In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.
Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.
Answer:
Given :
$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$
For n=1, $aI + bA = a I + a^{0} bA =a I + bA$
The result is true for n=1.
Let result be true for n=k,
$(aI + bA)^k = a^k I + ka^{k-1} bA$
Now, we prove that the result is true for n=k+1,
$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$
$= (a^k I + ka^{k-1} bA)$$(aI + bA)$
$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$
Put the value of $A^{2}$ in above equation,
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$
$=a^{k+1}I+(k+1)a^{k}bAI$
Hence, the result is true for n=k+1.
Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.
Answer:
Given :
$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$
To prove:
$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$
For n=1, we have
$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$
Thus, the result is true for n=1.
Now, take n=k,
$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.
Answer:
Given :
$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$
To prove:
$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$
For n=1, we have
$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$
Thus, result is true for n=1.
Now, take result is true for n=k,
$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$
$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$
$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$
$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.
Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.
Answer:
If A, B are symmetric matrices then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Answer:
Let be a A is symmetric matrix , then $A'=A$
Consider, $(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by $A$
$=B'(AB)$
i.e. $(B'AB)'$ $=B'(AB)$
Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.
Now, let A be a skew-symmetric matrix, then $A'=-A$.
$(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by -$A$,
$=B'(-AB)$
$= - B'AB$
i.e. $(B'AB)'$ $= - B'AB$.
Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.
Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.
Answer:
$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$
$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$
$A'A = I$
$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
Thus equating the terms element wise
$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$
$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$
$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$
Answer:
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$
$4+4x=0$
$4x=-4$
$x=-1$
Thus, value of x is -1.
Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.
Answer:
$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$
$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
To prove: $A^2 -5A + 7I= 0$
L.H.S : $A^2 -5A + 7I$
$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$
$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$
Hence, we proved that
$A^2 -5A + 7I= 0$.
Answer:
$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$
$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$
$\therefore \, \, x ^{2}-48= 0$
$x ^{2}=48$
thus the value of x is
$x =\pm 4\sqrt{3}$
Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
Answer:
The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.
The total revenue in the market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$
$= 25000+3000+18000$
$= 46000$
The total revenue in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$
$= 15000+30000+8000$
$= 53000$
Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.
Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.
Answer:
The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.
The total cost price in market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$
$= 20000+2000+9000$
$= 31000$
Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$
The total cost price in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$
$= 12000+20000+4000$
$= 36000$
Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$
Answer:
$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.
Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$
$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$
$b+4d=2$ $2b+5d=4$ $3b+6d=6$
Taking, $a+4c=-7$
$a=-4c-7$
$2a+5c=-8$
$-8c-14+5c=-8$
$-3c=6$
$c=-2$
$a=-4\times -2-7$
$a=8-7=1$
$b+4d=2$
$b=-4d+2$
$2b+5d=4$
$\Rightarrow$ $-8d+4+5d=4$
$\Rightarrow -3d=0$
$\Rightarrow d=0$
$b=-4d+2$
$\Rightarrow b=-4\times 0+2=2$
Hence, we have $a=1, b=2,c=-2,d=0$
Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.
Answer:
A and B are square matrices of the same order such that $AB = BA$,
To prove : $AB^n = B^n A$, $n \in N$
For n=1, we have $AB^1 = B^1 A$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $AB^k = B^k A$
Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$
$AB^{k+1} = (B^kA) .B$
$AB^{k+1} = (B^k) .AB$
$AB^{k+1} = (B^k) .BA$
$AB^{k+1} = (B^k.B) .A$
$AB^{k+1} = (B^{k+1}) .A$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$, $n \in N$.
To prove: $(AB)^n = A^n B^n$
For n=1, we have $(AB)^1 = A^1 B^1$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $(AB)^k = A^k B^k$
Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$
$(AB)^{k+1} = A^k B^k.(AB)$
$(AB)^{k+1} = A^{K}( B^kA)B$
$(AB)^{k+1} = A^{K}( AB^k)B$
$(AB)^{k+1} = (A^{K}A)(B^kB)$
$(AB)^{k+1} = (A^{k+1})(B^{k+1})$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.
Question 13 Choose the correct answer in the following questions:
If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$
(A) $1 + \alpha^2 + \beta \gamma = 0$
(B) $1 - \alpha^2 + \beta \gamma = 0$
(C) $1 - \alpha^2 - \beta \gamma = 0$
(D) $1 + \alpha^2 - \beta \gamma = 0$
Answer:
$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$
$A^2 = I$
$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
Thus we obtained that
$\alpha^{2} +\beta \gamma=1$
$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$
Option C is correct.
Question 14. If the matrix A is both symmetric and skew-symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
Answer:
If the matrix A is both symmetric and skew-symmetric, then
$A'=A$ and $A'=-A$
$A'=A'$
$\Rightarrow \, \, \, \, \, \, \, A=-A$
$\Rightarrow \, \, \, \, \, \, \, A+A=0$
$\Rightarrow \, \, \, \, \, \, \, 2A=0$
$\Rightarrow \, \, \, \, \, \, \, A=0$
Hence, A is a zero matrix.
Option B is correct.
Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to
(A) A
(B) I – A
(C) I
(D) 3A
Answer:
A is a square matrix such that $A^{2}=A$
$(I + A)^3 - 7 A$
$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$
$=I+A^{2}.A+3A+3A^{2}-7A$
$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)
$=I+A^{2}+6A-7A$
$=I+A-A$
$=I$
Hence, we have $(I + A)^3 - 7 A=I$
Option C is correct.
Also Read,
Also, read,
Here are links to NCERT textbook solutions for other subjects. Students can explore and evaluate these structured solutions to gain a deeper understanding.
Students may refer to the provided NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.
NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.
Here you will get NCERT exemplar for class 12 maths chapter 3.
There are 13 chapters in the NCERT Class 12 maths.
Calculus carries 35 marks weighatge in the CBSE final board exam.
Algebra carries 10 marks weighatge in the CBSE final board exam.
As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.
Yes, miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters