Given a matrix A such that $\mathrm{A}=\left[a_{ij}\right]$ is an $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A. In this exercise, you will get NCERT solutions for Class 12 Maths Chapter 3 Exercise 3.3, which will include questions related to properties of the transpose of the matrices, symmetric and skew-symmetric matrices in Exercise 3.3, Class 12 Maths. Going through these solutions will help you to understand the concept clearly. These NCERT solutions are created by a subject matter expert at Careers360 to give a more systematic and proper approach for each question. You should try to solve these Class 12th maths chapter 3 exercise 3.3 of the NCERT on your own. You can take help from these solutions, which are prepared by experts who know how best to answer in board exams
Question 1(i). Find the transpose of each of the following matrices:
$\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
$A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
The transpose of the given matrix is
$A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}$
Question 1(ii). Find the transpose of each of the following matrices:
$\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
Interchanging the rows and columns of the matrix A, we get
$A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}$
$\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
Transpose is obtained by interchanging the rows and columns of matrix
$A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A + B)' = A' + B'$
L.H.S : $(A + B)'$
$A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}$
$A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}$
$(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
R.H.S : $A' + B'$
$A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
Thus we find that the LHS is equal to RHS and hence verified.
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A - B)' = A' - B'$
L.H.S : $(A - B)'$
$A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}$
$A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}$
$(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
R.H.S : $A' - B'$
$A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
Hence, L.H.S = R.H.S. so verified that
$(A - B)' = A' - B'$.
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A + B)' = A' + B'$
$L.H.S : (A + B)' =$
$A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}$
$\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}$
R.H.S: $A' + B'$
$A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A + B)' = A' + B'$.
Question 3(ii). If $A = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$, then verify
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A - B)' = A' - B'$
$L.H.S : (A - B)' =$
$A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}$
$A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}$
$\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}$
R.H.S: $A' - B'$
$A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A - B)' = A' - B'$.
$B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$
$(A + 2B)'$ :
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+ \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}$
Transpose is obtained by interchanging rows and columns and the transpose of A+2B is
$(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$
Question 5(i) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$$\begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}$
$(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$
$A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$$\begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}$
Hence, L.H.S =R.H.S
so it is verified that $(AB)' = B'A'$.
Question 5(ii) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix}$$\begin{bmatrix} 1& 5 &7 \end{bmatrix}$
$AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}$
$(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$
$A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$$\begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}$
Hence, L.H.S =R.H.S i.e.$(AB)' = B'A'$.
Question 6(i). If $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$, then verify that $A'A =I$
$A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
By interchanging rows and columns, we get the transpose of A
$A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 6(ii). If $A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$, then verify that $A'A = I$
$A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
By interchanging columns and rows of the matrix A we get the transpose of A
$A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$ $\begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 7(i). Show that the matrix $A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$ is a symmetric matrix.
$A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
Since $ A'' = A$, so given matrix is a symmetric matrix.
Question 7(ii) Show that the matrix $A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}$
$A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
$A' =- A$
Since $ A'=-A$ so given matrix is a skew-symmetric matrix.
Question 8(i). For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A + A')$ is a symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $+ \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}$
$A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
$(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
We have $A+A'=(A + A')'$
Hence, $(A + A')$ is a symmetric matrix.
Question 8(ii) For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A - A')$ is a skew symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $- \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}$
$A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}$
$(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')$
We have $A-A'=-(A - A')'$
Hence, $(A-A')$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
The transpose of the matrix is obtained by interchanging rows and columns
$A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$ $+\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = 0$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$$- \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}$
$\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
Question 10(i). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$+\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$$=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$
$B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$-\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew symmetric matrix.
Represent A as the sum of B and C.
$B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$ $+ \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A$
$\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$+ \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$$= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$- \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$$=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$ $+\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$ $= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A$
Question 10(iii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$+\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$$= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$
$B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$-\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix}$$=\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$ $+\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$ $=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A$
Question 10(iv). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$$=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$
$B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$ $- \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A$
Question 11 Choose the correct answer in the Exercises 11 and 12.
If A, B are symmetric matrices of the same order, then AB – BA is a
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
If A, B are symmetric matrices, then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Option A is correct.
Question 12 Choose the correct answer in the Exercises 11 and 12.
If $A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$ and $A+A' =I$, then the value of $\alpha$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\pi$
(D) $\frac{3\pi}{2}$
$A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$
$A' = \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$
$A+A' = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$$+ \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$A+A' = \begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$2 cos \alpha=1$
$cos \alpha=\frac{1}{2}$
$\alpha=\frac{\pi}{3}$
Option B is correct.
Also Read,
Also, read,
These links lead to NCERT textbook solutions for other subjects. Students can check and analyse these well-structured solutions for a deeper understanding.
Students may visit these NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
NCERT solutions will help you to solve NCERT problems when you are not able to solve them on your own. For more questions NCERT exemplar problems will be useful. For CBSE board exam NCERT syllabus will be useful for exam preparation. Practice class 12 ex 3.3 to command the concepts.
The order of matrix having m rows and n columns is m x n.
If the transpose of matrix A is equal to matrix A then matrix A is a symmetric matrix.
If the transpose of matrix A is equal to the negative of matrix A then matrix A is a skew-symmetric matrix.
All the diagonal elements of a skew-symmetric matrix are zero.
(A')' = A
Hence the transpose of A' is matrix A.
If A is a symmetric matrix then A' = A.
If A is a symmetric matrix and k is a constant then (kA) ' = k (A)'
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters