Ever wondered how Google decides the order in which websites appear on its search results page? Or how is heavy traffic controlled smoothly at busy intersections? The answer lies in Matrices, a powerful concept in mathematics that simplifies complex systems of equations and makes data management more efficient. The Class 12 Maths NCERT Chapter 3 Matrices is a crucial part of the syllabus for students preparing for board exams and competitive tests. This chapter explains key concepts such as the Definition of a Matrix, Order of a Matrix, Types of Matrices, Operations on Matrices, Transpose of a Matrix, and more. A strong understanding of these topics not only helps students solve matrix-based problems quickly but also improves their analytical and problem-solving skills, making them better equipped for real-life applications in technology, science, and data management. These NCERT Solutions for Class 12 Maths are trustworthy and reliable, as they are created by subject matter experts at Careers360, making them an essential resource for exam preparation.
This Story also Contains
The main purpose of these NCERT Solutions for Class 12 is to give students a clear understanding of the fundamental concepts of matrices and their operations. These solutions also aim to strengthen their problem-solving skills in real-life applications, such as solving systems of linear equations and performing transformations in geometry. These solutions offer clear, step-by-step solutions for the exercise problems given in the NCERT textbook. Many toppers rely on NCERT Solutions because they are designed in accordance with the latest syllabus. Also, find everything, such as NCERT Books, Solutions, Syllabus, and Exemplar Problems with Solutions, in one place in this link: NCERT
Careers360 brings you NCERT Class 12 Maths Chapter 3 Matrices Solutions, carefully prepared by subject experts to simplify your studies and help in exams. Students can download the complete PDF from the link provided below.
Below, you will find the NCERT Class 12 Maths Chapter 3 Matrices question answers explained step by step.
| Matrices Class 12 Chapter 3 Question Answers Exercise: 3.1 Page number: 42-43 Total questions: 10 |
Question 1(i):In the matrix $A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix}$, write:
Answer:
$A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix}$
(i) The order of the matrix = number of row $\times$ number of columns $= 3\times 4$.
Question 1(ii): In the matrix $A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$, write:
Answer:
$A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$
(ii) The number of elements $3\times 4=12$.
Question 1(iii): In the matrix $A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$, write:
Write the elements a13, a21, a33, a24, a23
Answer:
$A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$
(iii) An element $a_{ij}$ implies the element in row number i and column number j.
$a_{13} = 19$, $a_{21} = 35$
$a_{33} = -5$, $a_{24} = 12$
$a_{23} = \frac{5}{2}$
Question 2: If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
Answer:
A matrix has 24 elements.
The possible orders are :
$1\times 24,24\times 1,2\times 12,12\times 2,3\times 8,8\times 3,4\times 6 \, \, and\, \, 6\times 4$.
If it has 13 elements, then possible orders are :
$1\times 13\, \, \, and \, \, \, \, 13\times 1$.
Question 3: If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
Answer:
A matrix has 18 elements.
The possible orders are as follows
$1\times 18,18\times 1,2\times 9,9\times 2,3\times 6\, \, \, and\, \, \, \, 6\times 3$
If it has 5 elements, then possible orders are :
$1\times 5\, \, \, and \, \, \, \, 5\times 1$.
Question 4(i): Construct a 2 × 2 matrix, $A = [a_{ij} ]$ whose elements are given by:
$a_{ij} = \frac{(i + j)^2}{2}$
Answer:
$A = [a_{ij} ]$
(i) $a_{ij} = \frac{(i + j)^2}{2}$
Each element of this matrix is calculated as follows
$a_{11} = \frac{(1+1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2$, $a_{22} = \frac{(2+2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$
$a_{12} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$, $a_{21} = \frac{(2+1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$
Matrix A is given by
$A = \begin{bmatrix} 2&4.5 \\4.5 & 8 \end{bmatrix}$
Question 4(ii): Construct a 2 × 2 matrix, $A = [a_{ij} ]$, whose elements are given by:
Answer:
A 2 × 2 matrix, $A = [a_{ij} ]$
(ii) $a_{ij} = \frac{i}{j}$
$a_{11} = \frac{1}{1} = 1$, $a_{22} = \frac{2}{2} = 1$
$a_{12} = \frac{1}{2}$, $a_{21} = \frac{2}{1} = 2$
Hence, the matrix is
$A = \begin{bmatrix} 1& \frac{1}{2} \\ 2 & 1 \end{bmatrix}$
Question 4(iii): Construct a 2 × 2 matrix, $A = [a_{ij} ]$, whose elements are given by:
Answer:
(iii)
$a_{ij} = \frac{(i + 2j)^2}{2}$
$a_{11} = \frac{(1 + (2 \times 1))^2}{2} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$,
$a_{22} = \frac{(2 + (2 \times 2))^2}{2} = \frac{(2 + 4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18$,
$a_{21} = \frac{(2 + (2 \times 1))^2}{2} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$,
$a_{12} = \frac{(1 + (2 \times 2))^2}{2} = \frac{(1 + 4)^2}{2} = \frac{5^2}{2} = \frac{25}{2}$
Hence, the matrix is given by
$A = \begin{bmatrix} \frac{9}{2}& \frac{25}{2} \\ 8 & 18 \end{bmatrix}$
Question 5(i): Construct a 3 × 4 matrix whose elements are given by:
$a_{ij} = \frac{1}{2}|-3i + j|$
Answer:
(i)
$a_{ij} = \frac{1}{2} \left| -3i + j \right|$
$a_{11} = \frac{\left| -3 + 1 \right|}{2} = \frac{2}{2} = 1$,
$a_{12} = \frac{\left| (-3 \times 1) + 2 \right|}{2} = \frac{1}{2}$,
$a_{13} = \frac{\left| (-3 \times 1) + 3 \right|}{2} = 0$
$a_{21} = \frac{\left| (-3 \times 2) + 1 \right|}{2} = \frac{5}{2}$,
$a_{22} = \frac{\left| (-3 \times 2) + 2 \right|}{2} = \frac{4}{2} = 2$,
$a_{23} = \frac{\left| (-3 \times 2) + 3 \right|}{2} = \frac{\left| -6 + 3 \right|}{2} = \frac{\left| -3 \right|}{2} = \frac{3}{2}$
$a_{31} = \frac{\left| (-3 \times 3) + 1 \right|}{2} = \frac{8}{2} = 4$,
$a_{32} = \frac{\left| (-3 \times 3) + 2 \right|}{2} = \frac{7}{2}$,
$a_{33} = \frac{\left| (-3 \times 3) + 3 \right|}{2} = \frac{\left| -9 + 3 \right|}{2} = \frac{\left| -6 \right|}{2} = \frac{6}{2} = 3$
$a_{14} = \frac{\left| (-3 \times 1) + 4 \right|}{2} = \frac{\left| -3 + 4 \right|}{2} = \frac{\left| 1 \right|}{2} = \frac{1}{2}$,
$a_{24} = \frac{\left| (-3 \times 2) + 4 \right|}{2} = \frac{\left| -6 + 4 \right|}{2} = \frac{\left| -2 \right|}{2} = \frac{2}{2} = 1$,
$a_{34} = \frac{\left| (-3 \times 3) + 4 \right|}{2} = \frac{\left| -9 + 4 \right|}{2} = \frac{\left| -5 \right|}{2} = \frac{5}{2}$
Hence, the required matrix of the given order is
$A = \begin{bmatrix} 1& \frac{1}{2} & 0&\frac{1}{2} \\ \frac{5}{2} & 2&\frac{3}{2}&1 \\4&\frac{7}{2}&3&\frac{5}{2}\end{bmatrix}$
Question 5(ii): Construct a 3 × 4 matrix, whose elements are given by:
Answer:
A 3 × 4 matrix,
(ii) $a_{ij} = 2i - j$
$a_{11} = 2 \times 1 - 1 = 2 - 1 = 1$, $a_{12} = 2 \times 1 - 2 = 2 - 2 = 0$, $a_{13} = 2 \times 1 - 3 = 2 - 3 = -1$
$a_{21} = 2 \times 2 - 1 = 4 - 1 = 3$, $a_{22} = 2 \times 2 - 2 = 4 - 2 = 2$, $a_{23} = 2 \times 2 - 3 = 4 - 3 = 1$
$a_{31} = 2 \times 3 - 1 = 6 - 1 = 5$, $a_{32} = 2 \times 3 - 2 = 6 - 2 = 4$, $a_{33} = 2 \times 3 - 3 = 6 - 3 = 3$
$a_{14} = 2 \times 1 - 4 = 2 - 4 = -2$, $a_{24} = 2 \times 2 - 4 = 4 - 4 = 0$, $a_{34} = 2 \times 3 - 4 = 6 - 4 = 2$
Hence, the matrix is
$A = \begin{bmatrix} 1 & 0& -1& -2 \\ \ 3 & 2&1& 0 \\5&4&3&2\end{bmatrix}$
Question 6(i): Find the values of x, y and z from the following equations:
$\begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}$
Answer:
(i) $\begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}$
If two matrices are equal, then their corresponding elements are also equal.
$\therefore$ $x=1\, \, \, ,\, \, \, y=4\, \, \, \, and\, \, \, \, z=3$
Question 6(ii): Find the values of x, y and z from the following equations:
$\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}$
Answer:
(ii)
$\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}$
If two matrices are equal, then their corresponding elements are also equal.
