Given a matrix A such that $\mathrm{A}=\left[a_{ij}\right]$ is an $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A. In this exercise, you will get NCERT solutions for Class 12 Maths Chapter 3 Exercise 3.3, which will include questions related to properties of the transpose of the matrices, symmetric and skew-symmetric matrices in Exercise 3.3, Class 12 Maths. Going through these solutions will help you to understand the concept clearly. These NCERT solutions are created by a subject matter expert at Careers360 to give a more systematic and proper approach for each question. You should try to solve these Class 12th maths chapter 3 exercise 3.3 of the NCERT on your own. You can take help from these solutions, which are prepared by experts who know how best to answer in board exams
Question 1(i). Find the transpose of each of the following matrices:
$\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
$A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
The transpose of the given matrix is
$A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}$
Question 1(ii). Find the transpose of each of the following matrices:
$\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
Interchanging the rows and columns of the matrix A, we get
$A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}$
$\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
Transpose is obtained by interchanging the rows and columns of matrix
$A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A + B)' = A' + B'$
L.H.S : $(A + B)'$
$A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}$
$A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}$
$(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
R.H.S : $A' + B'$
$A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
Thus we find that the LHS is equal to RHS and hence verified.
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A - B)' = A' - B'$
L.H.S : $(A - B)'$
$A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}$
$A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}$
$(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
R.H.S : $A' - B'$
$A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
Hence, L.H.S = R.H.S. so verified that
$(A - B)' = A' - B'$.
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A + B)' = A' + B'$
$L.H.S : (A + B)' =$
$A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}$
$\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}$
R.H.S: $A' + B'$
$A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A + B)' = A' + B'$.
Question 3(ii). If $A = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$, then verify
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A - B)' = A' - B'$
$L.H.S : (A - B)' =$
$A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}$
$A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}$
$\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}$
R.H.S: $A' - B'$
$A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A - B)' = A' - B'$.
$B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$
$(A + 2B)'$ :
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+ \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}$
Transpose is obtained by interchanging rows and columns and the transpose of A+2B is
$(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$
Question 5(i) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$$\begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}$
$(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$
$A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$$\begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}$
Hence, L.H.S =R.H.S
so it is verified that $(AB)' = B'A'$.
Question 5(ii) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix}$$\begin{bmatrix} 1& 5 &7 \end{bmatrix}$
$AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}$
$(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$
$A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$$\begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}$
Hence, L.H.S =R.H.S i.e.$(AB)' = B'A'$.
Question 6(i). If $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$, then verify that $A'A =I$
$A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
By interchanging rows and columns, we get the transpose of A
$A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 6(ii). If $A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$, then verify that $A'A = I$
$A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
By interchanging columns and rows of the matrix A we get the transpose of A
$A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$ $\begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 7(i). Show that the matrix $A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$ is a symmetric matrix.
$A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
Since $ A'' = A$, so given matrix is a symmetric matrix.
Question 7(ii) Show that the matrix $A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}$
$A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
$A' =- A$
Since $ A'=-A$ so given matrix is a skew-symmetric matrix.
Question 8(i). For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A + A')$ is a symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $+ \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}$
$A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
$(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
We have $A+A'=(A + A')'$
Hence, $(A + A')$ is a symmetric matrix.
Question 8(ii) For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A - A')$ is a skew symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $- \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}$
$A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}$
$(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')$
We have $A-A'=-(A - A')'$
Hence, $(A-A')$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
The transpose of the matrix is obtained by interchanging rows and columns
$A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$ $+\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = 0$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$$- \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}$
$\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
Question 10(i). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$+\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$$=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$
$B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$-\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew symmetric matrix.
Represent A as the sum of B and C.
$B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$ $+ \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A$
$\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$+ \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$$= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$- \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$$=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$ $+\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$ $= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A$
Question 10(iii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$+\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$$= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$
$B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$-\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix}$$=\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$ $+\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$ $=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A$
Question 10(iv). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$$=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$
$B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$ $- \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A$
Question 11 Choose the correct answer in the Exercises 11 and 12.
If A, B are symmetric matrices of the same order, then AB – BA is a
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
If A, B are symmetric matrices, then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Option A is correct.
Question 12 Choose the correct answer in the Exercises 11 and 12.
If $A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$ and $A+A' =I$, then the value of $\alpha$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\pi$
(D) $\frac{3\pi}{2}$
$A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$
$A' = \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$
$A+A' = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$$+ \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$A+A' = \begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$2 cos \alpha=1$
$cos \alpha=\frac{1}{2}$
$\alpha=\frac{\pi}{3}$
Option B is correct.
Also Read,
Also, read,
These links lead to NCERT textbook solutions for other subjects. Students can check and analyse these well-structured solutions for a deeper understanding.
Students may visit these NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
NCERT solutions will help you to solve NCERT problems when you are not able to solve them on your own. For more questions NCERT exemplar problems will be useful. For CBSE board exam NCERT syllabus will be useful for exam preparation. Practice class 12 ex 3.3 to command the concepts.
The order of matrix having m rows and n columns is m x n.
If the transpose of matrix A is equal to matrix A then matrix A is a symmetric matrix.
If the transpose of matrix A is equal to the negative of matrix A then matrix A is a skew-symmetric matrix.
All the diagonal elements of a skew-symmetric matrix are zero.
(A')' = A
Hence the transpose of A' is matrix A.
If A is a symmetric matrix then A' = A.
If A is a symmetric matrix and k is a constant then (kA) ' = k (A)'
On Question asked by student community
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters