NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

NCERT Solutions for Miscellaneous Exercise Chapter 3 Class 12 - Matrices

Komal MiglaniUpdated on 24 Apr 2025, 09:33 AM IST

In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.

Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.

Class 12 Maths Chapter 3 Miscellaneous Exercise Solutions: Download PDF

Download PDF

Matrices Miscellaneous Exercise:

Question:1 Let $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$, show that $(aI + bA)^n = a^n I + na^{n-1} bA$, where I is the identity matrix of order 2 and $n \in N$.

Answer:

Given :

$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$

For n=1, $aI + bA = a I + a^{0} bA =a I + bA$

The result is true for n=1.

Let result be true for n=k,

$(aI + bA)^k = a^k I + ka^{k-1} bA$

Now, we prove that the result is true for n=k+1,

$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$

$= (a^k I + ka^{k-1} bA)$$(aI + bA)$

$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$

Put the value of $A^{2}$ in above equation,

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$

$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$

$=a^{k+1}I+(k+1)a^{k}bAI$

Hence, the result is true for n=k+1.

Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.

Question 2. If $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$ then show that $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$.

Answer:

Given :

$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$

To prove:

$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$

For n=1, we have

$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$

Thus, the result is true for n=1.

Now, take n=k,

$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$

$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.

Question 3. If $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$, then prove that $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where n is any positive integer.

Answer:

Given :

$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$

To prove:

$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$

For n=1, we have

$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$

Thus, result is true for n=1.

Now, take result is true for n=k,

$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

For, n=k+1,

$A^{K+1}=A.A^K$

$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$

$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$

$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$

$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$

$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$

Thus, the result is true for n=k+1.

Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.

Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.

Answer:

If A, B are symmetric matrices then

$A'=A$ and $B' = B$

we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$

$=BA-AB$

$= -(AB-BA)$

Hence, we have $(AB-BA) = -(AB-BA)'$

Thus,( AB-BA)' is skew symmetric.

Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Answer:

Let be a A is symmetric matrix , then $A'=A$

Consider, $(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by $A$

$=B'(AB)$

i.e. $(B'AB)'$ $=B'(AB)$

Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.

Now, let A be a skew-symmetric matrix, then $A'=-A$.

$(B'AB)' ={B'(AB)}'$

$={(AB)}'(B')'$

$= B'A'(B)$

$= B'(A'B)$

Replace $A'$ by -$A$,

$=B'(-AB)$

$= - B'AB$

i.e. $(B'AB)'$ $= - B'AB$.

Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.

Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.

Question 6. Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$ satisfy the equation $A'A = I$

Answer:

$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$

$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$

$A'A = I$

$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$

Thus equating the terms element wise

$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$

$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$

$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$

Question 7. For what values of x: $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$?

Answer:

$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$

$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$

$4+4x=0$

$4x=-4$

$x=-1$

Thus, value of x is -1.

Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.

Answer:

$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$

$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

To prove: $A^2 -5A + 7I= 0$

L.H.S : $A^2 -5A + 7I$

$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$

$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$

Hence, we proved that

$A^2 -5A + 7I= 0$.

Question 9. Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$.

Answer:

$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$

$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$

$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$

$\therefore \, \, x ^{2}-48= 0$

$x ^{2}=48$

thus the value of x is

$x =\pm 4\sqrt{3}$

Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

Answer:

The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.

The total revenue in the market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$

$= 25000+3000+18000$

$= 46000$

The total revenue in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$

$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$

$= 15000+30000+8000$

$= 53000$

Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.

Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.

Answer:

The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.

The total cost price in market I with the help of matrix algebra can be represented as :

$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$

$= 20000+2000+9000$

$= 31000$

Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$

The total cost price in market II with the help of matrix algebra can be represented as :

$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$

$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$

$= 12000+20000+4000$

$= 36000$

Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$

Question 11. Find the matrix X so that $X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

Answer:

$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.

Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$

$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$

$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$

$b+4d=2$ $2b+5d=4$ $3b+6d=6$

Taking, $a+4c=-7$

$a=-4c-7$

$2a+5c=-8$

$-8c-14+5c=-8$

$-3c=6$

$c=-2$

$a=-4\times -2-7$

$a=8-7=1$

$b+4d=2$

$b=-4d+2$

$2b+5d=4$

$\Rightarrow$ $-8d+4+5d=4$

$\Rightarrow -3d=0$

$\Rightarrow d=0$

$b=-4d+2$

$\Rightarrow b=-4\times 0+2=2$

Hence, we have $a=1, b=2,c=-2,d=0$

Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.

Question 12. If A and B are square matrices of the same order such that $AB = BA$, then prove by induction that $AB^n = B^n A$. Further, prove that $(AB)^n = A^n B^n$for all $n \in N$.

Answer:

A and B are square matrices of the same order such that $AB = BA$,

To prove : $AB^n = B^n A$, $n \in N$

For n=1, we have $AB^1 = B^1 A$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $AB^k = B^k A$

Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$

$AB^{k+1} = (B^kA) .B$

$AB^{k+1} = (B^k) .AB$

$AB^{k+1} = (B^k) .BA$

$AB^{k+1} = (B^k.B) .A$

$AB^{k+1} = (B^{k+1}) .A$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$, $n \in N$.

To prove: $(AB)^n = A^n B^n$

For n=1, we have $(AB)^1 = A^1 B^1$

Thus, the result is true for n=1.

Let the result be true for n=k,then we have $(AB)^k = A^k B^k$

Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$

$(AB)^{k+1} = A^k B^k.(AB)$

$(AB)^{k+1} = A^{K}( B^kA)B$

$(AB)^{k+1} = A^{K}( AB^k)B$

$(AB)^{k+1} = (A^{K}A)(B^kB)$

$(AB)^{k+1} = (A^{k+1})(B^{k+1})$

Thus, the result is true for n=k+1.

Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.

Question 13 Choose the correct answer in the following questions:

If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$

(A) $1 + \alpha^2 + \beta \gamma = 0$

(B) $1 - \alpha^2 + \beta \gamma = 0$

(C) $1 - \alpha^2 - \beta \gamma = 0$

(D) $1 + \alpha^2 - \beta \gamma = 0$

Answer:

$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$

$A^2 = I$

$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$

Thus we obtained that

$\alpha^{2} +\beta \gamma=1$

$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$

Option C is correct.

Question 14. If the matrix A is both symmetric and skew-symmetric, then

(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these

Answer:

If the matrix A is both symmetric and skew-symmetric, then

$A'=A$ and $A'=-A$

$A'=A'$

$\Rightarrow \, \, \, \, \, \, \, A=-A$

$\Rightarrow \, \, \, \, \, \, \, A+A=0$

$\Rightarrow \, \, \, \, \, \, \, 2A=0$

$\Rightarrow \, \, \, \, \, \, \, A=0$

Hence, A is a zero matrix.

Option B is correct.

Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to

(A) A
(B) I – A
(C) I
(D) 3A

Answer:

A is a square matrix such that $A^{2}=A$

$(I + A)^3 - 7 A$

$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$

$=I+A^{2}.A+3A+3A^{2}-7A$

$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)

$=I+A^{2}+6A-7A$

$=I+A-A$

$=I$

Hence, we have $(I + A)^3 - 7 A=I$

Option C is correct.


Also Read,

Topics covered in Chapter 3: Matrices: Miscellaneous Exercise

  • Introduction
  • Examples related to the previous concepts

Also, read,

NCERT Solutions Subject Wise

Here are links to NCERT textbook solutions for other subjects. Students can explore and evaluate these structured solutions to gain a deeper understanding.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Subject-wise NCERT Exemplar solutions

Students may refer to the provided NCERT exemplar links for additional practice.

Frequently Asked Questions (FAQs)

Q: If matrix B is the inverse of matrix A, then what is inverse of B ?
A:

If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.

Q: Which is the Best Book for NCERT Class 12 Maths ?
A:

NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.

Q: Where can I get the NCERT exemplar for Class 12 Maths chapter 3?
Q: Number of chapters in the NCERT class 12 maths ?
A:

There are 13 chapters in the NCERT Class 12 maths.

Q: what is the weightage of calculus in CBSE class 12 maths ?
A:

Calculus carries 35 marks weighatge in the CBSE final board exam.

Q: what is the weightage of Algebra in CBSE class 12 maths ?
A:

Algebra carries 10 marks weighatge in the CBSE final board exam.

Q: What are miscellaneous exercises ?
A:

As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.

Q: Do miscellaneous exercises are important for competitive exams ?
A:

Yes,  miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the