In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.
The CBSE will hold the Class 12th 2026 examination from February 17 to April 10, 2026. The exam conducting authority has declared the CBSE Class 12 admit card for private candidates on the official website.
Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.
Answer:
Given :
$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$
For n=1, $aI + bA = a I + a^{0} bA =a I + bA$
The result is true for n=1.
Let result be true for n=k,
$(aI + bA)^k = a^k I + ka^{k-1} bA$
Now, we prove that the result is true for n=k+1,
$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$
$= (a^k I + ka^{k-1} bA)$$(aI + bA)$
$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$
Put the value of $A^{2}$ in above equation,
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$
$=a^{k+1}I+(k+1)a^{k}bAI$
Hence, the result is true for n=k+1.
Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.
Answer:
Given :
$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$
To prove:
$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$
For n=1, we have
$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$
Thus, the result is true for n=1.
Now, take n=k,
$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.
Answer:
Given :
$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$
To prove:
$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$
For n=1, we have
$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$
Thus, result is true for n=1.
Now, take result is true for n=k,
$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$
$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$
$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$
$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.
Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.
Answer:
If A, B are symmetric matrices then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Answer:
Let be a A is symmetric matrix , then $A'=A$
Consider, $(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by $A$
$=B'(AB)$
i.e. $(B'AB)'$ $=B'(AB)$
Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.
Now, let A be a skew-symmetric matrix, then $A'=-A$.
$(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by -$A$,
$=B'(-AB)$
$= - B'AB$
i.e. $(B'AB)'$ $= - B'AB$.
Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.
Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.
Answer:
$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$
$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$
$A'A = I$
$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
Thus equating the terms element wise
$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$
$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$
$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$
Answer:
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$
$4+4x=0$
$4x=-4$
$x=-1$
Thus, value of x is -1.
Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.
Answer:
$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$
$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
To prove: $A^2 -5A + 7I= 0$
L.H.S : $A^2 -5A + 7I$
$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$
$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$
Hence, we proved that
$A^2 -5A + 7I= 0$.
Answer:
$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$
$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$
$\therefore \, \, x ^{2}-48= 0$
$x ^{2}=48$
thus the value of x is
$x =\pm 4\sqrt{3}$
Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
Answer:
The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.
The total revenue in the market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$
$= 25000+3000+18000$
$= 46000$
The total revenue in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$
$= 15000+30000+8000$
$= 53000$
Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.
Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.
Answer:
The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.
The total cost price in market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$
$= 20000+2000+9000$
$= 31000$
Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$
The total cost price in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$
$= 12000+20000+4000$
$= 36000$
Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$
Answer:
$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.
Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$
$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$
$b+4d=2$ $2b+5d=4$ $3b+6d=6$
Taking, $a+4c=-7$
$a=-4c-7$
$2a+5c=-8$
$-8c-14+5c=-8$
$-3c=6$
$c=-2$
$a=-4\times -2-7$
$a=8-7=1$
$b+4d=2$
$b=-4d+2$
$2b+5d=4$
$\Rightarrow$ $-8d+4+5d=4$
$\Rightarrow -3d=0$
$\Rightarrow d=0$
$b=-4d+2$
$\Rightarrow b=-4\times 0+2=2$
Hence, we have $a=1, b=2,c=-2,d=0$
Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.
Answer:
A and B are square matrices of the same order such that $AB = BA$,
To prove : $AB^n = B^n A$, $n \in N$
For n=1, we have $AB^1 = B^1 A$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $AB^k = B^k A$
Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$
$AB^{k+1} = (B^kA) .B$
$AB^{k+1} = (B^k) .AB$
$AB^{k+1} = (B^k) .BA$
$AB^{k+1} = (B^k.B) .A$
$AB^{k+1} = (B^{k+1}) .A$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$, $n \in N$.
To prove: $(AB)^n = A^n B^n$
For n=1, we have $(AB)^1 = A^1 B^1$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $(AB)^k = A^k B^k$
Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$
$(AB)^{k+1} = A^k B^k.(AB)$
$(AB)^{k+1} = A^{K}( B^kA)B$
$(AB)^{k+1} = A^{K}( AB^k)B$
$(AB)^{k+1} = (A^{K}A)(B^kB)$
$(AB)^{k+1} = (A^{k+1})(B^{k+1})$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.
Question 13 Choose the correct answer in the following questions:
If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$
(A) $1 + \alpha^2 + \beta \gamma = 0$
(B) $1 - \alpha^2 + \beta \gamma = 0$
(C) $1 - \alpha^2 - \beta \gamma = 0$
(D) $1 + \alpha^2 - \beta \gamma = 0$
Answer:
$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$
$A^2 = I$
$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
Thus we obtained that
$\alpha^{2} +\beta \gamma=1$
$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$
Option C is correct.
Question 14. If the matrix A is both symmetric and skew-symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
Answer:
If the matrix A is both symmetric and skew-symmetric, then
$A'=A$ and $A'=-A$
$A'=A'$
$\Rightarrow \, \, \, \, \, \, \, A=-A$
$\Rightarrow \, \, \, \, \, \, \, A+A=0$
$\Rightarrow \, \, \, \, \, \, \, 2A=0$
$\Rightarrow \, \, \, \, \, \, \, A=0$
Hence, A is a zero matrix.
Option B is correct.
Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to
(A) A
(B) I – A
(C) I
(D) 3A
Answer:
A is a square matrix such that $A^{2}=A$
$(I + A)^3 - 7 A$
$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$
$=I+A^{2}.A+3A+3A^{2}-7A$
$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)
$=I+A^{2}+6A-7A$
$=I+A-A$
$=I$
Hence, we have $(I + A)^3 - 7 A=I$
Option C is correct.
Also Read,
Also, read,
Here are links to NCERT textbook solutions for other subjects. Students can explore and evaluate these structured solutions to gain a deeper understanding.
Students may refer to the provided NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.
NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.
Here you will get NCERT exemplar for class 12 maths chapter 3.
There are 13 chapters in the NCERT Class 12 maths.
Calculus carries 35 marks weighatge in the CBSE final board exam.
Algebra carries 10 marks weighatge in the CBSE final board exam.
As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.
Yes, miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters