NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 24 Apr 2025, 09:33 AM IST

In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.

Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.

Class 12 Maths Chapter 3 Miscellaneous Exercise Solutions: Download PDF

Download PDF

Matrices Miscellaneous Exercise:

Question:1 Let $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$, show that $(aI + bA)^n = a^n I + na^{n-1} bA$, where I is the identity matrix of order 2 and $n \in N$.

Answer:

Given :

$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$

For n=1, $aI + bA = a I + a^{0} bA =a I + bA$

The result is true for n=1.

Let result be true for n=k,

$(aI + bA)^k = a^k I + ka^{k-1} bA$

Now, we prove that the result is true for n=k+1,

$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$

$= (a^k I + ka^{k-1} bA)$$(aI + bA)$

$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$

Put the value of $A^{2}$ in above equation,

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$

$=a^{k+1}I+(k+1)a^{k}bAI$

Hence, the result is true for n=k+1.

Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.

Question 2. If $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$ then show that $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$.

Answer:

Given :

$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$

To prove:

$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$

For n=1, we have

$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$

Thus, the result is true for n=1.

Now, take n=k,

$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.

Question 3. If $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$, then prove that $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where n is any positive integer.

Answer:

Given :

$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$

To prove:

$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$

For n=1, we have

$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$

Thus, result is true for n=1.

Now, take result is true for n=k,

$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$

$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$

$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$

$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.

Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.

Answer:

If A, B are symmetric matrices then

$A'=A$ and $B' = B$

we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$

$=BA-AB$

$= -(AB-BA)$

Hence, we have $(AB-BA) = -(AB-BA)'$

Thus,( AB-BA)' is skew symmetric.

Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Answer:

Let be a A is symmetric matrix , then $A'=A$

Consider, $(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by $A$

$=B'(AB)$

i.e. $(B'AB)'$ $=B'(AB)$

Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.

Now, let A be a skew-symmetric matrix, then $A'=-A$.

$(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by -$A$,

$=B'(-AB)$

$= - B'AB$

i.e. $(B'AB)'$ $= - B'AB$.

Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.

Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.

Question 6. Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$ satisfy the equation $A'A = I$

Answer:

$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$

$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$

$A'A = I$

$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

Thus equating the terms element wise

$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$

$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$

$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$

Question 7. For what values of x: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$?

Answer:

$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$

$4+4x=0$

$4x=-4$

$x=-1$

Thus, value of x is -1.

Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.

Answer:

$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$

$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

To prove: $A^2 -5A + 7I= 0$

L.H.S : $A^2 -5A + 7I$

$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$

$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$

Hence, we proved that

$A^2 -5A + 7I= 0$.

Question 9. Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$.

Answer:

$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$

$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$

$\therefore \, \, x ^{2}-48= 0$

$x ^{2}=48$

thus the value of x is

$x =\pm 4\sqrt{3}$

Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

Answer:

The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.

The total revenue in the market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$

$= 25000+3000+18000$

$= 46000$

The total revenue in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$

$= 15000+30000+8000$

$= 53000$

Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.

Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.

Answer:

The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.

The total cost price in market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$

$= 20000+2000+9000$

$= 31000$

Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$

The total cost price in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$

$= 12000+20000+4000$

$= 36000$

Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$

Question 11. Find the matrix X so that $X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

Answer:

$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.

Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$

$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$

$b+4d=2$ $2b+5d=4$ $3b+6d=6$

Taking, $a+4c=-7$

$a=-4c-7$

$2a+5c=-8$

$-8c-14+5c=-8$

$-3c=6$

$c=-2$

$a=-4\times -2-7$

$a=8-7=1$

$b+4d=2$

$b=-4d+2$

$2b+5d=4$

$\Rightarrow$ $-8d+4+5d=4$

$\Rightarrow -3d=0$

$\Rightarrow d=0$

$b=-4d+2$

$\Rightarrow b=-4\times 0+2=2$

Hence, we have $a=1, b=2,c=-2,d=0$

Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.

Question 12. If A and B are square matrices of the same order such that $AB = BA$, then prove by induction that $AB^n = B^n A$. Further, prove that $(AB)^n = A^n B^n$for all $n \in N$.

Answer:

A and B are square matrices of the same order such that $AB = BA$,

To prove : $AB^n = B^n A$, $n \in N$

For n=1, we have $AB^1 = B^1 A$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $AB^k = B^k A$

Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$

$AB^{k+1} = (B^kA) .B$

$AB^{k+1} = (B^k) .AB$

$AB^{k+1} = (B^k) .BA$

$AB^{k+1} = (B^k.B) .A$

$AB^{k+1} = (B^{k+1}) .A$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$, $n \in N$.

To prove: $(AB)^n = A^n B^n$

For n=1, we have $(AB)^1 = A^1 B^1$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $(AB)^k = A^k B^k$

Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$

$(AB)^{k+1} = A^k B^k.(AB)$

$(AB)^{k+1} = A^{K}( B^kA)B$

$(AB)^{k+1} = A^{K}( AB^k)B$

$(AB)^{k+1} = (A^{K}A)(B^kB)$

$(AB)^{k+1} = (A^{k+1})(B^{k+1})$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.

Question 13 Choose the correct answer in the following questions:

If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$

(A) $1 + \alpha^2 + \beta \gamma = 0$

(B) $1 - \alpha^2 + \beta \gamma = 0$

(C) $1 - \alpha^2 - \beta \gamma = 0$

(D) $1 + \alpha^2 - \beta \gamma = 0$

Answer:

$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$

$A^2 = I$

$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

Thus we obtained that

$\alpha^{2} +\beta \gamma=1$

$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$

Option C is correct.

Question 14. If the matrix A is both symmetric and skew-symmetric, then

(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these

Answer:

If the matrix A is both symmetric and skew-symmetric, then

$A'=A$ and $A'=-A$

$A'=A'$

$\Rightarrow \, \, \, \, \, \, \, A=-A$

$\Rightarrow \, \, \, \, \, \, \, A+A=0$

$\Rightarrow \, \, \, \, \, \, \, 2A=0$

$\Rightarrow \, \, \, \, \, \, \, A=0$

Hence, A is a zero matrix.

Option B is correct.

Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to

(A) A
(B) I – A
(C) I
(D) 3A

Answer:

A is a square matrix such that $A^{2}=A$

$(I + A)^3 - 7 A$

$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$

$=I+A^{2}.A+3A+3A^{2}-7A$

$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)

$=I+A^{2}+6A-7A$

$=I+A-A$

$=I$

Hence, we have $(I + A)^3 - 7 A=I$

Option C is correct.


Also Read,

Subject-wise NCERT Exemplar solutions

Students may refer to the provided NCERT exemplar links for additional practice.

Frequently Asked Questions (FAQs)

Q: If matrix B is the inverse of matrix A, then what is inverse of B ?
A:

If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.

Q: Which is the Best Book for NCERT Class 12 Maths ?
A:

NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.

Q: Where can I get the NCERT exemplar for Class 12 Maths chapter 3?
Q: Number of chapters in the NCERT class 12 maths ?
A:

There are 13 chapters in the NCERT Class 12 maths.

Q: what is the weightage of calculus in CBSE class 12 maths ?
A:

Calculus carries 35 marks weighatge in the CBSE final board exam.

Q: what is the weightage of Algebra in CBSE class 12 maths ?
A:

Algebra carries 10 marks weighatge in the CBSE final board exam.

Q: What are miscellaneous exercises ?
A:

As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.

Q: Do miscellaneous exercises are important for competitive exams ?
A:

Yes,  miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 10 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.

I hope it will clear your query!!