$\therefore$ $x+y=6$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$
$x=6-y$
$xy=8$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (ii)$
Solving equations (i) and (ii),
$(6-y)y =8$
$6y-y^{2}=8$
$y^{2}-6y+8=0$
Solving this equation, we get,
$y=4 \, \, and\, \, y=2$
Putting the values of y, we get
$x=2 \, \, and\, \, x=4$
And also equating the first element of the second row
$5+z = 5$, $z=0$
Hence,
$x=2,y=4,z=0\, \, \, \, \, and\, \, \, \, \, \, x=4,y=2,z=0$
Question 6(iii): Find the values of x, y and z from the following equations
$\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}$
Answer:
(iii)
$\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}$
If two matrices are equal, then their corresponding elements are also equal
$x+y+z=9........(1)$
$x+z=5..............(2)$
$y+z=7..............(3)$
Subtracting (2) from (1), we will get y=4
Substituting the value of y in equation (3), we will get z=3
Now, substituting the value of z in equation (2), we will get x=2
therefore,
$x=2$, $y=4$ and $z=3$
Question 7: Find the value of a, b, c and d from the equation:
Answer:
$\begin{bmatrix} a -b & 2a + c\\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}$
If two matrices are equal, then their corresponding elements are also equal
$a-b=-1$ $.............................1$
$2a+c=5$ $.............................2$
$2a-b=0$ $.............................3$
$3c+d=13$ $.............................4$
Solving equations 1 and 3, we get
$a=1 \, \, \, \, and \, \, \, \, b=2$
Putting the value of a in equation 2, we get
$c=3$
Putting the value of c in equation 4, we get
$d=4$
Question 8: $A = [a_{ij}]_{m\times n}$ is a square matrix, if
Answer:
A square matrix has the number of rows and columns equal.
Thus, for $A = [a_{ij}]_{m\times n}$ to be a square matrix, m and n should be equal.
$\therefore m=n$
Option (c) is correct.
Question 9: Which of the given values of x and y make the following pair of matrices equal
(D) $x = \frac{-1}{3}, y = \frac{-2}{3}$
Answer:
Given, $\begin{bmatrix} 3x + 7 &5 \\ y + 1 & 2 -3x \end{bmatrix}$ $=\begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}$
If two matrices are equal, then their corresponding elements are also equal
$3x+7=0\Rightarrow x=\frac{-7}{3}$
$y-2=5 \Rightarrow y=5+2=7$
$y+1=8\Rightarrow y=8-1=7$
$2-3x=4\Rightarrow 3x=2-4\Rightarrow 3x=-2\Rightarrow x=\frac{-2}{3}$
Here, the value of x is not unique, so option B is correct.
Question 10: The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:
Answer:
Total number of elements in a 3 × 3 matrix
$=3\times 3=9$
If each entry is 0 or 1, then for every entry, there are 2 permutations.
The total permutations for 9 elements
$=2^{9}=512$
Thus, option (D) is correct.
| Matrices Class 12 Chapter 3 Question Answers Exercise: 3.2 Page number: 58-61 Total questions: 22 |
A + B
Answer:
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(i) A + B
The addition of a matrix can be done as follows
$A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $+ \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}$
$A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}$
A - B
Answer:
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(ii) A - B
$A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}$
$A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}$
3A - C
Answer:
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
(iii) 3A - C
First multiply each element of A by 3 and then subtract C
$3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}$
AB
Answer:
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(iv) AB
$AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $\times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}$
$AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}$
BA
Answer:
The multiplication is performed as follows
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ ,$B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$ $\times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$
$BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}$
$BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}$
Question 2(i): Compute the following:
$\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$
Answer:
(i) $\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$
$= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}$
$= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}$
Question 2(ii): Compute the following:
Answer:
(ii) The addition operation can be performed as follows
$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$
$=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}$
$=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}$
Question 2(iii): Compute the following:
Answer:
(iii) The addition of given three by three matrix is performed as follows
$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$
$=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}$
$=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}$
Question 2(iv): Compute the following:
Answer:
(iv) the addition is done as follows
$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$
$=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix}$ since $sin^2x+cos^2x=1$
$=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}$
Question 3(i): Compute the indicated products.
$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
Answer:
(i) The multiplication is performed as follows
$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
$=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
$=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}$
$=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}$
Question 3(ii): Compute the indicated products.
$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$
Answer:
(ii) the multiplication can be performed as follows
$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$
$=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}$
$=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}$
Question 3(iii): Compute the indicated products.
$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$
Answer:
(iii) The multiplication can be performed as follows
$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}$
Question 3(iv): Compute the indicated products.
Answer:
(iv) The multiplication is performed as follows
$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$
$=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$
$=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}$
$= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}$
Question 3(v): Compute the indicated products.
Answer:
(v) The product can be computed as follows
$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$
$=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$
$=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}$
$=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}$
Question 3(vi): Compute the indicated products.
Answer:
(vi) The given product can be computed as follows
$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}$
$=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$
$B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ $-\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}$
$B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$
Now, to prove A + (B - C) = (A + B) - C
$L.H.S\, \, :\, A+(B-C)$
$A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$ (Puting value of $B-C$ from above)
$A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}$
$A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
$R.H.S\, \, :\, (A+B)-C$
$(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$ $- \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}$
$(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
Hence, we can see L.H.S = R.H.S = $\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$
$3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ $-5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$
$3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$ $- \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$
$3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$3A-5B = 0$
Answer:
The simplification is explained in the following step
$\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$
$= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}$
$= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}$
$= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I$
the final answer is an identity matrix of order 2
Question 7(i): Find X and Y, if
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
Answer:
(i) The given matrices are
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1$
$X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2$
Adding equation 1 and 2, we get
$2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ $+ \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
$2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}$
$2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}$
$X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$
Putting the value of X in equation 1, we get
$\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$ $+Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$
$Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} -$ $\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$
$Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}$
$Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}$
Question 7(ii): Find X and Y, if
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
Answer:
(ii) $2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1$
$3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2$
Multiply equation 1 by 3 and equation 2 by 2 and subtract them,
$3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ $- \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
$6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix}$ $- \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}$
$9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}$
$5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}$
$Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$
Putting value of Y in equation 1 , we get
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}$
$2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}$
$2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}$
$X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}$
Answer:
$Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$
$2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$
Substituting the value of Y in the above equation
$2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$
$2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$
$2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}$
$2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}$
$X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}$
Answer:
$2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
Now equating LHS and RHS we can write the following equations
$2+y=5$ $2x+2=8$
$y=5-2$ $2x=8-2$
$y=3$ $2x=6$
$x=3$
Answer:
$2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$
Multiplying with constant terms and rearranging we can rewrite the matrix as
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}$
Dividing by 2 on both sides
$\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}$
$x=3,y=6,z=9\, \, and\, \, t=6$
Answer:
$x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
$\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
Adding both the matrices in the LHS and rewriting
$\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
$2x-y=10........................1$
$3x+y=5........................2$
Adding equations 1 and 2, we get
$5x=15$
$x=3$
Put the value of x in equation 2, we have
$3x+y=5$
$3\times 3+y=5$
$9+y=5$
$y=5-9$
$y=-4$
Answer:
$3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$
$\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}$
If two matrices are equal than corresponding elements are also equal.
Thus, we have
$3x=x+4$
$3x-x=4$
$2x=4$
$x=2$
$3y=6+x+y$
Put the value of x
$3y-y=6+2$
$2y=8$
$y=4$
$3w=2w+3$
$3w-2w=3$
$w=3$
$3z=-1+z+w$
$3z-z=-1+3$
$2z=2$
$z=1$
Hence, we have $x=2,y=4,z=1\, \, and\, \, w=3.$
Answer:
$F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$
To prove : $F(x) F(y) = F(x + y)$
$R.H.S : F(x + y)$
$F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$
$L.H.S : F(x) F(y)$
$F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}$
$F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}$
$F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$
Hence, we have L.H.S. = R.H.S i.e. $F(x) F(y) = F(x + y)$.
Question 14(i): Show that
Answer:
To prove:
$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$
$L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}$
$= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}$
$= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}$
$R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$
$= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}$
$= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}$
Hence, the right-hand side is not equal to the left-hand side, that is
Question 14(ii): Show that
Answer:
To prove the following multiplication of three by three matrices are not equal
$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$
$L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}$
$= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}$
$= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}$
$R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$
$= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}$
$= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}$
Hence, $L.H.S \neq R.H.S$ i.e. $\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$.
Question 15: Find$A^2 -5A + 6I$, if
$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
First, we will find out the value of the square of matrix A
$A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$
$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$\therefore$ $A^2 -5A + 6I$
$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$ $-5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$$+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$$- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}$$+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}$
$= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}$
$= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}$
Question 16: If $A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$ prove that $A^3 - 6A^2 + 7A + 2I = 0$.
Answer:
$A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
First, find the square of matrix A and then multiply it with A to get the cube of matrix A
$A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
$A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}$
$A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$
$A^{3}=A^{2}\times A$
$A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$ $\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
$A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}$
$A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$
$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$\therefore$ $A^3 - 6A^2 + 7A + 2I = 0$
L.H.S :
$\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$$- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$$+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$ $- \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix}$ $+ \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix}$ $+ \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}$
$=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}$
$=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}$
$= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0$
Hence, L.H.S = R.H.S
i.e.$A^3 - 6A^2 + 7A + 2I = 0$.
Answer:
$A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
$A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$$\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}$
$A^{2} = kA - 2I$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+$ $\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$ $=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}$$=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$
$\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ $=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$
We have,$3=3k$
$k=\frac{3}{3}=1$
Hence, the value of k is 1.
Answer:
$A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$
$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
To prove : $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
L.H.S : $I+A$
$I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$$+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$
$I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}$
$I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$
R.H.S : $(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}-$ $\begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})$$\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$ $=\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}$
$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$
$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$
$= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$
Hence, we can see L.H.S = R.H.S
i.e. $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$.
Rs. 1800
Answer:
Let Rs. x be invested in the first bond.
Money invested in second bond = Rs (3000-x)
The first bond pays 5% interest per year and the second bond pays 7% interest per year.
To obtain an annual total interest of Rs. 1800, we have
$\begin{bmatrix}x &(30000-x) \end{bmatrix}$ $\begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix}$ $=1800$ (simple interest for 1 year $=\frac{pricipal\times rate}{100}$ )
$\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800$
$5x+210000-7x=180000$
$210000-180000=7x-5x$
$30000=2x$
$x=15000$
Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.
Answer:
Let Rs. x be invested in the first bond.
Money invested in second bond = Rs (3000-x)
The first bond pays 5% interest per year, and the second bond pays 7% interest per year.
To obtain an annual total interest of Rs. 1800, we have
$\begin{bmatrix} x & (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 2000$
(Simple interest for 1 year = $\frac{\text{Principal} \times \text{Rate}}{100}$)
$\frac{5}{100}x + \frac{7}{100}(30000 - x) = 2000$
$\frac{5x + 210000 - 7x}{100} = 2000$
$\frac{210000 - 2x}{100} = 2000$
$210000 - 2x = 200000$
$210000 - 200000 = 2x$
$10000 = 2x$
$x = 5000$
Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.
Answer:
The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.
Their selling prices are Rs 80, Rs 60 and Rs 40 each, respectively.
The total amount the bookshop will receive from selling all the books:
$12$$\begin{bmatrix}10 &8&10 \end{bmatrix}$ $\begin{bmatrix}80\\60\\40 \end{bmatrix}$
$=12(10\times 80+8\times 60+10\times 40)$
$= 12(800+480+ 400)$
$= 12(1680)$
$=20160$
The total amount the bookshop will receive from selling all the books is 20160.
Q21. The restrictions on $n, k$ and $p$ so that $P Y+W Y$ will be defined are:
(A) $k=3, p=n$
(B) k is arbitrary, $p=2$
(C) p is arbitrary, $k=3$
(D) $k=2, p=3$
Answer:
P and Y are of order $p \times k$ and $\mathbf{3} \times k$ respectively.
Therefore, $P Y$ will be defined only if $k=3$, i.e., the order of $P Y$ is $p \times k$.
W and Y are of order $n \times 3$ and $3 \times k$ respectively.
Therefore, $W Y$ is defined because the number of columns of $W$ is equal to the number of rows of $Y$, which is 3, i.e., the order of $W Y$ is $n \times k$.
Matrices $P Y$ and $W Y$ can only be added if they both have the same order, i.e., $p \times k=n \times k \Rightarrow p=n$.
Therefore, $k=3, p=n$ are restrictions on $n, k$, and $p$ so that $P Y+W Y$ will be defined.
Option (A) is correct.
Answer:
$X$ has order $2 \times n$.
Therefore, $7X$ also has order $2 \times n$.
$Z$ has order $2 \times p$.
Therefore, $5Z$ also has order $2 \times p$.
Matrices $7X$ and $5Z$ can only be subtracted if they both have the same order, i.e., $2 \times n = 2 \times p$, and it is given that $p = n$.
We can say that both matrices have order $2 \times n$.
Therefore, the order of $7X - 5Z$ is $2 \times n$.
Option (B) is correct.
| Matrices Class 12 Chapter 3 Question Answers Exercise: 3.3 Page number: 66-68 Total questions: 12 |
Question 1(i). Find the transpose of each of the following matrices:
$\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
Answer:
$A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
The transpose of the given matrix is
$A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}$
Question 1(ii). Find the transpose of each of the following matrices:
$\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
Answer:
$A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
Interchanging the rows and columns of the matrix A, we get
$A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}$
Question 1(iii) Find the transpose of each of the following matrices:
$\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
Transpose is obtained by interchanging the rows and columns of a matrix
$A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A + B)' = A' + B'$
L.H.S : $(A + B)'$
$A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}$
$A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}$
$(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
R.H.S : $A' + B'$
$A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
Thus, we find that the LHS is equal to the RHS and hence verified.
Answer:
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A - B)' = A' - B'$
L.H.S : $(A - B)'$
$A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}$
$A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}$
$(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
R.H.S : $A' - B'$
$A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
Hence, L.H.S = R.H.S. so verified that
$(A - B)' = A' - B'$.
Answer:
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A + B)' = A' + B'$
$L.H.S : (A + B)' =$
$A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}$
$\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}$
R.H.S: $A' + B'$
$A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A + B)' = A' + B'$.
Question 3(ii). If $A = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$, then verify
Answer:
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A - B)' = A' - B'$
$L.H.S : (A - B)' =$
$A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}$
$A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}$
$\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}$
R.H.S: $A' - B'$
$A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A - B)' = A' - B'$.
Answer:
$B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$
$(A + 2B)'$ :
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+ \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}$
Transpose is obtained by interchanging rows and columns and the transpose of A+2B is
$(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$
Question 5(i) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$$\begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}$
$(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$
$A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$$\begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}$
Hence, L.H.S =R.H.S
so it is verified that $(AB)' = B'A'$.
Question 5(ii) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
Answer:
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix}$$\begin{bmatrix} 1& 5 &7 \end{bmatrix}$
$AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}$
$(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$
$A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$$\begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}$
Hence, L.H.S =R.H.S i.e.$(AB)' = B'A'$.
Question 6(i). If $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$, then verify that $A'A =I$
Answer:
$A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
By interchanging rows and columns, we get the transpose of A
$A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 6(ii). If $A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$, then verify that $A'A = I$
Answer:
$A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
By interchanging columns and rows of the matrix A we get the transpose of A
$A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$ $\begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 7(i). Show that the matrix $A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$ is a symmetric matrix.
Answer:
$A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
Since $ A'' = A$, so given matrix is a symmetric matrix.
Question 7(ii) Show that the matrix $A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$ is a skew-symmetric matrix.
Answer:
$A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}$
$A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
$A' =- A$
Since $ A'=-A$ so given matrix is a skew-symmetric matrix.
Question 8(i). For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A + A')$ is a symmetric matrix.
Answer:
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $+ \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}$
$A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
$(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
We have $A+A'=(A + A')'$
Hence, $(A + A')$ is a symmetric matrix.
Question 8(ii) For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A - A')$ is a skew symmetric matrix.
Answer:
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $- \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}$
$A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}$
$(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')$
We have $A-A'=-(A - A')'$
Hence, $(A-A')$ is a skew-symmetric matrix.
Answer:
$A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
The transpose of the matrix is obtained by interchanging rows and columns
$A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$ $+\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = 0$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$$- \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}$
$\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
Question 10(i). Express the following matrices as the sum of a symmetric and a skew-symmetric matrix:
$\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
Answer:
$A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$+\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$$=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$
$B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$-\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew symmetric matrix.
Represent A as the sum of B and C.
$B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$ $+ \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A$
Question:10(ii). Express the following matrices as the sum of a symmetric and a skew-symmetric matrix:
$\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
Answer:
$A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$+ \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$$= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$- \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$$=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$ $+\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$ $= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A$
Question 10(iii). Express the following matrices as the sum of a symmetric and a skew-symmetric matrix:
$\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
Answer:
$A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$+\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$$= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$
$B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$-\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix}$$=\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$ $+\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$ $=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A$
Question 10(iv). Express the following matrices as the sum of a symmetric and a skew-symmetric matrix:
$\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
Answer:
$A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$$=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$
$B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$ $- \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A$
Question 11: Choose the correct answer in Exercises 11 and 12.
If A, B are symmetric matrices of the same order, then AB – BA is a
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
Answer:
If A and B are symmetric matrices, then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew-symmetric.
Option A is correct.
Question 12: Choose the correct answer in Exercises 11 and 12.
If $A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$ and $A+A' =I$, then the value of $\alpha$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\pi$
(D) $\frac{3\pi}{2}$
Answer:
$A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$
$A' = \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$
$A+A' = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$$+ \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$A+A' = \begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$2 cos \alpha=1$
$cos \alpha=\frac{1}{2}$
$\alpha=\frac{\pi}{3}$
Option B is correct.
| Matrices Class 12 Chapter 3 Question Answers Exercise: 3.4 Page number: 69-69 Total questions: 1 |
Question 1: Matrices A and B will be inverse of each other only if
Answer:
We know that if A is a square matrix of order n and there is another matrix B of the same order n, such that $AB=BA=I$, then B is the inverse of matrix A.
In this case, it is clear that A is the inverse of B.
Hence, matrices A and B will be inverse of each other only if $AB=BA=I$.
Option D is correct.
| Matrices Class 12 Chapter 3 Question Answers Miscellaneous Exercise Page number: 72-73 Total questions: 11 |
Answer:
Given :
$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$
For n=1, $aI + bA = a I + a^{0} bA =a I + bA$
The result is true for n=1.
Let the result be true for n=k,
$(aI + bA)^k = a^k I + ka^{k-1} bA$
Now, we prove that the result is true for n=k+1,
$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$
$= (a^k I + ka^{k-1} bA)$$(aI + bA)$
$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$
Put the value of $A^{2}$ in above equation,
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$
$=a^{k+1}I+(k+1)a^{k}bAI$
Hence, the result is true for n=k+1.
Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.
Answer:
Given :
$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$
To prove:
$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$
For n=1, we have
$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$
Thus, the result is true for n=1.
Now, take n=k,
$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
For n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.
Answer:
Given :
$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$
To prove:
$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$
For n=1, we have
$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$
Thus, the result is true for n=1.
Now, the result is true for n=k,
$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
For n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$
$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$
$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$
$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.
Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew-symmetric matrix.
Answer:
If A and B are symmetric matrices, then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew-symmetric.
Question 5. Show that the matrix B′AB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.
Answer:
Let be a symmetric matrix, then $A'=A$
Consider, $(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by $A$
$=B'(AB)$
i.e. $(B'AB)'$ $=B'(AB)$
Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.
Now, let A be a skew-symmetric matrix, then $A'=-A$.
$(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by -$A$,
$=B'(-AB)$
$= - B'AB$
i.e. $(B'AB)'$ $= - B'AB$.
Thus, if A is a skew-symmetric matrix, then $- B'AB$ is a skew-symmetric matrix.
Hence, the matrix B′AB is symmetric or skew-symmetric according to whether A is symmetric or skew-symmetric.
Answer:
$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$
$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$
$A'A = I$
$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
Thus equating the terms element-wise
$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$
$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$
$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$
Answer:
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$
$4+4x=0$
$4x=-4$
$x=-1$
Thus, the value of x is -1.
Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.
Answer:
$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$
$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
To prove: $A^2 -5A + 7I= 0$
L.H.S : $A^2 -5A + 7I$
$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$
$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$
Hence, we proved that
$A^2 -5A + 7I= 0$.
Answer:
$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$
$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$
$\therefore \, \, x ^{2}-48= 0$
$x ^{2}=48$
thus the value of x is
$x =\pm 4\sqrt{3}$
Question 10(a) A manufacturer produces three products, x, y, z, which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
Answer:
The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.
The total revenue in the market I, with the help of matrix algebra, can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$
$= 25000+3000+18000$
$= 46000$
The total revenue in market II, with the help of matrix algebra, can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$
$= 15000+30000+8000$
$= 53000$
Hence, total revenue in the market I is 46000, and total revenue in market II is 53000.
Question 10(b). A manufacturer produces three products x, y, z, which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.
Answer:
The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.
The total cost price in market I, with the help of matrix algebra, can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$
$= 20000+2000+9000$
$= 31000$
Total revenue in the market I is 46000, gross profit in the market is $= 46000-31000$$=Rs. 15000$
The total cost price in market II, with the help of matrix algebra, can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$
$= 12000+20000+4000$
$= 36000$
Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$
Answer:
$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.
Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$
$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$
$b+4d=2$ $2b+5d=4$ $3b+6d=6$
Taking, $a+4c=-7$
$a=-4c-7$
$2a+5c=-8$
$-8c-14+5c=-8$
$-3c=6$
$c=-2$
$a=-4\times -2-7$
$a=8-7=1$
$b+4d=2$
$b=-4d+2$
$2b+5d=4$
$\Rightarrow$ $-8d+4+5d=4$
$\Rightarrow -3d=0$
$\Rightarrow d=0$
$b=-4d+2$
$\Rightarrow b=-4\times 0+2=2$
Hence, we have $a=1, b=2,c=-2,d=0$
Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.
Answer:
A and B are square matrices of the same order such that $AB = BA$,
To prove : $AB^n = B^n A$, $n \in N$
For n=1, we have $AB^1 = B^1 A$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $AB^k = B^k A$
Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$
$AB^{k+1} = (B^kA) .B$
$AB^{k+1} = (B^k) .AB$
$AB^{k+1} = (B^k) .BA$
$AB^{k+1} = (B^k.B) .A$
$AB^{k+1} = (B^{k+1}) .A$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$, $n \in N$.
To prove: $(AB)^n = A^n B^n$
For n=1, we have $(AB)^1 = A^1 B^1$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $(AB)^k = A^k B^k$
Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$
$(AB)^{k+1} = A^k B^k.(AB)$
$(AB)^{k+1} = A^{K}( B^kA)B$
$(AB)^{k+1} = A^{K}( AB^k)B$
$(AB)^{k+1} = (A^{K}A)(B^kB)$
$(AB)^{k+1} = (A^{k+1})(B^{k+1})$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.
Question 13 Choose the correct answer in the following questions:
If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$
(A) $1 + \alpha^2 + \beta \gamma = 0$
(B) $1 - \alpha^2 + \beta \gamma = 0$
(C) $1 - \alpha^2 - \beta \gamma = 0$
(D) $1 + \alpha^2 - \beta \gamma = 0$
Answer:
$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$
$A^2 = I$
$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
Thus, we obtained that
$\alpha^{2} +\beta \gamma=1$
$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$
Option C is correct.
Question 14. If the matrix A is both symmetric and skew-symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
Answer:
If the matrix A is both symmetric and skew-symmetric, then
$A'=A$ and $A'=-A$
$A'=A'$
$\Rightarrow \, \, \, \, \, \, \, A=-A$
$\Rightarrow \, \, \, \, \, \, \, A+A=0$
$\Rightarrow \, \, \, \, \, \, \, 2A=0$
$\Rightarrow \, \, \, \, \, \, \, A=0$
Hence, A is a zero matrix.
Option B is correct.
Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to
(A) A
(B) I – A
(C) I
(D) 3A
Answer:
A is a square matrix such that $A^{2}=A$
$(I + A)^3 - 7 A$
$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$
$=I+A^{2}.A+3A+3A^{2}-7A$
$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)
$=I+A^{2}+6A-7A$
$=I+A-A$
$=I$
Hence, we have $(I + A)^3 - 7 A=I$
Option C is correct.
Exercise-wise NCERT Solutions of Matrices Class 12 Maths Chapter 3 are provided in the links below.
Topics you will learn in NCERT Class 12 Maths Chapter 3 Matrices include:
A matrix is an ordered rectangular array of numbers or functions.
A matrix of order m × n consists of m rows and n columns.
The order of a matrix is written as m × n, where m is the number of rows and n is the number of columns.
A matrix is called a square matrix when m = n.
A diagonal matrix A = [aij]m×m has aij = 0 when i ≠ j.
A scalar matrix A = [aij]n×n has aij = 0 when i ≠ j, aij = k (where k is a constant)
when i = j.
An identity matrix A = [aij]n×n has aij = 1 when i = j and aij = 0 when i ≠ j.
A zero matrix contains all its elements as zero.
A column matrix is of the form [A]n × 1.
A row matrix is of the form [A]1 × n.
Two matrices A and B are equal (A = B) if they have the same order and aij = bij for all the corresponding values of i and j.
Matrix Addition:
If A = [aij]m × n and B = [bij]m × n, then A + B = [aij + bij]m × n.
Matrix Subtraction:
If A = [aij]m × n and B = [bij]m × n, then A - B = [aij - bij]m × n.
Multiplication of a Matrix by a Scalar:
Let A = [aij]m × n be a matrix and k is a scalar, then kA is obtained by multiplying each element of A by the scalar k, i.e., kA = [kaij]m × n.
Multiplication of Matrices:
Let A be an m × p matrix, and B be a p × n matrix. Their product AB is defined if the number of columns in A is equal to the number of rows in B. The resulting matrix is an m × n matrix, and the elements are calculated as follows: (AB)ij = Σ(ai * bj), where the sum is taken over all values of p.
The transpose of a matrix A, denoted as AT, is obtained by interchanging its rows and columns.
A matrix A is symmetric if A =AT (i.e., it is equal to its transpose).
A matrix A is skew-symmetric if AT = -A (i.e., the transpose of A is equal to the negative of A).
Elementary row operations include:
Interchanging any two rows.
Multiplying a row by a non-zero scalar.
Adding or subtracting a multiple of one row from another row.
You can find the inverse of a matrix using elementary row operations. If the matrix A is invertible, you can transform it into the identity matrix I through row operations on an augmented matrix [A | I], where I is the identity matrix of the same order as A. If this process is successful, the resulting matrix on the left will be I, and the matrix on the right will be the inverse of A.
Matrices play a significant role in Class 12 mathematics, and using these approaches, students can tackle the Matrices Class 12 Chapter 3 Question Answers with greater confidence.
For JEE aspirants, it is important to go beyond NCERT. Below are some extra topics that can help you build a deeper understanding and handle challenging problems with confidence.
|
Concept Name |
JEE |
NCERT |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
❌ | |
|
✅ |
✅ | |
|
✅ |
✅ | |
|
✅ |
✅ |
We at Careers360 compiled all the NCERT class 12 Maths solutions in one place for easy student reference. Access them by using the following links.
Also Read,
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the class-wise solutions of class 12 NCERT:
Here are some useful links for the NCERT books and the NCERT syllabus for class 12
Frequently Asked Questions (FAQs)
The topics covered in matrices for class 12 include the following topics:
The adjoint of a matrix is the transpose of its cofactor matrix, and it's used to find the inverse of a matrix by dividing the adjoint by the determinant of the original matrix. The inverse matrix is also found using the following equation:
A-1 =adj(A)/det(A),
where adj(A) refers to the adjoint of a matrix A,det(A) refers to the determinant of a matrix A.
The rank of a matrix is equal to the number of linearly independent rows or columns in it. It cannot be more than its number of rows and columns. To find the rank of a matrix, we can transform the matrix to its row echelon form and count the number of non-zero rows.
To find the inverse of a matrix A using elementary transformations, we can use elementary row operations on A = IA, in a sequence, until we get I = BA. We can also use elementary column operations on A = AI, in a sequence, till we get I = AB. If the inverse of matrix A exists, we can write A = IA and apply a sequence of row operations till we get an identity matrix on the LHS and use the same elementary operations on the RHS to get I = BA
A square matrix A is said to be symmetric if aij = aji for all i and j, where aij is an element present at (i,j)th position (ith row and jth column in matrix A) and aji is an element present at (j,i)th position (jth row and ith column in matrix A) whereas square matrix A is said to be skew-symmetric if aij =−aji for all i and j. In other words, we can say that matrix A is said to be skew-symmetric if the transpose of matrix A is equal to the negative of matrix A i.e (AT =−A)
Many educational platforms, such as Careers360, offer free downloadable PDFs of Class 12 Matrices Solutions. Students can download the PDF for free from this article itself.
Yes, matrices are widely used in advanced mathematics, engineering, computer science, and competitive exams such as JEE and other entrance tests.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters