CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26
In the language of Mathematics, Matrices are the grammar that keeps everything structured and meaningful. As you see during a sports broadcast, rows represent players and columns represent stats of the players' goals, assists, or matches played. This table of players' data is like a matrix, where all the data is organised neatly. In this NCERT Solutions for miscellaneous exercise chapter 3 class 12 Matrices, students will practice questions from all the above learned topics and exercises. The questions asked in this exercise are generally at an advanced level and suitable for board exams and other advanced exams like the JEE.
Experienced Careers360 teachers prepare these solutions to the NCERT to make the learning easier for students.
Answer:
Given :
$A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
To prove : $(aI + bA)^n = a^n I + na^{n-1} bA$
For n=1, $aI + bA = a I + a^{0} bA =a I + bA$
The result is true for n=1.
Let result be true for n=k,
$(aI + bA)^k = a^k I + ka^{k-1} bA$
Now, we prove that the result is true for n=k+1,
$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$
$= (a^k I + ka^{k-1} bA)$$(aI + bA)$
$=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0$
Put the value of $A^{2}$ in above equation,
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}$
$(aI + bA)^{k+1}$$=a^{k+1}I+(k+1)a^{k}bAI+0$
$=a^{k+1}I+(k+1)a^{k}bAI$
Hence, the result is true for n=k+1.
Thus, we have $(aI + bA)^n = a^n I + na^{n-1} bA$ where $A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}$,$n \in N$.
Answer:
Given :
$A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$
To prove:
$A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$
For n=1, we have
$A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix}$$=\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix}$$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A$
Thus, the result is true for n=1.
Now, take n=k,
$A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$$\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}$
$=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}$, $n\in N$ where $A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}$.
Answer:
Given :
$A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$
To prove:
$A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$
For n=1, we have
$A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix}$$= \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A$
Thus, result is true for n=1.
Now, take result is true for n=k,
$A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
For, n=k+1,
$A^{K+1}=A.A^K$
$= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$$\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}$
$=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}$
$=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}$
$=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}$
$=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}$
Thus, the result is true for n=k+1.
Hence, we have $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$, where $A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}$.
Question 4. If A and B are symmetric matrices, prove that $AB - BA$ is a skew symmetric matrix.
Answer:
If A, B are symmetric matrices then
$A'=A$ and $B' = B$
we have, $\left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'$
$=BA-AB$
$= -(AB-BA)$
Hence, we have $(AB-BA) = -(AB-BA)'$
Thus,( AB-BA)' is skew symmetric.
Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Answer:
Let be a A is symmetric matrix , then $A'=A$
Consider, $(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by $A$
$=B'(AB)$
i.e. $(B'AB)'$ $=B'(AB)$
Thus, if A is a symmetric matrix than $B'(AB)$ is a symmetric matrix.
Now, let A be a skew-symmetric matrix, then $A'=-A$.
$(B'AB)' ={B'(AB)}'$
$={(AB)}'(B')'$
$= B'A'(B)$
$= B'(A'B)$
Replace $A'$ by -$A$,
$=B'(-AB)$
$= - B'AB$
i.e. $(B'AB)'$ $= - B'AB$.
Thus, if A is a skew-symmetric matrix then $- B'AB$ is a skew-symmetric matrix.
Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.
Answer:
$A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$
$A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$
$A'A = I$
$\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}$$\begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
$\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix}$$= \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}$
Thus equating the terms element wise
$2x^{2} = 1$ $6y^{2} = 1$ $3z^{2} = 1$
$x^{2} = \frac{1}{2}$ $y^{2} = \frac{1}{6}$ $z^{2}=\frac{1}{3}$
$x = \pm \frac{1}{\sqrt{2}}$ $y= \pm \frac{1}{\sqrt{6}}$ $z=\pm \frac{1}{\sqrt{3}}$
Answer:
$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O$
$\begin{bmatrix} 0+4+4x \end{bmatrix} = O$
$4+4x=0$
$4x=-4$
$x=-1$
Thus, value of x is -1.
Question 8. If $A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 -5A + 7I= 0$.
Answer:
$A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$\begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$
$I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
To prove: $A^2 -5A + 7I= 0$
L.H.S : $A^2 -5A + 7I$
$= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}$$-5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}$$+ 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}$
$=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}$
$=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S$
Hence, we proved that
$A^2 -5A + 7I= 0$.
Answer:
$\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0$
$\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0$
$\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0$
$\therefore \, \, x ^{2}-48= 0$
$x ^{2}=48$
thus the value of x is
$x =\pm 4\sqrt{3}$
Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
Answer:
The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.
The total revenue in the market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 10000\times 2.50+2000\times 1.50+18000\times 1.00$
$= 25000+3000+18000$
$= 46000$
The total revenue in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$
$= 6000\times 2.50+20000\times 1.50+8000\times 1.00$
$= 15000+30000+8000$
$= 53000$
Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.
Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:
Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000
If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.
Answer:
The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.
The total cost price in market I with the help of matrix algebra can be represented as :
$\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 10000\times 2.00+2000\times 1.00+18000\times 0.50$
$= 20000+2000+9000$
$= 31000$
Total revenue in the market I is 46000 , gross profit in the market is $= 46000-31000$$=Rs. 15000$
The total cost price in market II with the help of matrix algebra can be represented as :
$\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}$
$= 6000\times 2.0+20000\times 1.0+8000\times 0.50$
$= 12000+20000+4000$
$= 36000$
Total revenue in market II is 53000, gross profit in the market is$= 53000-36000= Rs. 17000$
Answer:
$X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
The matrix given on R.H.S is $2\times 3$ matrix and on LH.S is $2\times 3$ matrix.Therefore, X has to be $2\times 2$ matrix.
Let X be $\begin{bmatrix} a & c\\ b & d \end{bmatrix}$
$\begin{bmatrix} a & c\\ b & d \end{bmatrix}$$\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}$
$a+4c=-7$ $2a+5c=-8$ $3a+6c=-9$
$b+4d=2$ $2b+5d=4$ $3b+6d=6$
Taking, $a+4c=-7$
$a=-4c-7$
$2a+5c=-8$
$-8c-14+5c=-8$
$-3c=6$
$c=-2$
$a=-4\times -2-7$
$a=8-7=1$
$b+4d=2$
$b=-4d+2$
$2b+5d=4$
$\Rightarrow$ $-8d+4+5d=4$
$\Rightarrow -3d=0$
$\Rightarrow d=0$
$b=-4d+2$
$\Rightarrow b=-4\times 0+2=2$
Hence, we have $a=1, b=2,c=-2,d=0$
Matrix X is $\begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix}$.
Answer:
A and B are square matrices of the same order such that $AB = BA$,
To prove : $AB^n = B^n A$, $n \in N$
For n=1, we have $AB^1 = B^1 A$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $AB^k = B^k A$
Now, taking n=k+1 , we have $AB^{k+1} = AB^k .B$
$AB^{k+1} = (B^kA) .B$
$AB^{k+1} = (B^k) .AB$
$AB^{k+1} = (B^k) .BA$
$AB^{k+1} = (B^k.B) .A$
$AB^{k+1} = (B^{k+1}) .A$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$, $n \in N$.
To prove: $(AB)^n = A^n B^n$
For n=1, we have $(AB)^1 = A^1 B^1$
Thus, the result is true for n=1.
Let the result be true for n=k,then we have $(AB)^k = A^k B^k$
Now, taking n=k+1 , we have $(AB)^{k+1} = (A B)^k.(AB)$
$(AB)^{k+1} = A^k B^k.(AB)$
$(AB)^{k+1} = A^{K}( B^kA)B$
$(AB)^{k+1} = A^{K}( AB^k)B$
$(AB)^{k+1} = (A^{K}A)(B^kB)$
$(AB)^{k+1} = (A^{k+1})(B^{k+1})$
Thus, the result is true for n=k+1.
Hence, we have $AB^n = B^n A$ and $(AB)^n = A^n B^n$for all $n \in N$.
Question 13 Choose the correct answer in the following questions:
If $A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$ is such that $A^2 = I$
(A) $1 + \alpha^2 + \beta \gamma = 0$
(B) $1 - \alpha^2 + \beta \gamma = 0$
(C) $1 - \alpha^2 - \beta \gamma = 0$
(D) $1 + \alpha^2 - \beta \gamma = 0$
Answer:
$A = \begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$
$A^2 = I$
$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$\begin{bmatrix} \alpha &\beta\\ \gamma &-\alpha \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&\alpha \beta-\alpha \beta\\\alpha \gamma-\alpha \gamma&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix} \alpha^{2} +\beta \gamma&0\\0&\beta \gamma+\alpha^{2} \end{bmatrix}$$= \begin{bmatrix} 1 &0\\0&1 \end{bmatrix}$
Thus we obtained that
$\alpha^{2} +\beta \gamma=1$
$\Rightarrow 1-\alpha^{2} -\beta \gamma=0$
Option C is correct.
Question 14. If the matrix A is both symmetric and skew-symmetric, then
(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these
Answer:
If the matrix A is both symmetric and skew-symmetric, then
$A'=A$ and $A'=-A$
$A'=A'$
$\Rightarrow \, \, \, \, \, \, \, A=-A$
$\Rightarrow \, \, \, \, \, \, \, A+A=0$
$\Rightarrow \, \, \, \, \, \, \, 2A=0$
$\Rightarrow \, \, \, \, \, \, \, A=0$
Hence, A is a zero matrix.
Option B is correct.
Question 15. If A is square matrix such that $A^{2}=A$, then $(I + A)^3 - 7 A$ is equal to
(A) A
(B) I – A
(C) I
(D) 3A
Answer:
A is a square matrix such that $A^{2}=A$
$(I + A)^3 - 7 A$
$=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A$
$=I+A^{2}.A+3A+3A^{2}-7A$
$=I+A.A+3A+3A-7A$ (Replace $A^{2}$ by $A$)
$=I+A^{2}+6A-7A$
$=I+A-A$
$=I$
Hence, we have $(I + A)^3 - 7 A=I$
Option C is correct.
Also Read,
Also, read,
Here are links to NCERT textbook solutions for other subjects. Students can explore and evaluate these structured solutions to gain a deeper understanding.
Students may refer to the provided NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
If matrix B is the inverse of matrix A, then matrix A is also the inverse of matrix B.
NCERT textbook is the most important book for the students who are preparing for board exams. CBSE usually use syllabus similar to the NCERT syllabus. For more questions from the chapter Matrices NCERT exemplar for Class 12 Maths can be used.
Here you will get NCERT exemplar for class 12 maths chapter 3.
There are 13 chapters in the NCERT Class 12 maths.
Calculus carries 35 marks weighatge in the CBSE final board exam.
Algebra carries 10 marks weighatge in the CBSE final board exam.
As the name suggests miscellaneous exercises consist of a mixture of questions from all the exercises of the chapter.
Yes, miscellaneous exercises are very important for competitive exams like JEE, SRMJEE, etc.
On Question asked by student community
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.
LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters