NCERT Solutions for Exercise 3.3 Class 12 Maths Chapter 3 - Matrices

# NCERT Solutions for Exercise 3.3 Class 12 Maths Chapter 3 - Matrices

Edited By Ramraj Saini | Updated on Dec 03, 2023 03:45 PM IST | #CBSE Class 12th

## NCERT Solutions For Class 12 Maths Chapter 3 Exercise 3.3

NCERT Solutions for Exercise 3.3 Class 12 Maths Chapter 3 Matrices are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In this article, you will get NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.3 which consists of questions related to the transpose of a matrix. If a matrix A of order m x n, then by interchanging the rows and columns of A we obtain the transpose of matrix A. Also, you will get questions related to p roperties of the transpose of the matrices, symmetric and skew-symmetric matrices in the exercise 3.3 class 12 maths. Only going through these class 12 maths ch 3 ex 3.3 solutions won't help you to understand the concept clearly. You should try to solve these class 12th maths chapter 3 exercise 3.3 questions on your own. You can take help from these solutions which are prepared by experts who know how best to answer in board exams.

12th class Maths exercise 3.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Also, see

## Matrices Exercise: 3.3

Question 1(i). Find the transpose of each of the following matrices:

$\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$

$A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}$

The transpose of the given matrix is

$A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}$

Question 1(ii). Find the transpose of each of the following matrices:

$\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$

$A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}$

interchanging the rows and columns of the matrix A we get

$A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}$

### Question 1(iii) Find the transpose of each of the following matrices:

$\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$

$A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}$

Transpose is obtained by interchanging the rows and columns of matrix

$A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}$

$(A + B)' = A' + B'$

$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$

$(A + B)' = A' + B'$

L.H.S : $(A + B)'$

$A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$

$A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}$

$A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}$

$(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$

R.H.S : $A' + B'$

$A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$

$A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}$

$A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}$

Thus we find that the LHS is equal to RHS and hence verified.

$(A - B)' = A' - B'$

$A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$

$(A - B)' = A' - B'$

L.H.S : $(A - B)'$

$A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}$

$A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}$

$A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}$

$(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$

R.H.S : $A' - B'$

$A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix}$ $- \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}$

$A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}$

$A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}$

Hence, L.H.S = R.H.S. so verified that

$(A - B)' = A' - B'$.

$(A + B)' = A' + B'$

$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$

$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$

To prove: $(A + B)' = A' + B'$

$L.H.S : (A + B)' =$

$A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$

$A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}$

$A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}$

$\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}$

R.H.S: $A' + B'$

$A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $+ \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$

$A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}$

Hence, L.H.S = R.H.S i.e. $(A + B)' = A' + B'$.

$(A - B)' = A' - B'$

$A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$

$A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$

To prove: $(A - B)' = A' - B'$

$L.H.S : (A - B)' =$

$A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}$

$A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}$

$A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}$

$\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}$

R.H.S: $A' - B'$

$A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix}$ $- \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}$

$A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}$

Hence, L.H.S = R.H.S i.e. $(A - B)' = A' - B'$.

$B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$

$A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}$

$A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$

$(A + 2B)'$ :

$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}$

$A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}$$+ \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}$

$A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}$

$A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}$

Transpose is obtained by interchanging rows and columns and the transpose of A+2B is

$(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$

$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$

$A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$, $B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}$

To prove : $(AB)' = B'A'$

$L.H.S : (AB)'$

$AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix}$$\begin{bmatrix} -1& 2 &1 \end{bmatrix}$

$AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}$

$(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}$

$R.H.S : B'A'$

$B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$

$A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}$

$B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}$$\begin{bmatrix} 1& -4 &3 \end{bmatrix}$

$B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}$

Hence, L.H.S =R.H.S

so it is verified that $(AB)' = B'A'$.

$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$

$A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}$

To prove : $(AB)' = B'A'$

$L.H.S : (AB)'$

$AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix}$$\begin{bmatrix} 1& 5 &7 \end{bmatrix}$

$AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}$

$(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}$

$R.H.S : B'A'$

$B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$

$A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}$

$B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}$$\begin{bmatrix} 0& 1 &2 \end{bmatrix}$

$B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}$

Heence, L.H.S =R.H.S i.e.$(AB)' = B'A'$.

$A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$

By interchanging rows and columns we get transpose of A

$A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$

To prove: $A'A =I$

L.H.S :$A'A$

$A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$

$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$

$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$

$A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$

By interchanging columns and rows of the matrix A we get the transpose of A

$A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$

To prove: $A'A =I$

L.H.S :$A'A$

$A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}$ $\begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}$

$A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}$

$A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S$

$A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$

the transpose of A is

$A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}$

Since,$A' = A$ so given matrix is a symmetric matrix.

$A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$

The transpose of A is

$A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}$

$A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}$

$A' =- A$

Since,$A' =- A$ so given matrix is a skew-symmetric matrix.

$(A + A')$ is a symmetric matrix.

$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$

$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$

$A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $+ \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$

$A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}$

$A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$

$(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}$

We have $A+A'=(A + A')'$

Hence , $(A + A')$ is a symmetric matrix.

$(A - A')$ is a skew symmetric matrix.

$A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$

$A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$

$A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}$ $- \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}$

$A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}$

$A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}$

$(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')$

We have $A-A'=-(A - A')'$

Hence , $(A - A')$ is a skew-symmetric matrix.

$A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$

the transpose of the matrix is obtained by interchanging rows and columns

$A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}$

$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$ $+\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$

$\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})$

$\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$

$\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$

$\frac{1}{2}(A+A') = 0$

$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$$- \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})$

$\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})$

$\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}$

$\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}$

$\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$

$A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$

$A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$

$A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$+\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$

$A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$

Let

$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}$$=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$

$B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B$

Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.

$A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}$$-\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}$

$A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$

Let

$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$

$C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}$

$C=-C'$

Thus, $\frac{1}{2}(A-A')$ is a skew symmetric matrix.

Represent A as sum of B and C.

$B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}$ $+ \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A$

### Question:10(ii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

$\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$+ \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$

Let

$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}$$= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B$

Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.

$A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$$- \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$

$A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}$

Let

$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$$=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$

$C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$

$C=-C'$

Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.

Represent A as the sum of B and C.

$B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}$ $+\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}$ $= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A$

$\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$

$A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$

$A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$

$A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$+\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$

$A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$

Let

$B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix}$$= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$

$B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B$

Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.

$A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}$$-\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}$

$A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}$

Let

$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix}$$=\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$

$C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}$

$C=-C'$

Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.

Represent A as the sum of B and C.

$B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}$ $+\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}$ $=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A$

$\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$

$A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$

$A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$

$A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$+\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$

$A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$

Let

$B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}$$=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$

$B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B$

Thus, $\frac{1}{2}(A+A')$ is a symmetric matrix.

$A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}$$-\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}$

$A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$

Let

$C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}$$= \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}$

$C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$

$C=-C'$

Thus, $\frac{1}{2}(A-A')$ is a skew-symmetric matrix.

Represent A as the sum of B and C.

$B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}$ $- \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}$ $= \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A$

If A, B are symmetric matrices of same order, then AB – BA is a

(A) Skew symmetric matrix
(B) Symmetric matrix
(C) Zero matrix
(D) Identity matrix

If A, B are symmetric matrices then

$A'=A$ and $B' = B$

we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$

$=BA-AB$

$= -(AB-BA)$

Hence, we have $(AB-BA) = -(AB-BA)'$

Thus,( AB-BA)' is skew symmetric.

Option A is correct.

If $A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$ and $A+A' =I$, then the value of $\alpha$ is

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{3}$

(C) $\pi$

(D) $\frac{3\pi}{2}$

$A = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$

$A' = \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$

$A+A' = \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha& \cos\alpha \end{bmatrix}$$+ \begin{bmatrix} \cos\alpha & \sin\alpha\\ -\sin\alpha& \cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$

$A+A' = \begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix}$$= \begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}$

$2 cos \alpha=1$

$cos \alpha=\frac{1}{2}$

$\alpha=\frac{\pi}{3}$

Option B is correct.

## More About NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.3:-

NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.3 consists of 12 descriptive questions including two multiple choice type questions. Exercise 3.3 Class 12 Maths questions are related to finding the transpose of the matrices and the application of properties of transpose. There are 4 solved examples given before the NCERT textbook questions in the. First, try to solve these examples which will help you to get conceptual clarity. It will also help you in solving NCERT book problems easily as most of the textbook problems are related to solved examples.

Also Read| Matrices Class 12 Maths Chapter Notes

## Benefits of NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.3:-

• Class 12 Maths chapter 3 exercise 3.3 solutions are helpful when you find it difficult to solve NCERT syllabus problems on your own.
• These solutions are designed in a descriptive manner which will help you to get conceptual clarity.
• NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.3 are helpful for the students to secure good marks in the board exam.
• Exercise 3.3 Class 12 Maths solutions can be used for reference also.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%

## Key Features Of NCERT Solutions for Exercise 3.3 Class 12 Maths Chapter 3

• Comprehensive Coverage: The solutions encompass all the topics covered in ex 3.3 class 12, ensuring a thorough understanding of the concepts.
• Step-by-Step Solutions: In this class 12 maths ex 3.3, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
• Accuracy and Clarity: Solutions for class 12 ex 3.3 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
• Conceptual Clarity: In this 12th class maths exercise 3.3 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
• Inclusive Approach: Solutions for ex 3.3 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
• Relevance to Curriculum: The solutions for class 12 maths ex 3.3 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

## NCERT Solutions of cCass 12 Subject Wise

Subject Wise NCERT Exampler Solutions

Happy learning!!!

1. How these NCERT textbook solutions are helpful in board exam ?

NCERT solutions will help you to solve NCERT problems when you are not able to solve them on your own. For more questions NCERT exemplar problems will be useful. For CBSE board exam NCERT syllabus will be useful for exam preparation. Practice class 12 ex 3.3 to command the concepts.

2. What is the definition of order of a Matrix ?

The order of matrix having m rows and n columns is m x n.

3. What is symmetric matrix ?

If the transpose of matrix A is equal to matrix A then matrix A is a symmetric matrix.

4. What is skew-symmetric matrix ?

If the transpose of matrix A is equal to the negative of matrix A then matrix A is a skew-symmetric matrix.

5. What are the diagonal elements of skew symmetric matrix ?

All the diagonal elements of a skew-symmetric matrix are zero.

6. What is the transpose of A' ?

(A')' = A

Hence the transpose of A' is matrix A.

7. If A is symmetric matrix then A' ?

If A is a symmetric matrix then A' = A.

8. If A is symmetric matrix and k is a constant then (kA) ' ?

If A is a symmetric matrix and k is a constant then (kA) ' = k (A)'

## Upcoming School Exams

#### National Means Cum-Merit Scholarship

Application Date:01 August,2024 - 16 September,2024

Exam Date:19 September,2024 - 19 September,2024

Exam Date:20 September,2024 - 20 September,2024

Exam Date:26 September,2024 - 26 September,2024

Application Date:30 September,2024 - 30 September,2024

Edx
1113 courses
Coursera
804 courses
Udemy
394 courses
Futurelearn
222 courses
IBM
85 courses

## Explore Top Universities Across Globe

University of Essex, Colchester
Wivenhoe Park Colchester CO4 3SQ
University College London, London
Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
University Park, Nottingham NG7 2RD

### Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hi,

The Medhavi National Scholarship Program, under the Human Resources & Development Mission (HRDM), offers financial assistance to meritorious students through a scholarship exam. To be eligible, candidates must be between 16 and 40 years old as of the last date of registration and have at least passed the 10th grade from a recognized board. Higher qualifications, such as 11th/12th grade, graduation, post-graduation, or a diploma, are also acceptable.

The scholarships are categorized based on the marks obtained in the exam: Type A for those scoring 60% or above, Type B for scores between 50% and 60%, and Type C for scores between 40% and 50%. The cash scholarships range from Rs. 2,000 to Rs. 18,000 per month, depending on the exam and the marks obtained.

Since you already have a 12th-grade qualification with 84%, you meet the eligibility criteria and can apply for the Medhavi Scholarship exam. Preparing well for the exam can increase your chances of receiving a higher scholarship.

Yuvan 01 September,2024

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

Hello student,

If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:

• No school admission needed! Register directly with CBSE. (But if you want to attend the school then you can take admission in any private school of your choice but it will be waste of money)
• You have to appear for the 2025 12th board exams.
• Registration for class 12th board exam starts around September 2024 (check CBSE website for exact dates).
• Aim to register before late October to avoid extra fees.
• Schools might not offer classes for private students, so focus on self-study or coaching.

Remember , these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.

I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

 Option 1) Option 2) Option 3) Option 4)

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

 Option 1) 2.45×10−3 kg Option 2)  6.45×10−3 kg Option 3)  9.89×10−3 kg Option 4) 12.89×10−3 kg

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

 Option 1) Option 2) Option 3) Option 4)

A particle is projected at 600   to the horizontal with a kinetic energy . The kinetic energy at the highest point

 Option 1) Option 2) Option 3) Option 4)

In the reaction,

 Option 1)   at STP  is produced for every mole   consumed Option 2)   is consumed for ever      produced Option 3) is produced regardless of temperature and pressure for every mole Al that reacts Option 4) at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, will contain 0.25 mole of oxygen atoms?

 Option 1) 0.02 Option 2) 3.125 × 10-2 Option 3) 1.25 × 10-2 Option 4) 2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

 Option 1) decrease twice Option 2) increase two fold Option 3) remain unchanged Option 4) be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

 Option 1) Molality Option 2) Weight fraction of solute Option 3) Fraction of solute present in water Option 4) Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

 Option 1) twice that in 60 g carbon Option 2) 6.023 × 1022 Option 3) half that in 8 g He Option 4) 558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

 Option 1) less than 3 Option 2) more than 3 but less than 6 Option 3) more than 6 but less than 9 Option 4) more than 9