Careers360 Logo
Browse by Stream
  • Engineering and Architecture

    Exams

    • JEE Main 2023
    • JEE Advanced 2023
    • MET 2023
    • VITEEE 2023
    • AEEE 2023
    • GATE 2023
    • UPESEAT Exam 2023
    • View All Engineering Exams

    Colleges

    • Colleges Accepting B.Tech Applications
    • Top Engineering Colleges in India
    • Engineering Colleges in India
    • Engineering Colleges in Tamil Nadu
    • Engineering Colleges Accepting JEE Main
    • Top Engineering Colleges in Hyderabad
    • Top Engineering Colleges in Bangalore
    • Top Engineering Colleges in Maharashtra

    Predictors

    • JEE Main Rank Predictor
    • JEE Main College Predictor
    • GATE College Predictor with PSU Chances
    • AP EAMCET College Predictor
    • TS EAMCET College Predictor
    • KEAM College Predictor
    • View All College Predictors
    • JEE Advanced College Predictor

    Resources

    • JEE Main online Preparation
      Latest
    • JOSAA Counselling 2022
    • FREE Previous Year Sample Papers
    • GATE Result 2023
    • VITEEE Application Form 2023
    • Compare Colleges
    • B.Tech College Applications
    • GATE Result Live

    Quick links

    • BTech
    • Mechanical Engineering
    • Civil Engineering
    • Aeronautical Engineering
    • Information Technology
    • Electronic Engineering

    B.Tech CompanionUse Now
    Your one-stop Counselling package for JEE Main, JEE Advanced and BITSAT

  • Management and Business Administration

    Exams

    • CAT 2023
    • CMAT 2023
    • UPESMET 2023
    • IBSAT 2022
    • MAT 2023
    • IIFT 2023
    • KIITEE 2023
    • View All Management Exams

    Colleges & Courses

    • MBA
    • MBA College Admissions
    • MBA Colleges in India
    • Top MBA Colleges in India
    • Top Online MBA Colleges in India
    • Online MBA
    • CAT Result 2022
    • BBA Colleges in India

    Predictors

    • CAT Percentile Predictor 2023
    • CAT 2023 College Predictor
    • XAT College Predictor 2023
    • CMAT College Predictor 2023
    • SNAP College Predictor 2022
    • MAT College Predictor 2022
    • NMAT College Predictor
    • View All

    Resources

    • CMAT Registration 2023
    • FREE Previous Year Sample Papers
    • Download Helpful Ebooks
    • List of Popular Branches
    • QnA - Get answers to your doubts
    • IIM Shortlist 2022
    • IIM Fees Structure 2022
    • XAT Exam 2023 Live
  • Law

    Exams

    • CLAT 2024
    • AILET 2024
    • ULSAT 2023
    • TS LAWCET 2023
    • MH CET 2023
    • LSAT India 2023
    • AIBE 2023
    • View All

    Colleges

    • Colleges Accepting Admissions
    • Top Law Colleges in India
    • Law College Accepting CLAT Score
    • List of Law Colleges in India
    • Top Law Colleges in Delhi
    • Top Law Collages in Indore
    • Top Law Colleges in Chandigarh
    • Top Law Collages in Lucknow

    Predictors & E-Books

    • CLAT College Predictor
    • MHCET Law ( 5 Year L.L.B) College Predictor
    • AILET College Predictor
    • Sample Papers
    • E-Books

    Resources

    • Compare Law Collages
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel
    • CLAT Admit Card 2023
    • AILET Admit Card 2023
    • SLAT Application Form 2023
    • CLAT 2023 Exam Live
  • Learn

    Engineering Preparation

    • JEE Main
    • Knockout JEE Main 2022
    • Test Series JEE Main 2022
    • JEE Main 2022 Rank Booster
    • Knockout JEE Main 2022 (Easy Installments)

    Medical Preparation

    • NEET
    • Knockout NEET 2022
    • Test Series NEET 2022
    • Rank Booster NEET 2022
    • Knockout NEET 2022 (Easy Installments)

    Online Courses

    • JEE Main One Month Course
    • NEET One Month Course

    Products

    • Knockout JEE Main 2022 (Easy Installments)
    • IIT JEE Foundation Course
    • Knockout BITSAT 2022
    • Knockout BITSAT-JEE Main 2022
    • Career Guidance Tool
  • Media, Mass Communication and Journalism

    Exams

    • IPU CET BJMC
    • JMI Mass Communication Entrance Exam
    • IIMC Entrance Exam
    • JET Exam
    • NPAT 2023
    • View All

    Colleges

    • Compare Colleges
    • Media & Journalism colleges in Delhi
    • Media & Journalism colleges in Bangalore
    • Media & Journalism colleges in Mumbai
    • Colleges Accepting Admissions
    • List of Media & Journalism Colleges in India
    • View All

    Resources

    • Free Ebooks
    • Free Sample Papers
    • List of Popular Branches
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel
  • Animation and Design

    Exams

    • NIFT 2023
    • CEED 2023
    • UCEED 2023
    • NID DAT 2023
    • SMEAT 2022
    • IICD 2023
    • UPES DAT 2023
    • View All

    Colleges

    • Design Colleges in India
    • Fashion Design Colleges in Bangalore
    • Fashion Design Colleges in Mumbai
    • Fashion Design Colleges in Pune
    • Fashion Design Colleges in Delhi
    • Fashion Design Colleges in Hyderabad
    • Fashion Design Colleges in India
    • Top Design Colleges in India

    Animation Courses

    • Animation Courses in India
    • Animation Courses in Bangalore
    • Animation Courses in Mumbai
    • Animation Courses in Pune
    • Animation Courses in Chennai
    • Animation Courses in Hyderabad

    Resources

    • Free Sample Papers
    • Free Design E-books
    • List of Branches
    • QnA - Get answers to your doubts
    • Careers360 Youtube channel
    • NIFT College Predictor
  • Medicine and Allied Sciences

    Exams

    • NEET 2023
    • NEET PG 2023
    • NEET MDS 2023
    • FMGE 2022
    • INI CET 2023
    • AIIMS Nursing
    • NEET SS

    Colleges

    • Top Medical Colleges in India
    • Top Medical Colleges in India accepting NEET Score
    • Medical Colleges accepting NEET
    • List of Medical Colleges in India
    • Medical Colleges In Karnataka
    • Medical Colleges in Maharashtra
    • Medical Colleges in India Accepting NEET PG

    Predictors

    • NEET College Predictor
    • NEET PG College Predictor
    • NEET MDS College Predictor
    • DNB CET College Predictor
    • DNB PDCET College Predictor
    • View All

    Resources

    • NEET 2022 Counselling
    • NEET 2022 Result
    • NEET Cut off 2022
    • NEET Application Form 2023
    • NEET Online Preparation
    • NEET Question Papers
    • Download Helpful E-books
    • QnA - Get answers to your doubts

    NEET CompanionUse Now
    Your one-stop Counselling package for NEET, AIIMS and JIPMER

  • Arts, Commerce & Sciences

    Exams

    • CUET 2023
    • CUET PG 2023
    • IGNOU Admission 2023
    • DU Admission 2023
    • DUET Exam 2022
    • DDU Entrance Exam 2022
    • IIT JAM 2023
    • ICAR AIEEA Exam 2023

    Colleges

    • Universities in India 2023
    • Top Universities in India 2023
    • Colleges Accepting Admissions
    • Top Universities in Uttar Pradesh 2023
    • Top Universities in Bihar 2023
    • Top Universities in Madhya Pradesh 2023
    • Top Universities in Tamil Nadu 2023
    • Central Universities in India

    Upcoming Events/Predictors

    • DU College Predictor 2022
    • CUET Sample Papers 2023
    • CUET PG Application Form 2023
    • CUET Admit Card 2023
    • CUET Mock Test 2023
    • CUET Participating Universities 2023
    • CUET PG Exam Pattern 2023

    Resources

    • CUET Application Form 2023
    • CUET Cut Off 2023
    • CUET Exam Date 2023
    • CUET Syllabus 2023
    • CUET PG 2023
    • IGNOU Result
    • CUET PG Cut off 2022
    • E-Books and Sample Papers
  • Computer Application and IT

    Exams

    • NIMCET
    • AIMA UGAT
    • View All

    Colleges

    • Compare Colleges
    • IT Colleges in Tamil Nadu
    • IT Colleges in Uttar Pradesh
    • Colleges Accepting Admissions
    • MCA Colleges in India
    • BCA Colleges in India

    Resources

    • Sample Papers
    • Free Ebooks
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel

    Quick Links

    • MCA
    • BCA
    • Information Technology Courses
    • Programming Courses
    • Web Development Courses
    • Data Analytics Courses
    • Big Data Analytics Courses
  • Online Courses and Certifications

    Top Streams

    • IT & Software Certification Courses
    • Engineering and Architecture Certification Courses
    • Programming And Development Certification Courses
    • Business and Management Courses
    • Marketing Certification Courses
    • Health and Fitness Certification Courses
    • Design Certification Courses
    • View All

    Specializations

    • Digital Marketing Certification Courses
    • Cyber Security Certification Courses
    • Artificial Intelligence Certification Courses
    • Business Analytics Certification Courses
    • Data Science Certification Courses
    • Cloud Computing Certification Courses
    • Machine Learning Certification Courses
    • View All Certification Courses

    Resources

    • UG Degree Courses
    • PG Degree Courses
    • Online MBA
    • Short Term Courses
    • Free Courses
    • Online Degrees and Diplomas
    • Expert Reviews
    • Compare Courses

    Top Providers

    • Coursera Courses
    • Udemy Courses
    • Edx Courses
    • Swayam Courses
    • upGrad Courses
    • Simplilearn Courses
    • Great Learning Courses
    • View All
  • Hospitality and Tourism

    Exams

    • NCHMCT JEE 2023
    • Mah BHMCT CET
    • MAH HM CET
    • PUTHAT
    • IHM-A
    • View All

    Colleges

    • Top Hotel Management Colleges in Delhi
    • Top Hotel Management Colleges in Hyderabad
    • Top Hotel Management Colleges in Mumbai
    • Top Hotel Management Colleges in Tamil Nadu
    • Top Hotel Management Colleges in Maharashtra
    • View All

    Resources

    • Free Ebooks
    • Sample Papers
    • BHM Course
    • B.Sc Hotel Management
    • Hotel Management
    • Diploma in Hotel Management and Catering Technology
    • List of Popular Branches

    Diploma Colleges

    • Top Diploma Colleges in Maharashtra
  • Pharmacy

    Exams

    • RUHS Pharmacy Admission Test
    • UPESPAT 2022
    • GPAT
    • KAHER-AIET
    • NIPER JEE
    • View All
    • UPESPAT 2023

    Colleges

    • Top Pharmacy Colleges in India 2022
    • Pharmacy Colleges in Pune
    • Pharmacy Colleges in Mumbai
    • Colleges Accepting GPAT Score
    • Pharmacy Colleges in Lucknow
    • List of Pharmacy Colleges in Nagpur
    • View All

    Resources

    • GPAT Question Papers
    • GPAT Result
    • NIPER JEE Admit Card
    • B. Pharma
    • M. Pharma
    • Free Ebooks
    • Free Sample Papers
    • Careers360 Youtube Channel
  • Finance & Accounts

    Exams

    • CA Intermediate
    • CA Foundation
    • CA Final
    • CS Executive
    • CS Professional
    • CFA Exam
    • CSEET
    • ACET

    Resources

    • Difference between CA and CS
    • Difference between CA and CMA
    • CA Full form
    • CMA Full form
    • CS Full form
    • Free Ebooks
    • Free Sample Papers
    • CA Salary In India

    Top Courses & Careers

    • Bachelor of Commerce (B.Com)
    • Master of Commerce (M.Com)
    • Company Secretary
    • Cost Accountant
    • Charted Accountant
    • Credit Manager
    • Financial Advisor

    Colleges

    • Top Commerce Colleges in India
    • Top Government Commerce Colleges in India
    • Top Private Commerce Colleges in India
    • Top M.Com Colleges in Mumbai
    • Top B.Com Colleges in India
  • Competition

    Exams

    • NDA 2023
    • UPSC IAS 2023
    • CDS 2023
    • AFCAT 2023
    • SSC CGL 2023
    • IBPS RRB 2023
    • CTET 2023
    • View All

    Upcoming Events

    • UGC NET Admit Card 2023
    • CDS Admit Card 2023
    • NDA Admit Card 2023
    • SSC CGL Result 2023 Tier 2
    • SSC CHSL Admit Card 2023
    • AFCAT 1 Result 2023
    • UPTET Notification 2023
    • SSC MTS Admit Card 2023

    Resources

    • Previous Year Sample Papers
    • Free Competition E-books
    • Sarkari Result
    • QnA- Get your doubts answered
    • UPSC Previous Year Sample Papers
    • CTET Previous Year Sample Papers
    • SBI Clerk Previous Year Sample Papers
    • NDA Previous Year Sample Papers

    Other Exams

    • UPTET 2023
    • SSC CHSL 2023
    • UP PCS 2023
    • UGC NET 2023
    • RRB NTPC 2023
    • IBPS PO 2023
    • IBPS Clerk 2023
    • IBPS SO 2023
  • Study Abroad

    Exams

    • TOEFL 2023
    • LSAT 2023
    • IELTS 2023
    • GRE 2023
    • SAT 2023
    • ACT 2023
    • MCAT 2023
    • View All

    Colleges

    • Computer Science Colleges
    • Business Management Studies Colleges
    • Best M.Sc. Colleges
    • Top Universities in UK
    • Top Universities in Australia
    • View All

    Top Countries

    • Study in USA
    • Study in UK
    • Study in Canada
    • Study in Australia
    • Study in Ireland
    • Study in Germany
    • Study in Singapore
    • Study in Europe

    Student Visas

    • Student Visa Canada
    • Student Visa UK
    • Student Visa USA
    • Student Visa Australia
    • Student Visa Germany
    • Student Visa New Zealand
    • Student Visa Ireland
  • School

    Exams

    • CBSE Class 10th
    • CBSE Class 12th
    • UP Board 10th
    • UP Board 12th
    • ISC Class 12th
    • Bihar Board 12th
    • Bihar Board 10th
    • View All

    Ranking

    • Top Schools in India
    • Top Schools in Delhi
    • Top Schools in Mumbai
    • Top Schools in Chennai
    • Top Schools in Hyderabad
    • Top Schools in Kolkata
    • Government Schools in India
    • CBSE Schools in India

    Products & Resources

    • KVPY Test Series
    • RD Sharma Solutions
    • JEE Main Knockout April
    • Free Sample Papers
    • Free Ebooks
    • Sainik School Admission
    • CBSE Class 12 Date Sheet 2023
    • Essays

    NCERT Solutions

    • NCERT
    • NCERT Solutions
    • NCERT Solutions for Class 12
    • NCERT Solutions for Class 11
    • NCERT solutions for Class 10
    • NCERT solutions for Class 9
    • NCERT solutions for Class 8
    • NCERT Solutions for Class 7
Login
My Companion New
  • NEET Companion Buy Now
  • B.Tech Companion Buy Now
Search Colleges, Exams, Schools & more

Popular Searches

  • सीबीएसई 12वीं डेट शीट 2023
  • Bihar Board 10th Result 2023
  • Navodaya Result 2023
  • CBSE Class 12 Date Sheet 2023
  • West Bengal Madhyamik Routine 2023
  • Sainik School Result 2023 for Class 6 & 9
  • NCERT Solutions for Class 6 to 12
  • NMMS Result 2022-23
  • RD Sharma Solutions For Class 9 to 12 Maths
  • सीबीएसई क्लास 10 डेट शीट 2023
  • Home
  • NCERT
  • NCERT Exemplar Class 12 Maths
  • Matrices

NCERT Exemplar Class 12 Maths Solutions Chapter 3 Matrices

Edited By Ravindra Pindel | Updated on Sep 15, 2022 - 2:01 p.m. IST | #CBSE Class 12th
subscribe Subscribe to Premium
  • Dates
  • Admit Card
  • Syllabus
  • Exam Pattern
  • Result
  • Preparation Tips
  • Answer Key
  • Eligibility
  • Application
  • FAQs

NCERT exemplar Class 12 Maths solutions chapter 3 Matrices is one of the most interesting chapters to study. Matrices are a Mathematical tool that helps in finding the answer to linear equations. Matrices are much faster and efficient than the usual direct solving method. Matrices are not only used in Mathematics but also various other subjects like Economics, Genetics, etc. NCERT Exemplar Class 12 Math chapter 3 solutions covers various matrices related topics like the types, the operations, invertible matrices etc.

Latest Updates for CBSE Class 12th

  • 10 Feb 2023:

    Over Rs 2,000 crore cut from 12 scholarship: Check details here 

  • 02 Jan 2023:

    CBSE has revised the CBSE Class 12 board date sheet 2023. Check new exam dates here.

  • 29 Dec 2022:

    CBSE datesheet 2023 released for theory exams; Check exam dates here.

Stay up-to date with CBSE Class 12th News

Get Updates
Share Facebook Twitter
Table of contents

More About NCERT Exemplar Class 12 Maths Solutions Chapter 3 Matrices

Matrix is a topic that is interesting and complex for some students. It is a highly scoring chapter of NCERT Class 12 Maths Solutions that a student can utilize to gain more score in their exams as well. But, the aim should not be about gaining more score only. Instead, students should focus on understanding the topic and its applications. Class 12 Math NCERT exemplar solutions chapter 3 is used not only in linear equations but has a widespread real-world application in higher education. It is used in genetics, modern psychology, economics, etc., therefore, building the base from the start is useful for students in Class 12.

Question:1

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Answer:

In mathematics, a matrix is a rectangular array which includes numbers, expressions, symbols and equations which are placed in an arrangement of rows and columns. The number of rows and columns that are arranged in the matrix is called as the order or dimension of the matrix. By rule, the rows are listed first and then the columns.
It is given that the matrix has 28 elements.
So, according to the rule of matrix,
If the given matrix has mn elements then the dimension of the order can be given by m$\ast$ n, where m and n are natural numbers.
So, if a matrix has 28 elements which is mn=28, then the following possible orders can be found:
$\because$ mn = 28
Take m and n to be any number, so that, when they are multiplied, we get 28.
So, let m = 1 and n = 28.
Then, m $ \times $ n = 1 $ \times $ 28 (=28)
$ \Rightarrow $ 1 $ \times $ 28 is a possible order of the matrix with 28 elements
Take m = 2 and n = 14.
Then, m $ \times $ n = 2 $ \times $ 14 (=28)
$ \Rightarrow $ 2 $ \times $ 14 is a possible order of the matrix with 28 elements.
Take m = 4 and n = 7.
Then, m $ \times $ n = 4 $ \times $ 7 (=28)
$ \Rightarrow $ 4 $ \times $ 7 is a possible order of the matrix with 28 elements.
Take m = 7 and n = 4.
Then, m $ \times $ n = 7 $ \times $ 4 (=28)
$ \Rightarrow $ 7 $ \times $ 4 is a possible order of the matrix with 28 elements.
Take m = 14 and n = 2.
Then, m $ \times $ n = 14 $ \times $ 2 (=28)
$ \Rightarrow $ 14 $ \times $ 2 is a possible order of the matrix having 28 elements.
Take m = 28 and n = 1.
Then, m $ \times $ n = 28 $ \times $ 1 (=28)
$ \Rightarrow $ 28 $ \times $ 1 is a possible order of the matrix with 28 elements.
The following are the possible orders which a matrix having 28 elements can have:
1 $ \times $ 28, 2 $ \times $ 14, 4 $ \times $ 7, 7 $ \times $ 4, 14 $ \times $ 2 $ and 28 $ \times $ 1
If the given matrix consisted of 13 elements then its possible order can be found out in the similar way as given above:
Here, mn = 13.
Take m and n to be any number so that when multiplied we get 13
Take m = 1 and n = 13.
Then, m $ \times $ n = 1 $ \times $ 13 (=13)
$ \Rightarrow $ 1 $ \times $ 13 is a possible order of the matrix with 13 elements.
Take m = 13 and n = 1.
Then, m $ \times $ n = 13 $ \times $ 1 (=13)
$ \Rightarrow $ 13 $ \times $ 1 is a possible order of the matrix with 13 elements.
Thus, the possible orders of the matrix consisting of 13 elements are as follows:
1 $ \times $ 13 $ and 13 $ \times $ 1

Question:2

In the matrix A=\left[\begin{array}{ccc} a & 1 & x \\ 2 & \sqrt{3} & x^{2}-y \\ 0 & 5 & -\frac{2}{5} \end{array}\right], write:
(i) The order of the matrix A
(ii) The number of elements
(iii) Write elements a_{23}, a_{31}, a_{12}

Answer:

We have the matrix
A for element in (i=) 1st row and (j=) 2nd column.
A=\left[\begin{array}{ccc} a & 1 & x \\ 2 & \sqrt{3} & x^{2}-y \\ 0 & 5 & -\frac{2}{5} \end{array}\right]
A matrix, as we know, is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.
(i). We need to find the order of the matrix A.
And we know that,
The number of rows and columns that a matrix has is called its order or its dimension. By convention, rows are listed first; and columns second.
So,
Here, in matrix A:
There are 3 rows.
Elements in 1st row = a, 1, x
Elements in 2nd row = 2, \sqrt 3, x^2 - y
Elements in 3rd row = 0, 5, -2/5
$ \Rightarrow $ M = 3
And,
There are 3 columns.
Elements in 1st column = a, 2, 0
Elements in 2nd column = 1, $ \sqrt$ 3, 5
Elements in 3rd column = x, x2 – y, -2/5
$ \Rightarrow $ N = 3
Since, the order of matrix = M $ \times $ N
$ \Rightarrow $ The order of matrix A = 3 $ \times $ 3
Thus, the order of the matrix A is 3 $ \times $ 3
(ii). We need to find the number of elements in the matrix A.
And we know that,
Each number that makes up a matrix is called an element of the matrix.
So,
If a matrix has M rows and N columns, the number of elements is MN.
Here, in matrix A:
There are 3 rows.
$ \Rightarrow $ M = 3
And,
There are 3 columns.
$ \Rightarrow $ N = 3
Then, number of elements = MN
$ \Rightarrow $ Number of elements = 3 $ \times $ 3
$ \Rightarrow $ Number of elements = 9
The elements are namely, a, 2, 0, 1, $ \sqrt$ 3, 5, x, x2 – y, -2/5.
Thus, the number of elements is 9.
(iii). We need to find the elements a23, a31 and a12.
We know that,
aij is the representation of elements lying in the ith row and jth column.
For a23:
On comparing aij with a23, we get
i = 2
j = 3
Check in matrix A for element in (i=) 2nd row and (j=) 3rd column.
A=\left[\begin{array}{ccc} a & 1 & x \\ 2 & \sqrt{3} & x^{2}-y \\ 0 & 5 & -\frac{2}{5} \end{array}\right]
The element which is common in both 2nd row and 3rd column is x2 – y
$ \Rightarrow $ a_{23 }= x^2 -y
For a31:
On comparing aij with a31, we get
i = 3
j = 1
Check matrix A for element in (i=) 3\textsuperscript{rd} $ row and (j=) 1\textsuperscript{st} column.
A=\left[\begin{array}{ccc} a & 1 & x \\ 2 & \sqrt{3} & x^{2}-y \\ 0 & 5 & -\frac{2}{5} \end{array}\right]
The Element which is common in both 3rd row and 1st column is 0
$ \Rightarrow $ a31 = 0
For a12:
On comparing aij with a12, we get
i = 1
j = 2
Check in matrix A for element in (i=) 1st row and (j=) 2nd column.
The element that is common between the first and second row is 1
⇒ a12 = 1
Thus, a23 = x2 - y, a31 = 0 and a12 = 1.

Question:3

Construct a_{2\times2 } matrix where
(i) a_{ij} =\frac{\left ( \hat i - 2 \hat j \right )}{2}
(ii) a_{ij} = |- 2i + 3j|

Answer:

We know that,
A matrix, us a rectangular formation in which symbols, numbers, alphabets and expressions are arranged in rows and columns.
Also,
We know that, the notation A = [a_{ij}]_{m \times m} indicates that A is a matrix having the order m $ \times $ n, $ also 1 $ \leq $ i $ \leq $ m, 1 $ \leq $ j $ \leq $ n; i, j $ \in $ N.
(i).We need to construct a matrix, a_{2 \times 2}, where
a_{ij} =\frac{\left ( \hat i - 2 \hat j \right )}{2}
For a_{2 \times 2},
1 $ \leq $ i $ \leq $ m
$ \Rightarrow $ 1 $ \leq $ i $ \leq $ 2 [$\because$ m = 2]
And,
\\1 $ \leq $ j $ \leq $ n\\ \\$ \Rightarrow $ 1 $ \leq $ j $ \leq $ 2 [$\because$ n = 2]
Put i = 1 and j = 1.
\\ \mathrm{a}_{11}=\frac{(1-2(1))^{2}}{2} \\ \Rightarrow \mathrm{a}_{11}=\frac{(1-2)^{2}}{2} \\ \Rightarrow \mathrm{a}_{11}=\frac{(-1)^{2}}{2} \\ \Rightarrow \mathrm{a}_{11}=\frac{1}{2} \\ \text { Put } \mathrm{i}=1 \text { and } \mathrm{j}=2 \\ \mathrm{a}_{12}=\frac{(1-2(2))^{2}}{2} \\ \Rightarrow \mathrm{a}_{12}=\frac{(1-4)^{2}}{2}
\\ \Rightarrow a_{12}=\frac{(-3)^{2}}{2} \\ \Rightarrow a_{12}=\frac{9}{2} \\ \text { Put } i=2 \text { and } j=1 \\ a_{21}=\frac{(2-2(1))^{2}}{2} \\ \Rightarrow a_{21}=\frac{(2-2)^{2}}{2} \\ \Rightarrow a_{21}=\frac{0}{2} \\ \Rightarrow a_{21}=0 \\ \text { Put } i=2 \text { and } j=2 \\ a_{22}=\frac{(2-2(2))^{2}}{2}
\\ \Rightarrow \mathrm{a}_{22}=\frac{(2-4)^{2}}{2} \\ \Rightarrow \mathrm{a}_{22}=\frac{(-2)^{2}}{2} \\ \Rightarrow \mathrm{a}_{22}=\frac{4}{2} \\ \Rightarrow \mathrm{a}_{22}=2
Let the matrix formed be named A.
\begin{aligned} &A=\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\\ &\text { By substituting the values of } a_{11}, a_{12}, a_{21} \text { and } a_{22}, \end{aligned} the matrix formed is
A=\left[\begin{array}{ll} \frac{1}{2} & \frac{9}{2} \\ 0 & 2 \end{array}\right]
(ii). We need to construct a matrix, a_{2 \times 2}, where
a_{ij} = $ \vert $ -2i + 3j$ \vert $
For a_{2 \times 2},
1 $ \leq $ i $ \leq $ m
$ \Rightarrow $ 1 $ \leq $ i $ \leq $ 2 [$\because$ m = 2]
And,
\\1 $ \leq $ j $ \leq $ n \\$ \Rightarrow $ 1 $ \leq $ j $ \leq $ 2 [$\because$ n = 2]
Put i = 1 and j = 1.
\\a_{11} = $ \vert $ -2(1) + 3(1)$ \vert $ \\$ \Rightarrow $ a_{11} = $ \vert $ -2 + 3$ \vert $ \\$ \Rightarrow $ a_{11} = $ \vert $ 1$ \vert $ \\$ \Rightarrow $ a_{11} = 1
Put i = 1 and j = 2.
\\a_{12} = $ \vert $ -2(1) + 3(2)$ \vert $ \\$ \Rightarrow $ a_{12} = $ \vert $ -2 + 6$ \vert $ \\$ \Rightarrow $ a_{12} = $ \vert $ 4$ \vert $ \\$ \Rightarrow $ a_{12} = 4
Put i = 2 and j = 1.
\\a_{21} = $ \vert $ -2(2) + 3(1)$ \vert $ \\$ \Rightarrow $ a_{21} = $ \vert $ -4 + 3$ \vert $ \\$ \Rightarrow $ a_{21} = $ \vert $ -1$ \vert $ \\$ \Rightarrow $ a_{21} = 1
Put i = 2 and j = 2. .
\\a_{22} = $ \vert $ -2(2) + 3(2)$ \vert $ \\$ \Rightarrow $ a_{22} = $ \vert $ -4 + 6$ \vert $ \\$ \Rightarrow $ a_{22} = $ \vert $ 2$ \vert $ \\$ \Rightarrow $ a_{22} = 2
Let the matrix formed be A.
\begin{aligned} &A=\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]\\ &\text { By substituting the values of } a_{11}, a_{12}, a_{21} \text { and } a_{22}, \text { the matrix formed is }\\ &A=\left[\begin{array}{ll} 1 & 4 \\ 1 & 2 \end{array}\right] \end{aligned}

Question:4

Construct a 3 × 2 matrix whose elements are given by a_{ij} = e^{ix}\sin jx

Answer:

A matrix, in mathematics is a rectangular array of numbers, alphabets, symbols, or expressions, arranged in rows and columns.
Also,
We know that, the notation A = [a_{ij}]_{m \times m} indicates that the matrix A has the order of A m $ \times $ n, also 1 $ \leq $ i $ \leq $ m, 1 $ \leq $ j $ \leq $ n; i, j $ \in $ N.
We need to construct a 3 $ \times $ 2 matrix whose elements are as follows:
a_{ij} = e\textsuperscript{i.x} sin jx
For a_{3 \times 2}:
\\1 $ \leq $ i $ \leq $ m \\$ \Rightarrow $ 1 $ \leq $ i $ \leq $ 3 [$\because$ m = 3] \\1 $ \leq $ j $ \leq $ n \\$ \Rightarrow $ 1 $ \leq $ j $ \leq $ 2 [$\because$ n = 2]
Put i = 1 and j = 1.
\\a_{11} = e\textsuperscript{(1)x} sin (1)x \\$ \Rightarrow $ a_{11} = e\textsuperscript{x} sin x
Put i = 1 and j = 2.

\\a_{12} = e\textsuperscript{(1)x} sin (2)x \\$ \Rightarrow $ a_{12} = e\textsuperscript{x} sin 2x

Put i = 2 and j = 1.

\\a_{21} = e\textsuperscript{(2)x} sin (1)x \\$ \Rightarrow $ a_{21} = e\textsuperscript{2x}sin x

Put i = 2 and j = 2.
\\a_{22} = e\textsuperscript{(2)x} sin (2)x \\$ \Rightarrow $ a_{22} = e\textsuperscript{2x} sin 2x
For i = 3 and j = 1.
\\a_{31} = e\textsuperscript{(3)x} sin (1)x \\$ \Rightarrow $ a_{31} = e\textsuperscript{3x} sin x
For i = 3 and j = 2.
\\a_{32} = e\textsuperscript{(3)x} sin (2)x \\$ \Rightarrow $ a_{32} = e\textsuperscript{3x} sin 2x
Let the matrix formed be A.
\begin{aligned} &A=\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right]\\ &\text { By substituting the values of } a_{11}, a_{12}, a_{21}, a_{22}, a_{31} \text { and } a_{32}, \text { we get the following matrix }\\ &A=\left[\begin{array}{ll} e^{x} \sin x & e^{x} \sin 2 x \\ e^{2 x} \sin x & e^{2 x} \sin 2 x \\ e^{3 x} \sin x & e^{3 x} \sin 2 x \end{array}\right] \end{aligned}

Question:5

Find values of a and b if A = B, where
\begin{array}{l} A=\left[\begin{array}{cc} a+4 & 3 b \\ 8 & -6 \end{array}\right] \\ B=\left[\begin{array}{cc} 2 a+2 & b^{2}+2 \\ 8 & b^{2}-5 b \end{array}\right] \end{array}

Answer:

We have the matrices A and B, where
\begin{array}{l} A=\left[\begin{array}{cc} a+4 & 3 b \\ 8 & -6 \end{array}\right] \\ B=\left[\begin{array}{cc} 2 a+2 & b^{2}+2 \\ 8 & b^{2}-5 b \end{array}\right] \end{array}
We need to find the values of a and b.
We know that, if
\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]=\left[\begin{array}{ll} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array}\right]
Then,
\\a_{11} = b_{11} \\a_{12} = b_{12} \\a_{21} = b_{21} \\a_{22} = b_{22}
Also, A = B.
\Rightarrow\left[\begin{array}{cc} \mathrm{a}+4 & 3 \mathrm{~b} \\ 8 & -6 \end{array}\right]=\left[\begin{array}{cc} 2 \mathrm{a}+2 & \mathrm{~b}^{2}+2 \\ 8 & \mathrm{~b}^{2}-5 \mathrm{~b} \end{array}\right]
This means,
\\a + 4 = 2a + 2 \ldots (i) \\3b = b\textsuperscript{2} + 2 \ldots (ii) \\ 8 = 8 \\ -6 = b^2 -5b \ldots (iii)
From equation (i), we can find the value of a.
\\a + 4 = 2a + 2 \\ \Rightarrow 2a - a = 4 - 2 \\$ \Rightarrow $ a = 2
From equation (ii), we can find the value of b\textsuperscript{2}.
\\3b = b\textsuperscript{2} + 2 \\$ \Rightarrow $ b\textsuperscript{2}= 3b -2
By substituting the value of b\textsuperscript{2} in equation (iii), we get
\\-6 = b\textsuperscript{2} - 5b \\$ \Rightarrow $ -6 = (3b - 2) - 5b \\$ \Rightarrow $ -6 = 3b - 2 - 5b \\$ \Rightarrow $ -6 = 3b - 5b - 2 \\$ \Rightarrow $ -6 = -2b - 2 \\$ \Rightarrow $ 2b = 6 - 2 \\$ \Rightarrow $ 2b = 4
\begin{aligned} &\Rightarrow \mathrm{b}=\frac{4}{2}\\ &\Rightarrow b=2\\ &\text { Hence, } a=2 \text { and } b=2 \end{aligned}

Question:6

If possible, find the sum of the matrices A and B, where

\begin{array}{l} A=\left[\begin{array}{ll} \sqrt{3} & 1 \\ 2 & 3 \end{array}\right] \\ B=\left[\begin{array}{lll} x & y & z \\ a & b & 6 \end{array}\right] \end{array}

Answer:

According to the convention, the number of rows and columns in a matrix is called its order or dimension and the rows of the matrix are listed first and then the columns are listed.
We know that,
For adding or subtracting any two matrices, the need to be of the same order
That is,
If we need to add matrix A and B, then the order of matrix A is m x n then the order of matrix B should be m x n
We have matrices A and B, where
\begin{array}{l} A=\left[\begin{array}{ll} \sqrt{3} & 1 \\ 2 & 3 \end{array}\right] \\ B=\left[\begin{array}{lll} x & y & z \\ a & b & 6 \end{array}\right] \end{array}
We know what order of matrix is,
If a matrix has M rows and N columns, then the matrix has the order M $ \times $ N.
In matrix A:
Number of rows = 2
$ \Rightarrow $ M = 2
Number of column = 2
$ \Rightarrow $ N = 2
Then, order of matrix A = M $ \times $ N
$ \Rightarrow $ Order of matrix A = 2 $ \times $ 2
In matrix B:
Number of rows = 2
$ \Rightarrow $ M = 2
Number of columns = 3
$ \Rightarrow $ M = 3
Then, order of matrix B = M $ \times $ N
$ \Rightarrow $ order of matrix B = 2 $ \times $ 3
Since,
Order of matrix A $ \neq $ Order of matrix B
$ \Rightarrow $ Matrices A and B cannot be added.
Therefore, matrix A and matrix B cannot be added.

Question:7

If

\begin{array}{l} X=\left[\begin{array}{lll} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right] \\ Y=\left[\begin{array}{lll} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right] \end{array} find
(i) X + Y
(ii) 2X - 3Y
(iii) A matrix Z such that X + Y + Z is a zero matrix.

Answer:

If you want to add or subtract any two matrices, make sure these two matrices have the same order
That is,
If A and B are two matrices and to add them, if we have order of A as m × n, then order of B must be m × n.
We have matrices X and Y, where
\begin{array}{l} X=\left[\begin{array}{lll} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right] \\ Y=\left[\begin{array}{lll} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right] \end{array}

According to convention,
If a matrix has M rows and N columns, the order of matrix is M $ \times $ N.
(i). We need to find the X + Y.
Let us first find the order of X and Y.
Order of X:
Number of rows = 2
$ \Rightarrow $ M = 2
Number of columns = 3
$ \Rightarrow $ N = 3
Then, order of matrix X = M $ \times $ N.
$ \Rightarrow $ Order of matrix X =2 $ \times $ 3
Order of Y:
Number of rows = 2
$ \Rightarrow $ M = 2
Number of columns = 3
$ \Rightarrow $ N = 3
Then, order of matrix Y = M $ \times $ N.
$ \Rightarrow $ Order of matrix Y = 2 $ \times $ 3
Since, order of matrix X = order of matrix Y
$ \Rightarrow $ Matrices X and Y can be added.
So,
\begin{aligned} &X+Y=\left[\begin{array}{ccc} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right]+\left[\begin{array}{ccc} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right]\\ &\Rightarrow X+Y=\left[\begin{array}{lll} (3+2) & (1+1) & (-1-1) \\ (5+7) & (-2+2) & (-3+4) \end{array}\right]\\ &\Rightarrow \mathrm{X}+\mathrm{Y}=\left[\begin{array}{ccc} 5 & 2 & -2 \\ 12 & 0 & 1 \end{array}\right]\\ &\text { Thus, }\\ &X+Y=\left[\begin{array}{ccc} 5 & 2 & -2 \\ 12 & 0 & 1 \end{array}\right] \end{aligned}
(ii). We need to find 2X - 3Y.
Let us calculate 2X.
We have,
\begin{aligned} &X=\left[\begin{array}{ccc} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right]\\ &\text { Then, multiplying by } 2 \text { on both sides, we get }\\ &2 \mathrm{X}=2 \times\left[\begin{array}{ccc} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right]\\ &\Rightarrow 2 \mathrm{X}=\left[\begin{array}{lll} 2 \times 3 & 2 \times 1 & 2 \times-1 \\ 2 \times 5 & 2 \times-2 & 2 \times-3 \end{array}\right]\\ &\Rightarrow 2 \mathrm{X}=\left[\begin{array}{ccc} 6 & 2 & -2 \\ 10 & -4 & -6 \end{array}\right] \end{aligned}
Also,
\begin{aligned} &Y=\left[\begin{array}{lll} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right]\\ &\text { Multiplying by } 3 \text { on both sides, we get }\\ &3 Y=3 \times\left[\begin{array}{rrr} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right]\\ &\Rightarrow 3 \mathrm{Y}=\left[\begin{array}{lll} 3 \times 2 & 3 \times 1 & 3 \times-1 \\ 3 \times 7 & 3 \times 2 & 3 \times 4 \end{array}\right]\\ &\Rightarrow 3 Y=\left[\begin{array}{ccc} 6 & 3 & -3 \\ 21 & 6 & 12 \end{array}\right] \end{aligned}
Now subtract 3Y from 2X.
\begin{aligned} &2 \mathrm{X}-3 \mathrm{Y}=\left[\begin{array}{ccc} 6 & 2 & -2 \\ 10 & -4 & -6 \end{array}\right]-\left[\begin{array}{ccc} 6 & 3 & -3 \\ 21 & 6 & 12 \end{array}\right]\\ &\Rightarrow 2 \mathrm{X}-3 \mathrm{Y}=\left[\begin{array}{ccc} 6-6 & 2-3 & -2+3 \\ 10-21 & -4-6 & -6-12 \end{array}\right]\\ &\Rightarrow 2 \mathrm{X}-3 \mathrm{Y}=\left[\begin{array}{ccc} 0 & -1 & 1 \\ -11 & -10 & -18 \end{array}\right]\\ &\text { Thus, }\\ &2 \mathrm{X}-3 \mathrm{Y}=\left[\begin{array}{ccc} 0 & -1 & 1 \\ -11 & -10 & -18 \end{array}\right] \end{aligned}
We need to find matrix Z, such that X + Y + Z is a zero matrix.
That is,
X + Y + Z = 0
Or,
Z = -X - Y
Or,
Z = -(X + Y)
We have already found X + Y in part (i).
So, from part (i):
\begin{aligned} &X+Y=\left[\begin{array}{ccc} 5 & 2 & -2 \\ 12 & 0 & 1 \end{array}\right]\\ &\text { Then, }\\ &Z=-\left(\left[\begin{array}{ccc} 5 & 2 & -2 \\ 12 & 0 & 1 \end{array}\right]\right)\\ &\Rightarrow \mathrm{Z}=\left[\begin{array}{ccc} -5 & -2 & 2 \\ -12 & 0 & -1 \end{array}\right]\\ &\mathrm{Thus},Z=\left[\begin{array}{ccc} -5 & -2 & 2 \\ -12 & 0 & -1 \end{array}\right] \end{aligned}

Question:8

Find non-zero values of x satisfying the matrix equation:
\mathrm{x}\left[\begin{array}{cc} 2 \mathrm{x} & 2 \\ 3 & \mathrm{x} \end{array}\right]+2\left[\begin{array}{cc} 8 & 5 \mathrm{x} \\ 4 & 4 \mathrm{x} \end{array}\right]=2\left[\begin{array}{cc} \left(\mathrm{x}^{2}+8\right) & 24 \\ (10) & 6 \mathrm{x} \end{array}\right]

Answer:

A matrix, as we know, is a rectangular array which includes numbers, symbols, or expressions, arranged in rows and columns.
Also,
Addition or subtraction of any two matrices is possible only if they have the same order.
If a given matrix has m rows and n columns, then the order of the matrix is m x n.
We have matrix equation,
\\x\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right]+2\left[\begin{array}{cc}8 & 5 x \\ 4 & 4 x\end{array}\right]=2\left[\begin{array}{cc}\left(x^{2}+8\right) & 24 \\ 10 & 6 x\end{array}\right]$ \\Take matrix $\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right]$ \\And multiply it with $\mathrm{x}$\\ $x\left[\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right]=\left[\begin{array}{cc}x \times 2 x & x \times 2 \\ x \times 3 & x \times x\end{array}\right]$
\Rightarrow \mathrm{x}\left[\begin{array}{cc}2 \mathrm{x} & 2 \\ 3 & \mathrm{x}\end{array}\right]=\left[\begin{array}{cc}2 \mathrm{x}^{2} & 2 \mathrm{x} \\ 3 \mathrm{x} & \mathrm{x}^{2}\end{array}\right]$
Take matrix \left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]$
Multiply it with 2 ,
\\ 2\left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]=\left[\begin{array}{lll}2 \times 8 & 2 \times 5 x \\ 2 \times 4 & 2 \times 4 x\end{array}\right]$ \\$\Rightarrow 2\left[\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right]=\left[\begin{array}{cc}16 & 10 x \\ 8 & 8 x\end{array}\right]_{\ldots .(i i)}$
Take matrix \left[\begin{array}{cc}\left(x^{2}+8\right) & 24 \\ 10 & 6 x\end{array}\right]$
Multiply it with 2,
\\ 2\left[\begin{array}{cc}\left(x^{2}+8\right) & 24 \\ 10 & 6 x\end{array}\right]=\left[\begin{array}{cc}2 \times\left(x^{2}+8\right) & 2 \times 24 \\ 2 \times 10 & 2 \times 6 x\end{array}\right]$ \\$\Rightarrow 2\left[\begin{array}{cc}\left(x^{2}+8\right) & 24 \\ 10 & 6 x\end{array}\right]=\left[\begin{array}{cc}2\left(x^{2}+8\right) & 48 \\ 20 & 12 x\end{array}\right] \ldots$..(iii)
By adding equation (i) and (ii) and make it equal to equation (iii), we get
\\ \mathrm{x}\left[\begin{array}{cc}2 \mathrm{x} & 2 \\ 3 & \mathrm{x}\end{array}\right]+2\left[\begin{array}{ll}8 & 5 \mathrm{x} \\ 4 & 4 \mathrm{x}\end{array}\right]=2\left[\begin{array}{cc}\left(\mathrm{x}^{2}+8\right) & 24 \\ 10 & 6 \mathrm{x}\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}2 x^{2} & 2 x \\ 3 x & x^{2}\end{array}\right]+\left[\begin{array}{cc}16 & 10 x \\ 8 & 8 x\end{array}\right]=\left[\begin{array}{cc}2\left(x^{2}+8\right) & 48 \\ 20 & 12 x\end{array}\right]$
By adding left side of the matrix equation as they have same order, we get
\Rightarrow\left[\begin{array}{cc}2 x^{2}+16 & 2 x+10 x \\ 3 x+8 & x^{2}+8 x\end{array}\right]=\left[\begin{array}{cc}2\left(x^{2}+8\right) & 48 \\ 20 & 12 x\end{array}\right]$
We need to find the value of x by comparing the elements in the two matrices.
If,
\left[\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right]=\left[\begin{array}{ll} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array}\right]
Then,
\\a_{11} = b_{11} \\a_{12} = b_{12} \\a_{21} = b_{21} \\a_{22} = b_{22}
So,
\\2x\textsuperscript{2} + 16 = 2(x\textsuperscript{2} + 8) $ \ldots $ (i) \\2x + 10x = 48 $ \ldots $ (ii) \\3x + 8 = 20 $ \ldots $ (iii) \\x\textsuperscript{2} + 8x = 12x $ \ldots $ (iv)
We have got equations (i), (ii), (iii) and (iv) to solve for x.
So, take equation (i).
\\2x\textsuperscript{2} + 16 = 2x\textsuperscript{2} + 16
We cannot find the value of x from this equation as they are similar.
Now, take equation (ii).
2x + 10x = 48
$ \Rightarrow $ 12x = 48
$ \Rightarrow $ x = 4
From equation (iii),
3x + 8 = 20
\\ \Rightarrow $ 3x = 20 - 8 \\$ \Rightarrow $ 3x = 12
$ \Rightarrow $ x = 4
From equation (iv),
\\x\textsuperscript{2} + 8x = 12x \\$ \Rightarrow $ x\textsuperscript{2} = 12x -8x \\$ \Rightarrow $ x\textsuperscript{2} = 4x \\$ \Rightarrow $ x\textsuperscript{2} - 4x = 0 \\$ \Rightarrow $ x(x - 4) = 0 \\$ \Rightarrow $ x = 0 or (x - 4) = 0 \\$ \Rightarrow $ x = 0 or x = 4 \\$ \Rightarrow $ x = 4 ($\because$ x = 0 $ does not satisfy equations (ii) and (iii))
So, by solving equations (ii), (iii) and (iv), we can conclude that
x = 4
Hence, the value of x is 4.

Question:9

If A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]_{\text {and }} B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] , show that (A + B) (A - B) \neq A^2 - B^2.

Answer:

We have the matrices A and B, where
A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]_{\text {and }} B=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]
We need to prove that (A + B) (A - B) \neq A^2 - B^2.
Take L.H.S: (A + B) (A - B)
First, let us compute (A + B).
If two matrices have the same order, m x n, then they can be added or subtracted from each other. For example,
\begin{aligned} &\text { If we have matrices }\left[\begin{array}{ll} \mathrm{a}_{11} & \mathrm{a}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22} \end{array}\right] \text { and }\left[\begin{array}{ll} \mathrm{b}_{11} & \mathrm{~b}_{12} \\ \mathrm{~b}_{21} & \mathrm{~b}_{22} \end{array}\right]_{.} \text {Then, they can be added as }\\ &\left[\begin{array}{ll} \mathrm{a}_{11} & \mathrm{a}_{12} \\ \mathrm{a}_{21} & \mathrm{a}_{22} \end{array}\right]+\left[\begin{array}{ll} \mathrm{b}_{11} & \mathrm{~b}_{12} \\ \mathrm{~b}_{21} & \mathrm{~b}_{22} \end{array}\right]=\left[\begin{array}{ll} \mathrm{a}_{11}+\mathrm{b}_{11} & \mathrm{a}_{12}+\mathrm{b}_{12} \\ \mathrm{a}_{21}+\mathrm{b}_{21} & \mathrm{a}_{22}+\mathrm{b}_{22} \end{array}\right]\\ &\text { So, }\\ &A+B=\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]+\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]\\ &\Rightarrow A+B=\left[\begin{array}{ll} 0+0 & 1-1 \\ 1+1 & 1+0 \end{array}\right]\\ \end{aligned}
\Rightarrow A+B=\left[\begin{array}{ll} 0 & 0 \\ 2 & 1 \end{array}\right]
Now, let us compute (A - B).
In the same manner, two matrices which have the same order can be subtracted.
So,
\begin{array}{l} A-B=\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]-\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \\ \Rightarrow A-B=\left[\begin{array}{ll} 0-0 & 1-(-1) \\ 1-1 & 1-0 \end{array}\right] \end{array}
\begin{array}{l} \Rightarrow A-B=\left[\begin{array}{cc} 0 & 1+1 \\ 0 & 1 \end{array}\right] \\ \Rightarrow A-B=\left[\begin{array}{ll} 0 & 2 \\ 0 & 1 \end{array}\right] \end{array}
Now, let us compute (A + B) (A - B).
For multiplying two given matrices A and B, we must check if the number of columns in A are equal to the number of rows in B.
Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
(A+B)(A-B)=\left[\begin{array}{ll} 0 & 0 \\ 2 & 1 \end{array}\right]\left[\begin{array}{ll} 0 & 2 \\ 0 & 1 \end{array}\right]
\left[\begin{array}{ll} 0 & 0 \\ 2 & 1 \end{array}\right]\left[\begin{array}{ll} 0 & 2 \\ 0 & 1 \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\0 & 5 \end{array}\right]
So, we get
(A+B)(A-B)=\left[\begin{array}{ll} 0 & 0 \\ 0 & 5\end{array}\right]
Take R.H.S: A^2 - B^2
Let us compute A^2 first.
A^2 = A.A
So, we need to compute A.A.
A \cdot A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 1 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix A, then finally sum them up.
(0, 1).(0, 1) = (0 × 0) + (1 × 1)
⇒ (0, 1).(0, 1) = 0 + 1
⇒ (0, 1).(0, 1) = 1
Multiply 2nd row of matrix A by matching members of 2nd column of matrix A, and finally sum them up.
(1, 1).(1, 1) = (1 × 1) + (1 × 1)
⇒ (1, 1).(1, 1) = 1 + 1
⇒ (1, 1).(1, 1) = 2
\Rightarrow(1,1):(1,1)=2$ $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ \\So, $A^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ \\Now, let us compute $\mathrm{B}^{2}$. $B^{2}=B . B$ \\We need to compute B.B.\\ $B . B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
Multiply 1st row of matrix B by matching members of 1st column of matrix B, and end by summing them up.
(0, -1).(0, 1) = (0 × 0) + (-1 × 1)
⇒ (0, -1).(0, 1) = 0 - 1
⇒ (0, -1).(0, 1) = -1
\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}-1 & \end{array}\right]$
Multiply 1st row of matrix B by matching members of 2nd column of matrix B, and finally then
sum them up.
\\(0,-1) :(-1,0)=(0 \times-1)+(-1 \times 0)$ \\$\Rightarrow(0,-1) \cdot(-1,0)=0+0$ \\$\Rightarrow(0,-1) \cdot(-1,0)=0$ \\$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0\end{array}\right]$
Multiply 2nd row of matrix B by matching members of 1st column of matrix B, and end by summing them up.
\\ (1,0) \cdot(0,1)=(1 \times 0)+(0 \times 1)$ \\$\Rightarrow(1,0) \cdot(0,1)=0+0$ \\$\Rightarrow(1,0) \cdot(0,1)=0$ \\$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0\end{array}\right]$
Multiply 2nd row of matrix B by matching members of 2nd column of matrix B, and then finally sum them up.
\\ (1,0) \cdot(-1,0)=(1 \times-1)+(0 \times 0)$ \\$\Rightarrow(1,0) \cdot(-1,0)=-1+0$ \\$\Rightarrow(1,0) \cdot(-1,0)=-1$ \\$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
So,
$$ B^{2}=\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] $$
Now, compute $A^{2}-B^{2}$.
\\ A^{2}-B^{2}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]-\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ \\$\Rightarrow A^{2}-B^{2}=\left[\begin{array}{cc}1-(-1) & 1-0 \\ 1-0 & 2-(-1)\end{array}\right]$ \\$\Rightarrow A^{2}-B^{2}=\left[\begin{array}{cc}1+1 & 1 \\ 1 & 2+1\end{array}\right]$ \\$\Rightarrow A^{2}-B^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$
Evidently,
(A+B)(A-B)=\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]_{\text {and }} A^{2}-B^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$ are not equal.
Thus, we get, $(A+B)(A-B) \neq A^{2}-B^{2}$.

Question:10

Find the value of x if
\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=0

Answer:

The given matrix equation is,
\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=0
We need to determine the value of x.
Let us compute L.H.S: \left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]
\begin{array}{l} \text { Let, } A=\left[\begin{array}{lll} 1 & \text { X } & 1 \end{array}\right] \\ \text { B }=\left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right] \text { and } \\ C=\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right] \end{array}
Multiplication of any two matrices is only possible when the number of columns in A is equal to the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
First, let us compute
\text { A. } B=\left[\begin{array}{lll} 1 & \text { x } & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]=D(\text { say })
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then sum them up.
\\(1, x, 1).(1, 2, 15) = (1 $ \times $ 1) + (x $ \times $ 2) + (1 $ \times $ 15) \\$ \Rightarrow $ (1, x, 1).(1, 2, 15) = 1 + 2x + 15 \\$ \Rightarrow $ (1, x, 1).(1, 2, 15) = 2x + 16
\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]=[(2 x+16)
Multiply 1st row of matrix A by matching members of 2nd column of matrix B, then sum them up.
\\(1, x, 1).(3, 5, 3) = (1 $ \times $ 3) + (x $ \times $ 5) + (1 $ \times $ 3) \\$ \Rightarrow $ (1, x, 1).(3, 5, 3) = 3 + 5x + 3 \\$ \Rightarrow $ (1, x, 1).(3, 5, 3) = 5x + 6
\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]=[(2 x+16) \quad(5 x+6) \quad]
Multiply 1st row of matrix A by matching members of 3rd column of matrix B, then sum them up.
\\(1, x, 1).(2, 1, 2) = (1 $ \times $ 2) + (x $ \times $ 1) + (1 $ \times $ 2) \\$ \Rightarrow $ (1, x, 1).(2, 1, 2) = 2 + x + 2 \\$ \Rightarrow $ (1, x, 1).(2, 1, 2) = x + 4
\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]=[(2 x+16) \quad(5 x+6) \quad(x+4)]$
So,
D=[(2 x+16) \quad(5 x+6) \quad(x+4)]
Now compute
\text { D. } C=[(2 x+16) \quad(5 x+6) \quad(x+4)]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right] $$
Multiply 1st row of matrix D by matching members of 1st column of matrix C, then sum them up.
\\(2x + 16, 5x + 6, x + 4).(1, 2, x) = ((2x + 16) $ \times $ 1) + ((5x + 6) $ \times $ 2) + ((x + 4) $ \times $ x) \\$ \Rightarrow $ (2x + 16, 5x + 6, x + 4).(1, 2, x) = (2x + 16) + (10x + 12) + (x\textsuperscript{2} + 4x) \\$ \Rightarrow $ (2x + 16, 5x + 6, x + 4).(1, 2, x) = x\textsuperscript{2} + 2x + 10x + 4x + 16 + 12 \\$ \Rightarrow $ (2x + 16, 5x + 6, x + 4).(1, 2, x) = x\textsuperscript{2} + 16x + 28
\begin{aligned} &[(2 x+16) \quad(5 x+6) \quad(x+4)]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=\left[x^{2}+16 x+28\right]\\ &\text { So, we get, }\\ &\left[\begin{array}{lll} 1 & x & 1 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{array}\right]\left[\begin{array}{l} 1 \\ 2 \\ x \end{array}\right]=\left[x^{2}+16 x+28\right] \end{aligned}
Now, put L.H.S = R.H.S
[x\textsuperscript{2} + 16x + 28] = [0]
This means,
\\x\textsuperscript{2} + 16x + 28 = 0 \\$ \Rightarrow $ x\textsuperscript{2} + 14x + 2x + 28 = 0 \\$ \Rightarrow $ x(x + 14) + 2(x + 14) = 0 \\$ \Rightarrow $ (x + 2)(x + 14) = 0 \\$ \Rightarrow $ (x + 2) = 0 or (x + 14) = 0 \\$ \Rightarrow $ x = -2 or x = -14
Thus, x = -2, -14.

Question:11

Show that \begin{bmatrix} 5 &3 \\-1 &-2 \end{bmatrix} satisfies the equation A^2 - 3A - 7I = 0 and hence find A^{-1}.

Answer:

We have the given matrix A, such that
\begin{bmatrix} 5 &3 \\-1 &-2 \end{bmatrix}
(i). We need to show that the matrix A satisfies the equation A\textsuperscript{2} -3A - 7I = 0.
(ii). Also, we need to find A\textsuperscript{-1}.
(i). Take L.H.S: A\textsuperscript{2} - 3A - 7I
First, compute A\textsuperscript{2}.
A\textsuperscript{2} = A.A
A^{2}=\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]
By convention, if we have to multiple matrix A and B then the number of columns in matrix A should be equal to the number of rows in matrix B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
Multiply 1st row of matrix A by matching members of 1st column of matrix A, then sum them up.
\\(5, 3).(5, -1) = (5 $ \times $ 5) + (3 $ \times $ -1) \\$ \Rightarrow $ (5, 3).(5, -1) = 25 + (-3) \\$ \Rightarrow $ (5, 3).(5, -1) = 25 - 3 \\$ \Rightarrow $ (5, 3).(5, -1) = 22
\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right] = \begin{bmatrix} 22 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix A, then sum them up.
\\(5, 3).(3, -2) = (5 $ \times $ 3) + (3 $ \times $ -2) \\$ \Rightarrow $ (5, 3).(3, -2) = 15 + (-6) \\$ \Rightarrow $ (5, 3).(3, -2) = 15 - 6 \\$ \Rightarrow $ (5, 3).(3, -2) = 9
\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right] = \begin{bmatrix} 22 & 9\\ & \end{bmatrix}
Multiply 2nd row of matrix A by matching members of 1st column of matrix A, then sum them up.
\\ (-1, -2).(5, -1) = (-1 $ \times $ 5) + (-2 $ \times $ -1) \\$ \Rightarrow $ (-1, -2).(5, -1) = -5 + 2 \\$ \Rightarrow $ (-1, -2).(5, -1) = -3
\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right] = \begin{bmatrix} 22 & 9\\ -3& \end{bmatrix}
Multiply 2nd row of matrix A by matching members of 2nd column of matrix A, then sum them up.
\\ (-1, -2).(3, -2) = (-1 $ \times $ 3) + (-2 $ \times $ -2) \\$ \Rightarrow $ (-1, -2).(3, -2) = -3 + 4 \\$ \Rightarrow $ (-1, -2).(3, -2) = 1
\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right] = \begin{bmatrix} 22 & 9\\ -3& 1\end{bmatrix}
A^2 = \begin{bmatrix} 22 & 9\\ -3& 1\end{bmatrix}
Substitute values of A\textsuperscript{2} and A in A\textsuperscript{2} - 3A - 7I.
A^{2}-3 A-7 I=\left[\begin{array}{ll} 22 & 9 \\ -3 & 1 \end{array}\right]-3\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]-7I
Also, since matrix A is of the order 2 × 2, then I will be the identity matrix of order 2 × 2 such that,
\begin{array}{l} \Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 22 & 9 \\ -3 & 1 \end{array}\right]-3\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]-7\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \\\\ \Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 22 & 9 \\ -3 & 1 \end{array}\right]-\left[\begin{array}{cc} 3 \times 5 & 3 \times 3 \\ 3 \times-1 & 3 \times-2 \end{array}\right]-\left[\begin{array}{cc} 7 \times 1 & 7 \times 0 \\ 7 \times 0 & 7 \times 1 \end{array}\right] \\\\ \Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 22 & 9 \\ -3 & 1 \end{array}\right]-\left[\begin{array}{cc} 15 & 9 \\ -3 & -6 \end{array}\right]-\left[\begin{array}{cc} 7 & 0 \\ 0 & 7 \end{array}\right] \\ \\\Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 22-15-7 & 9-9-0 \\ -3-(-3)-0 & 1-(-6)-7 \end{array}\right] \\ \\\Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 22-22 & 0 \\ -3+3 & 1+6-7 \end{array}\right] \\ \end{array}
\Rightarrow A^{2}-3 A-7 I=\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]
Hence proved,
L.H.S = R.H.S
Thus, we have shown that matrix A satisfy A\textsuperscript{2} - 3A - 7I = 0.
(ii). Now, let us find A\textsuperscript{-1}.
We know that, inverse of matrix A is A\textsuperscript{-1}. is true only when
A $ \times $ A\textsuperscript{-1} = A\textsuperscript{-1} $ \times $ A = I
Where, I = Identity matrix
We get,
A\textsuperscript{2} - 3A - 7I = 0
Multiply A\textsuperscript{-1}. on both sides, we get
\\A\textsuperscript{-1}(A\textsuperscript{2} - 3A - 7I) = A\textsuperscript{-1} $ \times $ 0 \\$ \Rightarrow $ A\textsuperscript{-1}.A\textsuperscript{2} - A\textsuperscript{-1}.3A - A\textsuperscript{-1}.7I = 0 \\$ \Rightarrow $ A\textsuperscript{-1}.A.A - 3A\textsuperscript{-1}.A - 7A\textsuperscript{-1}.I = 0 \\$ \Rightarrow $ (A\textsuperscript{-1}A)A - 3(A\textsuperscript{-1}A) - 7(A\textsuperscript{-1}I) = 0 \\ \text{And as } A\textsuperscript{-1}A = I \: \: and\: \: A\textsuperscript{-1}I = A\textsuperscript{-1} \\$ \Rightarrow $ IA - 3I - 7A\textsuperscript{-1} = 0 \\ \text{Since, IA = A} \\$ \Rightarrow $ A - 3I - 7A\textsuperscript{-1} = 0 \\$ \Rightarrow $ 7A\textsuperscript{-1} = A - 3I
\begin{aligned} &\Rightarrow \mathrm{A}^{-1}=\frac{1}{7}(\mathrm{~A}-3 \mathrm{I})\\ &\Rightarrow A^{-1}=\frac{1}{7}\left(\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]-3\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right)_{[\because} A=\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right] \text { and } I=\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\\ &\Rightarrow A^{-1}=\frac{1}{7}\left(\left[\begin{array}{cc} 5 & 3 \\ -1 & -2 \end{array}\right]-\left[\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right]\right)\\ &\Rightarrow A^{-1}=\frac{1}{7}\left[\begin{array}{cc} 5-3 & 3-0 \\ -1-0 & -2-3 \end{array}\right]\\ &\Rightarrow A^{-1}=\frac{1}{7}\left[\begin{array}{cc} 2 & 3 \\ -1 & -5 \end{array}\right]\\ ,&A^{-1}=\frac{1}{7}\left[\begin{array}{cc} 2 & 3 \\ -1 & -5 \end{array}\right]\\ \end{aligned}

Question:12

Find the matrix A satisfying the matrix equation:

\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right] \mathrm{A}\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]

Answer:

The given matrix equation is,
\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right] \mathrm{A}\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]
We need to find matrix A.
Let matrix A be of order 2 × 2, and can be represented as
A=\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]
Then, we have
\begin{aligned} &\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ &\text { Take L.H.S: }\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right] \mathrm{A}\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]\\ &\text { So, first let us calculate }\\ &\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\mathrm{X} . \mathrm{Y}(\text { say }) \end{aligned}
If A and B are two given matrices and we have to multiply them, then the number of columns in matrix A should be equal to the number of rows in matrix B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
Multiply 1st row of matrix X by matching members of 1st column of matrix Y, then finally end by summing them up.
\\(2, 1).(a, c) = (2 $ \times $ a) + (1 $ \times $ c) \\$ \Rightarrow $ (2, 1).(a, c) = 2a + c
\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\left[\begin{array}{l} 2 \mathrm{a}+\mathrm{c} \end{array}\right]
Multiply 1st row of matrix X by matching members of 2nd column of matrix Y, then finally end by summing them up.
\\(2, 1).(b, d) = (2 $ \times $ b) + (1 $ \times $ d) \\$ \Rightarrow $ (2, 1).(b, d) = 2b + d
\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} 2 a+c & 2 b+d \end{array}\right]
Multiply 2nd row of matrix X by matching members of 1st column of matrix Y, then finally end by summing them up.
\\(3, 2).(a, c) = (3 $ \times $ a) + (2 $ \times $ c) \\$ \Rightarrow $ (3, 2).(a, c) = 3a + 2c
\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & \end{array}\right]
Multiply 2nd row of matrix X by matching members of 2nd column of matrix Y, then finally end by summing them up.
\\(3, 2).(b, d) = (3 $ \times $ b) + (2 $ \times $ d) \\$ \Rightarrow $ (3, 2).(b, d) = 3b + 2d
\left[\begin{array}{ll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]
Let X.Y = Z
Now, we need to find \left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix}
Z.Q=\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix}
Where, let Q=\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix}
Multiply 1st row of matrix Z by matching members of 1st column of matrix Q, then finally end by summing them up.
\\(2a + c, 2b + d).(-3, 5) = ((2a + c) $ \times $ -3) + ((2b + d) $ \times $ 5) \\$ \Rightarrow $ (2a + c, 2b + d).(-3, 5) = -6a - 3c + 10b + 5d \\$ \Rightarrow $ (2a + c, 2b + d).(-3, 5) = -6a + 10b - 3c + 5d
\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix} = \begin{bmatrix} -6a+10b-3c+5d & \\ & \end{bmatrix}
Multiply 1st row of matrix Z by matching members of 2nd column of matrix Q, then finally end by summing them up.
\\(2a + c, 2b + d).(2, -3) = ((2a + c) $ \times $ 2) + ((2b + d) $ \times $ -3) \\$ \Rightarrow $ (2a + c, 2b + d).(2, -3) = 4a + 2c - 6b - 3d \\$ \Rightarrow $ (2a + c, 2b + d).(2, -3) = 4a - 6b + 2c - 3d
\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix} = \begin{bmatrix} -6a+10b-3c+5d &4a-6b+2c-3d \\ & \end{bmatrix}
Multiply 2nd row of matrix Z by matching members of 1st column of matrix Q, then finally end by summing them up.
\\(3a + 2c, 3b + 2d).(-3, 5) = ((3a + 2c) $ \times $ -3) + ((3b + 2d) $ \times $ 5) \\$ \Rightarrow $ (3a + 2c, 3b + 2d).(-3, 5) = -9a - 6c + 15b + 10d \\$ \Rightarrow $ (3a + 2c, 3b + 2d).(-3, 5) = -9a + 15b - 6c + 10d
\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix} = \begin{bmatrix} -6a+10b-3c+5d &4a-6b+2c-3d \\ -9a + 15b - 6c + 10d& \end{bmatrix}
Multiply 2nd row of matrix Z by matching members of 2nd column of matrix Q, then finally end by summing them up.
\\(3a + 2c, 3b + 2d).(2, -3) = ((3a + 2c) $ \times $ 2) + ((3b + 2d) $ \times $ -3) \\$ \Rightarrow $ (3a + 2c, 3b + 2d).(2, -3) = 6a + 4c - 9b - 6d \\$ \Rightarrow $ (3a + 2c, 3b + 2d).(2, -3) = 6a - 9b + 4c - 6d
\left[\begin{array}{cc} 2 a+c & 2 b+d \\ 3 a+2 c & 3b+2d \end{array}\right]\begin{bmatrix} -3 &2 \\5 &-3 \end{bmatrix} = \begin{bmatrix} -6a+10b-3c+5d &4a-6b+2c-3d \\ -9a + 15b - 6c + 10d& 6a - 9b + 4c - 6d\end{bmatrix}
So, we have
{\left[\begin{array}{lll} 2 & 1 \\ 3 & 2 \end{array}\right]\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]\left[\begin{array}{cc} -3 & 2 \\ 5 & -3 \end{array}\right]=\left[\begin{array}{ll} -6 a+10 b-3 c+5 d & 4 a-6 b+2 c-3 d \\ -9 a+15 b-6 c+10 d & 6 a-9 b+4 c-6 d \end{array}\right]} \\
Now, for L . H . S=R . H . S
{\left[\begin{array}{ll} -6 a+10 b-3 c+5 d & 4 a-6 b+2 c-3 d \\ -9 a+15 b-6 c+10 d & 6 a-9 b+4 c-6 d \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]}
If the matrices have the same order then we can write them as,
\\-6a + 10b - 3c + 5d = 1 $ \ldots $ (i) \\4a - 6b + 2c - 3d = 0 $ \ldots $ (ii) \\-9a + 15b - 6c + 10d = 0 $ \ldots $ (iii) \\6a - 9b + 4c - 6d = 1 $ \ldots $ (iv)
We have to find four variables: a, b, c, d and four equations
So, on adding equations (i) and (iv), we get
\\(-6a + 10b - 3c + 5d) + (6a - 9b + 4c - 6d) = 1 + 1 \\$ \Rightarrow $ -6a + 6a + 10b - 9b - 3c + 4c + 5d - 6d = 2 \\$ \Rightarrow $ 0 + b + c - d = 2 \\$ \Rightarrow $ d = b + c - 2 $ \ldots $ (v)
Now, adding equations (ii) and (iii), we get
\\(4a - 6b + 2c - 3d) + (-9a + 15b - 6c + 10d) = 0 + 0 \\$ \Rightarrow $ 4a - 9a - 6b + 15b + 2c - 6c - 3d + 10d = 0 \\$ \Rightarrow $ -5a + 9b - 4c + 7d = 0 $ \ldots $ (vi)
By adding equations (iv) and (vi), we get
\\(6a - 9b + 4c - 6d) + (-5a + 9b - 4c + 7d) = 1 + 0 \\$ \Rightarrow $ 6a - 5a - 9b + 9b + 4c - 4c - 6d + 7d = 1 \\$ \Rightarrow $ a + 0 + 0 + d = 1 \\$ \Rightarrow $ d = 1 - a $ \ldots $ (vii)
Substituting the value of d from equation (vii) in (v), we get
\\(1 - a) = b + c - 2 \\$ \Rightarrow $ b + c - 2 - 1 = -a \\$ \Rightarrow $ b + c - 3 = -a \\$ \Rightarrow $ a = 3 - b - c $ \ldots $ (viii)
Now, by substituting values of a and d from equations (vii) and (viii) in equation (iii), we get
\\-9(3 - b - c) + 15b - 6c + 10(1 - a) = 0 \\$ \Rightarrow $ -9(3 - b - c) + 15b - 6c + 10(1 - (3 - b - c)) = 0 [$\because$ a = 3 - b - c] \\$ \Rightarrow $ -27 + 9b + 9c + 15b - 6c + 10(1 - 3 + b + c) = 0 \\$ \Rightarrow $ -27 + 9b + 9c + 15b - 6c + 10(-2 + b + c) = 0 \\$ \Rightarrow $ -27 + 9b + 9c + 15b - 6c - 20 + 10b + 10c = 0 \\$ \Rightarrow $ 9b + 15b + 10b + 9c - 6c + 10c - 27 - 20 = 0 \\$ \Rightarrow $ 34b + 13c - 47 = 0 \\$ \Rightarrow $ 34b + 13c = 47 $ \ldots $ (ix)
Also, substituting values of a and d from equations (vii) and (viii) in equation (ii), we get
\\4(3 - b - c) - 6b + 2c - 3(1 - a) = 0 \\$ \Rightarrow $ 12 - 4b - 4c - 6b + 2c - 3(1 - (3 - b - c)) = 0 \\$ \Rightarrow $ 12 - 4b - 4c - 6b + 2c - 3(1 - 3 + b + c) = 0 \\$ \Rightarrow $ 12 - 4b - 4c - 6b + 2c - 3(-2 + b + c) = 0 \\$ \Rightarrow $ 12 - 4b - 4c - 6b + 2c + 6 - 3b - 3c = 0 \\$ \Rightarrow $ -4b - 6b - 3b - 4c + 2c - 3c + 12 + 6 = 0 \\$ \Rightarrow $ -13b - 5c + 18 = 0 \\$ \Rightarrow $ 13b + 5c = 18 $ \ldots $ (x)
On multiplication of equation (ix) by 5 and equation (x) by 13, we get
\\(ix) $ \Rightarrow $ 5(34b + 13c) = 5 $ \times $ 47 \\$ \Rightarrow $ 170b + 65c = 235 $ \ldots $ (xi) \\(x) $ \Rightarrow $ 13(13b + 5c) = 13 $ \times $ 18 \\$ \Rightarrow $ 169b + 65c = 234 $ \ldots $ (xii)
By subtracting equations (xi) and (xii), we get
\\(170b + 65c) - (169b + 65c) = 235 - 234 \\$ \Rightarrow $ 170b - 169b + 65c - 65c = 1 \\$ \Rightarrow $ b = 1
By substituting b = 1 in equation (x), we get
\\13(1) + 5c = 18 \\$ \Rightarrow $ 13 + 5c = 18 \\$ \Rightarrow $ 5c = 18 - 13 \\$ \Rightarrow $ 5c = 5
\\$ \Rightarrow $ c = 1
By substituting b = 1 and c = 1 in equation (viii), we get
\\a = 3 - b - c \\$ \Rightarrow $ a = 3 - 1 - 1 \\$ \Rightarrow $ a = 3 - 2 \\$ \Rightarrow $ a = 1
By substituting a = 1 in equation (vii), we get
\\d = 1 - a \\$ \Rightarrow $ d = 1 - 1 \\$ \Rightarrow $ d = 0
Thus, the matrix A is
A= \begin{bmatrix} 1 & 1\\1 & 0 \end{bmatrix}

Question:13

Find A, if \left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right] \mathrm{A}=\left[\begin{array}{lll} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right].

Answer:

We have the matrix,
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right] \mathrm{A}=\left[\begin{array}{lll} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right]
We need to find the matrix A.
Let us check what the order of the given matrices is.
We know that order of a matrix is the number of rows and columns in a matrix.
If a given matrix has M rows and N columns, the order of matrix is M × N.
Order of \left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]= X($say)
Number of rows = 3
$ \Rightarrow $ M = 3
Number of column = 1
$ \Rightarrow $ N = 1
Then, order of matrix X =M $ \times $ N
$ \Rightarrow $ Order of matrix X = 3 $ \times $ 1
Order of \left[\begin{array}{lll} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right]=\mathrm{Y}(\text { say })
Number of rows = 3
$ \Rightarrow $ M = 3
Number of columns = 3
$ \Rightarrow $ N = 3
Then, order of matrix Y = M $ \times $ N
$ \Rightarrow $ Order of matrix Y = 3 $ \times $ 3
We must note that, when a matrix of order 1 $ \times $ 3 is multiplied to the matrix X, only then matrix Y is produced.
Let matrix A be of order 1 $ \times $ 3, and can be represented as
A=\left[\begin{array}{lll}a & b & c\end{array}\right]$ Then, we have $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]=\left[\begin{array}{lll}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right]$ Take $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]\left[\begin{array}{lll}a & b & c\end{array}\right]$
In order to carry out the multiplication of two matrices, A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
So, we get,
\text { X. } A=\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]
Multiply 1st row of matrix X by matching member of 1st column of matrix A, then finally end by summing it up.
(4)(a) = 4a
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & \\ & \end{bmatrix}
Multiply 1st row of matrix X by matching member of 2nd column of matrix A, then finally end by summing it up.
(4)(b) = 4b
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b \\ & \end{bmatrix}
Multiply 1st row of matrix X by matching member of 3rd column of matrix A, then finally end by summing it up.
(4)(c) = 4c
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ & \end{bmatrix}
Multiply 2nd row of matrix X by matching member of 1st column of matrix A, then finally end by summing it up.
(1)(a) = a
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& \end{bmatrix}
Multiply 2nd row of matrix X by matching member of 2nd column of matrix A, then finally end by summing it up.
(1)(b) = b
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& b\end{bmatrix}
Multiply 2nd row of matrix X by matching member of 3rd column of matrix A, then finally end by summing it up.
(1)(c) = c
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& b & c\end{bmatrix}
Multiply 3rd row of matrix X by matching member of 1st column of matrix A, then finally end by summing it up.
(3)(a) = 3a
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& b & c\\ 3a & & \end{bmatrix}
Multiply 3rd row of matrix X by matching member of 2nd column of matrix A, then finally end by summing it up.
(3)(b) = 3b
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& b & c\\ 3a & 3b & \end{bmatrix}
Multiply 3rd row of matrix X by matching member of 3rd column of matrix A, then finally end by summing it up.
(3)(c) = 3c
\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \text { a } & \text { b } & c \end{array}\right]= \begin{bmatrix} 4a & 4b & 4c\\ a& b & c\\ 3a & 3b &3c \end{bmatrix}
Now, L.H.S = R.H.S
\begin{array}{l} \Rightarrow\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & \mathrm{b} & \mathrm{c} \end{array}\right]=\left[\begin{array}{lll} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ccc} 4 \mathrm{a} & 4 \mathrm{~b} & 4 \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ 3 \mathrm{a} & 3 \mathrm{~b} & 3 \mathrm{c} \end{array}\right]=\left[\begin{array}{lll} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{array}\right] \end{array}
Since, the matrices have the same order, we can say,
\\4a = -4 $ \ldots $ (i) \\4b = 8 $ \ldots $ (ii) \\4c = 4 $ \ldots $ (iii) \\a = -1 $ \ldots $ (iv) \\b = 2 $ \ldots $ (v) \\c = 1 $ \ldots $ (vi) \\3a = -3 $ \ldots $ (vii) \\3b = 6 $ \ldots $ (viii) \\3c = 3 $ \ldots $ (ix)
From equation (i), we can determine the value of a,
4a = -4
$ \Rightarrow $ a = -1
From equation (ii), we can determine the value of b,
4b = 8
$ \Rightarrow $ b = 2
From equation (iii), we can determine the value of c,
4c = 4
$ \Rightarrow $ c = 1
And it will satisfy other equations (iv), (v), (vi), (vii), (viii) and (ix) too.
Thus, the matrix A is
A= \begin{bmatrix} -1 &2 &1 \end{bmatrix}

Question:14

If \begin{aligned} &A=\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right] \end{aligned} then verify (BA)^{2} \neq B^{2} A^{2}

Answer:

We have the following matrices,
\begin{aligned} \\ &A=\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right] \end{aligned}
We need to verify (BA)\textsuperscript{2} $ \neq $ B\textsuperscript{2}A\textsuperscript{2}.
Take L.H.S: (BA)\textsuperscript{2}
First, compute BA.
\text { B. } A=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]
We understand what a order of matrix is,
If a matrix has M rows and N columns, the order of matrix is M × N.
Order of matrix B:
Number of rows = 2
⇒ M = 2
Number of columns = 3
⇒ N = 3
Then, order of matrix = M × N
⇒ Order of matrix B = 2 × 3
Order of matrix A:
Number of rows = 3
⇒ M = 3
Number of columns = 2
⇒ N = 2
Then, order of matrix = M × N
⇒ Order of matrix A = 3 × 2
If we have two given matrices A and B which need to be multiplied, then the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
So, A and B can be multiplied.
\text { B. } A=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]

Multiply 1st row of matrix B by matching member of 1st column of matrix A, then finally end by summing them up.
\\(2, 1, 2)(3, 1, 2) = (2 $ \times $ 3) + (1 $ \times $ 1) + (2 $ \times $ 2) \\$ \Rightarrow $ (2, 1, 2)(3, 1, 2) = 6 + 1 + 4 \\$ \Rightarrow $ (2, 1, 2)(3, 1, 2) = 11
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 11 & \\ & \end{bmatrix}
Multiply 1st row of matrix B by matching member of 2nd column of matrix A, then finally end by summing them up.
\\(2, 1, 2)(-4, 1, 0) = (2 $ \times $ -4) + (1 $ \times $ 1) + (2 $ \times $ 0) \\$ \Rightarrow $ (2, 1, 2)(-4, 1, 0) = -8 + 1 + 0 \\$ \Rightarrow $ (2, 1, 2)(-4, 1, 0) = -7
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 11 &-7 \\ & \end{bmatrix}
Multiply 2nd row of matrix B by matching member of 1st column of matrix A, then finally end by summing them up.
\\(1, 2, 4)(3, 1, 2) = (1 $ \times $ 3) + (2 $ \times $ 1) + (4 $ \times $ 2) \\$ \Rightarrow $ (1, 2, 4)(3, 1, 2) = 3 + 2 + 8 \\$ \Rightarrow $ (1, 2, 4)(3, 1, 2) = 13
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 11 &-7 \\ 13& \end{bmatrix}
Multiply 2nd row of matrix B by matching member of 2nd column of matrix A, then finally end by summing them up.
\\ (1, 2, 4)(-4, 1, 0) = (1 $ \times $ -4) + (2 $ \times $ 1) + (4 $ \times $ 0) \\$ \Rightarrow $ (1, 2, 4)(-4, 1, 0) = -4 + 2 + 0 \\$ \Rightarrow $ (1, 2, 4)(-4, 1, 0) = -2
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 11 &-7 \\ 13& -2\end{bmatrix}
So,
(BA)\textsuperscript{2} = (BA).(BA)
\begin{aligned} &\Rightarrow(\mathrm{BA})^{2}=\left[\begin{array}{ll} 11 & -7 \\ 13 & -2 \end{array}\right]\left[\begin{array}{ll} 11 & -7 \\ 13 & -2 \end{array}\right]\\ &\text { Similarly, }\\ &\Rightarrow(\mathrm{BA})^{2}=\left[\begin{array}{ll} (11 \times 11+(-7) \times 13) & (11 \times-7+(-7) \times(-2)) \\ (13 \times 11+(-2) \times 13) & (13 \times-7+(-2) \times(-2)) \end{array}\right]\\ &\Rightarrow(\mathrm{BA})^{2}=\left[\begin{array}{cc} 121-91 & -77+14 \\ 143-26 & -91+4 \end{array}\right]\\ &\Rightarrow(\mathrm{BA})^{2}=\left[\begin{array}{cc} 30 & -63 \\ 117 & -87 \end{array}\right] \end{aligned}
Take R.H.S: B\textsuperscript{2}A\textsuperscript{2}
Let us first compute B\textsuperscript{2}.
B\textsuperscript{2} = B.B
\Rightarrow \mathrm{B}^{2}=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]
For multiplication of two matrices, say A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
Note that in matrix B, number of columns is not equal to the number of rows.
Which means, we can’t find B\textsuperscript{2}.
$ \Rightarrow $ L.H.S $ \neq $ R.H.S
Thus, we have verified that, (BA)\textsuperscript{2} $ \neq $ B\textsuperscript{2}A\textsuperscript{2}.

Question:15

If possible, find BA and AB, where
A=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right], B=\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]

Answer:

We are given matrices A and B, such that
A=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right], B=\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]
We are required to find BA and AB, if possible.
To carry out the multiplication of matrices A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
Let us check for BA.
\mathrm{BA}=\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]
If a matrix has M rows and N columns, the order of matrix is M × N.
Order of B:
Number of rows = 3
⇒ M = 3
Number of columns = 2
⇒ N = 2
Then, order of matrix B = M × N
⇒ Order of matrix B = 3 × 2
Order of A:
Number of rows = 2
⇒ M = 2
Number of columns =3
⇒ N = 3
Then, order of matrix A = M × N
⇒ Order of matrix A = 2 × 3
Here,
Number of columns in matrix B = Number of rows in matrix A = 2
So, BA is possible.
Let us check for AB.
\mathrm{AB}=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]
Here,
Number of columns in matrix A = Number of rows in matrix B = 3
So, AB is also possible.
Let us find out BA.
\mathrm{BA}=\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]
Multiply 1st row of matrix B by matching members of 1st column of matrix A, then finally end by summing them up.
\\(4, 1).(2, 1) = (4 $ \times $ 2) + (1 $ \times $ 1) \\$ \Rightarrow $ (4, 1).(2, 1) = 8 + 1 \\$ \Rightarrow $ (4, 1).(2, 1) = 9
\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]= \begin{bmatrix} 9 & \\ & \\ & \end{bmatrix}
Multiply 1st row of matrix B by matching members of 2nd column of matrix A, then finally end by summing them up
\\(4, 1).(1, 2) = (4 $ \times $ 1) + (1 $ \times $ 2) \\$ \Rightarrow $ (4, 1).(1, 2) = 4 + 2 \\$ \Rightarrow $ (4, 1).(1, 2) = 6
\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]= \begin{bmatrix} 9 & 6 \\ & \\ & \end{bmatrix}
Similarly, let us calculate in the matrix itself.
\begin{array}{l} {\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]} \\ \Rightarrow\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]=\left[\begin{array}{ccc} 9 & 6 & 8+4 \\ 4+3 & 2+6 & 4+12 \\ 2+2 & 1+4 & 2+8 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]=\left[\begin{array}{lll} 9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10 \end{array}\right] \end{array}
Now, let us find out AB.
A B=\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally end by summing it up.
\\(2, 1, 2).(4, 2, 1) = (2 $ \times $ 4) + (1 $ \times $ 2) + (2 $ \times $ 1) \\$ \Rightarrow $ (2, 1, 2).(4, 2, 1) = 8 + 2 + 2 \\$ \Rightarrow $ (2, 1, 2).(4, 2, 1) = 12
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]= \begin{bmatrix} 12 & \\ & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix B, then finally end by summing it up.
\\(2, 1, 2).(1, 3, 2) = (2 $ \times $ 1) + (1 $ \times $ 3) + (2 $ \times $ 2) \\$ \Rightarrow $ (2, 1, 2).(1, 3, 2) = 2 + 3 + 4 \\$ \Rightarrow $ (2, 1, 2).(1, 3, 2) = 9
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]= \begin{bmatrix} 12 & 9\\ & \\ & \end{bmatrix}
Similarly, let us calculate in the matrix itself.
\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]=\begin{bmatrix} 12 &9 \\ (1 \times 4)+(2 \times 2)+(4 \times 1) & (1 \times 1)+(2 \times 3)+(4 \times 2) \end{bmatrix}
\begin{aligned} &\Rightarrow\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{cc} 12 & 9 \\ 4+4+4 & 1+6+8 \end{array}\right]\\ &\Rightarrow\left[\begin{array}{lll} 2 & 1 & 2 \\ 1 & 2 & 4 \end{array}\right]\left[\begin{array}{ll} 4 & 1 \\ 2 & 3 \\ 1 & 2 \end{array}\right]=\left[\begin{array}{cc} 12 & 9 \\ 12 & 15 \end{array}\right]\\ &A B=\left[\begin{array}{cc} 12 & 9 \\ 12 & 15 \end{array}\right]_{\text {and }} B A=\left[\begin{array}{ccc} 9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10 \end{array}\right] \end{aligned}

Question:16

Show by an example that for A ≠ O, B ≠ O, AB = O.

Answer:

We know,
To multiply the given matrices A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
We are given that,
A ≠ 0 and B ≠ 0
We need to show that, AB = 0.
For multiplication of A and B,
Number of columns of matrix A = Number of rows of matrix B = 2 (let)
Matrices A and B are square matrices of order 2 × 2.
For AB to become 0, one of the column of matrix A and other row of matrix B must be 0.
For example,
\begin{aligned} &A=\left[\begin{array}{ll} 0 & 1 \\ 0 & 4 \end{array}\right]\\ &B=\left[\begin{array}{cc} 3 & -1 \\ 0 & 0 \end{array}\right]\\ &\text { Check: Multiply AB. }\\ &A B=\left[\begin{array}{ll} 0 & 1 \\ 0 & 4 \end{array}\right]\left[\begin{array}{cc} 3 & -1 \\ 0 & 0 \end{array}\right] \end{aligned}
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally end by summing them up.
\\(0, 1).(3, 0) = (0 $ \times $ 3) + (1 $ \times $ 0) \\$ \Rightarrow $ (0, 1).(3, 0) = 0 + 0 = 0
\left[\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & \end{array}\right]\\\\$ Similarly, let us do it for the rest of the elements.\\\\ $\left[\begin{array}{cc}0 & 1 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}0 & (0 \times-1)+(1 \times 0) \\ (0 \times 3)+(4 \times 0) & (0 \times-1)+(4 \times 0)\end{array}\right]$\\\\ $\Rightarrow\left[\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right]\left[\begin{array}{cc}3 & -1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\\\\$ Hence proved.

Question:17

Given A=\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right] . Is (AB)' = B'A'?

Answer:

We have two given matrices A and B,
A=\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]
We need to verify whether (AB)' = B'A'
Let us see what a transpose is.
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal, that is it switches the row and column indices of the matrix by producing another matrix denoted as A^T.
Take L.H.S = (AB)'
So, let us compute AB.
A B=\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally end by summing it up.
\\(2, 4, 0)(1, 2, 1) = (2 $ \times $ 1) + (4 $ \times $ 2) + (0 $ \times $ 1) \\$ \Rightarrow $ (2, 4, 0)(1, 2, 1) = 2 + 8 + 0 \\$ \Rightarrow $ (2, 4, 0)(1, 2, 1) = 10
\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]= \begin{bmatrix} 10 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix B, then finally end by summing them up.
\\(2, 4, 0)(4, 8, 3) = (2 $ \times $ 4) + (4 $ \times $ 8) + (0 $ \times $ 3) \\$ \Rightarrow $ (2, 4, 0)(4, 8, 3) = 8 + 32 + 0 \\$ \Rightarrow $ (2, 4, 0)(4, 8, 3) = 40
\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]= \begin{bmatrix} 10 &40 \\ & \end{bmatrix}
Similarly, let us fill for the rest of the elements.
\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]= \begin{bmatrix} 10 &40 \\(3\times1)+(9\times2)+(6\times1) & (3\times4)+(9\times8)+(6\times3) \end{bmatrix}
\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]= \begin{bmatrix} 10 &40 \\3+18+6 & 12+72+18 \end{bmatrix}
\left[\begin{array}{lll} 2 & 4 & 0 \\ 3 & 9 & 6 \end{array}\right]\left[\begin{array}{ll} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{array}\right]= \begin{bmatrix} 10 &40 \\27 & 102 \end{bmatrix}
So, AB= \begin{bmatrix} 10 &40 \\27 & 102 \end{bmatrix}
Now, for transpose of AB, rows will become columns.
(AB)'= \begin{bmatrix} 10 &27 \\40 & 102 \end{bmatrix}
Now, take R.H.S = B’A’
If B = \begin{bmatrix} 1 &4 \\2 &8 \\1 &3 \end{bmatrix}
Then, if (1, 4) are the elements of 1st row, it will become elements of 1st column, and so on.
B' = \begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix}
Also,
A = \begin{bmatrix} 2 &4 &0 \\3 &9 &6 \end{bmatrix}
Then, if (2, 4, 0) are the elements of 1st row, it will become elements of 1st column, and so on.
A'= \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix}
Now, multiply B’A’.
B' A'= \begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix}\begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix}
Multiply 1st row of matrix B’ by matching members of 1st column of matrix A’, then finally end by summing them up.
\\(1, 2, 1)(2, 4, 0) = (1 $ \times $ 2) + (2 $ \times $ 4) + (1 $ \times $ 0) \\$ \Rightarrow $ (1, 2, 1)(2, 4, 0) = 2 + 8 + 0 \\$ \Rightarrow $ (1, 2, 1)(2, 4, 0) = 10.

\begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix} \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix} = \begin{bmatrix} 10 & & \\ & & \\ & & \end{bmatrix}
Multiply 1st row of matrix B’ by matching members of 2nd column of matrix A’, then finally end by summing it up.
\\(1, 2, 1)(3, 9, 6) = (1 $ \times $ 3) + (2 $ \times $ 9) + (1 $ \times $ 6) \\$ \Rightarrow $ (1, 2, 1)(3, 9, 6) = 3 + 18 + 6 \\$ \Rightarrow $ (1, 2, 1)(3, 9, 6) = 27
\begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix} \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix} = \begin{bmatrix} 10 &27 & \\ & & \\ & & \end{bmatrix}
Filling up the rest of the elements in the similar manner
\begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix} \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix} = \begin{bmatrix} 10 &27 \\ 4*2+8*4+3*0 &4*3+8*9+ 3*6 \end{bmatrix}
\begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix} \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix} = \begin{bmatrix} 10 &27 \\8+32+0 &12+72+ 18 \end{bmatrix}
\begin{bmatrix} 1 &2 &1 \\4 &8 &3 \end{bmatrix} \begin{bmatrix} 2 &3 \\4 &9 \\0 &6 \end{bmatrix} = \begin{bmatrix} 10 &27 \\40 &102\end{bmatrix}
⇒ L.H.S = R.H.S
Therefore, (AB)' = B'A'

Question:18

Solve for x and y:
\mathrm{x}\left[\begin{array}{l} 2 \\ 1 \end{array}\right]+\mathrm{y}\left[\begin{array}{l} 3 \\ 5 \end{array}\right]+\left[\begin{array}{c} -8 \\ -11 \end{array}\right]=0

Answer:

We are given with the following matrix equation,
x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{l}-8 \\ -11\end{array}\right]=0$
We need to find x and y
\\x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{l}-8 \\ -11\end{array}\right]=0$ \\$\Rightarrow\left[\begin{array}{l}2 \mathrm{x} \\ \mathrm{x}\end{array}\right]+\left[\begin{array}{l}3 \mathrm{y} \\ 5 \mathrm{y}\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=0$
These matrices can be added easily as they are of same order.
\Rightarrow\left[\begin{array}{l}2 x+3 y-8 \\ x+5 y-11\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
If two matrices are equal, then their corresponding elements of the same matrices are also equal.
This implies,
\\2x + 3y - 8 = 0 $ \ldots $ (i) \\x + 5y - 11 = 0 $ \ldots $ (ii)
We have two variables, x and y; and two equations. It can be solved.
By rearranging equation (i), we get
2x + 3y = 8 $ \ldots $ (iii)
By rearranging equation (ii), then multiplying it by 2 on both sides, we get
\\x + 5y = 11 \\2(x + 5y) = 2 $ \times $ 11 \\$ \Rightarrow $ 2x + 10y = 22 $ \ldots $ (iv)
By subtracting equation (iii) from (iv), we get
\\(2x + 10y) - (2x + 3y) = 22 - 8 \\$ \Rightarrow $ 2x + 10y - 2x - 3y = 14 \\$ \Rightarrow $ 2x - 2x + 10y - 3y = 14 \\$ \Rightarrow $ 7y = 14
\\$ \Rightarrow $ y = 2
By substituting y = 2 in equation (iii), we get
\\2x + 3(2) = 8 \\$ \Rightarrow $ 2x + 6 = 8 \\$ \Rightarrow $ 2x = 8 - 6 \\$ \Rightarrow $ 2x = 2
$ \Rightarrow $ x = 1
Thus, x = 1 and y = 2

Question:19

If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y
2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right], 3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]

Answer:

We have the given matrix equations,
2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right], 3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]
By subtracting equation (i) from (ii), we get
\begin{array}{l} (3 X+2 Y)-(2 X+3 Y)=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]-\left[\begin{array}{cc} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 3 X+2 Y-2 X-3 Y=\left[\begin{array}{cc} -2-2 & 2-3 \\ 1-4 & -5-0 \end{array}\right] \\ \Rightarrow 3 X-2 X+2 Y-3 Y=\left[\begin{array}{cc} -4 & -1 \\ -3 & -5 \end{array}\right] \\ \Rightarrow X-Y=\left[\begin{array}{ll} -4 & -1 \\ -3 & -5 \end{array}\right] \end{array}
By adding equations (i) and (ii), we get
\begin{aligned} &(3 X+2 Y)+(2 X+3 Y)=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]+\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right]\\ &\Rightarrow 3 \mathrm{X}+2 \mathrm{Y}+2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{cc} -2+2 & 2+3 \\ 1+4 & -5+0 \end{array}\right]\\ &\Rightarrow 3 \mathrm{X}+2 \mathrm{X}+2 \mathrm{Y}+3 \mathrm{Y}=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow 5 X+5 Y=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow 5(X+Y)=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow X+Y=\frac{1}{5}\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow X+Y=\left[\begin{array}{ll} \frac{1}{5} \times 0 & \frac{1}{5} \times 5 \\ \frac{1}{5} \times 5 & \frac{1}{5} \times-5 \end{array}\right]\\ &\Rightarrow X+Y=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right] \end{aligned}
By adding equations (iii) and (iv), we get
\\ (\mathrm{X}-\mathrm{Y})+(\mathrm{X}+\mathrm{Y})=\left[\begin{array}{ll} -4 & -1 \\ -3 & -5 \end{array}\right]+\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right] \\ \Rightarrow \mathrm{X}-\mathrm{Y}+\mathrm{X}+\mathrm{Y}=\left[\begin{array}{ll} -4+0 & -1+1 \\ -3+1 & -5-1 \end{array}\right] \\ \Rightarrow \mathrm{X}+\mathrm{X}-\mathrm{Y}+\mathrm{Y}=\left[\begin{array}{ll} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow 2 \mathrm{X}=\left[\begin{array}{lc} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\frac{1}{2}\left[\begin{array}{lc} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\left[\begin{array}{ll} \frac{1}{2} \times-4 & \frac{1}{2} \times 0 \\ \frac{1}{2} \times-2 & \frac{1}{2} \times-6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]
Substituting the matrix A in equation (iv), we get
\begin{array}{l} {\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]+\mathrm{Y}=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right]} \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right]-\left[\begin{array}{cc} -2 & 0 \\ -1 & -3 \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 0-(-2) & 1-0 \\ 1-(-1) & -1-(-3) \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 2 & 1 \\ 1+1 & -1+3 \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 2 & 1 \\ 2 & 2 \end{array}\right] \\ \mathrm{X}=\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]_{\text {and }} \mathrm{Y}=\left[\begin{array}{ll} 2 & 1 \\ 2 & 2 \end{array}\right] \end{array}

Question:20

If A = [3\: \: 5], B = [7\: \: 3], then find a non-zero matrix C such that AC = BC.

Answer:

We have the given matrices A and B, such that
A = [3\: \: 5], B = [7\: \: 3]
We need to find matrix C, such that AC = BC.
Let C be a non-zero matrix of order 2 × 1, such that
C=\begin{bmatrix} X\\Y \end{bmatrix}
But order of C can be 2 × 1, 2 × 2, 2 × 3, 2 × 4, …
[ if we have to multiply two given matrices A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
∴, number of columns in matrix A = number of rows in matrix C = 2]
Take AC.
AC=\begin{bmatrix} 3 &5 \end{bmatrix}\begin{bmatrix} X\\Y \end{bmatrix}
Multiply 1st row of matrix A by matching members of 1st column of matrix C, then finally sum them up.
\begin{aligned} &(3,5)(x, y)=(3 \times x)+(5 \times y)\\ &\Rightarrow(3,5)(x, y)=3 x+5 y\\ &\left[\begin{array}{ll} 3 & 5 \end{array}\right]\left[\begin{array}{l} \mathrm{x} \\ \mathrm{y} \end{array}\right]=[3 \mathrm{x}+5 \mathrm{y}]\\ &\Rightarrow A C=[3 x+5 y]\\ &\text { Now, take BC. }\\ &\mathrm{BC}=\left[\begin{array}{ll} 7 & 3 \end{array}\right]\left[\begin{array}{l} \mathrm{X} \\ \mathrm{y} \end{array}\right] \end{aligned}
Multiply 1st row of matrix B by matching members of 1st column of matrix C, then finally sum them up,
\begin{array}{l} (7,3)(x, y)=(7 \times x)+(3 \times y) \\ \Rightarrow(7,3)(x, y)=7 x+3 y \\ {[7 \quad 3]\left[\begin{array}{l} x \\ y \end{array}\right]=[7 x+3 y]} \\ \Rightarrow B C=[7 x+3 y] \end{array}

And,
AC = BC
\\$ \Rightarrow $ [3x + 5y] = [7x + 3y] \\$ \Rightarrow $ 3x + 5y = 7x + 3y \\$ \Rightarrow $ 7x - 3x = 5y - 3y \\$ \Rightarrow $ 4x = 2y \\$ \Rightarrow $ y = 2x
Then, we have,
$$ C=\left[\begin{array}{l} x \\ 2 x \end{array}\right] $$
since, $\mathrm{C}$$ is of orders, $2 \times 1,2 \times 2,2 \times 3, \ldots$
C=\left[\begin{array}{c}x \\ 2 x\end{array}\right]=\left[\begin{array}{cc}x & x \\ 2 x & 2 x\end{array}\right]=\left[\begin{array}{ccc}x & x & x \\ 2 x & 2 x & 2 x\end{array}\right]=\cdots$
In general,
$$ C=\left[\begin{array}{l} \mathrm{k} \\ 2 \mathrm{k} \end{array}\right]=\left[\begin{array}{ll} \mathrm{k} & \mathrm{k} \\ 2 \mathrm{k} & 2 \mathrm{k} \end{array}\right]=\left[\begin{array}{ccc} \mathrm{k} & \mathrm{k} & \mathrm{k} \\ 2 \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} \end{array}\right]=\cdots $$
Where, k can be any real number.

Question:21

Given an example of matrices A, B and C such that AB = AC, where A is non-zero matrix, but B ≠ C.

Answer:

We need to form matrices A, B and C such that AB = AC, where A is a non-zero matrix, but B ≠ C.
Take,
\begin{aligned} &A=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\\ &B=\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right]\\ &C=\left[\begin{array}{ll} 1 & 3 \\ 2 & 2 \end{array}\right]\\ &\text { First, compute AB. }\\ &A B=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right] \end{aligned}
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally sum them up.
\\(1, 0)(1, 2) = (1 $ \times $ 1) + (0 $ \times $ 2) \\$ \Rightarrow $ (1, 0)(1, 2) = 1 + 0 \\$ \Rightarrow $ (1, 0)(1, 2) = 1
\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 1 & \\ & \end{bmatrix}
Similarly, let us do the same for other elements.
\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & (1 \times 3)+(0 \times 0) \\ (0 \times 1)+(0 \times 2) & (0 \times 3)+(0 \times 0) \end{array}\right]
AB=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 1 &3 \\0 & 0\end{bmatrix}
Now, let us compute AC.
AC=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 2 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix C, then finally sum them up.
\\(1, 0)(1, 2) = (1 $ \times $ 1) + (0 $ \times $ 2) \\$ \Rightarrow $ (1, 0)(1, 2) = 1 + 0 \\$ \Rightarrow $ (1, 0)(1, 2) = 1
\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 2 \end{array}\right]=\begin{bmatrix} 1 & \\ & \end{bmatrix}
Similarly, let us do the same for other elements.
\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 2 \end{array}\right]=\left[\begin{array}{cc} 1 & (1 \times 3)+(0 \times 2) \\ (0 \times 1)+(0 \times 2) & (0 \times 3)+(0 \times 2) \end{array}\right]
AC=\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 2 & 0 \end{array}\right]=\begin{bmatrix} 1 &3 \\0 & 0\end{bmatrix}
Clearly, AB = AC. but B ≠ C.
Hence, we have found an example which fulfills the required criteria.

Question:22

If A=\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right], B=\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]_{\text {and }} C=\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right], verify:
(i) (AB) C = A (BC)
(ii) A(B + C) = AB + AC

Answer:

We have the given matrices A, B and C, such that
A=\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right], B=\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]_{\text {and }} C=\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right]
To multiply two given matrices A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
(i). We need to verify: (AB)C = A(BC)
Take L.H.S = (AB)C
First, compute AB.
AB=\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally sum them up.
\\(1, 2)(2, 3) = (1 $ \times $ 2) + (2 $ \times $ 3) \\$ \Rightarrow $ (1, 2)(2, 3) = 2 + 6 \\$ \Rightarrow $ (1, 2)(2, 3) = 8
\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]=\begin{bmatrix} 8 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix B, then finally sum them up.
\\(1, 2)(3, -4) = (1 $ \times $ 3) + (2 $ \times $ -4) \\$ \Rightarrow $ (1, 2)(3, -4) = 3 - 8 \\$ \Rightarrow $ (1, 2)(3, -4) = -5
\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]=\begin{bmatrix} 8 &-5 \\ & \end{bmatrix}
Similarly, let us repeat for the rest of the elements.
\begin{aligned} &\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]=\left[\begin{array}{cc} 8 & -5 \\ (-2 \times 2)+(1 \times 3) & (-2 \times 3)+(1 \times-4) \end{array}\right]\\ &\Rightarrow\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]=\left[\begin{array}{cc} 8 & -5 \\ -4+3 & -6-4 \end{array}\right]\\ &\Rightarrow\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]=\left[\begin{array}{cc} 8 & -5 \\ -1 & -10 \end{array}\right]\\ &\text { Let } D=\left[\begin{array}{cc} 8 & -5 \\ -1 & -10 \end{array}\right]\\ &\text { Now, compute for DC. }[\because(A B) C=D C]\\ &\mathrm{DC}=\left[\begin{array}{cc} 8 & -5 \\ -1 & -10 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right] \end{aligned}
Multiply 1st row of matrix D by matching members of 1st column of matrix C, then finally sum them up.
\\(8, -5)(1, -1) = (8 $ \times $ 1) + (-5 $ \times $ -1) \\$ \Rightarrow $ (8, -5)(1, -1) = 8 + 5 \\$ \Rightarrow $ (8, -5)(1, -1) = 13
\left[\begin{array}{cc} 8 & -5 \\ -1 & -10 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right] = \begin{bmatrix} 13 & \\ & \end{bmatrix}
Multiply 1st row of matrix D by matching members of 2nd column of matrix C, then finally sum them up.
\\(8, -5)(0, 0) = (8 $ \times $ 0) + (-5 $ \times $ 0) \\$ \Rightarrow $ (8, -5)(0, 0) = 0 + 0 \\$ \Rightarrow $ (8, -5)(0, 0) = 0
\left[\begin{array}{cc} 8 & -5 \\ -1 & -10 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right] = \begin{bmatrix} 13 & 0\\ & \end{bmatrix}
Similarly, let us repeat for the rest of the elements.
\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}13 & 0 \\ (-1 \times 1)+(-10 \times-1) & (-1 \times 0)+(-10 \times 0)\end{array}\right]\\$ \\$\Rightarrow\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}13 & 0 \\ -1+10 & 0\end{array}\right]$\\ \\$\Rightarrow\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}13 & 0 \\ 9 & 0\end{array}\right]$ \\So, $(\mathrm{AB}) \mathrm{C}=\left[\begin{array}{cc}13 & 0 \\ 9 & 0\end{array}\right]$ \\Take R.H.S: $\mathrm{A}(\mathrm{BC})$ \\First, compute BC. \\$\mathrm{BC}=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
Multiply 1st row of matrix B by matching members of 1st column of matrix C, then finally sum them up.
\\(2, 3)(1, -1) = (2 $ \times $ 1) + (3 $ \times $ -1) \\$ \Rightarrow $ (2, 3)(1, -1) = 2 - 3 \\$ \Rightarrow $ (2, 3)(1, -1) = -1
\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]= \begin{bmatrix} -1 & \\ & \end{bmatrix}
Multiply 1st row of matrix B by matching members of 2nd column of matrix C, then finally sum them up.
\\(2, 3)(0, 0) = (2 $ \times $ 0) + (3 $ \times $ 0) \\$ \Rightarrow $ (2, 3)(0, 0) = 0 + 0 \\$ \Rightarrow $ (2, 3)(0, 0) = 0
\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]= \begin{bmatrix} -1 & 0\\ & \end{bmatrix}
Similarly, let us repeat for the rest of the elements.
\begin{aligned} &\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right]=\left[\begin{array}{cc} -1 & 0 \\ (3 \times 1)+(-4 \times-1) & (3 \times 0)+(-4 \times 0) \end{array}\right]\\ &\Rightarrow\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right]=\left[\begin{array}{cc} -1 & 0 \\ 3+4 & 0 \end{array}\right]\\ &\Rightarrow\left[\begin{array}{cc} 2 & 3 \\ 3 & -4 \end{array}\right]\left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right]=\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right]\\ &\text { Let } E=\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right] .\\ &\text { Now, compute for AE. }\\ &A E=\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right] \end{aligned}
Multiply 1st row of matrix A by matching members of 1st column of matrix E, then finally sum them up.
\\(1, 2)(-1, 7) = (1 $ \times $ -1) + (2 $ \times $ 7) \\$ \Rightarrow $ (1, 2)(-1, 7) = -1 + 14 \\$ \Rightarrow $ (1, 2)(-1, 7) = 13
\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right] =\begin{bmatrix} 13 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix E, then finally sum them up.
\\(1, 2)(0, 0) = (1 $ \times $ 0) + (2 $ \times $ 0) \\$ \Rightarrow $ (1, 2)(0, 0) = 0 + 0 \\$ \Rightarrow $ (1, 2)(0, 0) = 0
\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right] =\begin{bmatrix} 13 &0 \\ & \end{bmatrix}
Similarly, let us fill for other elements.
{\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right]=\left[\begin{array}{cc} 13 & 0 \\ (-2 \times-1)+(1 \times 7) & (-2 \times 0)+(1 \times 0) \end{array}\right]} \\ \Rightarrow\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right]=\left[\begin{array}{cc} 13 & 0 \\ 2+7 & 0 \end{array}\right] \\ \Rightarrow\left[\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right]\left[\begin{array}{cc} -1 & 0 \\ 7 & 0 \end{array}\right]=\left[\begin{array}{cc} 13 & 0 \\ 9 & 0 \end{array}\right] \\ \text { So, } \\ A(B C)=\left[\begin{array}{cc} 13 & 0 \\ 9 & 0 \end{array}\right] \\ \text { Thus, }(A B) C=A(B C)
We need to verify: A(B + C) = AB + AC
ii)Take L.H.S: A(B + C)
Now, by Adding B + C, we get,
\\ \mathrm{B}+\mathrm{C}=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]+\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$ \\$\Rightarrow B+C=\left[\begin{array}{cc}2+1 & 3+0 \\ 3-1 & -4+0\end{array}\right]$ \\$\Rightarrow \mathrm{B}+\mathrm{C}=\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]$ \\Let $B+C=F$, such that $F=\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]$ \\Now, by multiplying $A$ and $F,$ we get,\\ $A F=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]$
Multiply 1st row of matrix A by matching members of 1st column of matrix F, then finally sum yhem up.
\\(1, 2)(3, 2) = (1 $ \times $ 3) + (2 $ \times $ 2) \\$ \Rightarrow $ (1, 2)(3, 2) = 3 + 4 \\$ \Rightarrow $ (1, 2)(3, 2) = 7
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right] = \begin{bmatrix} 7 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix F, then finally sum them up.
\\(1, 2)(3, -4) = (1 $ \times $ 3) + (2 $ \times $ -4) \\$ \Rightarrow $ (1, 2)(3, -4) = 3 - 8 \\$ \Rightarrow $ (1, 2)(3, -4) = -5
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right] = \begin{bmatrix} 7 &-5 \\ & \end{bmatrix}
Similarly, let us fill for other elements.
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]=\left[\begin{array}{cc}7 & -5 \\ (-2 \times 3)+(1 \times 2) & (-2 \times 3)+(1 \times-4)\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]=\left[\begin{array}{cc}7 & -5 \\ -6+2 & -6-4\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]=\left[\begin{array}{cc}7 & -5 \\ -4 & -10\end{array}\right]$ \\So, $A(B+C)=\left[\begin{array}{cc}7 & -5 \\ -4 & -10\end{array}\right]$ \\Now, take R.H.S: $\mathrm{AB}+\mathrm{AC}$ \\Compute AB. \\$A B=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]$
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally sum them up.
\\(1, 2)(2, 3) = (1 $ \times $ 2) + (2 $ \times $ 3) \\$ \Rightarrow $ (1, 2)(2, 3) = 2 + 6 \\$ \Rightarrow $ (1, 2)(2, 3) = 8
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right] = \begin{bmatrix} 8 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix B, then finally sum them up.
\\(1, 2)(3, -4) = (1 $ \times $ 3) + (2 $ \times $ -4) \\$ \Rightarrow $ (1, 2)(3, -4) = 3 - 8 \\$ \Rightarrow $ (1, 2)(3, -4) = -5
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right] = \begin{bmatrix} 8 &-5 \\ & \end{bmatrix}
Similarly, let us fill for other elements.
\\\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}8 & -5 \\ (-2 \times 2)+(1 \times 3) & (-2 \times 3)+(1 \times-4)\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}8 & -5 \\ -4+3 & -6-4\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]=\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]$ \\So, $A B=\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]$ \\Now, compute AC. \\$A C=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
Multiply 1st row of matrix A by matching members of 1st column of matrix C, then finally sum them up..
\\(1, 2)(1, -1) = (1 $ \times $ 1) + (2 $ \times $ -1) \\$ \Rightarrow $ (1, 2)(1, -1) = 1 - 2 \\$ \Rightarrow $ (1, 2)(1, -1) = -1
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right] =\begin{bmatrix} -1 & \\ & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix C, then finally sum them up.
\\(1, 2)(0, 0) = (1 $ \times $ 0) + (2 $ \times $ 0) \\$ \Rightarrow $ (1, 2)(0, 0) = 0 + 0 \\$ \Rightarrow $ (1, 2)(0, 0) = 0
\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right] =\begin{bmatrix} -1 &0 \\ & \end{bmatrix}
Similarly, let us fill for the other elements.
\\\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ (-2 \times 1)+(1 \times-1) & (-2 \times 0)+(1 \times 0)\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ -2-1 & 0\end{array}\right]$ \\$\Rightarrow\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ -3 & 0\end{array}\right]$ \\So, \\$A C=\left[\begin{array}{ll}-1 & 0 \\ -3 & 0\end{array}\right]$ \\Now, by Adding $A B+A C$. \\$A B+A C=\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ -3 & 0\end{array}\right]$
If two matrices have the same order, they can be added or subtracted.
\begin{aligned} &\Rightarrow A B+A C=\left[\begin{array}{cc} 8-1 & -5+0 \\ -1-3 & -10+0 \end{array}\right]\\ &\Rightarrow \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{cc} 7 & -5 \\ -4 & -10 \end{array}\right]\\ &\text { Hence proved, L.H.S }=\mathrm{R.H.S.}\\ &\text { Thus, } A(B+C)=A B+A C . \end{aligned}


Question:23

\text{If } P=\left[\begin{array}{lll} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right], Q=\left[\begin{array}{lll} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right] prove that P Q=\left[\begin{array}{ccc} x a & 0 & 0 \\ 0 & y b & 0 \\ 0 & 0 & z c \end{array}\right]=Q P.

Answer:

We have the following given matrices P and Q, such that
P=\left[\begin{array}{lll} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{array}\right], Q=\left[\begin{array}{lll} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right]
We have to prove that:
\quad\\ P Q=\left[\begin{array}{ccc} x a & 0 & 0 \\ 0 & y b & 0 \\ 0 & 0 & z c \end{array}\right]=Q P
Proof: First, we shall compute PQ.
\mathrm{PQ}=\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right]

For carrying out the multiplication of two matrices A and B, the number of columns in A must equal the number of rows in B. Thus, if A is an m x n matrix and B is an r x s matrix, n = r.
Order of P = 3 × 3
And order of Q = 3 × 3
Number of columns of matrix P = Number of rows of matrix Q = 3
So, P and Q can be multiplied.
So, multiply 1st row of matrix P by matching members of 1st column of matrix Q, then finally sum them up.
(x, 0, 0)(a, 0, 0) = (x × a) + (0 × 0) + (0 × 0)
⇒ (x, 0, 0)(a, 0, 0) = xa
\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right] = \begin{bmatrix} xa & & \\ & & \\ & & \end{bmatrix}
Multiply 1st row of matrix P by matching members of 2nd column of matrix Q, then finally sum them up
\\(x, 0, 0)(a, 0, 0) = (x $ \times $ a) + (0 $ \times $ 0) + (0 $ \times $ 0) \\$ \Rightarrow $ (x, 0, 0)(a, 0, 0) = xa
\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right] = \begin{bmatrix} xa & 0& \\ & & \\ & & \end{bmatrix}
Similarly, let us fill for other elements.
\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right]=\left[\begin{array}{ccc} \text { Xa } & 0 & (\mathrm{x} \times 0)+(0 \times 0)+(0 \times \mathrm{c}) \\ (0 \times \mathrm{a})+(\mathrm{y} \times 0)+(0 \times 0) & (0 \times 0)+(\mathrm{y} \times \mathrm{b})+(0 \times 0) & (0 \times 0)+(\mathrm{y} \times 0)+(0 \times \mathrm{c}) \\ (0 \times \mathrm{a})+(0 \times 0)+(\mathrm{z} \times 0) & (0 \times 0)+(0 \times \mathrm{b})+(\mathrm{z} \times 0) & (0 \times 0)+(0 \times 0)+(\mathrm{z} \times \mathrm{c}) \end{array}\right]
\Rightarrow\left[\begin{array}{ccc}\mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z}\end{array}\right]\left[\begin{array}{ccc}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]=\left[\begin{array}{ccc}\mathrm{xa} & 0 & 0+0+0 \\ 0+0+0 & 0+\mathrm{yb}+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+\mathrm{z} \mathrm{c}\end{array}\right]$ $\Rightarrow\left[\begin{array}{lll}\mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z}\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]=\left[\begin{array}{ccc}\mathrm{xa} & 0 & 0 \\ 0 & \mathrm{yb} & 0 \\ 0 & 0 & \mathrm{z} \mathrm{C}\end{array}\right]$ \\So,\\ $\mathrm{PQ}=\left[\begin{array}{ccc}\mathrm{xa} & 0 & 0 \\ 0 & \mathrm{yb} & 0 \\ 0 & 0 & \mathrm{z} \mathrm{C}\end{array}\right] \ldots$
Now, we shall compute QP.
\mathrm{QP}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]\left[\begin{array}{lll}\mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z}\end{array}\right]\\$ Multiply $1^{\text {st }}$ row of matrix $\mathrm{Q}$ by matching members of $1^{\text {st }}$ column of matrix $\mathrm{P}$, then finally sum them up.\\ $(\mathrm{a}, 0,0)(\mathrm{x}, 0,0)=(\mathrm{a} \times \mathrm{x})+(0 \times 0)+(0 \times 0)$ \\$\Rightarrow(a, 0,0)(x, 0,0)=x a+0+0$ \\$\Rightarrow(a, 0,0)(x, 0,0)=x a$ $\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]\left[\begin{array}{lll}\mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z}\end{array}\right]=[\mathrm{xa}
Similarly, let us fill the other elements.
\begin{aligned} &\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right]\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]\\ &=\left[\begin{array}{ccc} \text { xa } & (a \times 0)+(0 \times y)+(0 \times 0) & (a \times 0)+(0 \times 0)+(0 \times z) \\ (0 \times x)+(b \times 0)+(0 \times 0) & (0 \times 0)+(b \times y)+(0 \times 0) & (0 \times 0)+(b \times 0)+(0 \times z) \\ (0 \times x)+(0 \times 0)+(c \times 0) & (0 \times 0)+(0 \times y)+(c \times 0) & (0 \times 0)+(0 \times 0)+(c \times z) \end{array}\right]\\ \end{aligned}
\begin{aligned} &\Rightarrow\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right]\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]=\left[\begin{array}{ccc} \mathrm{xa} & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+\mathrm{yb}+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+\mathrm{z} \mathrm{c} \end{array}\right]\\ &\Rightarrow\left[\begin{array}{lll} \mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c} \end{array}\right]\left[\begin{array}{lll} \mathrm{x} & 0 & 0 \\ 0 & \mathrm{y} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right]=\left[\begin{array}{ccc} \mathrm{xa} & 0 & 0 \\ 0 & \mathrm{yb} & 0 \\ 0 & 0 & \mathrm{z} \mathrm{c} \end{array}\right] \end{aligned}
\begin{aligned} &\text { So, }\\ &\begin{aligned} \mathrm{QP}=&\left[\begin{array}{ccc} \mathrm{xa} & 0 & 0 \\ 0 & \mathrm{yb} & 0 \\ 0 & 0 & \mathrm{z} \end{array}\right] \\ \mathrm{Thus}, &PQ=\left[\begin{array}{ccc} \mathrm{xa} & 0 & 0 \\ 0 & \mathrm{yb} & 0 \\ 0 & 0 & \mathrm{zc} \end{array}\right]=\mathrm{QP} \end{aligned} \end{aligned}

Question:24

If \left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]=\mathrm{A} , find A

Answer:

We are given the following matrix equation,
\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]=\mathrm{A}
We need to determine the value of A.
Take L.H.S: \left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]
\begin{aligned} &\begin{array}{l} \text { Let us solve } \\ \left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right]=\mathrm{XY}(\text { say }) \\ , \text { where } \end{array}\\ &X=\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\\ &Y=\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right]\\ &\text { Then, }\\ &X Y=\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] \end{aligned}
Order of X = 1 × 3
Order of Y = 3 × 3
Then, the order of matrix Z(say) = 1 × 3 [Let Z = XY]
Multiply 1st row of matrix X by matching members of 1st column of matrix Y, then finally sum them up..
\\(2, 1, 3)(-1, -1, 0) = (2 $ \times $ -1) + (1 $ \times $ -1) + (3 $ \times $ 0) \\$ \Rightarrow $ (2, 1, 3)(-1, -1, 0) = -2 - 1 + 0 \\$ \Rightarrow $ (2, 1, 3)(-1, -1, 0) = -3
\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] = \begin{bmatrix} -3 & & \end{bmatrix}
Multiply 1st row of matrix X by matching members of 2nd column of matrix Y, then finally sum them up.
\\(2, 1, 3)(0, 1, 1) = (2 $ \times $ 0) + (1 $ \times $ 1) + (3 $ \times $ 1) \\$ \Rightarrow $ (2, 1, 3)(0, 1, 1) = 0 + 1 + 3 \\$ \Rightarrow $ (2, 1, 3)(0, 1, 1) = 4
\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] = \begin{bmatrix} -3 & 4& \end{bmatrix}
Multiply 1st row of matrix X by matching members of 3rd column of matric Y, then finally sum them up.
\\(2, 1, 3)(-1, 0, 1) = (2 $ \times $ -1) + (1 $ \times $ 0) + (3 $ \times $ 1) \\$ \Rightarrow $ (2, 1, 3)(-1, 0, 1) = -2 + 0 + 3 \\$ \Rightarrow $ (2, 1, 3)(-1, 0, 1) = 1
\left[\begin{array}{lll} 2 & 1 & 3 \end{array}\right]\left[\begin{array}{ccc} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] = \begin{bmatrix} -3 & 4&1 \end{bmatrix}
So,we have,
\begin{array}{l} \mathrm{Z}=\left[\begin{array}{lll} -3 & 4 & 1 \end{array}\right] \\ \text { Now, multiplying } \mathrm{Z} \text { by }\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]=\mathrm{Q}(\text { say }) \\ \mathrm{ZQ}=\left[\begin{array}{lll} -3 & 4 & 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right] \end{array}
Order of Z = 1 × 3
Order of Q = 3 × 1
Then, order of the resulting matrix = 1 × 1
Multiply 1st row of matrix Z by matching members of 1st column of matrix Q, then finally sum them up.
\\(-3, 4, 1)(1, 0, -1) = (-3 $ \times $ 1) + (4 $ \times $ 0) + (1 $ \times $ -1) \\$ \Rightarrow $ (-3, 4, 1)(1, 0, -1) = -3 + 0 - 1 \\$ \Rightarrow $ (-3, 4, 1)(1, 0, -1) = -4
\\ \left[\begin{array}{lll}-3 & 4 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]=[-4]$ \\Now, since $\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]=\mathrm{A}$ \\Thus, $A=[-4]$

Question:25

If \mathrm{A}=\left[\begin{array}{ll} 2 & 1 \end{array}\right], \mathrm{B}=\left[\begin{array}{lll} 5 & 3 & 4 \\ 8 & 7 & 6 \end{array}\right]_{\text {and }} \mathrm{C}=\left[\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right] verify that A(B+C)=(AB+AC)

Answer:

We are given the following matrices A, B and C, such that
\mathrm{A}=\left[\begin{array}{ll} 2 & 1 \end{array}\right], \mathrm{B}=\left[\begin{array}{lll} 5 & 3 & 4 \\ 8 & 7 & 6 \end{array}\right]_{\text {and }} \mathrm{C}=\left[\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right]
We need to verify that, A(B + C) = AB + AC.
Take L.H.S: A(B + C)
By Solving (B + C).
\begin{aligned} &B+C=\left[\begin{array}{lll} 5 & 3 & 4 \\ 8 & 7 & 6 \end{array}\right]+\left[\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right]\\ &\text { since, the above matrices have the same order, they can be added. }\\ &\Rightarrow B+C=\left[\begin{array}{lll} 5-1 & 3+2 & 4+1 \\ 8+1 & 7+0 & 6+2 \end{array}\right]\\ &\Rightarrow B+C=\left[\begin{array}{lll} 4 & 5 & 5 \\ 9 & 7 & 8 \end{array}\right] \end{aligned}
Now, multiply A by (B + C).
Let (B + C) = D.
We get,
AD = A(B + C)
\Rightarrow \mathrm{AD}=\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{lll} 4 & 5 & 5 \\ 9 & 7 & 8 \end{array}\right]
Order of A = 1 × 2
Order of D = 2 × 3
Then, order of the matrix is = 1 × 3
Multiply 1st row of matrix A by matching members of 1st column of matrix D, then finally sum them up.
\\(2, 1)(4, 9) = (2 $ \times $ 4) + (1 $ \times $ 9) \\$ \Rightarrow $ (2, 1)(4, 9) = 8 + 9 \\$ \Rightarrow $ (2, 1)(4, 9) = 17
\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{lll} 4 & 5 & 5 \\ 9 & 7 & 8 \end{array}\right] = \begin{bmatrix} 17 & \end{bmatrix}
Multiply 1st row of matrix A by matching members of 2nd column of matrix D, then finally sum them up.
\\(2, 1)(5, 7) = (2 $ \times $ 5) + (1 $ \times $ 7) \\$ \Rightarrow $ (2, 1)(5, 7) = 10 + 7 \\$ \Rightarrow $ (2, 1)(5, 7) = 17
\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{lll} 4 & 5 & 5 \\ 9 & 7 & 8 \end{array}\right] = \begin{bmatrix} 17 & 17\end{bmatrix}
Multiply 1st row of matrix A by matching members of 3rd column of matrix D, then finally sum them up.
\\ (2,1)(5,8)=(2 \times 5)+(1 \times 8)$ \\$\Rightarrow(2,1)(5,8)=10+8$ \\$\Rightarrow(2,1)(5,8)=18$ \\$\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{lll}4 & 5 & 5 \\ 9 & 7 & 8\end{array}\right]=\left[\begin{array}{lll}17 & 17 & 18\end{array}\right]$
So,
A(B+C)=\left[\begin{array}{lll}17 & 17 & 18\end{array}\right]$
Now, take R.H.S: $A B+A C$
Let us compute A B.
A B=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{lll}5 & 3 & 4 \\ 8 & 7 & 6\end{array}\right]$
Order of A = 1 × 2
Order of B = 2 × 3
Then, order of AB = 1 × 3
Multiply 1st row of matrix A by matching members of 1st column of matrix B, then finally sum them up.
\begin{aligned} &(2,1)(5,8)=(2 \times 5)+(1 \times 8)\\ &\Rightarrow(2,1)(5,8)=10+8\\ &\Rightarrow(2,1)(5,8)=18\\ &\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{lll} 5 & 3 & 4 \\ 8 & 7 & 6 \end{array}\right]=[18\\ \end{aligned}
Similarly, repeat steps to fill for the rest of the elements.
\begin{bmatrix} 2 &1 \end{bmatrix}\begin{bmatrix} 5 &3 &4 \\8 &7 & 6 \end{bmatrix} = \begin{bmatrix} 18 &2*3+1*7 &2*4+1*6 \end{bmatrix}
\begin{bmatrix} 2 &1 \end{bmatrix}\begin{bmatrix} 5 &3 &4 \\8 &7 & 6 \end{bmatrix} = \begin{bmatrix} 18 &13 &14 \end{bmatrix}
Now, let us compute AC.
A C=\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right]
Order of AC = 1 × 3
Multiply 1st row of matrix A by matching members of 1st column of matrix C, then finally sum them up.
\\\\(2, 1)(-1, 1) = (2 $ \times $ -1) + (1 $ \times $ 1) \\$ \Rightarrow $ (2, 1)(-1, 1) = -2 + 1 \\$ \Rightarrow $ (2, 1)(-1, 1) = -1
\left[\begin{array}{ll} 2 & 1 \end{array}\right]\left[\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 2 \end{array}\right] = \begin{bmatrix} -1 & & \end{bmatrix}
Similarly, repeat steps to fill for other elements.
\begin{bmatrix} 2 &1 \end{bmatrix}\begin{bmatrix} -1 &2 &1 \\1 &0 & 2 \end{bmatrix} = \begin{bmatrix} -1 &2*2+1*0 &2*1+1*2 \end{bmatrix}
\begin{bmatrix} 2 &1 \end{bmatrix}\begin{bmatrix} -1 &2 &1 \\1 &0 & 2 \end{bmatrix} = \begin{bmatrix} -1 &4 &4 \end{bmatrix}
\begin{aligned} &\text { Now, } \mathrm{Add} , \mathrm{AB}+\mathrm{AC} .\\ &\begin{array}{lll} \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{lll} 18 & 13 & 14 \end{array}\right]+\left[\begin{array}{lll} -1 & 4 & 4 \end{array}\right] \end{array}\\ &\Rightarrow \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{lll} 18-1 & 13+4 & 14+4 \end{array}\right]\\ &\Rightarrow \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{lll} 17 & 17 & 18 \end{array}\right]\\ &\text { Thus, }\\ &\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC} . \end{aligned}



Question:26

If A = \begin{bmatrix} 1 &0 &-1 \\2 & 1 & 3\\0 &1 &1 \end{bmatrix}, then verify that A^2 + A = A(A + I), where I is 3 × 3 unit matrix.

Answer:

We are given the following matrix A, such that
A = \begin{bmatrix} 1 &0 &-1 \\2 & 1 & 3\\0 &1 &1 \end{bmatrix}.
We need to verify A^2 + A = A(A + I)
Take L.H.S: A\textsuperscript{2} + A.
Solve for A\textsuperscript{2}.
A\textsuperscript{2} = A.A
\Rightarrow A^{2}=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]
Multiply 1st row of matrix A by matching members of 1st column of matrix A, then finally sum them up.
\\(1, 0, -1)(1, 2, 0) = (1 $ \times $ 1) + (0 $ \times $ 2) + (-1 $ \times $ 0) \\$ \Rightarrow $ (1, 0, -1)(1, 2, 0) = 1 + 0 + 0 \\$ \Rightarrow $ (1, 0, -1)(1, 2, 0) = 1
\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]= \begin{bmatrix} 1 & & \\ & & \\ & & \end{bmatrix}
Similarly, repeat steps to find other elements.
\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right] =\left[\begin{array}{ccc} 1 & (1 \times 0)+(0 \times 1)+(-1 \times 1) & (1 \times-1)+(0 \times 3)+(-1 \times 1) \\ (2 \times 1)+(1 \times 2)+(3 \times 0) & (2 \times 0)+(1 \times 1)+(3 \times 1) & (2 x-1)+(1 \times 3)+(3 \times 1) \\ (0 \times 1)+(1 \times 2)+(1 \times 0) & (0 \times 0)+(1 \times 1)+(1 \times 1) & (0 \times-1)+(1 \times 3)+(1 \times 1) \end{array}\right]
\begin{aligned} &\Rightarrow\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0+0-1 & -1+0-1 \\ 2+2+0 & 0+1+3 & -2+3+3 \\ 0+2+0 & 0+1+1 & 0+3+1 \end{array}\right]\\ &\Rightarrow\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]=\left[\begin{array}{ccc} 1 & -1 & -2 \\ 4 & 4 & 4 \\ 2 & 2 & 4 \end{array}\right]\\ &\text { Now, add } A^{2} \text { and } A \text { , }\\ &A^{2}+A=\left[\begin{array}{ccc} 1 & -1 & -2 \\ 4 & 4 & 4 \\ 2 & 2 & 4 \end{array}\right]+\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\\ \end{aligned}
\begin{aligned} &\Rightarrow A^{2}+A=\left[\begin{array}{ccc} 1+1 & -1+0 & -2-1 \\ 4+2 & 4+1 & 4+3 \\ 2+0 & 2+1 & 4+1 \end{array}\right]\\ &\Rightarrow A^{2}+A=\left[\begin{array}{ccc} 2 & -1 & -3 \\ 6 & 5 & 7 \\ 2 & 3 & 5 \end{array}\right] \end{aligned}
Take R.H.S: A(A + I)
First, let us solve for (A + I).
\begin{aligned} &A+1=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]+\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &\Rightarrow A+1=\left[\begin{array}{ccc} 1+1 & 0+0 & -1+0 \\ 2+0 & 1+1 & 3+0 \\ 0+0 & 1+0 & 1+1 \end{array}\right]\\ &\Rightarrow A+I=\left[\begin{array}{ccc} 2 & 0 & -1 \\ 2 & 2 & 3 \\ 0 & 1 & 2 \end{array}\right]\\ &\text { Multiply }(\mathrm{A}+1) \text { from } \mathrm{A} \text { . }\\ &A(A+I)=\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{array}\right]\left[\begin{array}{ccc} 2 & 0 & -1 \\ 2 & 2 & 3 \\ 0 & 1 & 2 \end{array}\right]\\ &\Rightarrow A(A+1) \end{aligned}
\begin{array}{l} =\left[\begin{array}{ccc} (1 \times 2)+(0 \times 2)+(-1 \times 0) & (1 \times 0)+(0 \times 2)+(-1 \times 1) & (1 \times-1)+(0 \times 3)+(-1 \times 2) \\ (2 \times 2)+(1 \times 2)+(3 \times 0) & (2 \times 0)+(1 \times 2)+(3 \times 1) & (2 \times-1)+(1 \times 3)+(3 \times 2) \\ (0 \times 2)+(1 \times 2)+(1 \times 0) & (0 \times 0)+(1 \times 2)+(1 \times 1) & (0 \times-1)+(1 \times 3)+(1 \times 2) \end{array}\right] \\ \Rightarrow A(A+1)=\left[\begin{array}{ccc} 2+0+0 & 0+0-1 & -1+0-2 \\ 4+2+0 & 0+2+3 & -2+3+6 \\ 0+2+0 & 0+2+1 & 0+3+2 \end{array}\right] \\ \Rightarrow A(A+1)=\left[\begin{array}{ccc} 2 & -1 & -3 \\ 6 & 5 & 7 \\ 2 & 3 & 5 \end{array}\right] \end{array}
Since, L.H.S = R.H.S.
Hence proved, A^2 + A = A(A + I)

Question:27

If A=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right], then verify that:
(i) (A’)’ = A
(ii) (AB)’ = B’A’
(iii) (kA)’ = (kA’)

Answer:

We are given with the following matrices A and B, such that
A=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right]_{\text {and }} B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right]
(i). We need to verify that, (A’)’ = A.
Take L.H.S: (A’)’
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal, thatis it switches the row and column indices of the matrix by producing another matrix denoted as A\textsuperscript{T} or A’.
So, in transpose of a matrix,
The rows of the matrix become the columns of the matrix.
So, If A=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right]
(0, -1, 2) and (4, 3, -4) are 1st and 2nd rows respectively, will become 1st and 2nd columns respectively.
Then A^{\prime}=\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]$

Also, if A^{\prime}=\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]$
Similarly, (0, 4), (-1, 3) and (2, -4) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
Then \left(A^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]$
Note, that
\left(A^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]=A$
Thus, verified that \left(A^{\prime}\right)^{\prime}=A$
(ii). We need to verify that, (AB)’ = B’A’.
Take L.H.S: (AB)’
Compute AB.
AB=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right] \left[\begin{array}{ll} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right]
Order of A = 2 × 3
Order of B = 3 × 2
Then, order of AB = 2 × 2
Multiplying 1st row of matrix A by matching members of 1st column of matrix B, then finally sum them up.
(0, -1, 2)(4, 1, 2) = (0 × 4) + (-1 × 1) + (2 × 2)
⇒ (0, -1, 2)(4, 1, 2) = 0 - 1 + 4
⇒ (0, -1, 2)(4, 1, 2) = 3
\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right] \left[\begin{array}{ll} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right] = \begin{bmatrix} 3 & \\ & \end{bmatrix}
Similarly, repeat the steps to fill for the other elements.
\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right] \left[\begin{array}{ll} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right] =\left[\begin{array}{cc} 3 & (0 \times 0)+(-1 \times 3)+(2 \times 6) \\ (4 \times 4)+(3 \times 1)+(-4 \times 2) & (4 \times 0)+(3 \times 3)+(-4 \times 6) \end{array}\right]
\begin{array}{l} \Rightarrow\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right]\left[\begin{array}{cc} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right]=\left[\begin{array}{cc} 3 & 0-3+12 \\ 16+3-8 & 0+9-24 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right]\left[\begin{array}{cc} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{array}\right]=\left[\begin{array}{cc} 3 & 9 \\ 11 & -15 \end{array}\right] \\ \Rightarrow \mathrm{AB}=\left[\begin{array}{cc} 3 & 9 \\ 11 & -15 \end{array}\right] \end{array}
Transpose of AB is (AB)’.
(3, 9) and (11, -15) are 1st and 2nd rows respectively, will become 1st and 2nd columns respectively.
$$ (\mathrm{AB})^{\prime}=\left[\begin{array}{cc} 3 & 11 \\ 9 & -15 \end{array}\right] $$
Take R.H.S:$\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
\mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]$
(4, 0), (1, 3) and (2, 6) are 1st, 2nd and 3rd rows of matrix B respectively, will become 1st, 2nd and 3rd columns respectively.
\Rightarrow \mathrm{B}^{\prime}=\left[\begin{array}{lll}4 & 1 & 2 \\ 0 & 3 & 6\end{array}\right]$
Also, if A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]$
(0, -1, 2) and (4, 3, -4) are 1st and 2nd rows respectively, will become 1st and 2nd columns respectively.
\Rightarrow A^{\prime}=\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]$
By multiplying$B^{\prime}$$$ $ by $A^{\prime}$we get,
\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{lll} 4 & 1 & 2 \\ 0 & 3 & 6 \end{array}\right]\left[\begin{array}{cc} 0 & 4 \\ -1 & 3 \\ 2 & -4 \end{array}\right]
Order of B’ = 2 × 3
Order of A’ = 3 × 2
Then, order of B’A’ = 2 × 2
Multiply 1st row of matrix B’ by matching members of 1st column of matrix A’, then finally sum them up.
(4, 1, 2)(0, -1, 2) = (4 × 0) + (1 × -1) + (2 × 2)
⇒ (4, 1, 2)(0, -1, 2) = 0 - 1 + 4
⇒ (4, 1, 2)(0, -1, 2) = 3
\left[\begin{array}{lll} 4 & 1 & 2 \\ 0 & 3 & 6 \end{array}\right]\left[\begin{array}{cc} 0 & 4 \\ -1 & 3 \\ 2 & -4 \end{array}\right] = \begin{bmatrix} 3 & \\ & \end{bmatrix}
Similarly, repeat the same steps to fill the rest of the elements.
\left[\begin{array}{lll} 4 & 1 & 2 \\ 0 & 3 & 6 \end{array}\right]\left[\begin{array}{cc} 0 & 4 \\ -1 & 3 \\ 2 & -4 \end{array}\right] = \left[\begin{array}{cc} 3 & (4 \times 4)+(1 \times 3)+(2 \times-4) \\ (0 \times 0)+(3 \times-1)+(6 \times 2) & (0 \times 4)+(3 \times 3)+(6 \times-4) \end{array}\right]
\begin{array}{l} \Rightarrow\left[\begin{array}{lll} 4 & 1 & 2 \\ 0 & 3 & 6 \end{array}\right]\left[\begin{array}{cc} 0 & 4 \\ -1 & 3 \\ 2 & -4 \end{array}\right]=\left[\begin{array}{cc} 3 & 16+3-8 \\ 0-3+12 & 0+9-24 \end{array}\right] \\ \Rightarrow\left[\begin{array}{lll} 4 & 1 & 2 \\ 0 & 3 & 6 \end{array}\right]\left[\begin{array}{cc} 0 & 4 \\ -1 & 3 \\ 2 & -4 \end{array}\right]=\left[\begin{array}{cc} 3 & 11 \\ 9 & -15 \end{array}\right] \\ \Rightarrow \mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{cc} 3 & 11 \\ 9 & -15 \end{array}\right] \\ \text { since, } \mathrm{L.H.S}=\mathrm{R.H.S} \\ \text { Thus, }(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime} \end{array}
(iii). We need to verify that, (kA)’ = kA’.
Take L.H.S: (kA)’
We know that,
A=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]$
By Multiplying k on both sides, we get, (k is a scalar quantity)
\begin{array}{l} k A=k \times\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right] \\ \Rightarrow k A=\left[\begin{array}{ccc} k \times 0 & k \times-1 & k \times 2 \\ k \times 4 & k \times 3 & k \times-4 \end{array}\right] \\ \Rightarrow k A=\left[\begin{array}{ccc} 0 & -k & 2 k \\ 4 k & 3 k & -4 k \end{array}\right] \end{array}
Now, to find transpose of kA,
(0, -k, 2k) and (4k, 3k, -4k) are 1st and 2nd rows of matrix kA respectively, will become 1st and 2nd columns respectively.
\begin{aligned} &\Rightarrow(\mathrm{kA})^{\prime}=\left[\begin{array}{cc} 0 & 4 \mathrm{k} \\ -\mathrm{k} & 3 \mathrm{k} \\ 2 \mathrm{k} & -4 \mathrm{k} \end{array}\right]\\ &\text { Take R.H.S: kA }\\ &A=\left[\begin{array}{ccc} 0 & -1 & 2 \\ 4 & 3 & -4 \end{array}\right] \end{aligned}
Then, for transpose of A,
(0, -1, 2) and (4, 3, -4) are 1st and 2nd rows of matrix A respectively, will become 1st and 2nd columns respectively.
A'=\begin{bmatrix} 0 &4 \\-1 &3 \\2 &-4 \end{bmatrix}
By Multiplying k on both sides, we get,
\\ \mathrm{kA}^{\prime}=\mathrm{k}\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]$ \\$\Rightarrow \mathrm{kA}^{\prime}=\left[\begin{array}{cc}\mathrm{k} \times 0 & \mathrm{k} \times 4 \\ \mathrm{k} \times-1 & \mathrm{k} \times 3 \\ \mathrm{k} \times 2 & \mathrm{k} \times-4\end{array}\right]$ \\$\Rightarrow \mathrm{kA}^{\prime}=\left[\begin{array}{cc}0 & 4 \mathrm{k} \\ -\mathrm{k} & 3 \mathrm{k} \\ 2 \mathrm{k} & -4 \mathrm{k}\end{array}\right]$
As, L.H.S = R.H.S.
Hence proved, (kA)' = kA'.

Question:28


If A=\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{array}\right], B=\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right] then verify that:

(i) (2A + B)’ = 2A’ + B’
(ii) (A - B)’ = A’ - B’.

Answer:

We are given the following matrices A and B, such that
A=\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{array}\right], B=\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right]
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal, that is it switches the row and column indices of the matrix by producing another matrix denoted as AT or A’.
So, in transpose of a matrix,
The rows of the matrix become the columns of the matrix. .
(i). We need to verify that, (2A + B)’ = 2A’ + B’.
Take L.H.S: (2A + B)’
By substituting the matrices A and B, in (2A + B)’, we get,
\begin{aligned} &(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left(2\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{array}\right]+\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right]\right)^{\prime}\\ &\Rightarrow(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left(\left[\begin{array}{lll} 2 \times 1 & 2 \times 2 \\ 2 \times 4 & 2 \times 1 \\ 2 \times 5 & 2 \times 6 \end{array}\right]+\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right]\right)^{\prime}\\ &\Rightarrow(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left(\left[\begin{array}{cc} 2 & 4 \\ 8 & 2 \\ 10 & 12 \end{array}\right]+\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right]\right)^{\prime}\\ &\Rightarrow(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left(\left[\begin{array}{cc} 2+1 & 4+2 \\ 8+6 & 2+4 \\ 10+7 & 12+3 \end{array}\right]\right)^{\prime}\\ &\Rightarrow(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left(\left[\begin{array}{cc} 3 & 6 \\ 14 & 6 \\ 17 & 15 \end{array}\right]\right)^{\prime} \end{aligned}
For transpose of (2A + B),
(3, 6), (14, 6) and (17, 15) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
\begin{aligned} &\Rightarrow(2 \mathrm{~A}+\mathrm{B})^{\prime}= \begin{bmatrix} 3 &14 &17 \\6 &6 &15 \end{bmatrix} \end{aligned}
Take R.H.S: 2A’ + B’
If A=\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{array}\right]
(1, 2), (4, 1) and (5, 6) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
\Rightarrow A^{\prime}=\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 1 & 6\end{array}\right]$
Multiply both sides by 2 we get,
$$ 2 \mathrm{~A}^{\prime}=2\left[\begin{array}{lll} 1 & 4 & 5 \\ 2 & 1 & 6 \end{array}\right] $$
\\\Rightarrow 2 A^{\prime}=\left[\begin{array}{lll}2 \times 1 & 2 \times 4 & 2 \times 5 \\ 2 \times 2 & 2 \times 1 & 2 \times 6\end{array}\right]$ \\$\Rightarrow 2 \mathrm{~A}^{\prime}=\left[\begin{array}{lll}2 & 8 & 10 \\ 4 & 2 & 12\end{array}\right]$
Also,
If
$$ B=\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right] $$
(1, 2), (6, 4) and (7, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
\begin{aligned} &\Rightarrow \mathrm{B}^{\prime}=\left[\begin{array}{lll} 1 & 6 & 7 \\ 2 & 4 & 3 \end{array}\right]\\ &\text { Now, add } 2 \mathrm{~A}^{\prime} \text { and } \mathrm{B}^{\prime}\\ &2 \mathrm{~A}^{\prime}+\mathrm{B}^{\prime}=\left[\begin{array}{lll} 2 & 8 & 10 \\ 4 & 2 & 12 \end{array}\right]+\left[\begin{array}{lll} 1 & 6 & 7 \\ 2 & 4 & 3 \end{array}\right]\\ &\Rightarrow 2 A^{\prime}+B^{\prime}=\left[\begin{array}{lll} 2+1 & 8+6 & 10+7 \\ 4+2 & 2+4 & 12+3 \end{array}\right]\\ &\Rightarrow 2 A^{\prime}+B^{\prime}=\left[\begin{array}{ccc} 3 & 14 & 17 \\ 6 & 6 & 15 \end{array}\right] \end{aligned}
Since, L.H.S = R.H.S
Thus, (2A + B)’ = 2A’ + B’.
(ii). We need to verify that, (A - B)’ = A’ - B’.
Take L.H.S: (A - B)’
By substituting the matrices A and B in (A - B)’, we get,
\begin{array}{l} (A-B)^{\prime}=\left(\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{array}\right]-\left[\begin{array}{ll} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{array}\right]\right)^{\prime} \\ \Rightarrow(A-B)^{\prime}=\left(\left[\begin{array}{ll} 1-1 & 2-2 \\ 4-6 & 1-4 \\ 5-7 & 6-3 \end{array}\right]\right)^{\prime} \\ \Rightarrow(A-B)^{\prime}=\left(\left[\begin{array}{cc} 0 & 0 \\ -2 & -3 \\ -2 & 3 \end{array}\right]\right)^{\prime} \end{array}
To find transpose of (A - B),
(0, 0), (-2, -3) and (-2, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
$$ \Rightarrow(A-B)^{\prime}=\left[\begin{array}{ccc} 0 & -2 & -2 \\ 0 & -3 & 3 \end{array}\right] $$
Take R.H.S: $\mathrm{A}^{\prime}-\mathrm{B}^{\prime}$
A=\left[\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right]$
(1,2),(4,1) and (5,6) are $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ rows respectively, will become $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ columns respectively.
\Rightarrow A^{\prime}=\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 1 & 6\end{array}\right]$
Also,
B=\left[\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right]$
(1, 2), (6, 4) and (7, 3) are 1st, 2nd and 3rd rows respectively, will become 1st, 2nd and 3rd columns respectively.
\Rightarrow \mathrm{B}^{\prime}=\left[\begin{array}{lll}1 & 6 & 7 \\ 2 & 4 & 3\end{array}\right]$
When Subtracting $\mathrm{B}^{\prime} \text{ from } \mathrm{A}^{\prime}$, we get,
A^{\prime}-B^{\prime}=\left[\begin{array}{lll} 1 & 4 & 5 \\ 2 & 1 & 6 \end{array}\right]-\left[\begin{array}{lll} 1 & 6 & 7 \\ 2 & 4 & 3 \end{array}\right]
\begin{array}{l} \Rightarrow A^{\prime}-B^{\prime}=\left[\begin{array}{rrr} 1-1 & 4-6 & 5-7 \\ 2-2 & 1-4 & 6-3 \end{array}\right] \\ \Rightarrow A^{\prime}-B^{\prime}=\left[\begin{array}{rrr} 0 & -2 & -2 \\ 0 & -3 & 3 \end{array}\right] \\ \text { As, L.H.S = R.H.S } \\ \text { Hence proved, }(A-B)^{\prime}=A^{\prime}-B \end{array}

Question:29

Show that A’A and AA’ are both symmetric matrices for any matrix A.

Answer:

We know that,
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, because equal matrices have equal dimensions, only square matrices can be symmetric.
And we know that, transpose of AB is given by
(AB)’ = B’A’
Using this result, and by taking transpose of A’A we have,
Transpose of A’A = (A’A)T = (A’A)’
Using, transpose of A’A = (A’A)’
⇒ (A’A)’ = A’(A’)’
And also,
(A’)’ = A
So,
(A’A)’ = A’A
Since, (A’A)’ = A’A
This means, A’A is symmetric matrix for any matrix A.
Now, take transpose of AA’.
Transpose of AA’ = (AA’)’
⇒ (AA’)’ = (A’)’A’ [ (AB)’ = B’A’]
⇒ (AA’)’ = AA’ [(A’)’ = A]
Since, (AA’)’ = AA’
This means, AA’ is symmetric matrix for any matrix A.
Thus, A’A and AA’ are symmetric matrix for any matrix A.

Question:30

Let A and B be square matrices of the order 3 × 3. Is (AB)^2 = A^2B^2? Give reasons.

Answer:

We have been given that,
A and B are square matrices of the order 3 $ \times $ 3.
We need to check whether (AB)\textsuperscript{2} = A\textsuperscript{2}B\textsuperscript{2} is true or not.
Take (AB)\textsuperscript{2}.
(AB)\textsuperscript{2} = (AB)(AB)
[$\because$ A and B are of order (3 $ \times $ 3) each, A and B can be multiplied; A and B be any matrices of order (3 $ \times $ 3)]
$ \Rightarrow $ (AB)\textsuperscript{2} = ABAB
[$\because$ (AB)(AB) = ABAB]
$ \Rightarrow $ (AB)\textsuperscript{2} = AABB [ if BA = AB]
$ \Rightarrow $ (AB)\textsuperscript{2} = A\textsuperscript{2}B\textsuperscript{2}
(AB)\textsuperscript{2} = A\textsuperscript{2}B\textsuperscript{2} is possible if BA = AB.

Question:31

Show that if A and B are square matrices such that AB = BA, then (A + B)^2 = A^2 + 2AB + B^2.

Answer:

According to matrix multiplication we can say that:
(A + B)\textsuperscript{2} = (A+B)(A+B) = A\textsuperscript{2} + AB + BA + B\textsuperscript{2}
We know that matrix multiplication is not commutative but it is given that: AB = BA
\\$ \therefore $ (A + B)\textsuperscript{2} = A\textsuperscript{2} + AB + AB + B\textsuperscript{2} \\$ \Rightarrow $ (A + B)\textsuperscript{2} = A\textsuperscript{2} + 2AB + B\textsuperscript{2} $ \ldots $ is proved

Question:32.1

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that:
A + (B + C) = (A + B) + C

Answer:

Given,
A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]
\begin{aligned} &\text { LHS }=A+(B+C)=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left(\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\right)\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left(\left[\begin{array}{ll} 4+2 & 0+0 \\ 1+1 & 5-2 \end{array}\right]\right) \end{aligned}
\begin{aligned} &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left[\begin{array}{ll} 6 & 0 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &R H S=(A+B)+C=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\right)+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left(\left[\begin{array}{cc} 1+4 & 2+0 \\ -1+1 & 3+5 \end{array}\right]\right)+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{ll} 5 & 2 \\ 0 & 8 \end{array}\right]+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &\text { Clearly LHS }=R H S=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &\text { Hence, we have }\\ &A+(B+C)=(A+B)+C \text { ...proved } \end{aligned}

Question:32.2

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that:
A(BC) = (AB)C

Answer:

We have to prove that: A(BC) = (AB)C
\begin{array}{l} \text { LHS = } \mathrm{A}(\mathrm{BC})=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left(\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\right) \\ \Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left(\begin{array}{cc} 4 \times 2+0 \times 1 & 4 \times 0+0 \times(-2) \\ 1 \times 2+5 \times 1 & 1 \times 0+5 \times(-2)]) \end{array}\right. \\ \Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left[\begin{array}{cc} 8 & 0 \\ 7 & -10 \end{array}\right] \\ LHS= {\left[\begin{array}{cc} 22 & -20 \\ 13 & -30 \end{array}\right]} \end{array}
\begin{aligned} &\mathrm{RHS}=(\mathrm{AB}) \mathrm{C}=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\right)\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\text { By matrix multiplication as done for LHS }\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc} 6 & 10 \\ -1 & 15 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{ll} 22 & -20 \\ 13 & -30 \end{array}\right]\\ &\text { Evidently, LHS = RHS }=\left[\begin{array}{rr} 22 & -20 \\ 13 & -30 \end{array}\right]\\ &\therefore \mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C} \ldots \text { .proved } \end{aligned}

Question:32.3

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that:(a + b)B = aB + bB

Answer:

To prove: (a + b)B = aB + bB
Given, a = 4 and b = -2
\\LHS =(4+(-2)) B=2\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$ \\$\mathrm{RHS}=\mathrm{aB}+\mathrm{bB}=4\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]-2\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]$ \\$\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc}16 & 0 \\ 4 & 20\end{array}\right]-\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$
It is clear that, \mathrm{LHS}=\mathrm{RHS}=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$
Hence, we have,
(a + b)B = aB + bB …proved

Question:32.4

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.

Show that:
a(C - A) = aC -aA

Answer:

We have to prove: a(C - A) = aC -aA
As,
\\LHS =a(C-A)=4\left(\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]\right)$ \\$\Rightarrow \mathrm{LHS}=4\left(\left[\begin{array}{cc}2-1 & 0-2 \\ 1-(-1) & -2-3\end{array}\right]\right)=4\left[\begin{array}{cc}1 & -2 \\ 2 & -5\end{array}\right]=\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right]$ \\$\mathrm{RHS}=\mathrm{aC}-\mathrm{aA}={ }^{4}\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]-4\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$ \\$\Rightarrow a C-a A=\left[\begin{array}{cc}8 & 0 \\ 4 & -8\end{array}\right]-\left[\begin{array}{cc}4 & 8 \\ -4 & 12\end{array}\right]=\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right]$
Clearly LHS =\mathrm{RHS}=\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right]$
Hence, we have
$a(C-A)=a C-a A \ldots$ $proved

Question:32.5

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that: (AT)^{}T = A

Answer:

To prove: (AT)^{}T = A
In transpose of a matrix, the rows of the matrix become the columns.
\\\text { LHS }=\left(A^{T}\right)^{T}\\=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}\right)^{\mathrm{T}}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]=\mathrm{A}=\mathrm{RHS}
Hence, proved.


Question:32.6

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that:
(bA)^T = bA^T

Answer:

a) To prove: (bA)^T = bA^T
As, LHS = (bA)^T = (-2A)^T=(-2\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right])^T
(bA)^T = (-2A)^T=\left[\begin{array}{cc} -2 & -4 \\ 2 & -6 \end{array}\right]^T=\left[\begin{array}{cc} -2 & 2 \\ -4 & -6 \end{array}\right]

\begin{aligned} &\text { Similarly, }\\ &\mathrm{RHS}=-2\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}=-2\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{cc} -2 & 2 \\ -4 & -6 \end{array}\right]\\ &\text { Hence proved }L H S=R H S=\left[\begin{array}{cc} -2 &2 \\ -4 & -6 \end{array}\right]\\ &\text { Then, }(b A)^{T}=b A^{\top} \ldots \text { proved } \end{aligned}


Question:32.7

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.
Show that: (AB)^T = B^T A^T

Answer:

To prove: (AB)^T = B^T A^T
By multiplying the matrices and taking the transpose, we get,
\therefore \mathrm{LHS}=\left(\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]\right)^{\mathrm{T}}$ \\$\Rightarrow \mathrm{LHS}=\left[\begin{array}{ll}1 \times 4+2 \times 1 & 1 \times 0+2 \times 5 \\ -1 \times 4+3 \times 1 & -1 \times 0+3 \times 5\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}6 & 10 \\ -1 & 15\end{array}\right]^{\mathrm{T}}$ \\$\therefore \mathrm{LHS}=\left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]$
As $\mathrm{RHS}=\mathrm{B}^{\top} \mathrm{A}^{\top}$
By taking transpose of matrices and then multiplying, we get,
\mathrm{RHS}=\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$ \\$\Rightarrow \mathrm{RHS}=\left[\begin{array}{ll}4 \times 1+1 \times(2) & 4 \times (-1)+1 \times 3 \\ 0 \times 1+5 \times(2) & 0 \times (-1)+5 \times 3\end{array}\right]=\left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]$
We have, LHS = RHS = \left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]$
Hence (A B)^{\top}=B^{\top} A^{\top}$... proved

Question:32.8

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.

Show that:
(A - B)C = AC - BC

Answer:

c) To prove: (A - B)C = AC - BC
$A s, L H S=(A-B) C$
Substituting the values of $\mathrm{A} . \mathrm{B}$$ and $\mathrm{C}$ and multiplying according to the rule of matrix multiplication.
(A-B)=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]-\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]=\left[\begin{array}{cc} 1-4 & 2-0 \\ -1-1 & 3-5 \end{array}\right]=\left[\begin{array}{cc} -3 & 2 \\ -2 & -2 \end{array}\right]
LHS=(A-B) C=\left[\begin{array}{cc} -3 & 2 \\ -2 & -2 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]=\left[\begin{array}{cc} -4 & -4 \\ -6 & 4 \end{array}\right]

A C=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]=\left[\begin{array}{cc} 4 & -4 \\ 1 & -6 \end{array}\right]
B C=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]=\left[\begin{array}{cc} 8 & 0 \\ 7 & -10 \end{array}\right]
RHS=A C-B C=\left[\begin{array}{cc} 4-8 & -4-0 \\ 1-7 & -6+10 \end{array}\right]=\left[\begin{array}{cc} -4 & -4 \\ -6 & 4 \end{array}\right]=LHS
Hence (A-B) C=A C-B C$...proved

Question:32.9

Let A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right] and a = 4, b = -2.

Show that:
(A - B)^T = A^T - B^T

Answer:

To Prove: (A - B)^T = A^T - B^T
(A-B)=\left[\begin{array}{cc} 1-4 & 2-0 \\ -1-1 & 3-5 \end{array}\right]=\left[\begin{array}{cc} -3 & 2 \\ -2 & -2 \end{array}\right]
(A-B)^T=\left[\begin{array}{cc} -3 & -2 \\ 2 & -2 \end{array}\right]
\\A^{T}-B^{T}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]-\left[\begin{array}{cc} 4 & 1 \\ 0 & 5 \end{array}\right]\\=\left[\begin{array}{cc} -3 & -2 \\ 2 & -2 \end{array}\right]\\=(A-B)^{T}
Hence (A-B)^{T}=A^T-B^T.

Question:33

If A=\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right], then show that \quad \mathrm{A}^{2}=\left[\begin{array}{cc} \cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta \end{array}\right]

Answer:

As A=\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right],
A^2=\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]
According to the rule of matrix multiplication:
\\$$ \mathrm{A}^{2}=\left[\begin{array}{cc} \cos \theta \times \cos \theta+\sin \theta \times(-\sin \theta) & \cos \theta \times \sin \theta+\sin \theta \times \cos \theta \\ -\cos \theta \times \sin \theta+(-\sin \theta \times \cos \theta) & \cos \theta \times \cos \theta+\sin \theta \times(-\sin \theta) \end{array}\right] $$ \\ \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}\cos ^{2} \theta-\sin ^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta\end{array}\right]$
We know that:
\\2 \sin \theta \cos \theta=\sin 2 \theta$ and $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta \\\therefore A^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]_{\ldots}$
Hence.proved.

Question:34

If A=\left[\begin{array}{cc} 0 & -x \\ x & 0 \end{array}\right], B=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] and x^2 = -1, then show that (A + B)^2 = A^2 + B^2.

Answer:

\begin{aligned} &\text { As, LHS }=(A+B)^{2}=\left(\left[\begin{array}{cc} 0 & -x \\ x & 0 \end{array}\right]+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\right)^{2}\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]^{2}=\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]\\ &\text { By the rule of matrix multiplication we can write LHS as - }\\ &\text { LHS }=\left[\begin{array}{cc} 0+(1-x)(1+x) & 0 \\ 0 & (1+x)(1-x) \end{array}\right]\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1-\mathrm{x}^{2} & 0 \\ 0 & 1-\mathrm{x}^{2} \end{array}\right]\\ &\text { Given } x^{2}=-1\\ &\therefore \mathrm{LHS}=\left[\begin{array}{cc} 1-(-1) & 0 \\ 0 & 1-(-1) \end{array}\right]=\left[\begin{array}{ll} 2 & 0 \\ 0 & 2 \end{array}\right]\\ \end{aligned}
\begin{aligned} &\mathrm{RHS}=\mathrm{A}^{2}+\mathrm{B}^{2}=\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]^{2}+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]^{2}\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \end{aligned}
By the rule pf matrix multiplication we can write-
\mathrm{RHS}=\left[\begin{array}{cc}-\mathrm{x}^{2} & 0 \\ 0 & -\mathrm{x}^{2}\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1-\mathrm{x}^{2} & 0 \\ 0 & 1-\mathrm{x}^{2}\end{array}\right]$
Given x^{2}=-1$
\therefore \mathrm{RHS}=\left[\begin{array}{cc}1-(-1) & 0 \\ 0 & 1-(-1)\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
We have, \mathrm{RHS}=\mathrm{LHS}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
Hence, (A+B)^{2}=A^{2}+B^{2}$. -proved

Question:35

Verify that A^2 = I when A=\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right]

Answer:

We need to prove that
\begin{array}{l} A^{2}=I=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \because A=\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right] \\ \therefore A^{2}=\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right]\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right] \end{array}
According to the rule of matrix multiplication we have-
\begin{aligned} &A^{2}=\left[\begin{array}{ccc} 0 \times 0+1 \times 4+(-1) \times 3 & 0 \times 1+1 \times(-3)+(-1) \times(-3) & 0 \times(-1)+1 \times 4+(-1) \times 4 \\ 4 \times 0+(-3) \times 4+4 \times 3 & 4 \times 1+(-3) \times(-3)+4 \times(-3) & 4 \times(-1)+(-3) \times 4+4 \times 4 \\ 3 \times 0+(-3) \times 4+4 \times 3 & 3 \times 1+(-3) \times(-3)+4 \times(-3) & 3 \times(-1)+(-3) \times 4+4 \times 4 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{ccc} 4-3 & -3+3 & 4-4 \\ -12+12 & 4+9-12 & -4-12+16 \\ -12+12 & 3+9-12 & -3+16-12 \end{array}\right]\\ &\therefore \mathrm{A}^{2}=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=I\\ &\text { Hence Proved } \end{aligned}

Question:36

Prove by Mathematical Induction that (A')^n = (A^n)', where n ∈ N for any square matrix A.

Answer:

By principle of mathematical induction we say that if a statement P(n) is true for n = 1 and if we assume P(k) to be true for some random natural number k and usnig it if we prove P(k+1) to be true we can say that P(n) is true for all natural numbers.
We are given to prove that (A')\textsuperscript{n} = (A\textsuperscript{n})'.
Let P(n) be the statement :(A')\textsuperscript{n} = (A\textsuperscript{n})'.
Clearly, P(1): (A')\textsuperscript{1} = (A\textsuperscript{1})'
\\$ \Rightarrow $ P(1) : A' = A' \\$ \Rightarrow $ $ P(1) is true
Let P(k) be true.
\therefore $ (A')\textsuperscript{k} = (A\textsuperscript{k})' $ \ldots $ (1)
Let’s take P(k+1) now:
$\because$ (A\textsuperscript{k+1})' = (A\textsuperscript{k}A)'
We know that according tu the rule of trabnspose of a matrix,
(AB)\textsuperscript{T} = B\textsuperscript{T}A\textsuperscript{T} $ \therefore $ (A\textsuperscript{k}A)' = A'(A\textsuperscript{k})' = A'(A')\textsuperscript{k} = (A')\textsuperscript{k+1}
Thus,(A\textsuperscript{k+1})' = (A')\textsuperscript{k+1}
$ \therefore $ $P(k+1) is true.
Hence proved: (A')\textsuperscript{n} = (A\textsuperscript{n})' is true for all n $ \in $ N.

Question:37.1

Find inverse, by elementary row operations (if possible), of the following matrices.
\begin{bmatrix} 1 &3 \\-5 & 7 \end{bmatrix}

Answer:

Let A=\begin{bmatrix} 1 &3 \\-5 & 7 \end{bmatrix}
To apply elementary row transformations we can say that:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that
I = XA
And this X is called inverse of A = A-1
So we get:
\begin{aligned} &\left[\begin{array}{cc} 1 & 3 \\ -5 & 7 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+5 \mathrm{R}_{1}\\ &\Rightarrow\left[\begin{array}{cc} 1 & 3 \\ 0 & 22 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 5 & 1 \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{2} \rightarrow(1 / 22) \mathrm{R}_{2}\\ &\Rightarrow\left[\begin{array}{ll} 1 & 3 \\ 0 & 1 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}\\ &\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=\left[\begin{array}{ll} \frac{7}{22} & -\frac{3}{22} \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \mathrm{A}\\ &\text { As we have an Identity matrix in LHS. }\\ \end{aligned}
\begin{aligned} &\therefore A^{-1}=\left[\begin{array}{ll} \frac{7}{22} & -\frac{3}{22} \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \end{aligned}

Question:37.2

Find inverse, by elementary row operations (if possible), of the following matrices.
\begin{bmatrix} 1 &-3 \\-2 & 6 \end{bmatrix}

Answer:

Let B=\begin{bmatrix} 1 &-3 \\-2 & 6 \end{bmatrix}
To apply elementary row transformations we write:
B = IB where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that
I = XB
And this X is called inverse of B = B^{-1}
So we get,
\begin{array}{l} {\left[\begin{array}{cc} 1 & -3 \\ -2 & 6 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \mathrm{B}} \end{array}
By Applying R2→ R2 + 2R1
\Rightarrow\left[\begin{array}{cc} 1 & -3 \\ 0 & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right] \mathrm{A}
We have got all zeroes in one of the row of matrix in LHS.
So by any means we can't make identity matrix in LHS.
∴ inverse of B does not exist.
B^{-1} does not exist.

Question:38

If \left[\begin{array}{cc} x y & 4 \\ z+6 & x+y \end{array}\right]=\left[\begin{array}{cc} 8 & w \\ 0 & 6 \end{array}\right] then find values of x, y, z and w.

Answer:

We are given the following matrices,
\left[\begin{array}{cc} x y & 4 \\ z+6 & x+y \end{array}\right]=\left[\begin{array}{cc} 8 & w \\ 0 & 6 \end{array}\right]
Since, both the matrices are equal, so all the elements in them are equal.
$ \therefore $ xy = 8 ; w = 4 ; z + 6 = 0\ and\ x + y = 6
Hence, we have,
\\w = 4 \\z = -6 \\$\because$ x + y = 6 \\$ \Rightarrow $ y = 6 - x \\$ \therefore $ x(6-x) = 8 \\$ \Rightarrow $ x\textsuperscript{2} - 6x + 8 = 0 \\$ \Rightarrow $ x\textsuperscript{2} - 4x - 2x + 8 = 0 \\$ \Rightarrow $ x(x - 4) - 2(x - 4) = 0 \\$ \Rightarrow $ (x - 2)(x - 4) = 0 \\$ \Rightarrow $ x = 2 or x = 4
When x = 2 ; y = 4
And when x = 4 ; y = 2
Thus, we have the values of
x = 2 or 4 ; y = 4 or 2 ; z = -6 and w = 4

Question:39

If A=\begin{bmatrix} 1 &5 \\7 &12 \end{bmatrix} $ and $ B=\begin{bmatrix} 9 &1 \\7 & 8 \end{bmatrix} find a matrix C such that 3A + 5B + 2C is a null matrix.

Answer:

Given that:
3A + 5B + 2C = O = null matrix
We have to determine the value of C,
\begin{array}{l} \text { As, } 3\left[\begin{array}{lr} 1 & 5 \\ 7 & 12 \end{array}\right]+5\left[\begin{array}{ll} 9 & 1 \\ 7 & 8 \end{array}\right]+2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} 3 & 15 \\ 21 & 36 \end{array}\right]+\left[\begin{array}{ll} 45 & 5 \\ 35 & 40 \end{array}\right]+2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \Rightarrow 2 C+\left[\begin{array}{ll} 48 & 20 \\ 56 & 76 \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \therefore 2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]-\left[\begin{array}{ll} 48 & 20 \\ 56 & 76 \end{array}\right] \\ \Rightarrow 2 C=\left[\begin{array}{ll} -48 & -20 \\ -56 & -76 \end{array}\right] \\ \therefore C=\frac{1}{2}\left[\begin{array}{ll} -48 & -20 \\ -56 & -76 \end{array}\right]=\left[\begin{array}{ll} -24 & -10 \\ -28 & -38 \end{array}\right] \end{array}

Question:40

If A=\begin{bmatrix} 3 &-5 \\-4 & 2 \end{bmatrix} then find A^2 - 5A - 14I. Hence, obtain A^3.

Answer:

Given, A=\begin{bmatrix} 3 &-5 \\-4 & 2 \end{bmatrix}
\therefore A^{2}=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$
According to the rule of matrix multiplication we can write:
\\ \mathrm{A}^{2}=\left[\begin{array}{cc}3 \times 3+(-5) \times(-4) & 3 \times(-5)+2 \times(-5) \\ -4 \times 3+2 \times(-4) & (-4) \times(-5)+2 \times 2\end{array}\right]$ \\$\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]_{...}(1)$
We have to find: A^{2}-5 A-14I
\begin{array}{l} \therefore A^{2}-5 A-14I=\left[\begin{array}{cc} 29 & -25 \\ -20 & 24 \end{array}\right]-5\left[\begin{array}{cc} 3 & -5 \\ -4 & 2 \end{array}\right]-14\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \\ \Rightarrow A^{2}-5 A-14 I=\left[\begin{array}{cc} 29 & -25 \\ -20 & 24 \end{array}\right]-\left[\begin{array}{cc} 15 & -25 \\ -20 & 10 \end{array}\right]-\left[\begin{array}{cc} 14 & 0 \\ 0 & 14 \end{array}\right] \\ \Rightarrow A^{2}-5 A-14 I=\left[\begin{array}{cc} 29-15-14 & -25+25+0 \\ -20+20+0 & 24-10-14 \end{array}\right] \\ A^{2}-5 A-14 I=\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]=0 \end{array}
We need to find value of A^3 using the above equation:
Now we have,
A\textsuperscript{2} - 5A - 14I = O
\Rightarrow $ A\textsuperscript{2} = 5A + 14I
By multiplying with A both sides we get,
\\$ \Rightarrow $ A\textsuperscript{2}.A = 5A.A + 14IA \\\\$ \Rightarrow $ A\textsuperscript{3} = 5A\textsuperscript{2} + 14A
By Using equation 1 we get:
\begin{array}{l} \Rightarrow \mathrm{A}^{3}=5\left[\begin{array}{cc} 29 & -25 \\ -20 & 24 \end{array}\right]+14\left[\begin{array}{cc} 3 & -5 \\ -4 & 2 \end{array}\right] \\ \Rightarrow \mathrm{A}^{3}=\left[\begin{array}{cc} 145 & -125 \\ -100 & 120 \end{array}\right]+\left[\begin{array}{cc} 42 & -70 \\ -56 & 28 \end{array}\right] \\ \Rightarrow \mathrm{A}^{3}=\left[\begin{array}{cc} 187 & -195 \\ -156 & 148 \end{array}\right] \end{array}

Question:41

Find the value of a, b, c and d, if 3\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\left[\begin{array}{cc} \mathrm{a} & 6 \\ -1 & 2 \mathrm{~d} \end{array}\right]+\left[\begin{array}{cc} 4 & \mathrm{a}+\mathrm{b} \\ \mathrm{c}+\mathrm{d} & 3 \end{array}\right]

Answer:

We are given the following matrices,
3\left[\begin{array}{ll} \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d} \end{array}\right]=\left[\begin{array}{cc} \mathrm{a} & 6 \\ -1 & 2 \mathrm{~d} \end{array}\right]+\left[\begin{array}{cc} 4 & \mathrm{a}+\mathrm{b} \\ \mathrm{c}+\mathrm{d} & 3 \end{array}\right]
We need to determine the value of a, b, c and d.
\begin{array}{l} \text { As, } 3\left[\begin{array}{ll} \text { a } & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} a & 6 \\ -1 & 2 d \end{array}\right]+\left[\begin{array}{cc} 4 & a+b \\ c+d & 3 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} 3 a & 3 b \\ 3 c & 3 d \end{array}\right]=\left[\begin{array}{cc} a+4 & 6+a+b \\ -1+c+d & 2 d+3 \end{array}\right] \end{array}
As both matrices are equal so their corresponding elements must also be equal.
\\$ \therefore $ 3a = a + 4 \\$ \Rightarrow $ 2a = 4 \\$ \Rightarrow $ a = 2
Similarly,
$ \Rightarrow $ 2b = 6 + a
As from above a = 2
\\3b = 6 + a + b \\$ \therefore $ 2b = 6+2 = 8 \\$ \Rightarrow $ b = 4 \\Also 3d = 2d + 3 \\$ \Rightarrow $ d = 3
And, we have,
\\3c = -1 + c + d \\$ \Rightarrow $ 2c = d - 1 \\$ \Rightarrow $ 2c = 3-1 \\$ \Rightarrow $ c = 2/2 = 1 \\Thus, a = 2, b = 4, c = 1 $ and d = 3.

Question:42

Find the matrix A such that

\left[\begin{array}{rr} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{array}\right] A=\left[\begin{array}{ccc} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{array}\right]

Answer:

We are given that,
\left[\begin{array}{rr} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{array}\right] A=\left[\begin{array}{ccc} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{array}\right]
As A is multiplied with a matrix of order 3×2 and gives a resultant matrix of order 3×3
For matrix multiplication to be possible A must have 2 rows and as resultant matrix is of 3rd order A must have 3 columns
∴ A is matrix of order 2×3
Let A = \left[\begin{array}{lll} \mathrm{a} & \mathrm{b} & c \\ \mathrm{~d} & \mathrm{e} & \mathrm{f} \end{array}\right] where a, b, c, d, e and f are unknown variables.
\begin{aligned} &\left[\begin{array}{cc} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{array}\right]\left[\begin{array}{lll} \mathrm{a} & \mathrm{b} & c \\ \mathrm{~d} & \mathrm{e} & \mathrm{f} \end{array}\right]=\left[\begin{array}{ccc} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{array}\right] \end{aligned}
∴ According to the rule of matrix multiplication we have-
\left[\begin{array}{ccc} 2 a-d & 2 b-e & 2 c-f \\ a & b & c \\ -3 a+4 d & -3 b+4 e & -3 c+4 f \end{array}\right]=\left[\begin{array}{ccc} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{array}\right]
By equating the elements of 2 equal matrices, as both the matrices are equal to each other, we get-
a = 1 ; b = -2 and c = -5
also, we have,
\\2a - d = -1 $ \Rightarrow $ d = 2a + 1 = 2 + 1 = 3 \\ \therefore $ d = 3 \\2b - e = -8 $ \Rightarrow $ e = 2b + 8 = -4 + 8 = 4 \\ \therefore e = 4 \\Similarly, f = 2c + 10 = 0
\\ \therefore A = \begin{bmatrix} 1 &-2 &-5 \\3 &4 &0 \end{bmatrix}

Question:43

If A=\begin{bmatrix} 1 &2 \\4 &1 \end{bmatrix} find A^2 + 2A + 7I

Answer:

We are given the following matrix A such that,
A=\begin{bmatrix} 1 &2 \\4 &1 \end{bmatrix}
\begin{array}{l} \because \mathrm{A}^{2}=\mathrm{A} . \mathrm{A} \\ \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right] \end{array}
According to the rule of matrix multiplication, we get
\begin{aligned} &A^{2}=\left[\begin{array}{ll} 1 \times 1+2 \times 4 & 1 \times 2+2 \times 1 \\ 4 \times 1+1 \times 4 & 4 \times 2+1 \times 1 \end{array}\right]\\ &\Rightarrow A^{2}=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]\\ &\therefore \mathrm{A}^{2}+2 \mathrm{~A}+71=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]+2\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right]+7\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}+2 \mathrm{~A}+7 \mathrm{I}=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]+\left[\begin{array}{ll} 2 & 4 \\ 8 & 2 \end{array}\right]+\left[\begin{array}{ll} 7 & 0 \\ 0 & 7 \end{array}\right]\\ &\Rightarrow A^{2}+2 A+7 I=\left[\begin{array}{ll} 9+2+7 & 4+4+0 \\ 8+8+0 & 9+2+7 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}+2 \mathrm{~A}+7I=\left[\begin{array}{cc} 18 & 8 \\ 16 & 18 \end{array}\right] \ldots \mathrm{ans} \end{aligned}

Question:44

If A= \begin{bmatrix} \cos \alpha &\sin \alpha \\-\sin \alpha &\cos \alpha \end{bmatrix} and A^{-1} = A', find value of \alpha

Answer:

Given,A= \begin{bmatrix} \cos \alpha &\sin \alpha \\-\sin \alpha &\cos \alpha \end{bmatrix}
We know that in transpose of a matrix, the rows of the matrix become the columns.
\begin{aligned} &\therefore \mathrm{A}^{\prime}=\left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right]\\ &\text { Inverse of a matrix }\\ &A=A^{-1}=\frac{\operatorname{adj}(A)}{|A|}\\ &\text { Clearly }|\mathrm{A}|=\left|\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right|\\ &\therefore|\mathrm{A}|=\cos ^{2} \alpha+\sin ^{2} \alpha=1_{\{\mathrm{using} \text { trigonometric identity }} \end{aligned}
Adj(A) is given by the transpose of the cofactor matrix.
\\\therefore \operatorname{adj}(\mathrm{A})=\left[\begin{array}{cc}\cos \alpha & -(-\sin \alpha) \\ -\sin \alpha & \cos \alpha\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ \\$\therefore \mathrm{A}^{-1}=\frac{\operatorname{adj}(\mathrm{A})}{|\mathrm{A}|}=1\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
According to question:
\\A^{\prime}=A^{-1}$ \\$\therefore\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
since both the matrices are equal irrespective of the value of $\alpha$.
$\therefore \alpha$ can be any real number

Question:45

If the matrix \begin{bmatrix} 0 &a &3 \\2 & b & -1\\c &1 &0 \end{bmatrix} is a skew symmetric matrix, find the values of a, b and c.

Answer:

A matrix is said to be skew-symmetric if A = -A’
Let, A = \begin{bmatrix} 0 &a &3 \\2 & b & -1\\c &1 &0 \end{bmatrix}
As, A is skew symmetric matrix.
∴ A = -A’
\begin{array}{l} \left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=-\left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]^{T} \\\\ \left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=-\left[\begin{array}{ccc} 0 & 2 & c \\ a & b & 1 \\ 3 & -1 & 0 \end{array}\right] \\\\ {\left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & -2 & -c \\ -a & -b & -1 \\ -3 & 1 & 0 \end{array}\right]} \end{array}
Equating the respective elements of both matrices, as both the matrices are equal to each other we have,
a = -2 ; c = -3 ; b = -b ⇒ 2b = 0 ⇒ b = 0
Thus, we get,
a = -2 , b = 0 and c = -3

Question:46

If P(x)= \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix} then show that

P(x).P(y) = P(x + y) = P(y).P(x)

Answer:

We are given that,
P(x)= \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}
P(y)= \begin{bmatrix} \cos y & \sin y \\ -\sin y & \cos y \end{bmatrix}
\begin{array}{l} \therefore P(x) \cdot P(y)=\left[\begin{array}{cc} \cos x & \sin x \\ -\sin x & \cos x \end{array}\right]\left[\begin{array}{cc} \cos y & \sin y \\ -\sin y & \cos y \end{array}\right] \\ \Rightarrow P(x) \cdot P(y)=\left[\begin{array}{cc} \cos x \cos y+\sin x(-\sin y) & \cos x \sin y+\sin x \cos y \\ -\sin x \cos y-\sin y(\cos x) & -\sin x \sin y+\cos x \cos y \end{array}\right] \end{array}
We know that-
\\ \\\cos x \cos y + \sin x \sin y = \cos (x - y) \\\cos x \sin y + \sin x \cos y = \sin (x + y) \\and \cos x \cos y - \sin x \sin y = \cos (x + y)
\Rightarrow P(x) \cdot P(y)=\left[\begin{array}{cc}\cos (x+y) & \sin (x+y) \\ -\sin (x+y) & \cos (x+y)\end{array}\right]$
By comparing with equation 1 we can say that:
\\\left[\begin{array}{cc}\cos (x+y) & \sin (x+y) \\ -\sin (x+y) & \cos (x+y)\end{array}\right]=\mathrm{P}(x+y)$ $\\\therefore P(x) \cdot P(y)=P(x+y)$
Similarly, we can show for $P(y) \cdot P(x)$
\mathrm{P}(\mathrm{y}) \cdot \mathrm{P}(\mathrm{x})=\left[\begin{array}{cc}\cos \mathrm{y} & \sin \mathrm{y} \\ -\sin \mathrm{y} & \cos \mathrm{y}\end{array}\right]\left[\begin{array}{cc}\cos \mathrm{x} & \sin \mathrm{x} \\ -\sin \mathrm{x} & \cos \mathrm{x}\end{array}\right]$
By the rule of matrix multiplication, we have -
\\ P(y) \cdot P(x)=\left[\begin{array}{cc}\cos y \cos x+\sin y(-\sin x) & \cos y \sin x+\sin y \cos x \\ -\sin y \cos x-\sin x \cos y & -\sin y \sin x+\cos x \cos y\end{array}\right]$ \\\\$\Rightarrow P(y) \cdot P(x)=\left[\begin{array}{cc}\cos x \cos y-\sin x \sin y & \sin x \cos y+\cos x \sin y \\ -(\sin x \cos y+\cos x \sin y) & \cos x \cos y-\sin x \sin y\end{array}\right]$ \\\\$\Rightarrow P(y) \cdot P(x)=\left[\begin{array}{cc}\cos (x+y) & \sin (x+y) \\ -\sin (x+y) & \cos (x+y)\end{array}\right]_{-...(3)}$\\ $\therefore$ From equation 2 and $3,$ we have,\\ $P(x) \cdot P(y)=P(y) \cdot P(x)=P(x+y)$

Question:47

If A is square matrix such that A^2 = A, show that (I + A)^3 = 7A + I.

Answer:

We are given that,
\\A\textsuperscript{2} = A \\$\because$ (a+b)\textsuperscript{3} = a\textsuperscript{3} + b\textsuperscript{3} + 3a\textsuperscript{2}b + 3ab\textsuperscript{2} \\As, (I + A)\textsuperscript{3} = I\textsuperscript{3} + A\textsuperscript{3} + 3I\textsuperscript{2}A + 3IA\textsuperscript{2} \\$\because$ $I is an identity matrix. \\$ \therefore $ I\textsuperscript{3} = I\textsuperscript{2} = I \\$ \therefore $ (I + A)\textsuperscript{3} = I + A\textsuperscript{3} + 3IA + 3IA
As, I is an identity matrix.
\\$ \therefore $ IA = AI = A \\$ \Rightarrow $ (I + A)\textsuperscript{3} = I + A\textsuperscript{3} + 6IA \\$\because$ A\textsuperscript{2} = A \\$ \Rightarrow $ (I + A)\textsuperscript{3} = I + A\textsuperscript{2}.A + 6A \\$ \Rightarrow $ (I + A)\textsuperscript{3} = I + A.A + 6A \\$ \Rightarrow $ (I + A)\textsuperscript{3} = I + A\textsuperscript{2} + 6A \\$ \Rightarrow $ (I + A)\textsuperscript{3} = I + A + 6A = I + 7A
Hence proved,
(I + A)\textsuperscript{3} = I + 7A

Question:48

If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A’ BA is skew symmetric.

Answer:

A matrix is said to be skew-symmetric if A = -A’
Given, B is a skew-symmetric matrix.
$ \therefore $ B = -B'
Let C = A'BA $ \ldots $ (1)
We have to prove C is skew-symmetric.
To prove: C = -C’
As C = A'BA $ \ldots $ (1)
We know that: (AB)’ = B’A’
\\$ \Rightarrow $ C' = (A'BA)' = A'B'(A')' \\$ \Rightarrow $ C' = A'B'A $ \{ $ $\because$ (A')' = A$ \} $ \\$ \Rightarrow $ C' = A'(-B)A \\$ \Rightarrow $ C' = -A'BA $ \ldots $ (2)
From equation 1 and 2:
We get,
C’ = -C
Thus, we say that C = A’ BA is a skew-symmetric matrix.

Question:49

If AB = BA for any two square matrices, prove by mathematical induction that (AB)^n = A^n B^n.

Answer:

By principle of mathematical induction we say that if a statement P(n) is true for n = 1 and if we assume P(k) to be true for some random natural number k and usnig it if we prove P(k+1) to be true we can say that P(n) is true for all natural numbers.
We have to prove that (AB)\textsuperscript{n} = A\textsuperscript{n}B\textsuperscript{n}
Let P(n) be the statement : (AB)\textsuperscript{n} = A\textsuperscript{n}B\textsuperscript{n}
So, P(1): (AB)\textsuperscript{1} = A\textsuperscript{1}B\textsuperscript{1}
\\$ \Rightarrow $ P(1) : AB = AB \\ \Rightarrow $ P(1) is true
Let P(k) be true.
\therefore $ (AB)\textsuperscript{k} = A\textsuperscript{k}B\textsuperscript{k} $ \ldots $ (1)
Let’s take P(k+1) now:
\\ \because$ (AB)\textsuperscript{k+1} = (AB)\textsuperscript{k}(AB) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k}(AB)
NOTE: As we know that Matrix multiplication is not commutative. So we can’t write directly that
A\textsuperscript{k}B\textsuperscript{k}(AB) = A\textsuperscript{k+1}B\textsuperscript{k+1}
But we are given that AB = BA
\\ \therefore $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k}(AB) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-1}(BAB)
As, AB = BA
\\ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-1}(ABB) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-1}(AB\textsuperscript{2}) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-2}(BAB\textsuperscript{2}) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-2}(ABB\textsuperscript{2}) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}B\textsuperscript{k-2}(AB\textsuperscript{3})
We observe that one power of B is decreasing while other is increasing. After certain repetitions decreasing power of B will become I
And at last step:
\\ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}I(AB\textsuperscript{k+1}) \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k}AB\textsuperscript{k+1} \\$ \Rightarrow $ (AB)\textsuperscript{k+1} = A\textsuperscript{k+1}B\textsuperscript{k+1}
Thus P(k+1) is true when P(k) is true.
\therefore $ (AB)\textsuperscript{n} = A\textsuperscript{n} B\textsuperscript{n} $ \forall $ n $ \in $ N when AB = BA.

Question:50

Find x, y, z if A=\begin{bmatrix} 0 &2y &z \\x &y &-z \\x &-y &z \end{bmatrix} satisfies A'= A^{-1}

Answer:

We are given the following matrix A such that,
A=\begin{bmatrix} 0 &2y &z \\x &y &-z \\x &-y &z \end{bmatrix}
We need to find the values of x, y and z such that A'= A\textsuperscript{-1}
If A' = A\textsuperscript{-1}
Pre-multiplying A on both sides, we get
AA' = AA\textsuperscript{-1}
$ \Rightarrow $ AA'= Iwhere I is the identity matrix.
\begin{aligned} &\left[\begin{array}{ccc} 0 & 2 y & z \\ x & y & -z \\ x & -y & z \end{array}\right]\left[\begin{array}{ccc} 0 & 2 y & z \\ x & y & -z \\ x & -y & z \end{array}\right]^{T}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &\Rightarrow\left[\begin{array}{ccc} 0 & 2 y & z \\ x & y & -z \\ x & -y & z \end{array}\right]\left[\begin{array}{ccc} 0 & x & x \\ 2 y & y & -y \\ z & -z & z \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]\\ &\text { By the rule of matrix multiplication we have: }\\ \end{aligned}
\Rightarrow\left[\begin{array}{ccc} 4 y^{2}+z^{2} & 2 y^{2}-z^{2} & -2 y^{2}+z^{2} \\ 2 y^{2}-z^{2} & x^{2}+y^{2}+z^{2} & x^{2}-y^{2}-z^{2} \\ -2 y^{2}+z^{2} & x^{2}-y^{2}+z^{2} & x^{2}+y^{2}+z^{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
On equating the corresponding elements of matrix as the matrix is equal to each other.
We need basically 3 equations as we have 3 variables to solve for. You can pick any three elements and equate them.
We have the following equations,
\\4y\textsuperscript{2} + z\textsuperscript{2} = 1 $ \ldots $ (1) \\x\textsuperscript{2} + y\textsuperscript{2} + z\textsuperscript{2} = 1 $ \ldots $ (2) \\2y\textsuperscript{2} - z\textsuperscript{2} = 0 $ \ldots $ (3)
By Adding equation 2 and 3, we get,
\\6y\textsuperscript{2} = 1 \\$ \Rightarrow $ y\textsuperscript{2} = 1/6
\\ y=\pm \frac{1}{\sqrt{6}}\\$ From equation $3,$ we get, $z^{2}=2 y^{2}$\\ $\Rightarrow z^{2}=2(1 / 6)$ \\$\therefore z^{2}=1 / 3$ \\$z=\pm \frac{1}{\sqrt{3}}$ \\From equation $2,$ we get, \\$x^{2}=1-y^{2}-z^2$ \\$\Rightarrow x^{2}=1-(1 / 6)-(1 / 3)$ \\$\Rightarrow x^{2}=1-1 / 2=1 / 2$ \\$x=\pm \frac{1}{\sqrt{2}}$ \\Thus, we get that, \\$\mathrm{x}=\pm \frac{1}{\sqrt{2} ;} \mathrm{y}=\pm \frac{1}{\sqrt{6} }\text { and } \mathrm{z}=\pm \frac{1}{\sqrt{3}}$


Question:51.1

If possible, using elementary row transformations, find the inverse of the following matrices
\begin{bmatrix} 2 &-1 & 3\\-5 &3 &1\\-3 &2 &3 \end{bmatrix}

Answer:

Let A = \begin{bmatrix} 2 &-1 & 3\\-5 &3 &1\\-3 &2 &3 \end{bmatrix}
To apply elementary row transformations we write:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that
I = XA
And this X is called inverse of A = A^{-1}
Note: Never apply row and column transformations simultaneously over a matrix.
So we get,
\begin{aligned} &\left[\begin{array}{ccc} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } R_{2} \rightarrow R_{2}+R_{1}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & -1 & 3 \\ -3 & 2 & 4 \\ -3 & 2 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & -1 & 3 \\ -3 & 2 & 4 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } R_{1} \rightarrow R_{1}+R_{2}\\ &\Rightarrow\left[\begin{array}{ccc} -1 & 1 & 7 \\ -3 & 2 & 4 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A} \end{aligned}
Applying R2→ R2 - 3R1
\begin{aligned} &\left[\begin{array}{ccc} -1 & 1 & 7 \\ 0 & -1 & -17 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ -5 & -2 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{3} \rightarrow(-1) \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} -1 & 1 & 7 \\ 0 & -1 & -17 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ -5 & -2 & 0 \\ 1 & 1 & -1 \end{array}\right] \mathrm{A}\\ \end{aligned}
\text { Applying } R_{1} \rightarrow R_{1}+R_{2}
\left[\begin{array}{ccc} -1 & 0 & -10 \\ 0 & -1 & -17 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} -3 & -1 & 0 \\ -5 & -2 & 0 \\ 1 & 1 & -1 \end{array}\right] A
\\\text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+10 \mathrm{R}_{3} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+17 \mathrm{R}_{3}\\ \Rightarrow\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 7 & 9 & -10 \\ 12 & 15 & -17 \\ 1 & 1 & -1 \end{array}\right] \mathrm{A}\\ \text { Applying } \mathrm{R}_{1} \rightarrow(-1) \mathrm{R}_{1} \text { and } \mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}\\
\Rightarrow\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{array}\right] A
\text { As we have an Identity Matrix in LHS, }\\ \\\therefore \mathrm{A}^{-1}=\left[\begin{array}{ccc} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{array}\right]

Question:51.2

If possible, using elementary row transformations, find the inverse of the following matrices
\begin{bmatrix} 2 &3 &-3 \\-1 &-2 &2 \\1 &1 &-1 \end{bmatrix}

Answer:

Let A = \begin{bmatrix} 2 &3 &-3 \\-1 &-2 &2 \\1 &1 &-1 \end{bmatrix}
To apply elementary row transformations we write:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that
I = XA
And this X is called inverse of A = A^{-1}
Note: Never apply row and column transformations simultaneously over a matrix.
So we get:
\begin{array}{l} {\left[\begin{array}{ccc} 2 & 3 & -3 \\ -1 & -2 & 2 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \\\\ \text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{3} \\ {\left[\begin{array}{ccc} 2 & 3 & -3 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}}\\ \\ \text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-2 \mathrm{R}_{3} \\ {\left[\begin{array}{ccc} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \\\\ \text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \\ {\left[\begin{array}{ccc} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & -2 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \end{array}
As second row of LHS contains all zeros, so we aren’t going to get any matrix in LHS.
∴ Inverse of A does not exist.
Hence, A-1 does not exist.

Question:51.3

If possible, using elementary row transformations, find the inverse of the following matrices
\begin{bmatrix} 2 &0 &-1 \\5 &1 &0 \\0 &1 &3 \end{bmatrix}

Answer:

Let A = \begin{bmatrix} 2 &0 &-1 \\5 &1 &0 \\0 &1 &3 \end{bmatrix}
To apply elementary row transformations we write:
A = IA where I is the identity matrix
We proceed with solving our problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that
I = XA
And this X is called inverse of A = A^{-1}
Note: Never apply row and column transformations simultaneously over a matrix.
So we get,
\begin{aligned} &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-(5 / 2) \mathrm{R}_{1}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] A\\ &\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}\\ &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ \frac{5}{2} & -1 & 1 \end{array}\right] \mathrm{A}\\ \end{aligned}
\begin{aligned} &\text { Applying } R_{2} \rightarrow R_{2}-5 R_{3}\\ &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -15 & 6 & -5 \\ \frac{5}{2} & -1 & 1 \end{array}\right]\\ &\text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+2 \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 6 & -2 & 2 \\ -15 & 6 & -5 \\ \frac{5}{2} & -1 & 1 \end{array}\right]\\ &\text { Applying } \mathrm{R}_{1} \rightarrow(1 / 2) \mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ -5 & -2 & 2 \end{array}\right] \mathrm{A}\\ \end{aligned}
\begin{aligned} &\text { As we have Identity matrix in LHS, we get, }\\ &\therefore \mathrm{A}^{-1}=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ -5 & -2 & 2 \end{array}\right] \end{aligned}

Question:52

Express the matrix \begin{bmatrix} 2 &3 & 1\\1 &-1 &2 \\4 &1 &2 \end{bmatrix} as the sum of a symmetric and a skew symmetric matrix.

Answer:

If A is any matrix then it can be written as the sum of a symmetric and skew symmetric matrix.
Symmetric matrix is given by 1/2(A + A’)
Skew symmetric is given by 1/2(A - A’)
And A = 1/2(A + A’) + 1/2(A - A’)
Here, A = \begin{bmatrix} 2 &3 & 1\\1 &-1 &2 \\4 &1 &2 \end{bmatrix}
Symmetric matrix is given by –
\Rightarrow \frac{1}{2}\left ( A+A' \right )=\frac{1}{2}\left (\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]+\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}} \right )
\begin{array}{l} \Rightarrow 1 / 2\left(A+A^{\prime}\right)={\frac{1}{2}}\left(\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]+\left[\begin{array}{ccc} 2 & 1 & 4 \\ 3 & -1 & 1 \\ 1 & 2 & 2 \end{array}\right]\right) \\ \end{array}
\Rightarrow 1 / 2\left(A+A^{\prime}\right)={\frac{1}{2}}\left(\left[\begin{array}{ccc} 2+2 & 3+1 & 1+4 \\ 1+3 & -1-1 & 2+1 \\ 4+1 & 1+2 & 2+2 \end{array}\right]\right)
\Rightarrow 1 / 2\left(A+A^{\prime}\right)=\left[\begin{array}{ccc} 4 & 4 & 5 \\ 4 & -2 & 3 \\ 5 & 3 & 4 \end{array}\right]=\left[\begin{array}{ccc} 2 & 2 & \frac{5}{2} \\ 2 & -1 & \frac{3}{2} \\ \frac{5}{2} & \frac{3}{2} & 2 \end{array}\right]
Skew Symmetric matrix is given by –
\frac{1}{2}\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\frac{1}{2}\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}}
\Rightarrow \frac{1}{2}\left ( A-A' \right )=\frac{1}{2}\left (\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}} \right )
\begin{array}{l} \Rightarrow 1 / 2\left(A-A^{\prime}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\left[\begin{array}{ccc} 2 & 1 & 4 \\ 3 & -1 & 1 \\ 1 & 2 & 2 \end{array}\right]\right) \\ \end{array}
\Rightarrow 1 / 2\left(A-A^{\prime}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc} 2-2 & 3-1 & 1-4 \\ 1-3 & -1+1 & 2-1 \\ 4-1 & 1-2 & 2-2 \end{array}\right]\right)
\frac{1}{2}\left[\begin{array}{ccc} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & 1 & \frac{-3}{2} \\ -1 & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{-1}{2} & 0 \end{array}\right]
\therefore A=\left[\begin{array}{ccc} 2 & 2 & \frac{5}{2} \\ 2 & -1 & \frac{3}{2} \\ \frac{5}{2} & \frac{3}{2} & 2 \end{array}\right]+\left[\begin{array}{ccc} 0 & 1 & \frac{-3}{2} \\ -1 & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{-1}{2} & 0 \end{array}\right]

Question:53

The matrix P=\begin{bmatrix} 0 &0 &4 \\0 &4 &0 \\4 &0 &0 \end{bmatrix} is a
A. square matrix
B. diagonal matrix
C. unit matrix
D. none

Answer:

As P has equal number of rows and columns and thus it matches with the definition of square matrix.
The given matrix does not satisfy the definition of unit and diagonal matrices.
Hence, we can say that,
∴ Option (A) is the only correct answer.

Question:54

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is
A. 9
B. 27
C. 81
D. 512

Answer:

D)
As the above matrix has a total 3× 3 = 9 element, then
As each element can take 2 values (0 or 2)
∴ By simple counting principle we can say that total number of possible matrices = total number of ways in which 9 elements can take possible values = 2^9 = 512
Clearly it matches with option D.
Hence we can say that,
∴ Option (D) is the only correct answer.

Question:55

If \left[\begin{array}{cc} 2 x+y & 4 x \\ 5 x-7 & 4 x \end{array}\right]=\left[\begin{array}{cc} 7 & 7 y-13 \\ y & x+6 \end{array}\right] then the value of x + y is
A. x = 3, y = 1
B. x = 2, y = 3
C. x = 2, y = 4
D. x = 3, y = 3

Answer:

We are given that,
\left[\begin{array}{cc} 2 x+y & 4 x \\ 5 x-7 & 4 x \end{array}\right]=\left[\begin{array}{cc} 7 & 7 y-13 \\ y & x+6 \end{array}\right]
By equating the of two matrices, we get-
\\4x = x + 6 \\$ \Rightarrow $ 3x = 6 $\\ \Rightarrow $ x = 2
Also, 2x + y = 7
\\ \Rightarrow $ y = 7 - 2x = 7 - 4 = 3 \\$ \therefore $ y = 3
As only option (B) matches with our answer.
Hence, we can say that,
\therefore Option(B) is the correct answer.

Question:56

If A=\frac{1}{\pi}\left[\begin{array}{cc} \sin ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & \cot ^{-1}(\pi \mathrm{x}) \end{array}\right], \mathrm{B}=\frac{1}{\pi}\left[\begin{array}{cc} -\cos ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & -\tan ^{-1}(\pi \mathrm{x}) \end{array}\right] then A - B is equal to
A. I
B. O
C. 2I
D. \frac{1}{2}I

Answer:

We will use Inverse trigonometric function to solve the problem
cos\textsuperscript{-1} x + sin\textsuperscript{-1} x = $ \pi $ /2 \: \: and \: \: cot\textsuperscript{-1} x + tan\textsuperscript{-1} x = $ \pi $ /2
As A=\frac{1}{\pi}\left[\begin{array}{cc} \sin ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & \cot ^{-1}(\pi \mathrm{x}) \end{array}\right], \mathrm{B}=\frac{1}{\pi}\left[\begin{array}{cc} -\cos ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & -\tan ^{-1}(\pi \mathrm{x}) \end{array}\right]
\begin{array}{l} \therefore A-B=\frac{1}{\pi}\left[\begin{array}{cc} \sin ^{-1}(x \pi)+\cos ^{-1}(x \pi) & 0 \\ 0 & \tan ^{-1} \pi x+\cot ^{-1} \pi x \end{array}\right] \\ \Rightarrow A-B=\left[\begin{array}{cc} \frac{\pi}{2} \times \frac{1}{\pi} & 0 \\ 0 & \frac{\pi}{2} \times \frac{1}{\pi} \end{array}\right]=\left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array}\right] \\ \therefore A-B=\frac{1}{2}\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=\frac{1}{2} I \end{array}
As it matches with option (D)
Hence, we can say that,
∴ option(D) is the only correct answer.

Question:57