NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 24 Apr 2025, 09:33 AM IST

In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.

Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.

Class 12 Maths Chapter 3 Miscellaneous Exercise Solutions: Download PDF

Download PDF

Matrices Miscellaneous Exercise:

Question:1 Let $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$, show that $(aI + bA)^n = a^n I + na^{n-1} bA$, where I is the identity matrix of order 2 and $n \in N$.

Answer:

Given :

$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$

For n=1, $aI + bA = a I + a^{0} bA =a I + bA$

The result is true for n=1.

Let result be true for n=k,

$(aI + bA)^k = a^k I + ka^{k-1} bA$

Now, we prove that the result is true for n=k+1,

$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$

$= (a^k I + ka^{k-1} bA)$$(aI + bA)$

$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$

Put the value of $A^{2}$ in above equation,

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$

$=a^{k+1}I+(k+1)a^{k}bAI$

Hence, the result is true for n=k+1.

Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.

Question 2. If $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$ then show that $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$.

Answer:

Given :

$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$

To prove:

$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$

For n=1, we have

$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$

Thus, the result is true for n=1.

Now, take n=k,

$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.

Question 3. If $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$, then prove that $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where n is any positive integer.

Answer:

Given :

$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$

To prove:

$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$

For n=1, we have

$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$

Thus, result is true for n=1.

Now, take result is true for n=k,

$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$

$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$

$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$

$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.

Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.

Answer:

If A, B are symmetric matrices then

$A'=A$ and $B' = B$

we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$

$=BA-AB$

$= -(AB-BA)$

Hence, we have $(AB-BA) = -(AB-BA)'$

Thus,( AB-BA)' is skew symmetric.

Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Answer:

Let be a A is symmetric matrix , then $A'=A$

Consider, $(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by $A$

$=B'(AB)$

i.e. $(B'AB)'$ $=B'(AB)$

Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.

Now, let A be a skew-symmetric matrix, then $A'=-A$.

$(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by -$A$,

$=B'(-AB)$

$= - B'AB$

i.e. $(B'AB)'$ $= - B'AB$.

Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.

Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.

Question 6. Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$ satisfy the equation $A'A = I$

Answer:

$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$

$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$

$A'A = I$

$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

Thus equating the terms element wise

$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$

$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$

$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$

Question 7. For what values of x: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$?

Answer:

$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$

$4+4x=0$

$4x=-4$

$x=-1$

Thus, value of x is -1.

Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.

Answer:

$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$

$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

To prove: $A^2 -5A + 7I= 0$

L.H.S : $A^2 -5A + 7I$

$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$

$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$

Hence, we proved that

$A^2 -5A + 7I= 0$.

Question 9. Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$.

Answer:

$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$

$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$

$\therefore \, \, x ^{2}-48= 0$

$x ^{2}=48$

thus the value of x is

$x =\pm 4\sqrt{3}$

Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

Answer:

The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.

The total revenue in the market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$

$= 25000+3000+18000$

$= 46000$

The total revenue in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$

$= 15000+30000+8000$

$= 53000$

Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.

Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.

Answer:

The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.

The total cost price in market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$

$= 20000+2000+9000$

$= 31000$

Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$

The total cost price in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$

$= 12000+20000+4000$

$= 36000$

Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$

Question 11. Find the matrix X so that $X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

Answer:

$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.

Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$

$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$

$b+4d=2$ $2b+5d=4$ $3b+6d=6$

Taking, $a+4c=-7$

$a=-4c-7$

$2a+5c=-8$

$-8c-14+5c=-8$

$-3c=6$

$c=-2$

$a=-4\times -2-7$

$a=8-7=1$

$b+4d=2$

$b=-4d+2$

$2b+5d=4$

$\Rightarrow$ $-8d+4+5d=4$

$\Rightarrow -3d=0$

$\Rightarrow d=0$

$b=-4d+2$

$\Rightarrow b=-4\times 0+2=2$

Hence, we have $a=1, b=2,c=-2,d=0$

Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.

Question 12. If A and B are square matrices of the same order such that $AB = BA$, then prove by induction that $AB^n = B^n A$. Further, prove that $(AB)^n = A^n B^n$for all $n \in N$.

Answer:

A and B are square matrices of the same order such that $AB = BA$,

To prove : $AB^n = B^n A$, $n \in N$

For n=1, we have $AB^1 = B^1 A$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $AB^k = B^k A$

Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$

$AB^{k+1} = (B^kA) .B$

$AB^{k+1} = (B^k) .AB$

$AB^{k+1} = (B^k) .BA$

$AB^{k+1} = (B^k.B) .A$

$AB^{k+1} = (B^{k+1}) .A$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$, $n \in N$.

To prove: $(AB)^n = A^n B^n$

For n=1, we have $(AB)^1 = A^1 B^1$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $(AB)^k = A^k B^k$

Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$

$(AB)^{k+1} = A^k B^k.(AB)$

$(AB)^{k+1} = A^{K}( B^kA)B$

$(AB)^{k+1} = A^{K}( AB^k)B$

$(AB)^{k+1} = (A^{K}A)(B^kB)$

$(AB)^{k+1} = (A^{k+1})(B^{k+1})$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.

Question 13 Choose the correct answer in the following questions:

If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$

(A) $1 + \alpha^2 + \beta \gamma = 0$

(B) $1 - \alpha^2 + \beta \gamma = 0$

(C) $1 - \alpha^2 - \beta \gamma = 0$

(D) $1 + \alpha^2 - \beta \gamma = 0$

Answer:

$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$

$A^2 = I$

$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

Thus we obtained that

$\alpha^{2} +\beta \gamma=1$

$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$

Option C is correct.

Question 14. If the matrix A is both symmetric and skew-symmetric, then

(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these

Answer:

If the matrix A is both symmetric and skew-symmetric, then

$A'=A$ and $A'=-A$

$A'=A'$

$\Rightarrow \, \, \, \, \, \, \, A=-A$

$\Rightarrow \, \, \, \, \, \, \, A+A=0$

$\Rightarrow \, \, \, \, \, \, \, 2A=0$

$\Rightarrow \, \, \, \, \, \, \, A=0$

Hence, A is a zero matrix.

Option B is correct.

Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to

(A) A
(B) I – A
(C) I
(D) 3A

Answer:

A is a square matrix such that $A^{2}=A$

$(I + A)^3 - 7 A$

$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$

$=I+A^{2}.A+3A+3A^{2}-7A$

$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)

$=I+A^{2}+6A-7A$

$=I+A-A$

$=I$

Hence, we have $(I + A)^3 - 7 A=I$

Option C is correct.


Also Read,

Subject-wise NCERT Exemplar solutions

Students may refer to the provided NCERT exemplar links for additional practice.

Frequently Asked Questions (FAQs)

Q: If matrix B is the inverse of matrix A, then what is inverse of B ?
A:

If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.

Q: Which is the Best Book for NCERT Class 12 Maths ?
A:

NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.

Q: Where can I get the NCERT exemplar for Class 12 Maths chapter 3?
Q: Number of chapters in the NCERT class 12 maths ?
A:

There are 13 chapters in the NCERT Class 12 maths.

Q: what is the weightage of calculus in CBSE class 12 maths ?
A:

Calculus carries 35 marks weighatge in the CBSE final board exam.

Q: what is the weightage of Algebra in CBSE class 12 maths ?
A:

Algebra carries 10 marks weighatge in the CBSE final board exam.

Q: What are miscellaneous exercises ?
A:

As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.

Q: Do miscellaneous exercises are important for competitive exams ?
A:

Yes,  miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 15 Oct'25 (Online)

Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 21 Oct'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.

Hope this information is useful to you.

Hello,

Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.

Hope this information is useful to you.

Hello Pruthvi,

Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.

The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.

For more details about the KCET Exam preparation, CLICK HERE.

I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.

Thank you, and I wish you all the best in your bright future.

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.