frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)}=\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}$
$\\ =\frac{\cos (x-b)}{\sin (x-b)}-\frac{\cos (x-a)}{\sin (x-a)}$
$=\cot (x-b)-\cot (x-a) \\ \quad \int \frac{d x}{\sin (x-a) \sin (x-b)}$
$=\frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right) \\$
$ \Rightarrow \operatorname{Now} \int \cot x d x=\ln |\sin x|+c \\$
$ \Rightarrow \frac{1}{\sin (b-a)}\left(\int \cot (x-b) d x-\int \cot (x-a) d x\right)$
$\\ =\frac{1}{\sin (\mathrm{b}-\mathrm{a})}(\ln |\sin (\mathrm{x}-\mathrm{b})|-\ln |\sin (\mathrm{x}-\mathrm{a})|)$ $\\ \Rightarrow \int \frac{\mathrm{dx}}{\sin (\mathrm{x}-\mathrm{a}) \sin (\mathrm{x}-\mathrm{b})}=\frac{1}{\sin (\mathrm{b}-\mathrm{a})} \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)=\operatorname{cosec}(\mathrm{b}-\mathrm{a}) \ln \left(\frac{\sin (\mathrm{x}-\mathrm{b})}{\sin (\mathrm{x}-\mathrm{a})}\right)$
Question:50
$\int \tan ^{-1} \sqrt{x} d x$ is equal to
Answer:
A)
Given: $\int \tan ^{-1} \sqrt{x} d x$
$\\ \text { Put } x=t^{2} \\ \Rightarrow d x=2 d t \\$
$ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\int 2 \tan ^{-1} \sqrt{t^{2}} d t \\ $
$\Rightarrow 2 \int \tan ^{-1} \operatorname{tdt} \ldots(1)$
$\\ \Rightarrow \text { Now apply integration by part on } \int t \tan ^{-1} t d t\\$
$ \Rightarrow \int t \tan ^{-1} t d t=\tan ^{-1} t \int t d t-\int\left(\frac{d}{d t} \tan ^{-1} t\right)\left(\int t d t\right) d t\\ $
$\Rightarrow \frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2} \int \frac{t^{2}}{1+t^{2}} d t\\ $
$\Rightarrow \text { Now } \int \frac{t^{2}}{1+t^{2}} d t=\int \frac{t^{2}+1-1}{1+t^{2}} d t=\int \frac{t^{2}+1}{1+t^{2}} d t-\int \frac{1}{1+t^{2}} d t$
$\\ \Rightarrow \int \frac{t^{2}+1}{1+t^{2}} \mathrm{dt}-\int \frac{1}{1+t^{2}} \mathrm{dt}=\int \mathrm{dt}-\int \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}=\mathrm{t}-\tan ^{-1} \mathrm{t} \ldots\\$
$ \Rightarrow \text { Put }(3) \text { in }(2) \text { and the resulting equation in (1) }\\ $
$\Rightarrow 2 \int t \tan ^{-1} t d t=2\left(\frac{t^{2}}{2} \tan ^{-1} t-\frac{1}{2}\left(t-\tan ^{-1} t\right)\right)\\ $
$\Rightarrow 2 \int \mathrm{t} \tan ^{-1} \mathrm{t} \mathrm{dt}=\mathrm{t}^{2} \tan ^{-1} \mathrm{t}-\mathrm{t}+\tan ^{-1} \mathrm{t}$
$\\ \Rightarrow t^{2} \tan ^{-1} t-t+\tan ^{-1} t=\tan ^{-1} t\left(t^{2}+1\right)-t \\$
$ \Rightarrow \tan ^{-1} t\left(t^{2}+1\right)-t=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x} \\$
$ \Rightarrow \int \tan ^{-1} \sqrt{x} d x=\tan ^{-1} \sqrt{x}(x+1)-\sqrt{x}+C$
Question:51
Answer:
A)
Given: $\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{~d} \mathrm{x}$
$\\ =\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) \mathrm{d} x \\$
$=\int e^{x}\left(\frac{1+x^{2}-2 x}{\left(1+x^{2}\right)^{2}}\right) d x=\int e^{x}\left\{\left(\frac{1+x^{2}}{\left(1+x^{2}\right)^{2}}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x \\ $
$=\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x$
$\\ \begin{aligned} &\text { Now using the property: }\\ &\int \mathrm{e}^{\mathrm{x}}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{d} \mathrm{x}=\mathrm{e}^{\mathrm{x}} \mathrm{f}(\mathrm{x})\\ &\Rightarrow \text { Now in } \int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x\\ &f(x)=\frac{1}{\left(1+x^{2}\right)}\\ &\Rightarrow f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \end{aligned}$
$\\ =\int e^{x}\left\{\left(\frac{1}{\left(1+x^{2}\right)}\right)+\left(\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right)\right\} d x=\frac{e^{x}}{1+x^{2}}+c \\ \quad \int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x=\frac{e^{x}}{1+x^{2}}+c$
Question:52
$\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$ is equal to
$\\\begin{aligned} A.&\frac{1}{5 x}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ B.&\frac{1}{5}\left(4+\frac{1}{x^{2}}\right)^{-5}+C\\ C.&\frac{1}{10 x}(1+4)^{-5}+C\\ D.&\frac{1}{10}\left(\frac{1}{x^{2}}+4\right)^{-5}+C \end{aligned}$
Answer:
D)
Given: $\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$
Taking $x^2$ out from the denominator
$\\ \int\left(\frac{x^{9}}{x^{12}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x\\$
$\Rightarrow \int\left(\frac{1}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}=\int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) \mathrm{dx}\\ $
$\Rightarrow \text { Now put } 4+\frac{1}{x^{2}}=t$
$\\ \Rightarrow-\frac{2}{x^{3}} d x=d t \\ $
$\Rightarrow \quad \int\left(\frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}}\right) d x=\int-\frac{1}{2t^{6}} d t \\$
$ \Rightarrow \quad-\frac{1}{2}t^{-6} d t=\frac{-t^{-5}}{-5\times 2}+C=\frac{1}{10}\left(4+\frac{1}{x^{2}}\right)^{-5}+C$
Question:53
Answer:
C)
Given:$\int \frac{d x}{(x+2)\left(x^{2}+1\right)}=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+c$
Using concept of partial fractions
$\\ =\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{(x+2)}+\frac{B x+C}{\left(x^{2}+1\right)} \\ \Rightarrow A\left(x^{2}+1\right)+(B x+C)(x+2)=1$
$\\ \Rightarrow x^{2}(A+B)+x(C+2 B)+(A+2 C)=1 \\ $
$\Rightarrow A+B=0 \quad \ldots(1) \\$
$ \Rightarrow C+2 B=0 \quad \ldots(2) \\$
$ \Rightarrow A+2 C=1...(3)$
On solving the above three equations we get
$\\ \Rightarrow A=\frac{1}{5}, B=-\frac{1}{5} \text { and } C=\frac{2}{5} \\$
$ \Rightarrow \frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)} \\$ $\Rightarrow \frac{\frac{1}{5}}{(x+2)}+\frac{-\frac{1}{5} x+\frac{2}{5}}{\left(x^{2}+1\right)}=\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}$
$\\ \int \frac{d x}{(x+2)\left(x^{2}+1\right)}$
$=\int\left(\frac{1}{5(x+2)}-\frac{x}{5\left(x^{2}+1\right)}+\frac{2}{5\left(x^{2}+1\right)}\right) d x \\ $
$=\frac{1}{5} \ln |x+2|-\frac{1}{10} \ln \left|x^{2}+1\right|+\frac{2}{5} \tan ^{-1} x +c \ldots (2)$
On comparing (1) and (2) we get,
$\Rightarrow a=-\frac{1}{10} \text { and } b=\frac{2}{5}$
Question:54
$\int \frac{x^{3}}{x+1}$ is equal to
Answer:
D)
Given: $\int \frac{x^{3}}{x+1}$
$\\ \frac{x^{3}}{x+1}=\frac{x^{3}+1-1}{x+1} \\ $
$\Rightarrow \frac{x^{2}+1}{x+1}-\frac{1}{x+1}=\frac{(x+1)\left(x^{2}-x+1\right)}{x+1}-\frac{1}{x+1}$
$\\\Rightarrow \int \frac{x^{3}}{x+1} d x=\int\left(\left(x^{2}-x+1\right)-\frac{1}{x+1}\right) d x \\ $
$\Rightarrow \int\left(x^{2}-x+1\right) d x-\int \frac{1}{x+1} d x=\frac{x^{3}}{3}-\frac{x^{2}}{2}+x-\ln |1+x|+c$
Question:55
$\int \frac{x+\sin x}{1+\cos x} d x$ is equal to
Answer:
Given: $\int \frac{x+\sin x}{1+\cos x} d x$
As we know
$\sin 2 \mathrm{x}=\frac{2 \tan \mathrm{x}}{1+\tan ^{2} \mathrm{x}}, 1+\tan ^{2} \mathrm{x}=\sec ^{2} \mathrm{x} \text { and } \cos 2 \mathrm{x}=\frac{1+\tan ^{2} \mathrm{x}}{1-\tan ^{2} \mathrm{x}}$
$\Rightarrow \frac{x+\sin x}{1+\cos x}$$=\frac{x+\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}}{1+\frac{1+\tan ^{2}\left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)}}$
$\\ \Rightarrow\frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} \\$
$ \Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\int \frac{x+x \tan ^{2}\left(\frac{x}{2}\right)+2 \tan \left(\frac{x}{2}\right)}{2} d x \\ \Rightarrow \quad \operatorname{let} \frac{x}{2}=t \\ \Rightarrow \frac{d x}{2}=d t$
$\\ \begin{aligned} &\Rightarrow \text { Put }(2) \text { in }(1)\\ &\Rightarrow 2\left(\mathrm{t} \text { tant }-\int \tan t \mathrm{dt}\right)+2 \int \operatorname{tant} \mathrm{dt}=2 \mathrm{t} \operatorname{tant}+\mathrm{c}=\operatorname{xtan}\left(\frac{\mathrm{x}}{2}\right)+\mathrm{c}\\ &\Rightarrow \int \frac{x+\sin x}{1+\cos x} d x=\operatorname{xtan}\left(\frac{x}{2}\right)+c \end{aligned}$
Question:56
If $\frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$, then
Answer:
D)
Given:$\frac{x^{3} d x}{\sqrt{1+x^{2}}}=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$...........(1)
$\\ \begin{aligned} &\text { Put }\\ &1+x^{2}=t\\ &\Rightarrow 2 x d x=d t\\ &\Rightarrow \int \frac{x^{3} d x}{\sqrt{1+x^{2}}}=\int \frac{x^{2} \cdot x d x}{\sqrt{1+x^{2}}} \end{aligned}$
$\\ \Rightarrow=\frac{1}{2} \int \frac{(t-1) \mathrm{dt}}{\sqrt{t}} \\$
$ \Rightarrow \frac{1}{2} \int \frac{(t-1) \mathrm{d} t}{\sqrt{t}} \\$
$ \Rightarrow=\frac{1}{2} \int \frac{t \mathrm{dt}}{\sqrt{t}}-\frac{1}{2} \int \frac{\mathrm{dt}}{\sqrt{t}} \\ $
$\Rightarrow=\frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)$
$\Rightarrow \frac{1}{2}\left(\int \sqrt{\mathrm{t}} \mathrm{dt}-\int\left(\frac{1}{\sqrt{\mathrm{t}}}\right) \mathrm{dt}\right)=\frac{1}{2}\left(\frac{2}{3} \mathrm{t}^{\frac{3}{2}}-2 \sqrt{\mathrm{t}}+\mathrm{c}\right)\\ $
$\Rightarrow\left(\frac{1}{3} t^{\frac{3}{2}}-\sqrt{t}+c\right)=\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-1 \sqrt{1+x^{2}}+c\\ \text { Comparing (1) and (3) }\\ $
$\Rightarrow a=\frac{1}{3} \text { and } b=-1 $
Question:57
$\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}$ is equal to
A. 1
B. 2
C. 3
D. 4
Answer:
A)
Given: $\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{d x}{1+\cos 2 x}$
Using trigonometric identities:
$\\ \cos ^{2} x+\sin ^{2} x=1 \text { and } \cos 2 x=\cos ^{2} x-\sin ^{2} x \\$
$ \frac{1}{1+\cos 2 x}=\frac{1}{\left(\cos ^{2} x+\sin ^{2} x+\cos ^{2} x-\sin ^{2} x\right)} \\ =\frac{1}{2 \cos ^{2} x}$
$\\ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{1+\cos 2 x}\right)=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(\frac{d x}{2 \cos ^{2} x}\right)=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x \\$
$=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sec ^{2} x d x=\frac{1}{2}[\tan x]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\ =\frac{1+1}{2}=1$
Question:58
$\int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x$ is equal to
A. $2\sqrt2$
B. $2(\sqrt2 + 1)$
C. $2$
D. $2 (\sqrt2 -1)$
Answer:
D)
As
$\\ \sin 2 x=2 \sin x \cos x \text { and } \sin ^{2} x+\cos ^{2} x=1 \\ $
$\Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x} d x \\$
$ \Rightarrow \int_{0}^{\frac{\pi}{2}} \sqrt{(\cos x-\sin x)^{2}} d x=\int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x$
$\\ \text { From } 0<x<\frac{\pi}{4}, \cos x>\sin x \text { and } \\ \text { from } \frac{\pi}{4}<x<\frac{\pi}{2}, \cos x<\sin x \\ $
$\Rightarrow \int_{0}^{\frac{\pi}{2}}|(\cos x-\sin x)| d x=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x$
$=2[\sin x+\cos x]_{0}^{\pi / 4}$
On solving the Above Integral we get $2 (\sqrt2 -1)$
Question:59
Answer:
$e{-1}$
Given: $\int_{0}^{\frac{\pi}{2}} \cos x e^{\sin x} d x$
$\\ \text { Put } \sin x=t \\ \Rightarrow \cos x d x=d t \\$
$ \Rightarrow \operatorname{At} x=0$
$\Rightarrow t=0 \text { and } x=\frac{\pi}{2}$
$\Rightarrow t=1 \\ $
$\Rightarrow \int_{0}^{1} e^{t} d t=\left[e^{t}\right]_{0}^{1}=e-1$
Question:60
Fill in the blanks in each of the following
$\int \frac{x+3}{(x+4)^{2}} e^{x} d x=$ ___________.
Answer:
$\\ \begin{aligned} &\frac{e^{x}}{x+4}+c\\ &\text { Given }\\ &\int \frac{x+3}{(x+4)^{2}} e^{x} d x\\ &=\int \frac{x+3}{(x+4)^{2}} e^{x} d x=\int \frac{(x+3)+1-1}{(x+4)^{2}} e^{x} d x=\int \frac{(x+4)-1}{(x+4)^{2}} e^{x} d x\\ &=\int \frac{(x+4)-1}{(x+4)^{2}} e^{x} d x=\int e^{x}\left(\frac{(x+4)}{(x+4)^{2}}-\frac{1}{(x+4)^{2}}\right) \mathrm{d} x \end{aligned}$
$\\\begin{aligned} &\int e^{x}\left(\frac{(x+4)}{(x+4)^{2}}-\frac{1}{(x+4)^{2}}\right) d x=\int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) d x\\ &\text { Now using the property: }\\ &\int e^{x}\left(f(x)+f^{\prime}(x)\right) d x=e^{x} f(x)\\ &\Rightarrow \text { Now in } \int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) \mathrm{dx} \end{aligned}$
$\\ \Rightarrow f(x)=\frac{1}{x+4} \\ $
$ \Rightarrow f^{\prime}(x)=-\frac{1}{(x+4)^{2}} \\$
$ \Rightarrow \int e^{x}\left(\frac{1}{(x+4)}-\frac{1}{(x+4)^{2}}\right) d x=\frac{e^{x}}{x+4}+c \\ $
$\Rightarrow \int \frac{x+3}{(x+4)^{2}} e^{x} d x=\frac{e^{x}}{x+4}+c$
Question:61
Answer:
$\\ \mathrm{a}=\frac{1}{2} \\$
$ \text { Given: } \int_{0}^{\mathrm{a}} \frac{1}{1+4 \mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{8} \\$
$ \frac{1}{1+4 \mathrm{x}^{2}}=\frac{\frac{1}{4}}{\frac{1}{4}+\mathrm{x}^{2}}=\frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+\mathrm{x}^{2}} \\ $
$\int_{0}^{\mathrm{a}} \frac{1}{1+4 \mathrm{x}^{2}} \mathrm{dx}=\int_{0}^{a} \frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+\mathrm{x}^{2}} \mathrm{dx}$
$\\ \text { Now } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\$
$ \int_{0}^{a} \frac{\frac{1}{4}}{\left(\frac{1}{2}\right)^{2}+x^{2}} d x=\frac{\frac{1}{4}}{\frac{1}{2}} \tan ^{-1}\left(\frac{x}{\frac{1}{2}}\right) \\$
$ =\left[\frac{1}{2} \tan ^{-1}(2 x)\right]_{0}^{a}\\ =\frac{\pi}{8} \\ $
$\frac{1}{2} \tan ^{-1}(2 a)=\frac{\pi}{8} \\$
$ 2 a=\tan \left(\frac{\pi}{4}\right)=1 \\$
$ a=\frac{1}{2}$
Question:62
Fill in the blanks in each of the following
$\int \frac{\sin x}{3+4 \cos ^{2} x} d x=$ __________.
Answer:
$\\ \begin{aligned} &-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+\mathrm{c}\\ &\text { Given }\\ &\int \frac{\sin x}{3+4 \cos ^{2} x} d x\\ &\Rightarrow \text { Now let } \cos \mathrm{x}=\mathrm{t} \end{aligned}$
$\\ \Rightarrow-\sin \mathrm{xdx}=\mathrm{dt} \\$
$ \Rightarrow \quad \int \frac{\sin \mathrm{x}}{3+4 \cos ^{2} \mathrm{x}} \mathrm{dx}=\int \frac{-\mathrm{dt}}{3+4 \mathrm{t}^{2}}=\frac{1}{4} \int \frac{-\mathrm{dt}}{\frac{3}{4}+\mathrm{t}^{2}} \\ $
$\Rightarrow \quad \frac{1}{4} \int \frac{-\mathrm{dt}}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\mathrm{t}^{2}}$
$\\ \Rightarrow \text { Now } \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \\ \quad=\frac{1}{4} \int \frac{-d t}{\left(\frac{2}{2}\right)^{2}+t^{2}}=\frac{-\frac{1}{4}}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{2 t}{\sqrt{3}}\right)+c \\$
$ \Rightarrow \int \frac{\sin x}{3+4 \cos ^{2} x} d x=-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+c$
Question:63
Answer:
0
Using the property: $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$\\ \text { Let } I=\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x \\ $
$\Rightarrow \int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x=\int_{-\pi}^{\pi} \sin ^{3}(\pi+(-\pi)-x) \cos ^{2}(\pi+(-\pi)-x) d x \\ $
$\Rightarrow \text { As } \sin (-x)=-\sin x \text { and } \cos (-x)=\cos x$
$\\ =\int_{-\pi}^{\pi} \sin ^{3}(\pi+(-\pi)-\mathrm{x}) \cos ^{2}(\pi+(-\pi)-\mathrm{x}) \mathrm{d} \mathrm{x}=\int_{-\pi}^{\pi} \sin ^{3}(-\mathrm{x}) \cos ^{2}(-\mathrm{x}) \mathrm{dx} \\$
$ \Rightarrow \int_{-\pi}^{\pi} \sin ^{3}(-\mathrm{x}) \cos ^{2}(-\mathrm{x}) \mathrm{dx}=-\int_{-\pi}^{\pi} \sin ^{3} \mathrm{x} \cos ^{2} \mathrm{x} \mathrm{dx}=-\mathrm{I} \\ $
$\Rightarrow \mathrm{I}=-\mathrm{I} \\ \Rightarrow 2 \mathrm{I}=0$
$\Rightarrow I=\int_{-\pi}^{\pi} \sin ^{3} x \cos ^{2} x d x=0$
Class 12 Maths NCERT exemplar solutions Chapter 7 Integrals touches upon an exhaustive explanation of how we do integration by using properties.
|
NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions
NCERT solutions for class 12 maths chapter 2 Inverse Trigonometric Functions
NCERT solutions for class 12 maths chapter 5 Continuity and Differentiability
NCERT solutions for class 12 maths chapter 6 Application of Derivatives
NCERT solutions for class 12 maths chapter 8 Application of Integrals
NCERT solutions for class 12 maths chapter 9 Differential Equations
NCERT solutions for class 12 maths chapter 10 Vector Algebra
NCERT solutions for class 12 maths chapter 11 Three Dimensional Geometry
NCERT solutions for class 12 maths chapter 12 Linear Programming
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the subject-wise NCERT Notes of class 12 :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Frequently Asked Questions (FAQs)
Methods of Integration, Integration by Parts and Fundamental Theorem of Calculus are some of the important topics of this chapter. However, rest should not be neglected either.
The NCERT exemplar solutions for Class 12 Maths chapter 7 consists of 1 exercise with 63 distinct questions for practice.
Students should read the books enough times months before your exam for better remembering. They can also take help of NCERT exemplar Class 12 Maths solutions chapter 7 pdf download using an online webpage to pdf tool.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters