Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
Given a matrix A such that $\mathrm{A}=\left[a_{ij}\right]$ is an $m \times n$ matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A. In this exercise, you will get NCERT solutions for Class 12 Maths Chapter 3 Exercise 3.3, which will include questions related to properties of the transpose of the matrices, symmetric and skew-symmetric matrices in Exercise 3.3, Class 12 Maths. Going through these solutions will help you to understand the concept clearly. These NCERT solutions are created by a subject matter expert at Careers360 to give a more systematic and proper approach for each question. You should try to solve these Class 12th maths chapter 3 exercise 3.3 of the NCERT on your own. You can take help from these solutions, which are prepared by experts who know how best to answer in board exams
Question 1(i). Find the transpose of each of the following matrices:
$\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
$A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$
The transpose of the given matrix is
$A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}$
Question 1(ii). Find the transpose of each of the following matrices:
$\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$
Interchanging the rows and columns of the matrix A, we get
$A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}$
$\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$
Transpose is obtained by interchanging the rows and columns of matrix
$A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}$
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A + B)' = A' + B'$
L.H.S : $(A + B)'$
$A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}$
$A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}$
$(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
R.H.S : $A' + B'$
$A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}$
$A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$
Thus we find that the LHS is equal to RHS and hence verified.
$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$(A - B)' = A' - B'$
L.H.S : $(A - B)'$
$A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$
$A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}$
$A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}$
$(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
R.H.S : $A' - B'$
$A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$
Hence, L.H.S = R.H.S. so verified that
$(A - B)' = A' - B'$.
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A + B)' = A' + B'$
$L.H.S : (A + B)' =$
$A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}$
$\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}$
R.H.S: $A' + B'$
$A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A + B)' = A' + B'$.
Question 3(ii). If $A = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$, then verify
$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$
To prove: $(A - B)' = A' - B'$
$L.H.S : (A - B)' =$
$A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$
$A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}$
$A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}$
$\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}$
R.H.S: $A' - B'$
$A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$
$A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}$
Hence, L.H.S = R.H.S i.e. $(A - B)' = A' - B'$.
$B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}$
$A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$
$(A + 2B)'$ :
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+ \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}$
$A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}$
Transpose is obtained by interchanging rows and columns and the transpose of A+2B is
$(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$
Question 5(i) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$$\begin{bmatrix} -1& 2 &1 \end{bmatrix}$
$AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}$
$(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$
$A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$$\begin{bmatrix} 1& -4 &3 \end{bmatrix}$
$B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}$
Hence, L.H.S =R.H.S
so it is verified that $(AB)' = B'A'$.
Question 5(ii) For the matrices A and B, verify that $(AB)' = B'A'$, where
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$
To prove : $(AB)' = B'A'$
$L.H.S : (AB)'$
$AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix}$$\begin{bmatrix} 1& 5 &7 \end{bmatrix}$
$AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}$
$(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}$
$R.H.S : B'A'$
$B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$
$A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$$\begin{bmatrix} 0& 1 &2 \end{bmatrix}$
$B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}$
Hence, L.H.S =R.H.S i.e.$(AB)' = B'A'$.
Question 6(i). If $A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$, then verify that $A'A =I$
$A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
By interchanging rows and columns, we get the transpose of A
$A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 6(ii). If $A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$, then verify that $A'A = I$
$A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
By interchanging columns and rows of the matrix A we get the transpose of A
$A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$
To prove: $A'A =I$
L.H.S :$A'A$
$A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$ $\begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$
$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$
Question 7(i). Show that the matrix $A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$ is a symmetric matrix.
$A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$
Since $ A'' = A$, so given matrix is a symmetric matrix.
Question 7(ii) Show that the matrix $A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
The transpose of A is
$A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}$
$A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$
$A' =- A$
Since $ A'=-A$ so given matrix is a skew-symmetric matrix.
Question 8(i). For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A + A')$ is a symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $+ \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}$
$A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
$(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$
We have $A+A'=(A + A')'$
Hence, $(A + A')$ is a symmetric matrix.
Question 8(ii) For the matrix $A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$, verify that
$(A - A')$ is a skew symmetric matrix.
$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$
$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $- \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$
$A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}$
$A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}$
$(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')$
We have $A-A'=-(A - A')'$
Hence, $(A-A')$ is a skew-symmetric matrix.
$A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
The transpose of the matrix is obtained by interchanging rows and columns
$A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$ $+\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})$
$\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$\frac{1}{2}(A+A') = 0$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$$- \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})$
$\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}$
$\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$
Question 10(i). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$+\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$$=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$
$B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$-\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew symmetric matrix.
Represent A as the sum of B and C.
$B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$ $+ \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A$
$\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$+ \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$$= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$- \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$$=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$ $+\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$ $= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A$
Question 10(iii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$+\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$
Let
$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$$= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$
$B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$-\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix}$$=\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$
$C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$ $+\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$ $=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A$
Question 10(iv). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
$\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$
$A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$
Let
$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$$=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$
$B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B$
Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.
$A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$
$A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$
Let
$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}$
$C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$
$C=-C'$
Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.
Represent A as the sum of B and C.
$B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$ $- \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A$
Question 11 Choose the correct answer in the Exercises 11 and 12.
If A, B are symmetric matrices of the same order, then AB – BA is a
(A) Skew-symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix
If A, B are symmetric matrices, then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Option A is correct.
Question 12 Choose the correct answer in the Exercises 11 and 12.
If $A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$ and $A+A' =I$, then the value of $\alpha$ is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\pi$
(D) $\frac{3\pi}{2}$
$A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$
$A' = \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$
$A+A' = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$$+ \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$A+A' = \begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$
$2 cos \alpha=1$
$cos \alpha=\frac{1}{2}$
$\alpha=\frac{\pi}{3}$
Option B is correct.
Also Read,
Take Aakash iACST and get instant scholarship on coaching programs.
Also, read,
These links lead to NCERT textbook solutions for other subjects. Students can check and analyse these well-structured solutions for a deeper understanding.
Students may visit these NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
NCERT solutions will help you to solve NCERT problems when you are not able to solve them on your own. For more questions NCERT exemplar problems will be useful. For CBSE board exam NCERT syllabus will be useful for exam preparation. Practice class 12 ex 3.3 to command the concepts.
The order of matrix having m rows and n columns is m x n.
If the transpose of matrix A is equal to matrix A then matrix A is a symmetric matrix.
If the transpose of matrix A is equal to the negative of matrix A then matrix A is a skew-symmetric matrix.
All the diagonal elements of a skew-symmetric matrix are zero.
(A')' = A
Hence the transpose of A' is matrix A.
If A is a symmetric matrix then A' = A.
If A is a symmetric matrix and k is a constant then (kA) ' = k (A)'
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE