NCERT solutions for Class 12 Maths Chapter 4 - Determinants

NCERT solutions for Class 12 Maths Chapter 4 - Determinants

Hitesh SahuUpdated on 06 Feb 2026, 09:07 PM IST

In mathematics, Determinants are the values associated with a square matrix that give us some useful information about the matrix, such as whether the matrix is invertible or not. Also, determinants help us simplify and solve systems of equations. The determinants chapter from Class 12 Maths contains the concepts of Determinants and how to evaluate them, Area of a triangle using determinants, Minors and Cofactors, and also the adjoint and the inverse of a matrix. Understanding these concepts will help students in many ways, from finding the value of determinants to using their properties to solve systems of equations. The primary objective of these NCERT Solutions for Class 12 is to provide students with essential study materials as they work through exercises independently.

This Story also Contains

  1. NCERT Solutions for Class 12 Maths Chapter 4 Determinants: Download Free PDF
  2. NCERT Solutions for Class 12 Maths Chapter 4 Determinants: Exercises
  3. Determinants Class 12 NCERT Solutions: Exercise-wise
  4. Class 12 Maths NCERT Chapter 4: Extra Question
  5. Determinants Class 12 Chapter 4: Topics
  6. NCERT Class 12 Maths Chapter 4 Question Answer - Important Formulae
  7. Approach to Solve Questions of Determinants Class 12
  8. What Extra Should Students Study Beyond the NCERT for JEE?
  9. NCERT Solutions for Class 12 Maths: Chapter-Wise
NCERT solutions for Class 12 Maths Chapter 4 - Determinants
NCERT Solutions for Class 12 Maths Chapter 4 Determinants

Determinants help students measure, analyse, and solve systems of equations efficiently. These NCERT Solutions for class 12 Maths provide clear, step-by-step solutions to the exercise problems in the NCERT book. It covers all the important Class 12 Maths Chapter 4 question answers. We at Careers360 have designed this NCERT Solutions for Class 12 article to provide comprehensive, step-by-step solutions to the chapter's questions in a student-friendly format. Many toppers rely on NCERT Solutions because they are designed in accordance with the latest syllabus.

NCERT Solutions for Class 12 Maths Chapter 4 Determinants: Download Free PDF

Students who wish to access the NCERT solutions for Class 12 Maths Chapter 4 Determinants can click on the link below to download the complete solution in PDF.

Download PDF

NCERT Solutions for Class 12 Maths Chapter 4 Determinants: Exercises

Below, you will find the NCERT Class 12 Maths Chapter 4 Determinants question answers explained step by step.

Determinants Class 12 Chapter 4 Question Answers
Exercise: 4.1
Page number: 81-82
Total Questions: 8

Question 1: Evaluate the following determinant- $\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix}$

Answer:

The determinant is evaluated as follows

$\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$

Question 2(i): Evaluate the following determinant- $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta &\cos \theta \end{vmatrix}$

Answer:

The given two by two determinant is calculated as follows

$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta (\cos \theta) - (-\sin \theta)\sin \theta = \cos^2 \theta + \sin^2 \theta = 1$

Question 2(ii): Evaluate the following determinant- $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

Answer:

We have determinant $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$

$= (x+1)(x^2-x+1-x+1) = (x+1)(x^2-2x+2)$

$=x^3-2x^2+2x +x^2-2x+2$

$= x^3-x^2+2$

Question 3: If $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ , then show that $| 2 A |=4|A|$

Answer:

Given determinant $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then we have to show that $| 2 A |=4|A|$,

So, $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then, $2A =2 \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix} = \begin{bmatrix} 2 & 4\\ 8 &4 \end{bmatrix}$

Hence we have $\left | 2A \right | = \begin{vmatrix} 2 &4 \\ 8& 4 \end{vmatrix} = 2(4) - 4(8) = -24$

So, L.H.S. = |2A| = -24

then calculating R.H.S. $4\left | A \right |$

We have,

$\left | A \right | = \begin{vmatrix} 1 &2 \\ 4& 2 \end{vmatrix} = 1(2) - 2(4) = -6$

hence R.H.S becomes $4\left | A \right | = 4\times(-6) = -24$

Therefore L.H.S. =R.H.S.

Hence proved.

Question 4: If $A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$ then show that $|3A|=27|A|$

Answer:

Given Matrix$A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$

Calculating $3A =3\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix} = \begin{bmatrix} 3 &0 &3 \\ 0& 3& 6\\ 0& 0 &12 \end{bmatrix}$

So, $\left | 3A \right | = 3(3(12) - 6(0) ) - 0(0(12)-0(6)) + 3(0-0) = 3(36) = 108$

calculating $27|A|$,

$|A| = \begin{vmatrix} 1 & 0 &1 \\ 0 & 1 & 2\\ 0& 0 &4 \end{vmatrix} = 1\begin{vmatrix} 1 &2 \\ 0 & 4 \end{vmatrix} - 0\begin{vmatrix} 0 &2 \\ 0& 4 \end{vmatrix} + 1\begin{vmatrix} 0 &1 \\ 0& 0 \end{vmatrix} = 4 -0 + 0 = 4$

So, $27|A| = 27(4) = 108$

Therefore $|3A|=27|A|$.

Hence proved.

Question 5(i): Evaluate the determinants.

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$

Answer:

Given the determinant $\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$;

now, calculating its determinant value,

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix} = 3\begin{vmatrix} 0 &-1 \\ -5& 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} +(-2)\begin{vmatrix} 0 &0 \\ 3& -5 \end{vmatrix}$

$= 3(0-5)+1(0+3) -2(0-0) = -15+3-0 = -12$.

Question 5(ii): Evaluate the determinants.

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix} = 3\begin{vmatrix} 1 &-2 \\ 3&1 \end{vmatrix} -(-4)\begin{vmatrix} 1 &-2 \\ 2& 1 \end{vmatrix}+5\begin{vmatrix} 1 & 1\\ 2& 3 \end{vmatrix}$

$= 3(1+6) +4(1+4) +5(3-2) = 21+20+5 = 46$.

Question 5(iii): Evaluate the determinants.

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix} = 0\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} -1\begin{vmatrix} -1 &-3 \\ -2& 0 \end{vmatrix}+2\begin{vmatrix} -1 &0 \\ -2& 3 \end{vmatrix}$

$= 0 - 1(0-6)+2(-3-0) = 6 -6 =0$

Question 5(iv): Evaluate the determinants.

$\begin{vmatrix}2 &-1 &2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$

Answer:

Given determinant: $\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$,

We now calculate the determinant value:

$\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix} =2\begin{vmatrix} 2 &-1 \\ -5 & 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3 & 0 \end{vmatrix}+(-2)\begin{vmatrix} 0 &2 \\ 3&-5 \end{vmatrix}$

$=2(0-5)+1(0+3)-2(0-6) = -10+3+12 = 5$

Question 6: If $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ , then find $|A|$.

Answer:

Given the matrix $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ then,

Finding the determinant value of A;

$|A| = 1\begin{vmatrix} 1 &-3 \\ 4& -9 \end{vmatrix} -1\begin{vmatrix} 2 &-3 \\ 5& -9 \end{vmatrix}-2\begin{vmatrix} 2 &1 \\ 5& 4 \end{vmatrix}$

$= 1(-9+12)-1(-18+15)-2(8-5) =3+3-6 =0$

Question 7(i): Find values of x, if

$\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

Answer:

Given that $\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

First, we solve the determinant value of L.H.S. and equate it to the determinant value of R.H.S.,

$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = 2(1) - 4(5) = 2 - 20 = -18$ and $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = 2x(x) - 4(6) = 2x^2 - 24$

So, we have then,

$-18= 2x^2-24$ or $3= x^2$ or $x= \pm \sqrt{3}$

Question 7(ii): Find values of x, if

$\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$

Answer:

Given $\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$;

So, we here equate both sides after calculating each side's determinant values.

L.H.S. determinant value;

$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2(5) - 3(4) = 10 - 12 = -2$

Similarly R.H.S. determinant value;

$\begin{vmatrix}x &3 \\2x &5 \end{vmatrix} = 5(x) - 3(2x) = 5x - 6x =-x$

So, we have then;

$-2 = -x$ or $x =2$.

Question 8: If $\begin{vmatrix}x &2 \\18 &x \end{vmatrix}=\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix}$ , then $x$ is equal to

(A) $6$ (B) $\pm 6$ (C) $-6$ (D) $0$

Answer:

Solving the L.H.S. determinant ;

$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = x(x) - 2(18) = x^2 - 36$

and solving R.H.S determinant;

$\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix} = 36-36 = 0$

So equating both sides;

$x^2 - 36 =0$ or $x^2 = 36$ or $x = \pm 6$

Hence answer is (B).

Determinants Class 12 Chapter 4 Question Answers
Exercise: 4.2
Page number: 83
Total Questions: 5

Question 1(i): Find area of the triangle with vertices at the point given in each of the following :

$(1,0), (6,0), (4,3)$

Answer:

We can find the area of the triangle with vertices $(1,0), (6,0), (4,3)$ by the following determinant relation:

$\triangle =\frac{1}{2} \begin{vmatrix} 1& 0 &1 \\ 6 & 0 &1 \\ 4& 3& 1 \end{vmatrix}$

Expanding using second column

$=\frac{1}{2} (-3) \begin{vmatrix} 1 &1 & \\ 6& 1 & \end{vmatrix}$

$= \frac{15}{2}\ square\ units.$

Question 1(ii): Find area of the triangle with vertices at the point given in each of the following :

$(2,7), (1,1), (10,8)$

Answer:

We can find the area of the triangle with given coordinates by the following method:

$\triangle = \begin{vmatrix} 2 &7 &1 \\ 1 & 1& 1\\ 10& 8 &1 \end{vmatrix}$

$=\frac{1}{2} \begin{vmatrix} 2 &7 &1 \\ 1 & 1& 1\\ 10& 8 &1 \end{vmatrix} = \frac{1}{2}\left [ 2(1-8)-7(1-10)+1(8-10) \right ]$

$= \frac{1}{2}\left [ 2(-7)-7(-9)+1(-2) \right ] = \frac{1}{2}\left [ -14+63-2 \right ] = \frac{47}{2}\ square\ units.$

Question 1(iii): Find area of the triangle with vertices at the point given in each of the following :

$(-2,-3), (3,2), (-1,-8)$

Answer:

Area of the triangle by the determinant method:

$Area\ \triangle = \frac{1}{2} \begin{vmatrix} -2 &-3 &1 \\ 3& 2 & 1\\ -1& -8 & 1 \end{vmatrix}$

$=\frac{1}{2}\left [ -2(2+8)+3(3+1)+1(-24+2) \right ]$

$=\frac{1}{2}\left [ -20+12-22 \right ] = \frac{1}{2}[-30]= -15$

Hence the area is equal to $|-15| = 15\ square\ units.$

Question 2: Show that points $A (a, b+c), B (b,c+a), C (c,a+b)$ are collinear.

Answer:

If the area formed by the points is equal to zero then we can say that the points are collinear.

So, we have an area of a triangle given by,

$\triangle = \frac{1}{2} \begin{vmatrix} a &b+c &1 \\ b& c+a &1 \\ c& a+b & 1 \end{vmatrix}$

calculating the area:

$= \frac{1}{2}\left [ a\begin{vmatrix} c+a &1 \\ a+b& 1 \end{vmatrix} - (b+c)\begin{vmatrix} b & 1\\ c&1 \end{vmatrix}+1\begin{vmatrix} b &c+a \\ c&a+b \end{vmatrix} \right ]$

$= \frac{1}{2}\left [ a(c+a-a-b) - (b+c)(b-c)+1(b(a+b)-c(c+a)) \right ]$

$= \frac{1}{2}\left [ ac-ab - b^2+c^2+ab+b^2-c^2-ac \right ] = \frac{1}{2} \left [ 0 \right] = 0$

Hence the area of the triangle formed by the points is equal to zero.

Therefore given points $A (a, b+c), B (b,c+a), C (c,a+b)$ are collinear.

Question 3(i): Find values of k if area of triangle is 4 sq. units and vertices are

$(k,0), (4,0), (0,2)$

Answer:

We can easily calculate the area by the formula :

$\triangle = \frac{1}{2} \begin{vmatrix} k &0 &1 \\ 4& 0& 1\\ 0 &2 & 1 \end{vmatrix} = 4\ sq.\ units$

$= \frac{1}{2}\left [ k\begin{vmatrix} 0 &1 \\ 2& 1 \end{vmatrix} -0\begin{vmatrix} 4 &1 \\ 0 & 1 \end{vmatrix}+1\begin{vmatrix} 4 &0 \\ 0& 2 \end{vmatrix} \right ]= 4\ sq.\ units$

$=\frac{1}{2}\left [ k(0-2)-0+1(8-0) \right ] = \frac{1}{2}\left [ -2k+8 \right ] = 4\ sq.\ units$

$\left [ -2k+8 \right ] = 8\ sq.\ units$ or $-2k +8 = \pm 8\ sq.\ units$

or $k = 0$ or $k = 8$

Hence two values are possible for k.

Question 3(ii): Find values of k if area of triangle is 4 sq. units and vertices are

$(-2,0), (0,4), (0,k)$

Answer:

The area of the triangle is given by the formula:

$\triangle = \frac{1}{2} \begin{vmatrix} -2 &0 &1 \\ 0 & 4 & 1\\ 0& k & 1 \end{vmatrix} = 4\ sq.\ units.$

Now, calculating the area:

$= \frac{1}{2} \left | -2(4-k)-0(0-0)+1(0-0) \right | = \frac{1}{2} \left | -8+2k \right | = 4$

or $-8+2k =\pm 8$

Therefore we have two possible values of 'k' i.e., $k = 8$ or $k = 0$.

Question 4(i): Find equation of line joining $\small (1,2)$ and $\small (3,6)$ using determinants.

Answer:

As we know the line joining $\small (1,2)$ ,$\small (3,6)$ and let say a point on line $A\left ( x,y \right )$ will be collinear.

Therefore area formed by them will be equal to zero.

$\triangle = \frac{1}{2}\begin{vmatrix} 1 &2 &1 \\ 3& 6 &1 \\ x & y &1 \end{vmatrix} = 0$

So, we have:

$=1(6-y)-2(3-x)+1(3y-6x) = 0$

or $6-y-6+2x+3y-6x = 0 \Rightarrow 2y-4x=0$

Hence, we have the equation of line $\Rightarrow y=2x$.

Question 4(ii): Find equation of line joining $\small (3,1)$ and $\small (9,3)$ using determinants.

Answer:

We can find the equation of the line by considering any arbitrary point $A(x,y)$ on line.

So, we have three points which are collinear and therefore area surrounded by them will be equal to zero.

$\triangle = \frac{1}{2}\begin{vmatrix} 3 &1 &1 \\ 9& 3 & 1\\ x& y &1 \end{vmatrix} = 0$

Calculating the determinant:

$=\frac{1}{2}\left [ 3\begin{vmatrix} 3 &1 \\ y& 1 \end{vmatrix}-1\begin{vmatrix} 9 &1 \\ x& 1 \end{vmatrix}+1\begin{vmatrix} 9 &3 \\ x &y \end{vmatrix} \right ]$

$=\frac{1}{2}\left [ 3(3-y)-1(9-x)+1(9y-3x) \right ] = 0$

$\frac{1}{2}\left [ 9-3y-9+x+9y-3x \right ] = \frac{1}{2}[6y-2x] = 0$

Hence we have the line equation:

$3y= x$ or $x-3y = 0$.

Question 5: If the area of triangle is 35 sq units with vertices $\small (2,-6),(5,4)$ and $\small (k,4)$. Then k is

(A) $\small 12$ (B) $\small -2$ (C) $\small -12,-2$ (D) $\small 12,-2$

Answer:

Area of triangle is given by:

$\triangle = \frac{1}{2} \begin{vmatrix} 2 &-6 &1 \\ 5& 4 & 1\\ k& 4& 1 \end{vmatrix} = 35\ sq.\ units.$

or $\begin{vmatrix} 2 &-6 &1 \\ 5& 4 & 1\\ k& 4& 1 \end{vmatrix} = 70\ sq.\ units.$

$2\begin{vmatrix} 4 &1 \\ 4& 1 \end{vmatrix}-(-6)\begin{vmatrix} 5 &1 \\ k &1 \end{vmatrix}+1\begin{vmatrix} 5 &4 \\ k&4 \end{vmatrix} = 70$

$2(4-4) +6(5-k)+(20-4k) = \pm70$

$50-10k = \pm70$

$k = 12$ or $k = -2$

Hence the possible values of k are 12 and -2.

Therefore option (D) is correct.

Determinants Class 12 Chapter 4 Question Answers
Exercise: 4.3
Page number: 87
Total Questions: 5

Question 1(i): Write Minors and Cofactors of the elements of following determinants:

$\small \begin{vmatrix}2 &-4 \\0 &3 \end{vmatrix}$

Answer:

GIven determinant: $\begin{vmatrix}2 &-4 \\0 &3 \end{vmatrix}$

Minor of element $a_{ij}$ is $M_{ij}$.

Therefore we have

$M_{11}$ = minor of element $a_{11}$ = 3

$M_{12}$ = minor of element $a_{12}$ = 0

$M_{21}$ = minor of element $a_{21}$ = -4

$M_{22}$ = minor of element $a_{22}$ = 2

and finding cofactors of $a_{ij}$ is $A_{ij}$ = $(-1)^{i+j}M_{ij}$.

Therefore, we have:

$A_{11} = (-1)^{1+1}M_{11} = (-1)^2(3) = 3$

$A_{12} = (-1)^{1+2}M_{12} = (-1)^3(0) = 0$

$A_{21} = (-1)^{2+1}M_{21} = (-1)^3(-4) = 4$

$A_{22} = (-1)^{2+2}M_{22} = (-1)^4(2) = 2$

Question 1(ii): Write Minors and Cofactors of the elements of following determinants:

$\small \begin{vmatrix} a &c \\ b &d \end{vmatrix}$

Answer:

GIven determinant: $\begin{vmatrix} a &c \\ b &d \end{vmatrix}$

Minor of element $a_{ij}$ is $M_{ij}$.

Therefore we have

$M_{11}$ = minor of element $a_{11}$ = d

$M_{12}$ = minor of element $a_{12}$ = b

$M_{21}$ = minor of element $a_{21}$ = c

$M_{22}$ = minor of element $a_{22}$ = a

and finding cofactors of $a_{ij}$ is $A_{ij}$ = $(-1)^{i+j}M_{ij}$.

Therefore, we have:

$A_{11} = (-1)^{1+1}M_{11} = (-1)^2(d) = d$

$A_{12} = (-1)^{1+2}M_{12} = (-1)^3(b) = -b$

$A_{21} = (-1)^{2+1}M_{21} = (-1)^3(c) = -c$

$A_{22} = (-1)^{2+2}M_{22} = (-1)^4(a) = a$

Question 2(i): Write Minors and Cofactors of the elements of following determinants:

$\small \begin{vmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{vmatrix}$

Answer:

Given determinant : $\begin{vmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{vmatrix}$

Finding Minors: by the definition,

$M_{11} =$ minor of $a_{11} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$ $M_{12} =$ minor of $a_{12} = \begin{vmatrix} 0 &0 \\ 0 &1 \end{vmatrix} = 0$

$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 0 &1 \\ 0 &0 \end{vmatrix} = 0$ $M_{21} =$ minor of $a_{21} = \begin{vmatrix} 0 &0 \\ 0 &1 \end{vmatrix} = 0$

$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$ $M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &0 \\ 0 &0 \end{vmatrix} = 0$

$M_{31} =$ minor of $a_{31} = \begin{vmatrix} 0 &0 \\ 1 &0 \end{vmatrix} = 0$ $M_{32} =$ minor of $a_{32} = \begin{vmatrix} 1 &0 \\ 0 &0 \end{vmatrix} = 0$

$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$

Finding the cofactors:

$A_{11}=$ cofactor of $a_{11} = (-1)^{1+1}M_{11} = 1$

$A_{12}=$ cofactor of $a_{12} = (-1)^{1+2}M_{12} = 0$

$A_{13}=$ cofactor of $a_{13} = (-1)^{1+3}M_{13} = 0$

$A_{21}=$ cofactor of $a_{21} = (-1)^{2+1}M_{21} = 0$

$A_{22}=$ cofactor of $a_{22} = (-1)^{2+2}M_{22} = 1$

$A_{23}=$ cofactor of $a_{23} = (-1)^{2+3}M_{23} = 0$

$A_{31}=$ cofactor of $a_{31} = (-1)^{3+1}M_{31} = 0$

$A_{32}=$ cofactor of $a_{32} = (-1)^{3+2}M_{32} = 0$

$A_{33}=$ cofactor of $a_{33} = (-1)^{3+3}M_{33} = 1$.

Question 2(ii): Write Minors and Cofactors of the elements of following determinants:

$\small \begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$

Answer:

Given determinant : $\begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$

Finding Minors: by the definition,

$M_{11} =$ minor of $a_{11} = \begin{vmatrix} 5 &-1 \\ 1 &2 \end{vmatrix} = 11$ $M_{12} =$ minor of $a_{12} = \begin{vmatrix} 3 &-1 \\ 0 &2 \end{vmatrix} = 6$

$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 3 &5 \\ 0 &1 \end{vmatrix} = 3$ $M_{21} =$ minor of $a_{21} = \begin{vmatrix} 0 &4 \\ 1 &2 \end{vmatrix} = -4$

$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 1 &4 \\ 0 &2 \end{vmatrix} = 2$ $M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$

$M_{31} =$ minor of $a_{31} = \begin{vmatrix} 0 &4 \\ 5 &-1 \end{vmatrix} = -20$

$M_{32} =$ minor of $a_{32} = \begin{vmatrix} 1 &4 \\ 3 &-1 \end{vmatrix} = -1-12=-13$

$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &0 \\ 3 &5 \end{vmatrix} = 5$

Finding the cofactors:

$A_{11}=$ cofactor of $a_{11} = (-1)^{1+1}M_{11} = 11$

$A_{12}=$ cofactor of $a_{12} = (-1)^{1+2}M_{12} = -6$

$A_{13}=$ cofactor of $a_{13} = (-1)^{1+3}M_{13} = 3$

$A_{21}=$ cofactor of $a_{21} = (-1)^{2+1}M_{21} = 4$

$A_{22}=$ cofactor of $a_{22} = (-1)^{2+2}M_{22} = 2$

$A_{23}=$ cofactor of $a_{23} = (-1)^{2+3}M_{23} = -1$

$A_{31}=$ cofactor of $a_{31} = (-1)^{3+1}M_{31} = -20$

$A_{32}=$ cofactor of $a_{32} = (-1)^{3+2}M_{32} = 13$

$A_{33}=$ cofactor of $a_{33} = (-1)^{3+3}M_{33} = 5$.

Question 3: Using Cofactors of elements of second row, evaluate .$\small \Delta =\begin{vmatrix} 5 &3 &8 \\ 2 & 0 & 1\\ 1 &2 &3 \end{vmatrix}$

Answer:

Given determinant : $\small \Delta =\begin{vmatrix} 5 &3 &8 \\ 2 & 0 & 1\\ 1 &2 &3 \end{vmatrix}$

First finding Minors of the second rows by the definition,

$M_{21} =$ minor of $a_{21} = \begin{vmatrix} 3 &8 \\ 2 &3 \end{vmatrix} =9-16 = -7$

$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 5 &8 \\ 1 &3 \end{vmatrix} = 15-8=7$

$M_{23} =$ minor of $a_{23} = \begin{vmatrix} 5 &3 \\ 1 &2 \end{vmatrix} = 10-3 =7$

Finding the Cofactors of the second row:

$A_{21}=$ Cofactor of $a_{21} = (-1)^{2+1}M_{21} = 7$

$A_{22}=$ Cofactor of $a_{22} = (-1)^{2+2}M_{22} = 7$

$A_{23}=$ Cofactor of $a_{23} = (-1)^{2+3}M_{23} = -7$

Therefore we can calculate $\triangle$ by sum of the product of the elements of the second row with their corresponding cofactors.

Therefore we have,

$\triangle = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = 2(7) +0(7) +1(-7) =14-7=7$

Question 4: Using Cofactors of elements of third column, evaluate $\small \Delta =\begin{vmatrix} 1 &x &yz \\ 1 &y &zx \\ 1 &z &xy \end{vmatrix}$

Answer:

Given determinant : $\small \Delta =\begin{vmatrix} 1 &x &yz \\ 1 &y &zx \\ 1 &z &xy \end{vmatrix}$

First finding Minors of the third column by the definition,

$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 1 &y \\ 1 &z \end{vmatrix} =z-y$

$M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &x \\ 1 &z \end{vmatrix} = z-x$

$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &x \\ 1 &y \end{vmatrix} =y-x$

Finding the Cofactors of the second row:

$A_{13}=$ Cofactor of $a_{13} = (-1)^{1+3}M_{13} = z-y$

$A_{23}=$ Cofactor of $a_{23} = (-1)^{2+3}M_{23} = x-z$

$A_{33}=$ Cofactor of $a_{33} = (-1)^{3+3}M_{33} = y-x$

Therefore we can calculate $\triangle$ by sum of the product of the elements of the third column with their corresponding cofactors.

Therefore we have,

$\triangle = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$

$= (z-y)yz + (x-z)zx +(y-x)xy$

$=yz^2-y^2z + zx^2-xz^2 + xy^2-x^2y$

$=z(x^2-y^2) + z^2(y-x) +xy(y-x)$

$= (x-y) \left [ zx+zy-z^2-xy \right ]$

$=(x-y)\left [ z(x-z) +y(z-x) \right ]$

$= (x-y)(z-x)[-z+y]$

$= (x-y)(y-z)(z-x)$

Thus, we have value of $\triangle = (x-y)(y-z)(z-x)$.

Question 5: If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and $A_{ij}$ is the cofactor of $a_{ij}$, then the value of $\Delta$ is given by:

(A) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$

(B) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$

(C) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$

(D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$

Answer: (D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$

By the definition itself, $\Delta$ is equal to the sum of the products of the elements of any row or column with their corresponding cofactors.

Determinants Class 12 Chapter 4 Question Answers
Exercise: 4.4
Page number: 92-93
Total Questions: 18

Question 1: Find adjoint of each of the matrices.

$\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}= A$

Then we have,

$A_{11} = 4, A_{12}=-(1)3, A_{21} = -(1)2,\ and\ A_{22}= 1$

Hence we get:

$adjA = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} &A_{22} \end{bmatrix}^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} &A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 &1 \end{bmatrix}$

Question 2: Find adjoint of each of the matrices

$\small \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Answer:

Given the matrix: $\small A = \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Then we have,

$A_{11} = (-1)^{1+1}\begin{vmatrix} 3 &5 \\ 0& 1 \end{vmatrix} =(3-0)= 3$

$A_{12} = (-1)^{1+2}\begin{vmatrix} 2 &5 \\ -2& 1 \end{vmatrix} =-(2+10)= -12$

$A_{13} = (-1)^{1+3}\begin{vmatrix} 2 &3 \\ -2& 0 \end{vmatrix} =0+6= 6$

$A_{21} = (-1)^{2+1}\begin{vmatrix} -1 &2 \\ 0& 1 \end{vmatrix} =-(-1-0)= 1$

$A_{22} = (-1)^{2+2}\begin{vmatrix} 1 &2 \\ -2& 1 \end{vmatrix} =(1+4)= 5$

$A_{23} = (-1)^{2+3}\begin{vmatrix} 1 &-1 \\-2& 0 \end{vmatrix} =-(0-2)= 2$

$A_{31} = (-1)^{3+1}\begin{vmatrix} -1 &2 \\ 3& 5 \end{vmatrix} =(-5-6)= -11$

$A_{32} = (-1)^{3+2}\begin{vmatrix} 1 &2 \\2& 5\end{vmatrix} =-(5-4)= -1$

$A_{33} = (-1)^{3+3}\begin{vmatrix} 1 &-1 \\ 2& 3 \end{vmatrix} =(3+2)= 5$

Hence we get:

$adjA = \begin{bmatrix} A_{11} &A_{21} &A_{31} \\ A_{12}&A_{22} &A_{32} \\ A_{13}&A_{23} &A_{33} \end{bmatrix} = \begin{bmatrix} 3 &1 &-11 \\ -12&5 &-1 \\ 6&2 &5 \end{bmatrix}$

Question 3: Verify $\small A (adj A)=(adj A)A=|A|I$.

$\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Answer:

Given the matrix: $\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Let $\small A = \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1}(-6) = -6$

$\small A_{12} = (-1)^{1+2}(-4) = 4$

$\small A_{21} = (-1)^{2+1}(3) = -3$

$\small A_{22} = (-1)^{2+2}(2) = 2$

Hence, $\small adjA = \begin{bmatrix} -6 &-3 \\ 4& 2 \end{bmatrix}$

Now,

$\small A (adj A) = \begin{bmatrix} 2 &3 \\ -4&-6 \end{bmatrix}\left ( \begin{bmatrix} -6 &-3 \\ 4 &2 \end{bmatrix} \right )$

$\small \begin{bmatrix} -12+12 &-6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

aslo,

$\small (adjA)A = \begin{bmatrix} -6 &-3 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 2 &3 \\ -4& -6 \end{bmatrix}$

$\small = \begin{bmatrix} -12+12 &-18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = -12-(-12) = -12+12 = 0$

So, $\small |A|I = 0\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Hence we get

$\small A (adj A)=(adj A)A=|A|I$

Question 4: Verify $\small A (adj A)=(adjA)A=|A| I$.

$\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Let $\small A= \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1} \begin{vmatrix} 0 &-2 \\ 0& 3 \end{vmatrix} = 0$

$\small A_{12} = (-1)^{1+2} \begin{vmatrix} 3 &-2 \\1& 3 \end{vmatrix} = -(9+2) =-11$

$\small A_{13} = (-1)^{1+3} \begin{vmatrix} 3 &0 \\ 1& 0 \end{vmatrix} = 0$

$\small A_{21} = (-1)^{2+1} \begin{vmatrix} -1 &2 \\ 0& 3 \end{vmatrix} = -(-3-0)= 3$

$\small A_{22} = (-1)^{2+2} \begin{vmatrix} 1 &2 \\ 1& 3 \end{vmatrix} = 3-2=1$

$\small A_{23} = (-1)^{2+3} \begin{vmatrix} 1 &-1 \\ 1& 0 \end{vmatrix} = -(0+1) = -1$

$\small A_{31} = (-1)^{3+1} \begin{vmatrix} -1 &2 \\ 0& -2 \end{vmatrix} = 2$

$\small A_{32} = (-1)^{3+2} \begin{vmatrix} 1 &2 \\ 3& -2 \end{vmatrix} = -(-2-6) = 8$

$\small A_{33} = (-1)^{3+3} \begin{vmatrix} 1 &-1 \\ 3& 0 \end{vmatrix} = 0+3 =3$

Hence, $\small adjA = \begin{bmatrix} 0 &3 &2 \\ -11 & 1& 8\\ 0 &-1 & 3 \end{bmatrix}$

Now,

$\small A (adj A) =\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+11+0 &3-1-2 &2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 &3+0-3 & 2+0+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

also,

$\small A (adj A) =\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+9+2 &0+0+0 &0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 &0+0+0 & 0+2+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = 1(0-0) +1(9+2) +2(0-0) = 11$

So, $\small |A|I = 11\begin{bmatrix} 1 &0&0 \\ 0& 1&0 \\ 0&0&1 \end{bmatrix} = \begin{bmatrix} 11 &0&0 \\ 0& 11&0\\ 0&0&11 \end{bmatrix}$

Hence we get,

$\small A (adj A)=(adj A)A=|A|I$.

Question:5 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

Answer:

Given matrix : $\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (6+8) = 14

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (3) = 3$

$A_{12} = (-1)^{1+2} (4) = -4$

$A_{21} = (-1)^{2+1} (-2) = 2$

$A_{22} = (-1)^{2+2} (2) = 2$

So, we have $adjA = \begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{14}\begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{14} &\frac{1}{7} \\ \\ \frac{-2}{7} & \frac{1}{7} \end{bmatrix}$

Question:6 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (-2+15) = 13

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (2) = 2$

$A_{12} = (-1)^{1+2} (-3) = 3$

$A_{21} = (-1)^{2+1} (5) =-5$

$A_{22} = (-1)^{2+2} (-1) = -1$

So, we have $adjA = \begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{13}\begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{13} &\frac{-5}{13} \\ \\ \frac{3}{13} & \frac{-1}{13} \end{bmatrix}$

Question:7 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}= A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(10-0)-2(0-0)+3(0-0) = 10$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (10) = 10$ $A_{12} = (-1)^{1+2} (0) = 0$

$A_{13} = (-1)^{1+3} (0) =0$ $A_{21} = (-1)^{2+1} (10) = -10$

$A_{22} = (-1)^{2+2} (5-0) = 5$ $A_{23} = (-1)^{2+1} (0-0) = 0$

$A_{31} = (-1)^{3+1} (8-6) = 2$ $A_{32} = (-1)^{3+2} (4-0) =-4$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 10 &-10 &2 \\ 0& 5 &-4 \\ 0& 0 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{10}\begin{bmatrix} 10 &-10 &2 \\ 0 & 5& -4\\ 0 &0 &2 \end{bmatrix}$

Question:8 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-3-0)-0(-3-0)+0(6-15) = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-3-0) = -3$ $A_{12} = (-1)^{1+2} (-3-0) = 3$

$A_{13} = (-1)^{1+3} (6-15) =-9$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-1-0) = -1$ $A_{23} = (-1)^{2+1} (2-0) = -2$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (0-0) =0$

$A_{33} = (-1)^{3+3} (3-0) = 3$

So, we have $adjA = \begin{bmatrix} -3 &0 &0 \\ 3& -1 &0 \\ -9& -2 &3 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{-1}{3}\begin{bmatrix} -3 &0 &0 \\ 3 & -1& 0\\ -9 &-2 &3 \end{bmatrix}$

Question:9 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 2(-1-0)-1(4-0)+3(8-7) =-2-4+3 = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-1-0) = -1$ $A_{12} = (-1)^{1+2} (4-0) = -4$

$A_{13} = (-1)^{1+3} (8-7) =1$ $A_{21} = (-1)^{2+1} (1-6) = 5$

$A_{22} = (-1)^{2+2} (2+21) = 23$ $A_{23} = (-1)^{2+1} (4+7) = -11$

$A_{31} = (-1)^{3+1} (0+3) = 3$ $A_{32} = (-1)^{3+2} (0-12) =12$

$A_{33} = (-1)^{3+3} (-2-4) = -6$

So, we have $adjA = \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Question:10 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(8-6)+1(0+9)+2(0-6) =2+9-12 = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (8-6) = 2$ $A_{12} = (-1)^{1+2} (0+9) = -9$

$A_{13} = (-1)^{1+3} (0-6) =-6$ $A_{21} = (-1)^{2+1} (-4+4) = 0$

$A_{22} = (-1)^{2+2} (4-6) = -2$ $A_{23} = (-1)^{2+1} (-2+3) = -1$

$A_{31} = (-1)^{3+1} (3-4) = -1$ $A_{32} = (-1)^{3+2} (-3-0) =3$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1} \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

$A^{-1} = \begin{bmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6& 1 &-2 \end{bmatrix}$

Question:11 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-\cos^2 \alpha-\sin^2 \alpha)+0(0-0)+0(0-0)$

$=-(\cos^2 \alpha + \sin^2 \alpha) = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-\cos^2 \alpha - \sin^2 \alpha) = -1$ $A_{12} = (-1)^{1+2} (0-0) = 0$

$A_{13} = (-1)^{1+3} (0-0) =0$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-\cos \alpha-0) = -\cos \alpha$ $A_{23} = (-1)^{2+1} (\sin \alpha-0) = -\sin \alpha$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (\sin \alpha-0) =-\sin \alpha$

$A_{33} = (-1)^{3+3} (\cos \alpha - 0) = \cos \alpha$

So, we have $adjA = \begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1}\begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix} = \begin{bmatrix}1 &0 &0 \\ 0&\cos \alpha &\sin \alpha \\ 0& \sin \alpha &-\cos \alpha \end{bmatrix}$

Question:12 Let $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$. Verify that $\small (AB)^{-1} = B^{-1}A^{-1}$.

Answer:

We have $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$.

then calculating;

$AB = \begin{bmatrix} 3 &7 \\ 2& 5 \end{bmatrix}\begin{bmatrix} 6 &8 \\ 7& 9 \end{bmatrix}$

$=\begin{bmatrix} 18+49 &24+63 \\ 12+35 & 16+45 \end{bmatrix} = \begin{bmatrix} 67 &87 \\ 47& 61 \end{bmatrix}$

Finding the inverse of AB.

Calculating the cofactors fo AB:

$AB_{11}=(-1)^{1+1}(61) = 61$ $AB_{12}=(-1)^{1+2}(47) = -47$

$AB_{21}=(-1)^{2+1}(87) = -87$ $AB_{22}=(-1)^{2+2}(67) = 67$

Then we have adj(AB):

$adj(AB) = \begin{bmatrix} 61 &-87 \\ -47& 67 \end{bmatrix}$

and |AB| = 61(67) - (-87)(-47) = 4087-4089 = -2

Therefore we have inverse:

$(AB)^{-1}=\frac{1}{|AB|}adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 &-87 \\ -47 & 67 \end{bmatrix}$

$= \begin{bmatrix} \frac{-61}{2} &\frac{87}{2} \\ \\ \frac{47}{2} & \frac{-67}{2} \end{bmatrix}$ .....................................(1)

Now, calculating inverses of A and B.

|A| = 15-14 = 1 and |B| = 54- 56 = -2

$adjA = \begin{bmatrix} 5 &-7 \\ -2 & 3 \end{bmatrix}$ and $adjB = \begin{bmatrix} 9 &-8 \\ -7 & 6 \end{bmatrix}$

therefore we have

$A^{-1} = \frac{1}{|A|}adjA= \frac{1}{1} \begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$ and $B^{-1} = \frac{1}{|B|}adjB= \frac{1}{-2} \begin{bmatrix} 9&-8 \\ -7& 6 \end{bmatrix}= \begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}$

Now calculating$B^{-1}A^{-1}$.

$B^{-1}A^{-1} =\begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}\begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$

$=\begin{bmatrix} \frac{-45}{2}-8 && \frac{63}{2}+12 \\ \\ \frac{35}{2}+6 && \frac{-49}{2}-9 \end{bmatrix} = \begin{bmatrix} \frac{-61}{2} && \frac{87}{2} \\ \\ \frac{47}{2} && \frac{-67}{2} \end{bmatrix}$........................(2)

From (1) and (2) we get

$\small (AB)^{-1} = B^{-1}A^{-1}$

Hence proved.

Question:13 If $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$? , show that $A^2-5A+7I=O$. Hence find $A^{-1}$.

Answer:

Given $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$ then we have to show the relation $A^2-5A+7I=0$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 1\\ -1& 2 \end{bmatrix}\begin{bmatrix} 3&1 \\ -1& 2 \end{bmatrix} = \begin{bmatrix} 9-1 &3+2 \\ -3-2&-1+4 \end{bmatrix} = \begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix}$

therefore $A^2-5A+7I$;

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - 5\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix} + 7 \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}$

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - \begin{bmatrix} 15 &5 \\ -5& 10 \end{bmatrix} + \begin{bmatrix} 7 &0 \\ 0 & 7 \end{bmatrix}$

$\begin{bmatrix} 8-15+7 &&5-5+0 \\ -5+5+0 && 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 &&0 \\ 0 && 0 \end{bmatrix}$

Hence $A^2-5A+7I = 0$.

$\therefore A.A -5A = -7I$

$\Rightarrow A.A(A^{-1}) - 5AA^{-1} = -7IA^{-1}$

[Post multiplying by $A^{-1}$, also $|A| \neq 0$]

$\Rightarrow A(AA^{-1}) - 5I = -7A^{-1}$

$\Rightarrow AI - 5I = -7A^{-1}$

$\Rightarrow -\frac{1}{7}(AI - 5I)= \frac{1}{7}(5I-A)$

$\therefore A^{-1} = \frac{1}{7}(5\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}-\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix}) = \frac{1}{7}\begin{bmatrix} 2 &-1 \\ 1& 3 \end{bmatrix}$

Question:14 For the matrix $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ , find the numbers $\small a$ and $\small b$ such that $A^2+aA+bI=0$.

Answer:

Given $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ then we have the relation $A^2+aA+bI=O$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 2\\ 1& 1 \end{bmatrix}\begin{bmatrix} 3&2 \\ 1& 1 \end{bmatrix} = \begin{bmatrix} 9+2 &6+2 \\ 3+1&2+1 \end{bmatrix} = \begin{bmatrix} 11 &8 \\ 4& 3 \end{bmatrix}$

therefore $A^2+aA+bI=O$;

$=\begin{bmatrix}11 &8 \\ 4& 3 \end{bmatrix} + a\begin{bmatrix} 3 &2 \\ 1& 1 \end{bmatrix} + b \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

$\begin{bmatrix} 11+3a+b & 8+2a \\ 4+a & 3+a+b \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

So, we have equations;

$11+3a+b = 0,\ 8+2a = 0$ and $4+a = 0,and\ \ 3+a+b = 0$

We get $a = -4\ and\ b= 1$.

Question:15 For the matrix $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$ Show that $\small A^3-6A^2+5A+11I=O$ Hence, find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$;

To show: $\small A^3-6A^2+5A+11I=O$

Finding each term:

$A^{2} = \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix}$

$= \begin{bmatrix} 1+1+2 &&1+2-1 &&1-3+3 \\ 1+2-6 &&1+4+3 &&1-6-9 \\ 2-1+6 &&2-2-3 && 2+3+9 \end{bmatrix}$

$= \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}$

$A^{3} = \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$

$= \begin{bmatrix} 4+2+2 &4+4-1 &4-6+3 \\ -3+8-28 &-3+16+14 & -3-24-42 \\ 7-3+28&7-6-14 &7+9+42 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}$

So now we have, $\small A^3-6A^2+5A+11I$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-6\begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}+5\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+11\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-\begin{bmatrix} 24 &&12 &&6 \\ -18 &&48 &&-84 \\ 42 &&-18 && 84 \end{bmatrix}+\begin{bmatrix} 5 &5 &5 \\ 5 &10 &-15 \\ 10 &-5 &15 \end{bmatrix}+\begin{bmatrix} 11 &0 &0 \\ 0 &11 & 0\\ 0& 0& 11 \end{bmatrix}$

$= \begin{bmatrix} 8-24+5+11 &7-12+5 &1-6+5 \\ -23+18+5&27-48+10+11 &-69+84-15 \\ 32-42+10&-13+18-5 & 58-84+15+11 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = 0$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +5AA^{-1}+11IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +5(AA^{-1})=- 11IA^{-1}$

$\Rightarrow A^{2}-6A +5I=- 11A^{-1}$

$A^{-1} = \frac{-1}{11}(A^{2}-6A+5I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}-6\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+5\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$

$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4-6+5 &&2-6 &&1-6 \\ -3-6 &&8-12+5 &&-14+18 \\ 7-12 &&-3+6 && 14-18+5 \end{bmatrix}$

$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 3 &&-4 &&-5 \\ -9 &&1 &&4 \\ -5 &&3 && 1 \end{bmatrix}$

Question:16 If $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$ , verify that $\small A^3-6A^2+9A-4I=O$. Hence find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$;

To show: $\small A^3-6A^2+9A-4I$

Finding each term:

$A^{2} = \begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 4+1+1 &&-2-2-1 &&2+1+2 \\ -2-2-1 &&1+4+1 &&-1-2-2 \\ 2+1+2 &&-1-2-2 && 1+1+4 \end{bmatrix}$

$= \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}$

$A^{3} =\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 12+5+5 &-6-10-5 &6+5+10 \\ -10-6-5 &5+12+5 & -5-6-10 \\ 10+5+6&-5-10-6 &5+5+12 \end{bmatrix}$

$= \begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}$

So now we have, $\small A^3-6A^2+9A-4I$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}-6 \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}+9\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}-4\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}- \begin{bmatrix} 36 &&-30 &&30 \\ -30 &&36 &&-30 \\30 &&-30 && 36 \end{bmatrix}+\begin{bmatrix} 18 &-9 &9 \\ -9 &18 &-9 \\ 9 &-9 &18 \end{bmatrix}-\begin{bmatrix} 4 &0 &0 \\ 0 &4 & 0\\ 0& 0& 4 \end{bmatrix}$

$= \begin{bmatrix} 22-36+18-4 &-21+30-9 &21-30+9 \\ -21+30-9&22-36+18-4 &-21+30-9 \\ 21-30+9&-21+30-9 & 22-36+18-4 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = O$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +9AA^{-1}-4IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +9(AA^{-1})=4IA^{-1}$

$\Rightarrow A^{2}-6A +9I=4A^{-1}$

$A^{-1} = \frac{1}{4}(A^{2}-6A+9I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{1}{4}(\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}-6\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}+9\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$

$A^{-1} = \frac{1}{4} \begin{bmatrix} 6-12+9 &&-5+6 &&5-6 \\ -5+6 &&6-12+9 &&-5+6 \\ 5-6 &&-5+6 && 6-12+9 \end{bmatrix}$

Hence inverse of A is :

$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 &&1 &&-1 \\ 1 &&3 &&1 \\ -1 &&1 && 3 \end{bmatrix}$

Question:17 Let A be a nonsingular square matrix of order $\small 3\times 3$. Then $\small |adjA|$ is equal to

(A) $\small |A|$ (B) $\small |A|^2$ (C) $\small |A|^3$ (D) $\small 3|A|$

Answer:

We know the identity $(adjA)A = |A| I$

Hence we can determine the value of $|(adjA)|$.

Taking both sides determinant value we get,

$|(adjA)A| = ||A| I|$ or $|(adjA)||A| = ||A||| I|$

or taking R.H.S.,

$||A||| I| = \begin{vmatrix} |A| & 0&0 \\ 0&|A| &0 \\ 0&0 &|A| \end{vmatrix}$

$= |A| (|A|^2) = |A|^3$

or, we have then $|(adjA)||A| = |A|^3$

Therefore $|(adjA)| = |A|^2$

Hence the correct answer is B.

Question:18 If A is an invertible matrix of order 2, then det $\left(A^{-1}\right)$ is equal to $\dfrac{1}{\det(A)}$.

(A) $\small det(A)$ (B) $\small \frac{1}{det (A)}$ (C) $\small 1$ (D) $\small 0$

Answer:

Given that the matrix is invertible hence $A^{-1}$ exists and $A^{-1} = \frac{1}{|A|}adjA$

Let us assume a matrix of the order of 2;

$A = \begin{bmatrix} a &b \\ c &d \end{bmatrix}$.

Then $|A| = ad-bc$.

$adjA = \begin{bmatrix} d &-b \\ -c & a \end{bmatrix}$ and $|adjA| = ad-bc$

Now,

$A^{-1} = \frac{1}{|A|}adjA$

Taking determinant both sides;

$|A^{-1}| = |\frac{1}{|A|}adjA| = \begin{bmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$

$\therefore|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2}\begin{vmatrix} d &-b \\ -c& a \end{vmatrix} = \frac{1}{|A|^2}(ad-bc) =\frac{1}{|A|^2}.|A| = \frac{1}{|A|}$

Therefore we get;

$|A^{-1}| = \frac{1}{|A|}$

Hence the correct answer is B.

Determinants Class 12 Chapter 4 Question Answers
Exercise: 4.5
Page number: 97-98
Total Questions: 16

Question:1 Examine the consistency of the system of equations.

$\small x+2y=2$

$\small 2x+3y=3$

Answer:

We have given the system of equations:

$\small x+2y=2$

$\small 2x+3y=3$

The given system of equations can be written in the form of a matrix; $AX =B$

where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.

So, we want to check for the consistency of the equations.

$|A| = 1(3) -2(2) = -1 \neq 0$

Here A is non -singular therefore, there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:2 Examine the consistency of the system of equations

$\small 2x-y=5$

$\small x+y=4$

Answer:

We have given the system of equations:

$\small 2x-y=5$

$\small x+y=4$

The given system of equations can be written in the form of matrix; $AX =B$

where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 2(1) -1(-1) = 3 \neq 0$

Here A is non -singular therefore there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:3 Examine the consistency of the system of equations.

$\small x+3y=5$

$\small 2x+6y=8$

Answer:

We have given the system of equations:

$\small x+3y=5$

$\small 2x+6y=8$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6) -2(3) = 0$

Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.

$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$

So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$

As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.

Hence, the given system of equations is inconsistent.

Question:4 Examine the consistency of the system of equations.

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

Answer:

We have given the system of equations:

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$

$= 4a -2a-a = 4a -3a =a \neq 0$

[If zero then it won't satisfy the third equation]

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:5 Examine the consistency of the system of equations.

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

Answer:

We have given the system of equations:

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

The given system of equations can be written in the form of matrix; $AX =B$

where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$

$= -15 +3+12 = 0$

Therefore matrix A is a singular matrix.

So, we will then check $(adjA)B,$

$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$

$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$

As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.

Question:6 Examine the consistency of the system of equations.

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

Answer:

We have given the system of equations:

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 5(18+10) +1(12-25)+4(-4-15)$

$= 140-13-76 = 51 \neq 0$

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:7 Solve system of linear equations, using matrix method.

$\small 5x+2y=4$

$\small 7x+3y=5$

Answer:

The given system of equations

$\small 5x+2y=4$

$\small 7x+3y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$

we have,

$|A| = 15-14=1 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2 and y =-3.

Question:8 Solve system of linear equations, using matrix method.

$2x-y=-2$

$3x+4y=3$

Answer:

The given system of equations

$2x-y=-2$

$3x+4y=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$

we have,

$|A| = 8+3=11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -5/11 and y = 12/11.

Question:9 Solve system of linear equations, using matrix method.

$\small 4x-3y=3$

$\small 3x-5y=7$

Answer:

The given system of equations

$\small 4x-3y=3$

$\small 3x-5y=7$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$

we have,

$|A| = -20+9=-11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -6/11 and y = -19/11.

Question:10 Solve system of linear equations, using matrix method.

$\small 5x+2y=3$

$\small 3x+2y=5$

Answer:

The given system of equations

$\small 5x+2y=3$

$\small 3x+2y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$

we have,

$|A| = 10-6=4 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -1 and y = 4

Question:11 Solve system of linear equations, using matrix method.

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

Answer:

The given system of equations

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$

we have,

$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$

$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$

$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$

$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$

$A_{33} =(-1)^{3+3}(-4-1) = -5$

$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 1/2, and z = -3/2.

Question:12 Solve system of linear equations, using matrix method.

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

Answer:

The given system of equations

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$

we have,

$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$

$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$

$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$

$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$

$A_{33} =(-1)^{3+3}(1+2) = 3$

$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = -1, and z = 1.

Question:13 Solve system of linear equations, using matrix method.

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

Answer:

The given system of equations

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$

we have,

$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$

$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$

$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$

$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$

$A_{33} =(-1)^{3+3}(-4-3) = -7$

$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = -1.

Question:14 Solve system of linear equations, using matrix method.

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

Answer:

The given system of equations

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$

we have,

$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$

$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$

$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$

$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$

$A_{33} =(-1)^{3+3}(4+3) = 7$

$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = 1, and z = 3.

Question:15 If $A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$ , find $A^{-1}$. Using $A^{-1}$ solve the system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

Answer:

The given system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

can be written in the matrix form of AX =B, where

$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$

we have,

$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$

$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$

$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$

$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$

$A_{33} =(-1)^{3+3}(4+9) = 13$

$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = 3.

Question:16 The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer:

So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.

Then we have the equations for the given situation :

$4x+3y+2z = 60$

$2x+4y+6z = 90$

$6x+2y+3y = 70$

We can find the cost of each item per Kg by the matrix method as follows;

Taking the coefficients of x, y, and z as a matrix $A$.

We have;

$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$

$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$

Now, we will find the cofactors of A;

$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$

$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$

$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$

$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$

$A_{33} = (-1)^{3+3}(16-6) = 10$

Now we have adjA;

$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s

So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 5, y = 8, and z = 8

Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.

Determinants Class 12 Chapter 4 Question Answers
Miscellaneous Exercise
Page number: 99-100
Total Questions: 9

Question:1 Prove that the determinant $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$ is independent of $\theta$.

Answer:

Calculating the determinant value of $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$;

$= x\begin{bmatrix} -x &1 \\ 1& x \end{bmatrix}-\sin \Theta\begin{bmatrix} -\sin \Theta &1 \\ \cos \Theta& x \end{bmatrix} + \cos \Theta \begin{bmatrix} -\sin \Theta &-x \\ \cos \Theta& 1 \end{bmatrix}$

$= x(-x^2-1)-\sin \Theta (-x\sin \Theta-\cos \Theta)+\cos\Theta(-\sin \Theta+x\cos\Theta)$

$= -x^3-x+x\sin^2 \Theta+ \sin \Theta\cos \Theta-\cos\Theta\sin \Theta+x\cos^2\Theta$

$= -x^3-x+x(\sin^2 \Theta+\cos^2\Theta)$

$= -x^3-x+x = -x^3$

Clearly, the determinant is independent of $\Theta$.

Question:2 Without expanding the determinant, prove that
$\begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}= \begin{vmatrix} 1 &a^2 &a^3 \\ 1 &b^2 &b^3 \\ 1 & c^2 &c^3 \end{vmatrix}$

Answer:

We have the

$L.H.S. = \begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}$

Multiplying rows with a, b, and c respectively.

$R_{1} \rightarrow aR_{1}, R_{2} \rightarrow bR_{2},\ and\ R_{3} \rightarrow cR_{3}$

we get;

$= \frac{1}{abc} \begin{vmatrix} a^2 &a^3 &abc \\ b^2& b^3 &abc \\ c^2& c^3 & abc \end{vmatrix}$

$= \frac{1}{abc}.abc \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix}$ $[after\ taking\ out\ abc\ from\ column\ 3].$

$= \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1&a^2 & a^3\\ 1& b^2 &b^3 \\ 1& c^2 & c^3 \end{vmatrix}$ $[Applying\ C_{1}\leftrightarrow C_{3}\ and\ C_{2} \leftrightarrow C_{3}]$

= R.H.S.

Hence proved. L.H.S. =R.H.S.

Question:3 Evaluate $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$.

Answer:

Given determinant $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$;

$= \cos \alpha \cos \beta \begin{vmatrix} \cos \beta &0 \\ \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} - \cos \alpha \sin \beta \begin{vmatrix} -\sin \beta & 0 \\ \sin \alpha \cos \beta & \cos \alpha \end{vmatrix} -\sin \alpha \begin{vmatrix} -\sin \beta &\cos \beta \\ \sin \alpha \cos \beta& \sin \alpha \sin \beta \end{vmatrix}$$= \cos \alpha \cos \beta (\cos \beta \cos \alpha -0 )- \cos \alpha \sin \beta (-\cos \alpha\sin \beta- 0) -\sin \alpha (-\sin \alpha\sin^2\beta - \sin \alpha \cos^2 \beta)$

$= \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta +\sin^2 \alpha \sin^2\beta + \sin^2 \alpha \cos^2 \beta$

$= \cos^2 \alpha(\cos^2 \beta+\sin^2 \beta) +\sin^2 \alpha(\sin^2\beta+\cos^2 \beta)$

$= \cos^2 \alpha(1) +\sin^2 \alpha(1) = 1$.

Question 4: If \( A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \), find \( (AB)^{-1} \).
Answer:

We know from the identity that:

$(AB)^{-1} = B^{-1}A^{-1}$

Then we can find easily,

Given

Given
$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \ -15 & 6 & -5 \ 5 & -2 & 2 \end{bmatrix}$,
$B = \begin{bmatrix} 1 & 2 & -2 \ -1 & 3 & 0 \ 0 & -2 & 1 \end{bmatrix}$

Then we have to basically find the $B^{-1}$ matrix.

So, Given matrix $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$

$|B| = 1(3-0) -2(-1-0)-2(2-0) = 3+2-4 = 1 \neq 0$

Hence its inverse $B^{-1}$ exists;

Now, as we know that

$B^{-1} = \frac{1}{|B|} adjB$

So, calculating cofactors of B,

$B_{11} = (-1)^{1+1}(3-0) = 3$ $B_{12} = (-1)^{1+2}(-1-0) = 1$

$B_{13} = (-1)^{1+3}(2-0) = 2$ $B_{21} = (-1)^{2+1}(2-4) = 2$

$B_{22} = (-1)^{2+2}(1-0) = 1$ $B_{23} = (-1)^{2+3}(-2-0) = 2$

$B_{31} = (-1)^{3+1}(0+6) = 6$ $B_{32} = (-1)^{3+2}(0-2) = 2$

$B_{33} = (-1)^{3+3}(3+2) = 5$

$adjB = \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$

$B^{-1} = \frac{1}{|B|} adjB = \frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$

Now, We have both $A^{-1}$ as well as $B^{-1}$ ;

Putting in the relation we know; $(AB)^{-1} = B^{-1}A^{-1}$

$(AB)^{-1}=\frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$

$= \begin{bmatrix} 9-30+30 &-3+12-12 &3-10+12 \\ 3-15+10&-1+6-4 &1-5+4 \\ 6-30+25 &-2+12-10 &2-10+10 \end{bmatrix}$

$= \begin{bmatrix} 9 &-3 &5 \\ -2&1 &0 \\ 1 &0 &2\end{bmatrix}$

Question 5(i): Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that $100[\operatorname{adj} A]^{-1} = \operatorname{adj}(A^{-1})$.
Answer:

Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;

So, let us assume that $A^{-1} = B$ matrix and $adjA = C$ then;

$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$

Hence its inverse exists;

$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;

so, we now calculate the value of $adjA$

Cofactors of A;

$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$

$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$

$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$

$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$

$A_{33}= (-1)^{3+3}(3-4) = -1$

$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

Finding the inverse of C;

$|C| = 14(-4-1)+9(9+1)-1(-9+4) = -70+90+5 = 25 \neq 0$

Hence its inverse exists;

$C^{-1} = \frac{1}{|C|}adj C$

Now, finding the $adjC$;

$C_{11}= (-1)^{1+1}(-4-1) = -5$ $C_{12}= (-1)^{1+2}(9+1) = -10$

$C_{13}= (-1)^{1+3}(-9+4) = -5$ $C_{21}= (-1)^{2+1}(9+1) = -10$

$C_{22}= (-1)^{2+2}(-14-1) = -15$ $C_{23}= (-1)^{2+3}(14-9) = -5$

$C_{31}= (-1)^{3+1}(-9+4) = -5$ $C_{32}= (-1)^{3+2}(14-9) = -5$

$C_{33}= (-1)^{3+3}(56-81) = -25$

$adjC = \begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix}$

$C^{-1} = \frac{1}{|C|}adjC = \frac{1}{25}\begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$

or $L.H.S. = C^{-1} = [adjA]^{-1} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$

Now, finding the R.H.S.

$adj (A^{-1}) = adj B$

$A^{-1} =B= \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5}&& \frac{-4}{5}&& \frac{-1}{5}\\ \\ \frac{1}{5}&& \frac{-1}{5} &&\frac{1}{5}\end{bmatrix}$

Cofactors of B;

$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$

$B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) =- \frac{2}{5}$

$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$

$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$

$B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = -1$

$R.H.S. = adjB = adj(A^{-1}) =\begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$

Hence L.H.S. = R.H.S. proved.

Question 5(ii):Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$, verify that $(A^{-1})^{-1} = A$.

Answer:

Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;

So, let us assume that $A^{-1} = B$

$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$

Hence its inverse exists;

$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;

so, we now calculate the value of $adjA$

Cofactors of A;

$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$

$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$

$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$

$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$

$A_{33}= (-1)^{3+3}(3-4) = -1$

$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$

Finding the inverse of B ;

$|B| = \frac{-14}{5}(\frac{-4}{25}-\frac{1}{25})-\frac{9}{5}(\frac{9}{25}+\frac{1}{25})+\frac{1}{5}(\frac{-9}{25}+\frac{4}{25})$

$= \frac{70}{125}-\frac{90}{125}-\frac{5}{125} = \frac{-25}{125} = \frac{-1}{5} \neq 0$

Hence its inverse exists;

$B^{-1} = \frac{1}{|B|}adj B$

Now, finding the $adjB$;

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$

$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$ $B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) = \frac{-2}{5}$

$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$ $B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$

$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$ $B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = \frac{-25}{25} =-1$

$adjB = \begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}$

$B^{-1} = \frac{1}{|B|}adjB = \frac{-5}{1}\begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}= \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$

$L.H.S. = B^{-1} = (A^{-1})^{-1} = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$

$R.H.S. = A = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1& 1 &5 \end{bmatrix}$

Hence proved L.H.S. =R.H.S..

Question:6 Evaluate $\begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Answer:

We have determinant $\triangle = \begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Applying row transformations; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ , we have then;

$\triangle = \begin{vmatrix} 2(x+y) & 2(x+y) &2(x+y) \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Taking out the common factor 2(x+y) from the row first.

$= 2(x+y)\begin{vmatrix} 1 & 1 &1 \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Now, applying the column transformation; $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{1}$ we have ;

$= 2(x+y)\begin{vmatrix} 0 & 0 &1 \\ -x & y &x \\ y & x-y & y \end{vmatrix}$

Expanding the remaining determinant;

$= 2(x+y)(-x(x-y)-y^2) = 2(x+y)[-x^2+xy-y^2]$

$= -2(x+y)[x^2-xy+y^2] = -2(x^3+y^3)$.

Question:7 Evaluate $\begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$

Answer:

We have determinant $\triangle = \begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$

Applying row transformations; $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ then we have then;

$\triangle = \begin{vmatrix} 0 & -y &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$

Taking out the common factor -y from the row first.

$\triangle = -y\begin{vmatrix} 0 & 1 &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$

Expanding the remaining determinant;

$-y[1(-x-o)] = xy$

Question:8 Solve the system of equations

$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$

$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$

$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

Answer:

We have a system of equations;

$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$

$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$

$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

So, we will convert the given system of equations in a simple form to solve the problem by the matrix method;

Let us take, $\frac{1}{x} = a$, $\frac{1}{y} = b\ and\ \frac{1}{z} = c$

Then we have the equations;

$2a +3b+10c = 4$

$4a-6b+5c =1$

$6a+9b-20c = 2$

We can write it in the matrix form as $AX =B$ , where

$A= \begin{bmatrix} 2 &3 &10 \\ 4& -6 & 5\\ 6 & 9 & -20 \end{bmatrix} , X = \begin{bmatrix} a\\b \\c \end{bmatrix}\ and\ B = \begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}.$

Now, Finding the determinant value of A;

$|A| = 2(120-45)-3(-80-30)+10(36+36)$

$=150+330+720$

$=1200 \neq 0$

Hence we can say that A is non-singular $\therefore$ its invers exists;

Finding cofactors of A;

$A_{11} = 75$ , $A_{12} = 110$, $A_{13} = 72$

$A_{21} = 150$, $A_{22} = -100$, $A_{23} = 0$

$A_{31} =75$, $A_{31} =30$, $A_{33} =-24$

$\therefore$ as we know $A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}$

Now we will find the solutions by relation $X = A^{-1}B$.

$\Rightarrow \begin{bmatrix} a\\b \\ c \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}\begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}$

$= \frac{1}{1200}\begin{bmatrix} 300+150+150\\440-100+60 \\ 288+0-48 \end{bmatrix}$

$= \frac{1}{1200}\begin{bmatrix} 600\\400\\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \\ \frac{1}{3} \\ \\ \frac{1}{5} \end{bmatrix}$

Therefore we have the solutions $a = \frac{1}{2},\ b= \frac{1}{3},\ and\ c = \frac{1}{5}.$

Or in terms of x, y, and z;

$x =2,\ y =3,\ and\ z = 5$

Question 9: Choose the correct answer.

If $x$, $y$, $z$ are nonzero real numbers, then the inverse of the matrix

$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$

is

(A) $ \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $

(B) $ xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $

(C) $ \dfrac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} $

(D) $ \dfrac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $

Answer:

Given Matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$,

$|A| = x(yz-0) =xyz$

As we know,

$A^{-1} = \frac{1}{|A|}adjA$

So, we will find the $adjA$,

Determining its cofactor first,

$A_{11} = yz$ $A_{12} = 0$ $A_{13} = 0$

$A_{21} = 0$ $A_{22} = xz$ $A_{23} = 0$

$A_{31} = 0$ $A_{32} = 0$ $A_{33} = xy$

Hence $A^{-1} = \frac{1}{|A|}adjA = \frac{1}{xyz}\begin{bmatrix} yz &0 &0 \\ 0& xz & 0\\ 0& 0& xy \end{bmatrix}$

$A^{-1} = \begin{bmatrix} \frac{1}{x} &&0 &&0 \\ 0&& \frac{1}{y} && 0\\ 0&& 0&& \frac{1}{z} \end{bmatrix}$

Therefore, the correct answer is (A)

Question 10: Choose the correct answer.

Let $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix},$ where $0\leq \theta \leq 2\pi$. Then

(A)$Det(A)=0$ nbsp; (B) $Det(A)\in (2,\infty)$

(C) $Det(A)\in (2,4)$ (D)$Det(A)\in [2,4]$

Answer:

Given determinant $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix}$

$|A| = 1(1+\sin^2 \Theta) -\sin \Theta(-\sin \Theta+\sin \Theta)+1(\sin^2 \Theta +1)$

$= 1+ \sin ^2 \Theta + \sin ^2 \Theta +1$

$= 2+2\sin ^2 \Theta = 2(1+\sin^2 \Theta)$

Now, given the range of $\Theta$ from $0\leq \Theta \leq 2\pi$

$\Rightarrow 0 \leq \sin \Theta \leq 1$

$\Rightarrow 0 \leq \sin^2 \Theta \leq 1$

$\Rightarrow 1 \leq 1+\sin^2 \Theta \leq 2$

$\Rightarrow 2 \leq 2(1+\sin^2 \Theta) \leq 4$

Therefore the $|A|\ \epsilon\ [2,4]$.

Hence, the correct answer is D.

Determinants Class 12 NCERT Solutions: Exercise-wise

Exercise-wise NCERT Solutions of Determinants Class 12 Maths Chapter 4 are provided in the links below.

Class 12 Maths NCERT Chapter 4: Extra Question

Question: If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are all different from zero and $\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0 \quad$, then value of $x^{-1}+y^{-1}+z^{-1}$ is:

Solution:
We have
$\left|\begin{array}{ccc}
1+x & 1 & 1 \\
1 & 1+y & 1 \\
1 & 1 & 1+z
\end{array}\right|=0$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1-\mathrm{C}_3$ and $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$
$\left|\begin{array}{ccc}
x & 0 & 1 \\
0 & y & 1 \\
-z & -z & 1+z
\end{array}\right|=0$
Expand along Row 1

$\Rightarrow x[y(1+z)+z]-0+1(y z)=0 x y+x y z+x z+y z=0$
Divide both sides by XYZ

$\begin{aligned}
& \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1=0 \\
& \therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x^{-1}+y^{-1}+z^{-1}=-1
\end{aligned}$

Hence, the correct answer is $-1$.

Also, check,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Determinants Class 12 Chapter 4: Topics

Here is the list of important topics that are covered in Class 12 Chapter 4, Determinants:

NCERT Class 12 Maths Chapter 4 Question Answer - Important Formulae

Determinant of a Matrix: The determinant is the numerical value of a square matrix.

For a square matrix A of order n, the determinant is denoted by det A or |A|.

Minor and Cofactor of a Matrix

The minor of an element $a_{i j}$ in a determinant is the determinant obtained after deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column containing that element.

The cofactor of an element $a_{i j}$, denoted by $A_{i j}$ or $C_{i j}$, is defined as

$
A_{i j}=(-1)^{i+j} \cdot M_{i j}
$

where $M_{i j}$ represents the minor of the element $a_{i j}$.

Value of a Determinant

For a $2 \times 2$ Matrix
If

$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$

then,

$
|A|=a_{11} a_{22}-a_{12} a_{21}
$
For a $3 \times 3$ Matrix
If $A$ is a $3 \times 3$ matrix, then its determinant can be expanded as:

$
|A|=a_{11}\left|A_{11}\right|-a_{12}\left|A_{12}\right|+a_{13}\left|A_{13}\right|
$

where $\left|A_{i j}\right|$ represents the determinant of the minor corresponding to the element $a_{i j}$.

Singular and Non-Singular Matrix

  • A square matrix is called singular if its determinant is zero.

  • A square matrix is called non-singular if its determinant is non-zero.

Determinant Theorems

1. If $A$ and $B$ are non-singular matrices of the same order, then $A B$ and $B A$ are also non-singular matrices.
2. The determinant of the product of two matrices equals the product of their determinants:

$
|A B|=|A| \cdot|B|
$

Adjoint of a Matrix

The adjoint of a square matrix $A$ is defined as the transpose of the matrix formed by the cofactors of the elements of $A$. It is denoted by $\operatorname{adj}(A)$.

For a matrix $\boldsymbol{A}=\left[a_{i j}\right]_{n \times n,}$

$
\operatorname{adj}(\boldsymbol{A})=\left[\boldsymbol{A}_{j i}\right]_{n \times n}
$

where $A_{j i}$ is the cofactor of the element $a_{j i}$.

Properties of the Adjoint of a Matrix

1. $A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=|A| I_n$
2. $|\operatorname{adj}(A)|=|A|^{n-1}$
3. $\operatorname{adj}\left(\boldsymbol{A}^T\right)=(\operatorname{adj}(\boldsymbol{A}))^T$

Area of a Triangle Using Determinants

The area of a triangle having vertices $\left(x_1, y_1\right),\left(x_2, y_2\right),\left(x_3, y_3\right)$ is given by:

$
\text { Area }=\frac{1}{2}\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|
$

Inverse of a Square Matrix

For a non-singular square matrix $A$ (i.e., $|A| \neq 0$ ), the inverse of $A$ is defined as:

$A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$

Properties of an Inverse Matrix

1. $\left(A^{-1}\right)^{-1}=A$
2. $\left(A^T\right)^{-1}=\left(A^{-1}\right)^T$
3. $(A B)^{-1}=B^{-1} A^{-1}$
4. $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
5. $\operatorname{adj}\left(\boldsymbol{A}^{-1}\right)=(\operatorname{adj}(\boldsymbol{A}))^{-1}$

Solving a System of Linear Equations Using the Inverse Matrix

Consider a system of linear equations represented as:

$
A X=B
$

where:
$A$ is the coefficient matrix,
$X$ is the variable matrix,
$B$ is the constant matrix.

Case I: $|A| \neq 0$
The system is consistent and has a unique solution given by:

$
X=A^{-1} B
$
Case II: $|A|=0$ and $(\operatorname{adj} A) B \neq 0$
The system is inconsistent and has no solution.
Case III: $|A|=0$ and $(\operatorname{adj} A) B=0$
The system may be consistent or inconsistent. If consistent, it has infinitely many solutions.

Approach to Solve Questions of Determinants Class 12

Determinants play a quite significant role in Class 12 mathematics, so here are some key steps on how to approach determinants-related questions effectively:

Understanding the basics: First of all, learn what a determinant is and how it is calculated. Then study all the different types of determinants to have a clear idea about them.

Learn and apply the properties: Study all the important properties of determinants, like swapping two rows changes the sign or the value of the determinant becomes zero if two rows or two columns are equal. Applying these properties will make solving determinant problems quite easy to handle.

Use the row and column operations: You can use the elementary operations, like making zeros in the rows or columns, which will simplify the problem before expanding the determinants.

Avoid common mistakes: Be careful about the sign changes in the cofactor expansion. Always try to double-check the values after transformations.

Tips and tricks: To improve your speed and accuracy, you have to practice many different types of questions from the ncert book, the exemplar book, and the previous year papers. Also, you need to revise the key concepts and formulas often in between to memorise them.

What Extra Should Students Study Beyond the NCERT for JEE?

Here is a comparison list of the concepts in Inverse Trigonometric Functions that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:

NCERT Solutions for Class 12 Maths: Chapter-Wise

For the convenience of students, Careers360 provides complete NCERT Class 12 Maths Solutions together in one location. Simply click the links below to access.

Also Read,

NCERT solutions for class 12 - subject-wise

Here are the subject-wise links for the NCERT solutions of class 12:

NCERT Solutions - Class Wise

Given below are the class-wise solutions of class 12 NCERT:

NCERT Books and NCERT Syllabus

Here are some useful links for the NCERT books and the NCERT syllabus for class 12

Frequently Asked Questions (FAQs)

Q: What is a determinant?
A:

A determinant is a special numerical value associated with a square matrix. It is used to study properties of matrices and helps determine whether a matrix has an inverse or not.

Q: What are the properties of determinants in NCERT Class 12?
A:

Determinants possess several key properties that simplify their manipulation. Some of the important properties are:

  • The determinant of the identity matrix is always 1. 
  • If two rows or columns of a matrix are interchanged, the sign of the determinant changes. 
  • If a row or column is multiplied by a constant, the determinant is also multiplied by that constant. 
  • Additionally, if any row or column of a matrix is entirely zero, the determinant of that matrix is zero. 
  • For triangular matrices (both upper and lower), the determinant is simply the product of the diagonal elements. 
  • Another important property is that the determinant of the product of two matrices equals the product of their individual determinants. 
  • These properties make it easier to compute and analyze determinants in different scenarios.
Q: What is the difference between minors and cofactors in determinants?
A:

Minors and cofactors are closely related concepts in the calculation of determinants. The minor of an element in a matrix is the determinant of the submatrix that remains after removing the row and column containing that element. It is denoted as Mij for an element aij. The cofactor, on the other hand, is the signed version of the minor. The cofactor of an element aij is given by Cij=(-1)i+jMij, where the factor (-1)i+j introduces a sign change depending on the position of the element in the matrix. Minors are used to calculate the determinant, while cofactors are used to expand the determinant and in the adjoint of a matrix.

Q: What are the important formulas in Chapter 4 Determinants?
A:

There are many formulas in this chapter such as:
1. Formula to determine the value of the determinant of a matrix.
2. To find the inverse of a matrix using the adjoint of a matrix.

Q: What is the inverse of a matrix using determinants?
A:

The inverse of a matrix can be found using determinants if the matrix is square and its determinant is non-zero. The formula for the inverse of a matrix A is:

A^(-1) = (1 / det(A)) * adj(A)
To find the inverse, you first calculate the determinant of the matrix A. If the determinant is non-zero, you then find the adjoint (or adjugate) of the matrix. Finally, multiply the adjoint by (1 / det(A)) to obtain the inverse


If the determinant is zero, the matrix does not have an inverse. This method allows you to find the inverse of any invertible matrix using determinants and the adjoint.

Q: Where can I download the NCERT Class 12 Mathematics Determinants Solutions in PDF format?
A:

Many educational platforms, such as Careers360, offer free downloadable PDFs of Class 12 Determinants Solutions. Students can download the PDF for free from this article itself.

Q: How do you evaluate a 3×3 determinant?
A:

 A 3×3 determinant can be evaluated by expanding along any row or column using cofactors. This method is called expansion by minors or cofactor expansion.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Ongoing Dates
CBSE Class 12th Exam Date

1 Jan'26 - 14 Feb'26 (Offline)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.