Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
Have you ever wondered when a football player kicks a ball, what will be its direction? How do aeroplanes change direction in the skies, or how does gravity pull an object? Welcome to the world of Vectors. Vectors are quantities which have both magnitude and direction. For example, velocity, force, and acceleration are all vectors. Vector Algebra contains the basic concepts of vectors, types of vectors, vector addition, multiplication of vectors, dot and cross product and their geometrical importance. NCERT Solutions for Class 12 can help the students grasp these vector concepts easily and enhance their problem-solving ability in real-world applications.
This Story also Contains
Many toppers rely on NCERT Solutions since they are designed as per the latest syllabus. Students who are in need of Vector Algebra class 12 solutions will find this article very useful. It covers all the important Class 12 Maths Chapter 10 question answers. These NCERT Solutions for Class 12 are trustworthy and reliable, as they are created by subject matter experts at Careers360, making them an essential resource for exam preparation. In many schools, teachers use NCERT resources to guide their teaching plans.
The NCERT Solutions for Class 12 Maths Chapter 10 have been prepared by Careers360 experts to make learning simpler and to help you score better in exams. You can also download the solutions in PDF format.
Vector Algebra Class 12 Chapter 10 Exercise 10.1 |
Take Aakash iACST and get instant scholarship on coaching programs.
Question: 1 Represent graphically a displacement of 40 km, $30^\circ$ east of north.
Answer:
Represent graphically a displacement of 40 km, $30^\circ$ east of north.
N, S, E, W are all 4 directions: north, south, east, west, respectively.
$\overrightarrow{OP}$ is displacement vector which $\left |\overrightarrow{OP}\right |$ = 40 km.
$\overrightarrow{OP}$ makes an angle of 30 degrees east of north as shown in the figure.
Question: 2 (1) Classify the following measures as scalars and vectors.
10Kg
Answer:
10kg is a scalar quantity as it has only magnitude.
Question: 2 (2) Classify the following measures as scalars and vectors. 2 meters north west
Answer:
This is a vector quantity as it has both magnitude and direction.
Question: 2 (3) Classify the following measures as scalars and vectors. $40^\circ$
Answer:
This is a scalar quantity as it has only magnitude.
Question: 2 (4) Classify the following measures as scalars and vectors. 40 watt
Answer:
This is a scalar quantity as it has only magnitude.
Question: 2 (5) Classify the following measures as scalars and vectors. $10 ^{-19} \: \: coulomb$
Answer:
This is a scalar quantity as it has only magnitude.
Question: 2 (6) Classify the following measures as scalars and vectors. $20 m/s^2$
Answer:
This is a Vector quantity as it has magnitude as well as direction.by looking at the unit, we conclude that measure is acceleration which is a vector.
Question: 3 Classify the following as scalar and vector quantities.
(1) time period
Answer:
This is a scalar quantity as it has only magnitude.
Question: 3 Classify the following as scalar and vector quantities.
(2) distance
Answer:
Distance is a scalar quantity as it has only magnitude.
Question: 3 Classify the following as scalar and vector quantities.
(3) force
Answer:
Force is a vector quantity as it has magnitude and direction.
Question: 3 Classify the following as scalar and vector quantities.
(4) velocity
Answer:
Velocity is a vector quantity as it has both magnitude and direction.
Question: 3 Classify the following as scalar and vector quantities.
(5) work done
Answer:
Work done is a scalar quantity, as it is the product of two vectors.
Question: 4 In Fig 10.6 (a square), identify the following vectors.
(1) Coinitial
Answer:
Since vector $\vec{a}$ and vector $\vec{d}$ are starting from the same point, they are coinitial.
Question: 4 In Fig 10.6 (a square), identify the following vectors.
(2) Equal
Answer:
Since Vector $\vec{b}$ and Vector $\vec{d}$ both have the same magnitude and same direction, they are equal.
Question: 4 In Fig 10.6 (a square), identify the following vectors.
(3) Collinear but not equal
Answer:
Since vector $\vec{a}$ and vector $\vec{c}$ have the same magnitude but different direction, they are collinear and not equal.
Question: 5 Answer the following as true or false.
(1) $\vec a$ and $-\vec a$ are collinear.
Answer:
True, $\vec a$ and $-\vec a$ are collinear. they are both parallel to one line, hence they are colinear.
Question: 5 Answer the following as true or false.
(2) Two collinear vectors are always equal in magnitude.
Answer:
False, because colinear means they are parallel to the same line but their magnitude can be anything and hence, this is a false statement.
Question: 5 Answer the following as true or false.
(3) Two vectors having the same magnitude are collinear.
Answer:
False, because any two non-colinear vectors can have the same magnitude.
Question: 5 Answer the following as true or false.
(4) Two collinear vectors having the same magnitude are equal.
Answer:
False, because two collinear vectors with the same magnitude can have opposite directions.
Vector Algebra Class 12 Chapter 10 Exercise 10.2 Page number: 354-355 Total Questions: 19 |
Question: 1 Compute the magnitude of the following vectors:
(1) $\vec a = \hat i + \hat j + \hat k$
Answer:
Here
$\vec a = \hat i + \hat j + \hat k$
Magnitude of $\vec a$
$\vec a=\sqrt{1^2+1^2+1^2}=\sqrt{3}$
Question: 1 Compute the magnitude of the following vectors:
(2) $\vec b = 2 \hat i - 7 \hat j - 3 \hat k$
Answer:
Here,
$\vec b = 2 \hat i - 7 \hat j - 3 \hat k$
Magnitude of $\vec b$
$\left | \vec b \right |=\sqrt{2^2+(-7)^2+(-3)^2}=\sqrt{62}$
Question: 1 Compute the magnitude of the following vectors:
(3) $\vec c = \frac{1}{\sqrt 3 }\hat i + \frac{1}{\sqrt 3 }\hat j -\frac{1}{\sqrt 3 }\hat k$
Answer:
Here,
$\vec c = \frac{1}{\sqrt 3 }\hat i + \frac{1}{\sqrt 3 }\hat j -\frac{1}{\sqrt 3 }\hat k$
Magnitude of $\vec c$
$\left |\vec c \right |=\sqrt{\left ( \frac{1}{\sqrt{3}} \right )^2+\left ( \frac{1}{\sqrt{3}} \right )^2+\left ( \frac{1}{\sqrt{3}} \right )^2}=1$
Question: 2 Write two different vectors having the same magnitude
Answer:
Two different Vectors having the same magnitude are
$\vec a= 3\hat i+6\hat j+9\hat k$
$\vec b= 9\hat i+6\hat j+3\hat k$
The magnitude of both vector
$\left | \vec a \right |=\left | \vec b \right | = \sqrt{9^2+6^2+3^2}=\sqrt{126}$
Question: 3 Write two different vectors having the same direction.
Answer:
Two different vectors having the same direction are:
$\vec a=\hat i+2\hat j+3\hat k$
$\vec b=2\hat i+4\hat j+6\hat k$
Question: 4 Find the values of x and y so that the vectors $2 \hat i + 3 \hat j$ and $x \hat i + y \hat j$ are equal.
Answer:
$2 \hat i + 3 \hat j$ will be equal to $x \hat i + y \hat j$ when their corresponding components are equal.
Hence when,
$x=2$ and $y=3$
Question: 5 Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (– 5, 7).
Answer:
Let point P = (2, 1) and Q = (– 5, 7).
Now,
$\vec {PQ}=(-5-2)\hat i+(7-1)\hat j=-7\hat i +6\hat j$
Hence, scalar components are (-7,6) and the vector is $-7\hat i +6\hat j$
Answer:
Given,
$\vec a = \hat i - 2 \hat j + \hat k ,\\ \vec b = -2 \hat i + 4 \hat j + 5 \hat k \: \: and\: \: \: \\\vec c = \hat i - 6 \hat j - 7 \hat k$
Now, The sum of the vectors:
$\vec a +\vec b+\vec c = \hat i - 2 \hat j + \hat k + -2 \hat i + 4 \hat j + 5 \hat k + \hat i - 6 \hat j - 7 \hat k$
$\vec a +\vec b+\vec c = (1-2+1)\hat i +(-2+4-6) \hat j + (1+5-7)\hat k$
$\vec a +\vec b+\vec c =-4\hat j-\hat k$
Question: 7 Find the unit vector in the direction of the vector $\vec a = \hat i + \hat j + 2 \hat k$
Answer:
Given
$\vec a = \hat i + \hat j + 2 \hat k$
Magnitude of $\vec a$
$\left |\vec a \right |=\sqrt{1^2+1^2+2^2}=\sqrt{6}$
A unit vector in the direction of $\vec a$
$\vec u = \frac{\hat i}{\left | a \right |} + \frac{\hat j}{\left | a \right |} +\frac{2\hat k}{\left | a \right |} =\frac{\hat i}{\sqrt{6}}+\frac{\hat j}{\sqrt{6}}+\frac{2\hat k}{\sqrt{6}}$
Answer:
Given P = (1, 2, 3) and Q = (4, 5, 6)
A vector in the direction of PQ
$\vec {PQ}=(4-1)\hat i+(5-2)\hat j +(6-3)\hat k$
$\vec {PQ}=3\hat i+3\hat j +3\hat k$
Magnitude of PQ
$\left | \vec {PQ} \right |=\sqrt{3^2+3^2+3^2}=3\sqrt{3}$
Now, the unit vector in the direction of PQ
$\hat u=\frac{\vec {PQ}}{\left | \vec {PQ} \right |}=\frac{3\hat i+3\hat j+3\hat k}{3\sqrt{3}}$
$\hat u=\frac{\hat i}{\sqrt{3}}+\frac{\hat j}{\sqrt{3}}+\frac{\hat k}{\sqrt{3}}$
Answer:
Given
$\vec a = 2 \hat i - \hat j + 2 \hat k$
$\vec b = - \hat i + \hat j - \hat k$
Now,
$\vec a + \vec b=(2-1)\hat i+(-1+1)\hat j+ (2-1)\hat k$
$\vec a + \vec b=\hat i+\hat k$
Now a unit vector in the direction of $\vec a + \vec b$
$\vec u= \frac{\vec a + \vec b}{\left |\vec a + \vec b \right |}=\frac{\hat i+\hat j}{\sqrt{1^2+1^2}}$
$\vec u= \frac{\hat i}{\sqrt{2}}+\frac{\hat j}{\sqrt{2}}$
Question: 10 Find a vector in the direction of vector $5 \hat i - \hat j + 2 \hat k$ which has magnitude 8 units.
Answer:
Given a vector
$\vec a=5 \hat i - \hat j + 2 \hat k$
the unit vector in the direction of $5 \hat i - \hat j + 2 \hat k$
$\vec u=\frac{5\hat i - \hat j + 2 \hat k}{\sqrt{5^2+(-1)^2+2^2}}=\frac{5\hat i}{\sqrt{30}}-\frac{\hat j}{\sqrt{30}}+\frac{2\hat k}{\sqrt{30}}$
A vector in direction of $5 \hat i - \hat j + 2 \hat k$ and whose magnitude is 8 =
$8\vec u=\frac{40\hat i}{\sqrt{30}}-\frac{8\hat j}{\sqrt{30}}+\frac{16\hat k}{\sqrt{30}}$
Question: 11 Show that the vectors $2 \hat i -3 \hat j + 4 \hat k$ and $- 4 \hat i + 6 \hat j - 8 \hat k$ are collinear.
Answer:
Let
$\vec a =2 \hat i -3 \hat j + 4 \hat k$
$\vec b=- 4 \hat i + 6 \hat j - 8 \hat k$
It can be seen that
$\vec b=- 4 \hat i + 6 \hat j - 8 \hat k=-2(2 \hat i -3 \hat j + 4 \hat k)=-2\vec a$
Hence, here $\vec b=-2\vec a$
As we know
Whenever we have $\vec b=\lambda \vec a$ , the vectors $\vec a$ and $\vec b$ will be colinear.
Here $\lambda =-2$
Hence, vectors $2 \hat i -3 \hat j + 4 \hat k$ and $- 4 \hat i + 6 \hat j - 8 \hat k$ are collinear.
Question:12 Find the direction cosines of the vector $\hat i + 2 \hat j + 3 \hat k$
Answer:
Let $\vec a=\hat i + 2 \hat j + 3 \hat k$
$\left |\vec a \right |=\sqrt{1^2+2^2+3^2}=\sqrt{14}$
Hence direction cosine of $\vec a$ are
$\left ( \frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}} ,\frac{3}{\sqrt{14}}\right )$
Answer:
Given
point A=(1, 2, –3)
point B=(–1, –2, 1)
Vector joining A and B, directed from A to B
$\vec {AB}=(-1-1)\hat i +(-2-2)\hat j+(1-(-3))\hat k$
$\vec {AB}=-2\hat i +-4\hat j+4\hat k$
$\left | \vec {AB} \right |=\sqrt{(-2)^2+(-4)^2+4^2}=\sqrt{36}=6$
Hence, the Direction cosines of vector AB are
$\left ( \frac{-2}{6},\frac{-4}{6},\frac{4}{6} \right )=\left ( \frac{-1}{3},\frac{-2}{3},\frac{2}{3} \right )$
Question: 14 Show that the vector $\hat i + \hat j + \hat k$ is equally inclined to the axes OX, OY and OZ.
Answer:
Let
$\vec a=\hat i + \hat j + \hat k$
$\left | \vec a \right |=\sqrt{1^2+1^2+1^2}=\sqrt{3}$
Hence direction cosines of these vectors are
$\left ( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \right )$
Let $\alpha$ , $\beta$ and $\gamma$ be the angle made by x-axis, y-axis and z- axis respectively
Now, as we know,
$cos\alpha=\frac{1}{\sqrt{3}}$ , $cos\beta=\frac{1}{\sqrt{3}}$ $and\:cos\gamma=\frac{1}{\sqrt{3}}$
Hence, the given vector is equally inclined to the axis OX, OY, and OZ.
Answer:
As we know
The position vector of the point R which divides the line segment PQ in ratio m:n internally:
$\vec r=\frac{m\vec b+n\vec a}{m+n}$
Here
position vector os P = $\vec a$ = $i + 2 j - k$
the position vector of Q = $\vec b=- i + j + k$
m:n = 2:1
And Hence
$\vec r = \frac{2(-\hat i+\hat j +\hat k)+1(\hat i+2\hat j-\hat k)}{2+1}=\frac{-2\hat i+2\hat j +2\hat k+\hat i+2\hat j-\hat k}{3}$
$\vec r = \frac{-2\hat i+2\hat j +2\hat k+\hat i+2\hat j-\hat k}{3}=\frac{-\hat i+4\hat j+\hat k}{3}$
$\vec r = \frac{-\hat i}{3}+\frac{4\hat j}{3}+\frac{\hat k}{3}$
Answer:
As we know
The position vector of the point R, which divides the line segment PQ in ratio m:n externally:
$\vec r=\frac{m\vec b-n\vec a}{m-n}$
Here
position vector os P = $\vec a$ = $i + 2 j - k$
the position vector of Q = $\vec b=- i + j + k$
m:n = 2:1
And Hence
$\vec r = \frac{2(-\hat i+\hat j +\hat k)-1(\hat i+2\hat j-\hat k)}{2-1}=\frac{-2\hat i+2\hat j +2\hat k-\hat i-2\hat j+\hat k}{1}$
$\vec r = -3\hat i +3\hat k$
Question: 16 Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, –2).
Answer:
Given
The position vector of point P = $2\hat i+3\hat j +4\hat k$
Position Vector of point Q = $4\hat i+\hat j -2\hat k$
The position vector of R, which divides PQ in half is given by:
$\vec r =\frac{2\hat i+3\hat j +4\hat k+4\hat i+\hat j -2\hat k}{2}$
$\vec r =\frac{6\hat i+4\hat j +2\hat k}{2}=3\hat i+2\hat j +\hat k$
Answer:
Given
The position vectors of A, B, and C are
$\\\vec a = 3 \hat i - 4 \hat j - 4 \hat k ,\\\vec b = 2 \hat i - \hat j + \hat k \: \: and \\\vec c = \hat i - 3 \hat j - 5 \hat k$
Now,
$\vec {AB}=\vec b-\vec a=-\hat i+3\hat j+5\hat k$
$\vec {BC}=\vec c-\vec b=-\hat i-2\hat j-6\hat k$
$\vec {CA}=\vec a-\vec c=2\hat i-\hat j+\hat k$
$\left | \vec {AB} \right |=\sqrt{(-1)^2+3^2+5^2}=\sqrt{35}$
$\left | \vec {BC} \right |=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$
$\left | \vec {CA} \right |=\sqrt{(2)^2+(-1)^2+(1)^2}=\sqrt{6}$
AS we can see
$\left | \vec {BC} \right |^2=\left | \vec {CA} \right |^2+\left | \vec {AB} \right |^2$
Hence, ABC is a right-angle triangle.
Question: 18 In triangle ABC (Fig. 10.18), which of the following is not true:
Answer:
From triangle law of addition, we have,
$\vec {AB}+\vec {BC}=\vec {AC}$
From here
$\vec {AB}+\vec {BC}-\vec {AC}=0$
Also
$\vec {AB}+\vec {BC}+\vec {CA}=0$
Also
$\vec {AB}-\vec {CB}+\vec {CA}=0$
Hence, options A, B and D are true SO,
Option C is False.
Answer:
If two vectors are collinear, then they have the same direction or are parallel or anti-parallel.
Therefore,
They can be expressed in the form $\vec{b}= \lambda \vec{a}$ where a and b are vectors and $\lambda$ is some scalar quantity.
Therefore, (a) is true.
Now,
(A) $\lambda$ is a scalar quantity so its value may be equal to $\pm 1$
Therefore,
(B) is also true.
C) The vectors $\vec{a}$ and $\vec{b}$ are proportional,
Therefore, (c) is not true.
D) The vectors $\vec{a}$ and $\vec{b}$ can have different magnitudes as well as different directions.
Therefore, (d) is not true.
Therefore, the correct options are (C) and (D).
Vector Algebra Class 12 Chapter 10 Exercise 10.3 Page number: 361-362 Total Questions: 18 |
Answer:
Given
$\left | \vec a \right |=\sqrt{3}$
$\left | \vec b \right |=2$
$\vec a . \vec b = \sqrt 6$
As we know
$\vec a . \vec b = \left | \vec a \right |\left | \vec b \right |cos\theta$
where $\theta$ is the angle between two vectors
So,
$cos\theta =\frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}=\frac{\sqrt{6}}{\sqrt{3}×2}=\frac{1}{\sqrt{2}}$
$\theta=\frac{\pi}{4}$
Hence, the angle between the vectors is $\frac{\pi}{4}$.
Answer:
Given two vectors
$\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$
Now, As we know,
The angle between two vectors $\vec a$ and $\vec b$ is given by
$\theta=cos^{-1}\left ( \frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}\right )$
Hence the angle between $\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$
⇒ $\theta=cos^{-1}\left ( \frac{(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)}{\left | \hat i-2\hat j+3\hat k \right |\left |3\hat i-2\hat j+\hat k \right |}\right )$
⇒ $\theta=cos^{-1}\left ( \frac{3+4+3}{\sqrt{1^2+(-2)^2+3^3}\sqrt{3^2+(-2)^2+1^2}} \right )$
⇒ $\theta=cos^{-1}\frac{10}{14}$
⇒ $\theta=cos^{-1}\frac{5}{7}$
Question: 3 Find the projection of the vector $\hat i - \hat j$ on the vector $\hat i + \hat j$
Answer:
Let
$\vec a=\hat i - \hat j$
$\vec b=\hat i + \hat j$
Projection of vector $\vec a$ on $\vec b$
$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i-\hat j)(\hat i+\hat j)}{\left |\hat i+\hat j \right |}=\frac{1-1}{\sqrt{2}}=0$
Hence, the Projection of vector $\vec a$ on $\vec b$ is 0.
Question: 4 Find the projection of the vector $\hat i + 3 \hat j + 7 \hat k$ on the vector $7\hat i - \hat j + 8 \hat k$
Answer:
Let
$\vec a =\hat i + 3 \hat j + 7 \hat k$
$\vec b=7\hat i - \hat j + 8 \hat k$
The projection of $\vec a$ on $\vec b$ is
$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i+3\hat j+7\hat k)(7\hat i-\hat j+8\hat k)}{\left | 7\hat i-\hat j+8\hat k \right |}=\frac{7-3+56}{\sqrt{7^2+(-1)^2+8^2}}=\frac{60}{\sqrt{114}}$
Hence, projection of vector $\vec a$ on $\vec b$ is $\frac{60}{\sqrt{114}}$.
Answer:
Given
$\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$
Now magnitude of $\vec a,\vec b \:and\: \vec c$
$\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1$
$\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1$
$\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1$
Hence, they are all unit vectors.
Now,
$\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0$
$\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0$
$\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0$
Hence, all three are mutually perpendicular to each other.
Answer:
Given in the question
$( \vec a + \vec b ). ( \vec a - \vec b )=8$
$\left | \vec a \right |^2-\left | \vec b \right |^2=8$
Since $|\vec a |\: \:= 8 \: \:|\vec b |$
⇒ $\left | \vec {8b} \right |^2-\left | \vec b \right |^2=8$
⇒ $\left | \vec {63b} \right |^2=8$
⇒ $\left | \vec {b} \right |^2=\frac{8}{63}$
⇒ $\left | \vec {b} \right |=\sqrt{\frac{8}{63}}$
So, the answer is
$\left | \vec {a} \right |=8\left | \vec {b} \right |=8\sqrt{\frac{8}{63}}$
Question: 7 Evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$ .
Answer:
To evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$
$( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )=6\vec a.\vec a+21\vec a.\vec b-10\vec b.\vec a-35\vec b.\vec b$
$=6\vec a.^2+11\vec a.\vec b-35\vec b^2$
$=6\left | \vec a \right |^2+11\vec a.\vec b-35\left | \vec b \right |^2$
Answer:
Given two vectors $\vec a \: \: and \: \: \vec b$
$\left | \vec a \right |=\left | \vec b\right |$
$\vec a.\vec b=\frac{1}{2}$
Now Angle between $\vec a \: \: and \: \: \vec b$
$\theta=60^0$
Now, As we know that
$\vec a.\vec b=\left | \vec a \right |\left | \vec b \right |cos\theta$
$\frac{1}{2}=\left | \vec a \right |\left | \vec a \right |cos60^0$
$\left | a \right |^2=1$
Hence, the magnitude of two vectors $\vec a \: \: and \: \: \vec b$
$\left | a \right |=\left | b \right |=1$
Question: 9 Find $|\vec x |$ , if for a unit vector $\vec a , ( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$
Answer:
Given in the question that
$( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$
And we need to find $\left | \vec x \right |$
$\left | \vec x \right |^2-\left | \vec a \right |^2 = 12$
⇒ $\left | \vec x \right |^2-1 = 12$
⇒ $\left | \vec x \right |^2 = 13$
⇒ $\left | \vec x \right | = \sqrt{13}$
So the value of $\left | \vec x \right |$ is $\sqrt{13}$.
Answer:
Given in the question is
$\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$
and $\vec a + \lambda \vec b$ is perpendicular to $\vec c$
and we need to find the value of $\lambda$ ,
So the value of $\vec a + \lambda \vec b$ -
$\vec a + \lambda \vec b=2\hat i +2\hat j +3\hat k+\lambda (-\hat i+2\hat j+\hat k)$
$\vec a + \lambda \vec b=(2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k$
As $\vec a + \lambda \vec b$ is perpendicular to $\vec c$
$(\vec a + \lambda \vec b).\vec c=0$
⇒ $((2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k)(3\hat i+\hat j)=0$
⇒ $3(2-\lambda)+2+2\lambda=0$
⇒ $6-3\lambda+2+2\lambda=0$
⇒ $\lambda=8$
The value of $\lambda=8$.
Answer:
Given in the question that -
$\vec a \: \: \: and \: \: \vec b$ are two non-zero vectors
According to the question
$\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )$
$=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0$
Hence, $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ .
Answer:
Given in the question
$\\\vec a . \vec a = 0 \\|\vec a|^2=0$
$\\|\vec a|=0$
Therefore $\vec a$ is a zero vector. Hence any vector $\vec b$ will satisfy $\vec a . \vec b = 0$
Answer:
Given in the question
$\vec a , \vec b , \vec c$ are unit vectors $\Rightarrow |\vec a|=|\vec b|=|\vec c|=1$
and $\vec a + \vec b + \vec c = \vec 0$
and we need to find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$
$(\vec a + \vec b + \vec c)^2 = \vec 0$
$\vec a^2 + \vec b^2 + \vec c ^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$|\vec a|^2 + |\vec b|^2 + |\vec c |^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$1+1+1+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$
$\vec a . \vec b + \vec b. \vec c + \vec c . \vec a=\frac{-3}{2}$
Answer- the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$ is $\frac{-3}{2}$
Answer:
Let
$\vec a=\hat i-2\hat j +3\hat k$
$\vec b=5\hat i+4\hat j +1\hat k$
we see that
$\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0$
we now observe that
$|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}$
$|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}$
Hence, here converse of the given statement is not true.
Answer:
Given points,
A=(1, 2, 3),
B=(–1, 0, 0),
C=(0, 1, 2),
As need to find Angle between $\overline{BA}\: \: and\: \: \overline{BC} ]$
$\vec {BA}=(1-(-1))\hat i+(2-0)\hat j+(3-0)\hat k=2\hat i+2\hat j+3\hat k$
$\vec {BC}=(0-(-1))\hat i+(1-0)\hat j+(2-0)\hat k=\hat i+\hat j+2\hat k$
Hence angle between them;
$\theta=cos^{-1}(\frac{\vec {BA}.\vec {BC}}{\left | \vec {BA} \right |\left | \vec {BC} \right |})$
$\theta=cos^{-1}\frac{2+2+6}{\sqrt{17}\sqrt{6}}$
$\theta=cos^{-1}\frac{10}{\sqrt{102}}$
Answer - Angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC}$ is $\theta=cos^{-1}\frac{10}{\sqrt{102}}$
Question:16 Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.
Answer:
Given in the question
A=(1, 2, 7), B=(2, 6, 3) and C(3, 10, –1)
To show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear
$\vec {AB}=(2-1)\hat i+(6-2)\hat j+(3-7)\hat k$
$\vec {AB}=\hat i+4\hat j-4\hat k$
$\vec {BC}=(3-2)\hat i+(10-6)\hat j+(-1-3)\hat k$
$\vec {BC}=\hat i+4\hat j-4\hat k$
$\vec {AC}=(3-1)\hat i+(10-2)\hat j+(-1-7)\hat k$
$\vec {AC}=2\hat i+8\hat j-8\hat k$
$|\vec {AB}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$
$|\vec {BC}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$
$|\vec {AC}|=\sqrt{2^2+8^2+(-8)^2}=2\sqrt{33}$
As we see that
$|\vec {AC}|=|\vec {AB}|+|\vec {BC}|$
Hence, points A, B, and C are colinear.
Answer:
Given the position vectors of A, B, and C are
$2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$
To show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle
$\vec {AB}=(1-2)\hat i + (-3-(-1))\hat j+(-5-1)\hat k=-1\hat i -2\hat j-6\hat k$
$\vec {BC}=(3-1)\hat i + (-4-(-3))\hat j+(-4-(-5))\hat k=-2\hat i -\hat j+\hat k$
$\vec {AC}=(3-2)\hat i + (-4-(-1))\hat j+(-4-(1))\hat k=\hat i -3\hat j-5\hat k$
$|\vec {AB}|=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$
$|\vec {BC}|=\sqrt{(-2)^2+(-1)^2+(1)^2}=\sqrt{6}$
$|\vec {AC}|=\sqrt{(1)^2+(-3)^2+(-5)^2}=\sqrt{35}$
Here we see that
$|\vec {AC}|^2+|\vec {BC}|^2=|\vec {AB}|^2$
Hence, A, B, and C are the vertices of a right-angle triangle.
$\\A ) \lambda = 1 \\\\ B ) \lambda = -1 \\\\ C ) a = |\lambda | \\\\ D ) a = 1 / |\lambda |$
Answer:
Given $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar
$\lambda \vec a$ is a unit vector when
$|\lambda \vec a|=1$
$|\lambda|| \vec a|=1$
$| \vec a|=\frac{1}{|\lambda|}$
Hence, the correct option is D.
Vector Algebra Class 12 Chapter 10 Exercise 10.4 Page number: 368-369 Total Questions: 12 |
Answer:
Given in the question,
$\\ \vec a = \hat i - 7 \hat j + 7 \hat k \: \: and \: \: \\\vec b = 3 \hat i - 2 \hat j + 2 \hat k$
and we need to find $|\vec a \times \vec b |$
Now,
$|\vec a \times \vec b | =\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &-7 &7 \\ 3& -2 &2 \end{vmatrix}$
⇒ $|\vec a \times \vec b | =\hat i(-14+14)-\hat j(2-21)+\hat k(-2+21)$
⇒ $|\vec a \times \vec b | =19\hat j+19\hat k$
So, the value of $|\vec a \times \vec b |$ is $19\hat j+19\hat k$.
Answer:
Given in the question
$\vec a = 3 \hat i + 2 \hat j + 2 \hat k \: \:and \: \: \vec b = \hat i + 2 \hat j - 2 \hat k$
$\vec a + \vec b =3\hat i +2\hat j+2\hat k+\hat i +2\hat j-2\hat k=4\hat i +4\hat j$
$\vec a - \vec b =3\hat i +2\hat j+2\hat k-\hat i -2\hat j+2\hat k=2\hat i +4\hat k$
Now , A vector which perpendicular to both $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $(\vec a + \vec b) \times (\vec a - \vec b)$
$(\vec a + \vec b) \times (\vec a - \vec b)=\begin{vmatrix} \hat i &\hat j &\hat k \\ 4&4 &0 \\ 2& 0& 4 \end{vmatrix}$
⇒ $(\vec a + \vec b) \times (\vec a - \vec b)= \hat i (16-0)-\hat j(16-0)+\hat k(0-8)$
⇒ $(\vec a + \vec b) \times (\vec a - \vec b)= 16\hat i -16\hat j-8\hat k$
And a unit vector in this direction :
$\vec u =\frac{16\hat i-16\hat j-8\hat k}{|16\hat i-16\hat j-8\hat k|}=\frac{16\hat i-16\hat j-8\hat k}{\sqrt{16^2+(-16)^2+(-8)^2}}$
⇒ $\vec u =\frac{16\hat i-16\hat j-8\hat k}{24}=\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$
Hence, Unit vector perpendicular to each of the vector $\vec a + \vec b \: \: and\: \: \vec a - \vec b$ is $\frac{2}{3}\hat i-\frac{2}{3}\hat j-\frac{1}{3}\hat k$.
Answer:
Given in the question,
Angle between $\vec a$ and $\hat i$ :
$\alpha =\frac{\pi}{3}$
Angle between $\vec a$ and $\hat j$
$\beta =\frac{\pi}{4}$
Angle with $\vec a$ and $\hat k$ :
$\gamma =\theta$
Now, as we know,
$cos^2\alpha+cos^2\beta+cos^2\gamma=1$
⇒ $cos^2\frac{\pi}{3}+cos^2\frac{\pi }{4}+cos^2\theta=1$
⇒ $\left ( \frac{1}{2} \right )^2+\left ( \frac{1}{\sqrt{2}} \right )^2+cos^2\theta=1$
⇒ $cos^2\theta=\frac{1}{4}$
⇒ $cos\theta=\frac{1}{2}$ (As $\theta$ is acute)
⇒ $\theta=\frac{\pi}{3}$
Now, components of $\vec a$ are:
$\left ( cos\frac{\pi}{3},cos\frac{\pi}{2},cos\frac{\pi}{3} \right )=\left ( \frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2} \right )$.
Question:4 Show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
Answer:
To show that $( \vec a - \vec b ) \times (\vec a + \vec b ) = 2 ( \vec a \times \vec b )$
LHS
$( \vec a - \vec b ) \times (\vec a + \vec b )=( \vec a - \vec b ) \times (\vec a)+( \vec a - \vec b ) \times (\vec b)$
⇒ $( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times \vec a-\vec b \times\vec a+\vec a \times \vec b-\vec b \times \vec b$
As product of a vector with itself is always Zero,
$( \vec a - \vec b ) \times (\vec a + \vec b )= 0-\vec b \times\vec a+\vec a \times \vec b-0$
As cross product of a and b is equal to negative of cross product of b and a.
$( \vec a - \vec b ) \times (\vec a + \vec b )= \vec a \times\vec b+\vec a \times \vec b$
⇒ $( \vec a - \vec b ) \times (\vec a + \vec b )= 2(\vec a \times\vec b)$ = RHS
LHS is equal to RHS, Hence Proved.
Answer:
Given in the question
$(2 \hat i + 6 \hat j + 27 \hat k ) \times ( \hat i + \lambda j + \mu \hat k ) = \vec 0$
and we need to find values of $\lambda$ and $\mu$.
⇒ $\begin{vmatrix} \hat i &\hat j & \hat k\\ 2& 6&27 \\ 1& \lambda &\mu \end{vmatrix}=0$
⇒ $\hat i (6\mu-27\lambda)-\hat j(2\mu-27)+\hat k(2\lambda-6)=0$
From here we get,
$6\mu-27\lambda=0$
$2\mu-27=0$ ⇒ $\mu=\frac{27}{2}$
$2\lambda -6=0$ ⇒ $\lambda = 3$
From here, the value of $\lambda$ and $\mu$ is
$\lambda = 3 , \: and \: \mu=\frac{27}{2}$.
Answer:
Given in the question
$\vec a . \vec b = 0$ and $\vec a \times \vec b = 0$
When $\vec a . \vec b = 0$ , either $|\vec a| =0,\:or\: |\vec b|=0,\:or\: \vec a\: and \:\vec b$ are perpendicular to each other.
When $\vec a \times \vec b = 0$ either $|\vec a| =0,\:or\: |\vec b|=0,\:or\: \vec a\: and \:\vec b$ are parallel to each other.
Since two vectors can never be both parallel and perpendicular at the same time,
We conclude that
$|\vec a| =0\:or\: |\vec b|=0$.
Answer:
Given in the question
$\\\vec a=\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k , \\\vec b=\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k , \\\vec c=\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k$
We need to show that $\vec a \times ( \vec b + \vec c ) = \vec a \times \vec b + \vec a \times \vec c$
Now, $\vec a \times ( \vec b + \vec c ) =(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times(\vec b_ 1 \hat i + \vec b_ 2 \hat j + \vec b_3 \hat k +\vec c_ 1 \hat i + \vec c_ 2 \hat j + \vec c_ 3 \hat k)$
$=(\vec a_1 \hat i + \vec a_2 \hat j + \vec a_3 \hat k)\times((\vec b_ 1+\vec c_1) \hat i + (\vec b_ 2+\vec c_2) \hat j +( \vec b_3 +\vec c_3)\hat k)$
$=\begin{vmatrix} \hat i &\hat j &\hat k \\ a_1&a_2 &a_3 \\ (b_1+c_1)&(b_2+c_2) &(b_3+c_3) \end{vmatrix}$
$=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)- a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
$=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Now, $\vec a \times \vec b + \vec a \times \vec c=\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ b_1&b_2 &b_3 \end{vmatrix}+\begin{vmatrix} \hat i &\hat j & \hat k\\ a_1&a_2 &a_3 \\ c_1&c_2 &c_3 \end{vmatrix}$
$\vec a \times \vec b + \vec a \times \vec c=\hat i(a_2b_3-a_3b_2)-\hat j (a_1b_3-a_3b_1)+\hat k(a_1b_2-b_1a_2)+\hat i(a_2c_3-a_3c_2)-\hat j (a_1c_3-a_3c_1)+\hat k(a_1c_2-c_1a_2)$
$=\hat i(a_2(b_3+c_3)-a_3(b_2+c_2))-\hat j(a_1(b_3+c_3)-a_3(b_1+c_1))+\hat k (a_1(b_2+c_2)-a_2(a_1(b_2+c_3)))$
Hence, they are equal.
Answer:
No, the converse of the statement is not true, as there can be two non-zero vectors, the cross product of whose is zero; they are collinear vectors.
Consider an example
$\vec a=\hat i +\hat j + \hat k$
$\vec b =2\hat i +2\hat j + 2\hat k$
Here $|\vec a| =\sqrt{1^2+1^2+1^2}=\sqrt{3}$
$|\vec b| =\sqrt{2^2+2^2+2^2}=2\sqrt{3}$
$\vec a \times \vec b=\begin{vmatrix} \hat i &\hat j &\hat k \\ 1&1 &1 \\ 2&2 &2 \end{vmatrix}=\hat i(2-2)-\hat j(2-2)+\hat k(2-2)=0$
Hence, the converse of the given statement is not true.
Question:9 Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
Answer:
Given in the question
Vertices A = (1, 1, 2), B = (2, 3, 5) and C = (1, 5, 5). We need to find the area of the triangle
$AB=(2-1)\hat i+(3-1)\hat j+(5-2)\hat k=\hat i+2\hat j+3\hat k$
$BC=(1-2)\hat i+(5-3)\hat j+(5-5)\hat k=-\hat i+2\hat j$
Now, as we know
Area of the triangle,
$A=\frac{1}{2}|\vec {AB}\times\vec {BC}|=\frac{1}{2}|(\hat i+2\hat j +3\hat k)\times(-\hat i+2\hat j)|$
$=\frac{1}{2}\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &2 &3 \\ -1 &2 &0 \end{vmatrix}=\frac{1}{2}|\hat i(0-6)-\hat j(0-(-3))+\hat k(2-(-2))|$
$=\frac{1}{2}|-6\hat i-3\hat j+4\hat k|$
$=\frac{1}{2}×\sqrt{(-6)^2+(-3)^2+(4)^2}=\frac{\sqrt{61}}{2}$
So, the area of the triangle is $\frac{\sqrt{61}}{2}$ square units.
Answer:
Given in the question
$\vec a = \hat i - \hat j + 3 \hat k$
$\vec b = 2\hat i -7 \hat j + \hat k$
Area of parallelogram with adjescent side $\vec a$ and $\vec b$ ,
$A=|\vec a\times\vec b|=|(\vec i-\vec j+3\vec k)\times (2\hat i-7\hat j+\hat k)|$
$=\begin{vmatrix} \hat i& \hat j & \hat k\\ 1&-1 &3 \\ 2&-7 &1 \end{vmatrix}=|\hat i(-1+21)-\hat j (1-6)+\hat k (-7+2)|$
$=|\hat i(20)-\hat j (-5)+\hat k (-5)|=\sqrt{20^2+5^2+(-5)^2}$
$=\sqrt{450}=15\sqrt{2}$
So, the area of the parallelogram whose adjacent sides are determined by the vectors $\vec a = \hat i - \hat j + 3 \hat k$ and $\vec b = 2\hat i -7 \hat j + \hat k$ is $A=\sqrt{450}=15\sqrt{2}$ square units.
$\\A ) \pi /6 \ B ) \pi / 4 \ C ) \pi / 3 \ D ) \pi /2$
Answer:
Given in the question,
$|\vec a| = 3 \: \: and\: \: |\vec b | = \frac{\sqrt 2 }{3}$
As given $\vec a \times \vec b$ is a unit vector, which means,
$|\vec a \times \vec b|=1$
⇒ $|\vec a| | \vec b|sin\theta=1$
⇒ $3×\frac{\sqrt{2}}{3}sin\theta=1$
⇒ $sin\theta=\frac{1}{\sqrt{2}}$
⇒ $\theta=\frac{\pi}{4}$
Hence, the angle between two vectors is $\frac{\pi}{4}$. The correct option is B.
Question: 12 Area of a rectangle having vertices A, B, C and D with position vectors
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4
Answer:
Given the four vertices of a rectangle are,
$\\\vec a=- \hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec b=\hat i + \frac{1}{2} \hat j + 4 \hat k , \\\vec c= \hat i - \frac{1}{2}\hat j + 4 \hat k \: \: and \: \: \\\vec d= - \hat i - \frac{1}{2} \hat j + 4 \hat k$
$\vec {AB}=\vec b-\vec a=(1+1)\hat i+(\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=2\hat i$
$\vec {BC}=\vec c-\vec b=(1-1)\hat i+(-\frac{1}{2}-\frac{1}{2})\hat j+(4-4)\hat k=-\hat j$
Now, the Area of the Rectangle
$A=|\vec {AB}\times\vec {BC}|=|2\hat i \times (-\hat j)|=2$
Hence, option C is correct.
Vector Algebra Class 12 Chapter 10 - Miscellaneous Exercise Page number: 372-373 Total questions: 19 |
Answer:
As we know
A unit vector in XY-Plane making an angle $\theta$ with x-axis:
$\vec r=cos\theta \hat i+sin\theta \hat j$
Hence for $\theta = 30^0$
$\vec r=cos(30^0) \hat i+sin(30^0) \hat j$
$\vec r=\frac{\sqrt{3}}{2} \hat i+\frac{1}{2} \hat j$
Answer - the unit vector in XY-plane, making an angle of $30 ^\circ$ with the positive direction of x-axis is
$\vec r=\frac{\sqrt{3}}{2} \hat i+\frac{1}{2} \hat j$
Answer:
Given in the question
$P(x_1, y_1, z_1) \: \: and \: \: Q(x_2, y_2, z_2).$
And we need to finrd the scalar components and magnitude of the vector joining the points P and Q
$\vec {PQ}=(x_2-x_1)\hat i +(y_2-y_1)\hat j+(z_2-z_1)\hat k$
Magnitiude of vector PQ
$|\vec {PQ}|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$
Scalar components are
$(x_2-x_1),(y_2-y_1),(z_2-z_1)$
Answer:
As the girl walks 4km towards west
Position vector = $-4\hat i$
Now, as she moves 3km in the direction 30 degree east of north.
$-4\hat i+3sin30^0\hat i+3cos30^0\hat j$
$-4\hat i+\frac{3}{2}\hat i+3\frac{\sqrt{3}}{2}\hat j$
$\frac{-5}{2}\hat i+3\frac{\sqrt{3}}{2}\hat j$
Hence, final position vector is;
$\frac{-5}{2}\hat i+3\frac{\sqrt{3}}{2}\hat j$.
Answer:
No, if $\vec a = \vec b + \vec c$ then we can not conclude that $|\vec a| =| \vec b |+| \vec c |$ .
the condition $\vec a = \vec b + \vec c$ satisfies in the triangle.
also, in a triangle, $|\vec a| <| \vec b |+| \vec c |$
Since, the condition $|\vec a| =| \vec b |+| \vec c |$ is contradicting with the triangle inequality, if $\vec a = \vec b + \vec c$ then we can not conclude that $|\vec a| =| \vec b |+| \vec c |$
Question: 5 Find the value of x for which $x ( \hat i+ \hat j + \hat k )$ is a unit vector.
Answer:
Given in the question,
a unit vector, $\vec u=x ( \hat i+ \hat j + \hat k )$
We need to find the value of x
$|\vec u|=1$
$|x ( \hat i+ \hat j + \hat k )|=1$
$x\sqrt{1^2+1^2+1^2}=1$
$x\sqrt{3}=1$
$x=\frac{1}{\sqrt{3}}$
The value of x is $\frac{1}{\sqrt{3}}$
Answer:
Given two vectors
$\vec a = 2 \hat i + 3 \hat j - \hat k \: \: and \: \: \vec b = \hat i - 2 \hat j + \hat k$
Resultant of $\vec a$ and $\vec b$ :
$\vec R = \vec a +\vec b$ $=2 \hat i + 3 \hat j - \hat k + \hat i - 2 \hat j + \hat k=3\hat i + \hat j$
Now, a unit vector in the direction of $\vec R$
$\vec u =\frac{3\hat i+\hat j}{\sqrt{3^2+1^2}}=\frac{3}{\sqrt{10}}\hat i+\frac{1}{\sqrt{10}}\hat j$
Now, a unit vector of magnitude in the direction of $\vec R$
$\vec v=5\vec u =5*\frac{3}{\sqrt{10}}\hat i+5*\frac{1}{\sqrt{10}}\hat j=\frac{15}{\sqrt{10}}\hat i+\frac{5}{\sqrt{10}}\hat j$
Hence, the required vector is $\frac{15}{\sqrt{10}}\hat i+\frac{5}{\sqrt{10}}\hat j$
Answer:
Given in the question,
$\vec a = \hat i + \hat j + \hat k , \vec b = 2 \hat i - \hat j + 3 \hat k \: \: and\: \: \vec c = \hat i - 2 \hat j + \hat k$
Now,
let vector $\vec V=2\vec a - \vec b + 3 \vec c$
$\vec V=2(\hat i +\hat j +\hat k) - (2\hat i-\hat j+3\hat k)+ 3 (\hat i-2\hat j+\hat k)$
$\vec V=3\hat i-3\hat j+2\hat k$
Now, a unit vector in direction of $\vec V$
$\vec u =\frac{3\hat i-3\hat j+2\hat k}{\sqrt{3^2+(-3)^2+2^2}}=\frac{3}{\sqrt{22}}\hat i-\frac{3}{\sqrt{22}} \hat j+\frac{2}{\sqrt{22}}\hat k$
Now,
A unit vector parallel to $\vec V$
$\vec u =\frac{3}{\sqrt{22}}\hat i-\frac{3}{\sqrt{22}} \hat j+\frac{2}{\sqrt{22}}\hat k$
OR
$-\vec u =-\frac{3}{\sqrt{22}}\hat i+\frac{3}{\sqrt{22}} \hat j-\frac{2}{\sqrt{22}}\hat k$
Answer:
Given in the question,
points A(1, – 2, – 8), B(5, 0, –2) and C(11, 3, 7)
$\vec {AB }=(5-1)\hat i+(0-(-2))\hat j+(-2-(-8))\hat k=4\hat i+2\hat j+6\hat k$
$\vec {BC }=(11-5)\hat i+(3-0)\hat j+(7-(-2))\hat k=6\hat i+3\hat j+9\hat k$
$\vec {CA }=(11-1)\hat i+(3-(-2))\hat j+(7-(-8))\hat k=10\hat i+5\hat j+15\hat k$
Now let's calculate the magnitude of the vectors
$|\vec {AB }|=\sqrt{4^2+2^2+6^2}=\sqrt{56}=2\sqrt{14}$
$|\vec {BC }|=\sqrt{6^2+3^2+9^2}=\sqrt{126}=3\sqrt{14}$
$|\vec {CA }|=\sqrt{10^2+5^2+15^2}=\sqrt{350}=5\sqrt{14}$
As we see that AB = BC + AC, we conclude that the three points are collinear.
We can also see from here,
Point B divides AC in the ratio 2 : 3.
Answer:
Given, two vectors $\vec P=( 2 \vec a + \vec b ) \: \:and \: \:\vec Q= ( \vec a - 3 \vec b )$
The point R, which divides line segment PQ in ratio 1:2 is given by
$=\frac{2(2\vec a +\vec b)-(\vec a-3\vec b)}{2-1}=4\vec a +2\vec b -\vec a+3\vec b=3\vec a+5\vec b$
Hence, the position vector of R is $3\vec a+5\vec b$ .
Now, the Position vector of the midpoint of RQ
$=\frac{( 3\vec a + 5\vec b + \vec a - 3 \vec b )}{2}=2\vec a+\vec b$
which is the position vector of Point P . Hence, P is the mid-point of RQ
Answer:
Given two adjacent sides of the parallelogram
$2 \hat i - 4 \hat j + 5 \hat k \: \:and \: \: \hat i - 2 \hat j - 3 \hat k$
The diagonal will be the resultant of these two vectors. so
resultant R:
$\vec R=2 \hat i - 4 \hat j + 5 \hat k \: +\: \hat i - 2 \hat j - 3 \hat k=3\hat i-6\hat j+2\hat k$
Now the unit vector in the direction of R
$\vec u=\frac{3\hat i-6\hat j+2\hat k}{\sqrt{3^2+(-6)^2+2^2}}=\frac{3\hat i-6\hat j+2\hat k}{\sqrt{49}}=\frac{3\hat i-6\hat j+2\hat k}{7}$
Hence unit vector along the diagonal of the parallelogram
$\vec u={\frac{3}{7}\hat i-\frac{6}{7}\hat j+\frac{2}{7}\hat k}$
Now,
Area of parallelogram
$A=(2 \hat i - 4 \hat j + 5 \hat k )\: \times \: \: (\hat i - 2 \hat j - 3 \hat k)$
$A=\begin{vmatrix} \hat i &\hat j &\hat k \\ 2& -4 &5 \\ 1&-2 &-3 \end{vmatrix}=|\hat i(12+10)-\hat j(-6-5)+\hat k(-4+4)|=|22\hat i +11\hat j|$
$A=\sqrt{22^2+11^2}=11\sqrt{5}$
Hence, the area of the parallelogram is $11\sqrt{5}$.
Answer:
Let a vector $\vec a$ is equally inclined to axis OX, OY and OZ.
let direction cosines of this vector be
$cos\alpha,cos\alpha \:and \:cos\alpha$
Now
$cos^2\alpha+cos^2\alpha +cos^2\alpha=1$
$cos^2\alpha=\frac{1}{3}$
$cos\alpha=\frac{1}{\sqrt{3}}$
Hence, direction cosines are:
$\left ( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} \right )$.
Answer:
Given,
$\vec a = \hat i + 4 \hat j + 2 \hat k , \vec b = 3 \hat i - 2 \hat j + 7 \hat k \: \:and \: \: \vec c = 2 \hat i - \hat j + 4 \hat k$
Let $\vec d=d_1\hat i+d_2\hat j +d_3\hat k$
now, since it is given that d is perpendicular to $\vec a$ and $\vec b$ , we got the condition,
$\vec b.\vec d=0$ and $\vec a.\vec d=0$
$(\hat i+4\hat j +2\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=0$ And $(3\hat i-2\hat j +7\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=0$
$d_1+4d_2+2d_3=0$ And $3d_1-2d_2+7d_3=0$
here we got 2 equation and 3 variable. one more equation will come from the condition:
$\vec c . \vec d = 15$
$(2\hat i-\hat j +4\hat k)\cdot(d_1\hat i +d_2\hat j+d_3\hat k)=15$
$2d_1-d_2+4d_3=15$
so now we have three equation and three variable,
$d_1+4d_2+2d_3=0$
$3d_1-2d_2+7d_3=0$
$2d_1-d_2+4d_3=15$
On solving this three equation we get,
$d_1=\frac{160}{3},d_2=-\frac{5}{3}\:and\:d_3=-\frac{70}{3}$ ,
Hence, Required vector :
$\vec d=\frac{160}{3}\hat i-\frac{5}{3}\hat j-\frac{70}{3}\hat k$.
Answer:
Let, the sum of vectors $2\hat i + 4 \hat j -5 \hat k$ and $\lambda \hat i + 2 \hat j +3 \hat k$ be
$\vec a=(\lambda +2)\hat i + 6 \hat j -2 \hat k$
unit vector along $\vec a$
$\vec u=\frac{(\lambda +2)\hat i + 6 \hat j -2 \hat k}{\sqrt{(\lambda+2)^2+6^2+(-2)^2}}=\frac{(\lambda +2)\hat i + 6 \hat j -2 \hat k}{\sqrt{\lambda^2+4\lambda+44}}$
Now, the scalar product of this with $\hat i + \hat j + \hat k$
$\vec u.(\hat i+\hat j +\hat k)=\frac{(\lambda +2)\hat i + 6 \hat j -2 \hat k}{\sqrt{\lambda^2+4\lambda+44}}.(\hat i+\hat j +\hat k)$
$\vec u.(\hat i+\hat j +\hat k)=\frac{(\lambda +2) + 6 -2 }{\sqrt{\lambda^2+4\lambda+44}}=1$
$\frac{(\lambda +2) + 6 -2 }{\sqrt{\lambda^2+4\lambda+44}}=1$
$\frac{(\lambda +6) }{\sqrt{\lambda^2+4\lambda+44}}=1$
$\lambda =1$
Answer:
Given
$|\vec a|=|\vec b|=|\vec c|$ and
$\vec a.\vec b=\vec b.\vec c=\vec c.\vec a=0$
Now, let vector $\vec a+\vec b +\vec c$ is inclined to $\vec a , \vec b \: \: and \: \: \vec c$ at $\theta_1,\theta_2\:and\:\theta_3$ respectively.
Now,
$cos\theta_1=\frac{(\vec a+\vec b+\vec c).\vec a}{|\vec a+\vec b+\vec c||\vec a|}=\frac{\vec a.\vec a +\vec a.\vec b +\vec c.\vec a}{|\vec a+\vec b+\vec c||\vec a|}=\frac{\vec a.\vec a}{|\vec a+\vec b+\vec c||\vec a|}=\frac{|\vec a|}{|\vec a+\vec b+\vec c|}$
$cos\theta_2=\frac{(\vec a+\vec b+\vec c).\vec b}{|\vec a+\vec b+\vec c||\vec b|}=\frac{\vec a.\vec b +\vec b.\vec b +\vec c.\vec b}{|\vec a+\vec b+\vec c||\vec b|}=\frac{\vec b.\vec b}{|\vec a+\vec b+\vec c||\vec b|}=\frac{|\vec b|}{|\vec a+\vec b+\vec c|}$
$cos\theta_3=\frac{(\vec a+\vec b+\vec c).\vec c}{|\vec a+\vec b+\vec c||\vec c|}=\frac{\vec a.\vec c +\vec b.\vec c +\vec c.\vec c}{|\vec a+\vec b+\vec c||\vec c|}=\frac{\vec c.\vec c}{|\vec a+\vec b+\vec c||\vec c|}=\frac{|\vec c|}{|\vec a+\vec b+\vec c|}$
Now, Since, $|\vec a|=|\vec b|=|\vec c|$
$cos\theta_1=cos\theta_2=cos\theta_3$
$\theta_1=\theta_2=\theta_3$
Hence vector $\vec a+\vec b +\vec c$ is equally inclined to $\vec a , \vec b \: \: and \: \: \vec c$.
Answer:
Given in the question,
are perpendicular and we need to prove that
LHS=
if are perpendicular,
= RHS
LHS is equal to RHS.
Hence proved.
Answer:
Given in the question
$\theta$ is the angle between two vectors $\vec a \: \: and \: \: \vec b$
$\vec a \cdot \vec b \geq 0$
$|\vec a| | \vec b |cos\theta\geq 0$
this will satisfy when
$cos\theta\geq 0$
$0\leq\theta\leq \frac{\pi}{2}$
Hence, option B is the correct answer.
Answer:
Given in the question
$\vec a \: \: and \: \: \vec b$ be two unit vectors and $\theta$ is the angle between them
$|\vec a|=1,\:and\:\:|\vec b|=1$
also
$|\vec a + \vec b|=1$
$|\vec a + \vec b|^2=1$
$|\vec a|^2 + |\vec b|^2+2\vec a.\vec b=1$
$1 + 1+2\vec a.\vec b=1$
$\vec a.\vec b=-\frac{1}{2}$
$|\vec a||\vec b|cos\theta =-\frac{1}{2}$
$cos\theta =-\frac{1}{2}$
$\theta =\frac{2\pi}{3}$
Then $\vec a + \vec b$ is a unit vector if $\theta =\frac{2\pi}{3}$
Hence, option D is correct.
(A) 0
(B) –1
(C) 1
(D) 3
Answer:
To find the value of $\hat i ( \hat j \times \hat k ) + \hat j ( \hat i \times \hat k ) + \hat k ( \hat i \times \hat j )$
$\\\hat i ( \hat j \times \hat k ) + \hat j ( \hat i \times \hat k ) + \hat k ( \hat i \times \hat j ) \\=\hat i.\hat i+\hat j(-\hat j)+\hat k.\hat k\\=1-1+1\\=1$
Hence, option C is correct.
$\\A ) 0 \\\\ B ) \pi /4 \\\\ C ) \pi / 2 \\\\ D ) \pi$
Answer:
Given in the question
$\theta$ is the angle between any two vectors $\vec a \: \:and \: \: \vec b$ and $|\vec a \cdot \vec b |=|\vec a \times \vec b |$
To find the value of $\theta$
Hence, option D is correct.
Interested students can study Vector Algebra Exercises using the following links:
Here is the list of important topics that are covered in Class 12 Chapter 10 Vector Algebra:
Here is a comparison list of the concepts in Vector Algebra that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:
Given below is the chapter-wise list of the NCERT Class 12 Maths solutions with their respective links:
Given below are the subject-wise links for the NCERT exemplar solutions of class 12:
Here are the subject-wise links for the NCERT solutions of class 12:
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Frequently Asked Questions (FAQs)
The major differences between scalar and vector quantities are:
A unit vector is a vector whose magnitude is 1.
It is significant as it helps to indicate directions and simplify the vector calculations.
The major properties of vector addition and multiplication are:
There is a simple way to determine if two vectors are perpendicular or parallel to each other:
The basic concepts of Vector Algebra in Class 12 Maths are:
These concepts will help to grasp the Vector algebra chapter effectively, and they are also used in various real-world applications.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE