NCERT Exemplar Class 12 Maths Solutions Chapter 3, Matrix, is one of the most interesting Chapters to study. Matrices are much faster and more efficient than the usual direct-solving method. In our daily lives, we see tables, spreadsheets, seating charts, and cinema bookings arranged in rows and columns resembling matrices. So, what is a matrix? A matrix is a rectangular arrangement of numbers, symbols, or expressions in rows and columns. The numbers inside a matrix are called its elements. It is usually written as $A=\left[a_{i j}\right]$, where $a_{i j}$ denotes the element in the i-th row and j-th column. Matrices are used in various fields like computer graphics, economics, and engineering to solve systems of equations, data representation, and transformations. They are a key concept in linear algebra.
The important dates regarding the CBSE 2026 class 10th and 12th are given in the table below:
| Particulars | CBSE 10th Phase I exam (Term 1) | CBSE 10th Phase II exam (Term 2) | CBSE 12th dates |
| Exam dates | February 17 to March 11, 2026 | May 15 to June 1, 2026 | February 17 to April 10, 2026 |
| Admit card release date | First week of February 2026 | First week of May 2026 | First week of February 2026 |
| Result declaration date | By April 20, 2026 | By June 30, 2026 | May 2026 |
This Story also Contains
NCERT Exemplar Class 12 Math Chapter 3 Solutions cover various matrix-related topics like the types, the operations on two matrices, invertible matrices, etc. It is a highly scoring Chapter of the NCERT Class 12 Maths Solutions that a student can utilise to gain higher scores in their exams.
Also, read,
| Class 12 Maths Chapter 3 Exemplar Solutions Exercise: 3.3 Page number: 52-64 Total questions: 101 |
Question 1
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Answer:
In mathematics, a matrix is a rectangular array that includes numbers, expressions, symbols, and equations which are placed in an arrangement of rows and columns. The number of rows and columns that are arranged in the matrix is called the order or dimension of the matrix. By rule, the rows are listed first and then the columns.
It is given that the matrix has 28 elements.
So, according to the rule of the matrix,
If the given matrix has $m n$ elements, then the dimension of the order can be given by $m * n$, where $m$ and $n$ are natural numbers.
So, if a matrix has 28 elements, which is $m n=28$, then the following possible orders can be found:
$\because m n=28$
Take m and n to be any number, so that, when they are multiplied, we get 28.
So, let $\mathrm{m}=1$ and $\mathrm{n}=28$.
Then, $m \times n=1 \times 28(=28)$
$\Rightarrow 1 \times 28$ is a possible order of the matrix with 28 elements
Take $\mathrm{m}=2$ and $\mathrm{n}=14$.
Then, $m \times n=2 \times 14(=28)$
$\Rightarrow 2 \times 14$ is a possible order of the matrix with 28 elements.
Take $\mathrm{m}=4$ and $\mathrm{n}=7$.
Then, $m \times n=4 \times 7(=28)$
$\Rightarrow 4 \times 7$ is a possible order of the matrix with 28 elements.
Take $\mathrm{m}=7$ and $\mathrm{n}=4$.
Then, $m \times n=7 \times 4(=28)$
$\Rightarrow 7 \times 4$ is a possible order of the matrix with 28 elements.
Take $\mathrm{m}=14$ and $\mathrm{n}=2$.
Then, $m \times n=14 \times 2(=28)$
$\Rightarrow 14 \times 2$ is a possible order of the matrix having 28 elements.
Take $\mathrm{m}=28$ and $\mathrm{n}=1$.
Then, $m \times n=28 \times 1(=28)$
$\Rightarrow 28 \times 1$ is a possible order of the matrix with 28 elements.
The following are the possible orders that a matrix having 28 elements can have:
$1 \times 28,2 \times 14,4 \times 7,7 \times 4,14 \times 2$ and $28 \times 1$
If the given matrix consisted of 13 elements, then its possible order can be found out in a similar way as given above:
Here, $m n=13$.
Take $m$ and $n$ to be any numbers so that when multiplied, we get 13.
Take $\mathrm{m}=1$ and $\mathrm{n}=13$.
Then, $m \times n=1 \times 13(=13)$
$\Rightarrow 1 \times 13$ is a possible order of the matrix with 13 elements.
Take $\mathrm{m}=13$ and $\mathrm{n}=1$.
Then, $m \times n=13 \times 1(=13)$
$\Rightarrow 13 \times 1$ is a possible order of the matrix with 13 elements.
Thus, the possible orders of the matrix consisting of 13 elements are as follows:
$1 \times 13$ and $13 \times 1$
Question 2
Answer:
i) We have, $\mathrm{A}=\left[\begin{array}{ccc}\mathrm{a} & 1 & x \\ 2 & \sqrt{3} & x^2-y \\ 0 & 5 & \frac{-2}{5}\end{array}\right]$ the order of matrix A is $3 \times 3$
ii) We have, $\mathrm{A}=\left[\begin{array}{ccc}\mathrm{a} & 1 & x \\ 2 & \sqrt{3} & x^2-y \\ 0 & 5 & \frac{-2}{5}\end{array}\right]$ the number of elements are $3 \times 3=9$
iii) We have, $\mathrm{A}=\left[\begin{array}{ccc}\mathrm{a} & 1 & x \\ 2 & \sqrt{3} & x^2-y \\ 0 & 5 & \frac{-2}{5}\end{array}\right]$
Since, $\mathrm{a}_{\mathrm{ij}}$ is the element lying in the $\mathrm{i}^{\text {th }}$ row an $\mathrm{j}^{\text {th }}$ column We have $a_{23}=x^2-y, a_{31}=0, a_{12}=1$.
Question 3
Answer:
i) Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]_{2 \times 2}$
Given that $\mathrm{a}_{\mathrm{ij}}=\frac{(\mathrm{i}-2 \mathrm{j})^2}{2}$
$\begin{aligned} & \mathrm{a}_{11}=\frac{(1-2 \times 1)^2}{2}=\frac{1}{2} \\ & \mathrm{a}_{12}=\frac{(1-2 \times 2)^2}{2}=\frac{9}{2} \\ & \mathrm{a}_{21}=\frac{(2-2 \times 1)^2}{2}=0 \\ & \mathrm{a}_{22}=\frac{(2-2 \times 2)^2}{2}=2\end{aligned}$
Hence, the matrix $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{2} & \frac{9}{2} \\ 0 & 2\end{array}\right]$
ii) Let $A=\left[\begin{array}{ll}a_{13} & a_{12} \\ a_{21} & a_{22}\end{array}\right]_{2 \times 2}$
Given that ${ }^` \mathrm{a}_{\mathrm{ij}}=|-2 \mathrm{i}+3 \mathrm{j}|$
$\begin{aligned} & a_{11}=|-2 \times 1+3 \times 1|=1 \\ & a_{12}=|-2 \times 1+3 \times 2|=4 \\ & a_{21}=|-2 \times 2+3 \times 1|=-1 \\ & a_{22}=|-2 \times 2+3 \times 2|=2\end{aligned}$
Hence, the matrix $A=\left[\begin{array}{cc}1 & 4 \\ -1 & 2\end{array}\right]$
Question 4
Construct a 3 × 2 matrix whose elements are given by $a_{ij} = e^{ix}\sin jx$
Answer:
$\operatorname{Let} A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]_{3 \times 2}$ Given that $\mathrm{a}_{\mathrm{ij}}=\mathrm{e}^{\mathrm{i} . \mathrm{x}} \sin \mathrm{j} \mathrm{x}$
$\begin{aligned} & a_{11}=e^x \sin x \\ & a_{12}=e^x \sin 2 x \\ & a_{21}=e^{2 x} \sin x \\ & a_{22}=e^{2 x} \sin 2 x \\ & a_{31}=e^{3 x} \sin x \\ & a_{32}=e^{3 x} \sin 2 x\end{aligned}$
Hence, the matrix $\mathrm{A}=\left[\begin{array}{cc}\mathrm{e}^x \sin x & \mathrm{e}^x \sin 2 x \\ \mathrm{e}^{2 x} \sin x & \mathrm{e}^{2 x} \sin 2 x \\ \mathrm{e}^{3 x} s \sin x & \mathrm{e}^{3 x} \sin 2 x\end{array}\right]$
Question 5
Answer:
Given that $\mathrm{A}=\mathrm{B}$
$\Rightarrow\left[\begin{array}{cc}\mathrm{a}+4 & 3 \mathrm{~b} \\ 8 & -6\end{array}\right]=\left[\begin{array}{cc}2 \mathrm{a}+2 & \mathrm{~b}^2+2 \\ 8 & \mathrm{~b}^2-5 \mathrm{~b}\end{array}\right]$
Equating the corresponding elements, we get
$\begin{aligned} & a+4=2 a+2 \\ & 3 b=b^2+2 \\ & b^2-5 b=-6 \\ & \Rightarrow 2 a-a=2 \\ & b^2-3 b+2=0 \\ & b^2-5 b+6=0 \\ & \therefore a=2 \\ & \therefore b^2-3 b+2=0\end{aligned}$
$\begin{aligned} & \Rightarrow b^2-2 b-b+2=0 \\ & \Rightarrow b(b-2)-1(b-2)=0 \\ & \Rightarrow(b-1)(b-2)=0 \\ & \therefore b=1,2 \\ & \therefore b^2-5 b+6=0 \\ & b^2-3 b-2 b+6=0 \\ & \Rightarrow b(b-3)-2(b-3)=0 \\ & \Rightarrow(b-2)(b-3)=0 \\ & \Rightarrow b=2,3\end{aligned}$
But here 2 is common.
Hence, the value of $a=2$ and $b=2$.
Question 6
If possible, find the sum of the matrices A and B, where
Answer:
We have, $\mathrm{A}=\left[\begin{array}{cc}\sqrt{3} & 1 \\ 2 & 3\end{array}\right]_{2 \times 2}$, and $\mathrm{B}=\left[\begin{array}{lll}x & y & z \\ a & \mathrm{~b} & 6\end{array}\right]_{2 \times 3}$
Here, A and B are of different orders.
Two matrices A and B are confirmable for addition only if the order of both matrices A and B is the same.
Hence, the sum of matrices A and B is not possible.
Question 7
If $\begin{array}{l} X=\left[\begin{array}{lll} 3 & 1 & -1 \\ 5 & -2 & -3 \end{array}\right] \\ Y=\left[\begin{array}{lll} 2 & 1 & -1 \\ 7 & 2 & 4 \end{array}\right] \end{array}$ find
(i) X + Y
(ii) 2X - 3Y
(iii) A matrix Z such that X + Y + Z is a zero matrix.
Answer:
Given that $\mathrm{X}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 5 & -2 & -3\end{array}\right]$ and $\mathrm{Y}=\left[\begin{array}{ccc}2 & 1 & -1 \\ 7 & 2 & 4\end{array}\right]$
i) $\begin{aligned} & \mathrm{X}+\mathrm{Y}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 5 & -2 & -3\end{array}\right]+\left[\begin{array}{ccc}2 & 1 & -1 \\ 7 & 2 & 4\end{array}\right] \\ & =\left[\begin{array}{ccc}3+2 & 1+1 & -1-1 \\ 5+7 & -2+2 & -3+4\end{array}\right] \\ & =\left[\begin{array}{ccc}5 & 2 & -2 \\ 12 & 0 & 1\end{array}\right]\end{aligned}$
ii) $\begin{aligned} & 2 X-3 Y=2\left[\begin{array}{ccc}3 & 1 & -1 \\ 5 & -2 & -3\end{array}\right]-3\left[\begin{array}{ccc}2 & 1 & -1 \\ 7 & 2 & 4\end{array}\right] \\ & =\left[\begin{array}{ccc}2 \times 3 & 2 \times 1 & -2 \times 1 \\ 2 \times 5 & -2 \times 2 & -2 \times 3\end{array}\right]-\left[\begin{array}{ccc}3 \times 2 & 1 \times 3 & -1 \times 3 \\ 3 \times 7 & 3 \times 2 & 3 \times 4\end{array}\right] \\ & =\left[\begin{array}{ccc}6 & 2 & -2 \\ 10 & -4 & -6\end{array}\right]-\left[\begin{array}{ccc}6 & 3 & -3 \\ 21 & 6 & 12\end{array}\right] \\ & =\left[\begin{array}{ccc}6-6 & 2-3 & -2+3 \\ 10-21 & -4-6 & -6-12\end{array}\right] \\ & =\left[\begin{array}{ccc}0 & -1 & 1 \\ -11 & -10 & -18\end{array}\right]\end{aligned}$
iii) $\begin{aligned} & \mathrm{X}+\mathrm{Y}+\mathrm{Z}=0 \\ & \Rightarrow\left[\begin{array}{ccc}3 & 1 & -1 \\ 5 & -2 & -3\end{array}\right]+\left[\begin{array}{ccc}2 & 1 & -1 \\ 7 & 2 & 4\end{array}\right]+\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\end{aligned}$
Where $Z=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right]$
$\begin{aligned} & \Rightarrow\left[\begin{array}{ccc}3+2+\mathrm{a} & 1+1+\mathrm{b} & -1-1+\mathrm{c} \\ 5+7+\mathrm{d} & -2+2+\mathrm{e} & -3+4+\mathrm{f}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \\ & \Rightarrow\left[\begin{array}{ccc}5+\mathrm{a} & 2+\mathrm{b} & -2+\mathrm{c} \\ 12+\mathrm{d} & \mathrm{e} & 1+\mathrm{f}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\end{aligned}$
Equating the corresponding elements, we get
$\begin{aligned} & 5+\mathrm{a}=0 \\ & \Rightarrow \mathrm{a}=-5,2+\mathrm{b}=0 \\ & \Rightarrow \mathrm{~b}=-2-2+\mathrm{c}=0 \\ & \Rightarrow \mathrm{c}=2 \\ & 12+\mathrm{d}=0 \\ & \Rightarrow \mathrm{~d}=-12, \mathrm{e}=0,1+\mathrm{f}=0 \\ & \Rightarrow \mathrm{f}=-1\end{aligned}$
Hence, the matrix $Z=\left[\begin{array}{ccc}-5 & -2 & 2 \\ -12 & 0 & -1\end{array}\right]$
Question 8
Answer:
The given equation can be written as
$\begin{aligned} & {\left[\begin{array}{cc}2 x^2 & 2 x \\ 3 x & x^2\end{array}\right]+\left[\begin{array}{cc}16 & 10 x \\ 8 & 8 x\end{array}\right]=\left[\begin{array}{cc}\left(2 x^2+16\right) & 18 \\ 20 & 12 x\end{array}\right]} \\ & \Rightarrow\left[\begin{array}{cc}2 x^2+16 & 12 x \\ 3 x+8 & x^2+8 x\end{array}\right]=\left[\begin{array}{cc}2 x^2+16 & 48 \\ 20 & 12 x\end{array}\right]\end{aligned}$
Equating the corresponding elements we get
$\begin{aligned} & 12 \mathrm{x}=48 \\ & 3 \mathrm{x}+8=20 \\ & \mathrm{x}^2+8 \mathrm{x}=12 \mathrm{x} \\ & \therefore \mathrm{x}=\frac{48}{12}=4 \\ & 3 \mathrm{x}=20-8=12 \\ & \Rightarrow \mathrm{x}^2=12 \mathrm{x}-8 \mathrm{x}=4 \mathrm{x} \\ & \Rightarrow \mathrm{x}^2-4 \mathrm{x}=0 \\ & \mathrm{x}=0, \mathrm{x}=4 \\ & \therefore \mathrm{x}=4\end{aligned}$
Hence, the non-zero value of $x$ is 4.
Question 9
Answer:
Given that $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$\begin{aligned} & \mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]+\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \\ & \Rightarrow \mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}0+0 & 1-1 \\ 1+1 & 1+0\end{array}\right] \\ & \Rightarrow \mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right] \\ & \mathrm{A}-\mathrm{B}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \\ & \Rightarrow \mathrm{A}-\mathrm{B}=\left[\begin{array}{ll}0-0 & 1+1 \\ 1-1 & 1-0\end{array}\right] \\ & \Rightarrow \mathrm{A}-\mathrm{B}=\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right]\end{aligned}$
$\begin{aligned} & \therefore(A+B) \cdot(A-B)=\left[\begin{array}{ll}0 & 0 \\ 2 & 1\end{array}\right],\left[\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right] \\ & =\left[\begin{array}{ll}0+0 & 0+0 \\ 0+0 & 4+1\end{array}\right] \\ & =\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right]\end{aligned}$
Now, R.H.S. $=\mathrm{A}^2-\mathrm{B}^2$
$\begin{aligned} & =\mathrm{A} \cdot \mathrm{A}-\mathrm{B} \cdot \mathrm{B} \\ & =\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \\ & =\left[\begin{array}{ll}0+1 & 0+1 \\ 0+1 & 1+1\end{array}\right]-\left[\begin{array}{cc}0-1 & 0+0 \\ 0+0 & -1+0\end{array}\right]\end{aligned}$
$\begin{aligned} & =\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]-\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] \\ & =\left[\begin{array}{ll}1 & +1 \\ 1 & 1-0 \\ 1 & 2+1\end{array}\right] \\ & =\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\end{aligned}$
Hence, $\left[\begin{array}{ll}0 & 0 \\ 0 & 5\end{array}\right] \neq\left[\begin{array}{cc}2 & 10 \\ 1 & 3\end{array}\right]$
Hence, $(A+B) \cdot(A-B) \neq A^2-B^2$
Question 10
Answer:
Given that $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$
$\begin{aligned} & \Rightarrow\left[\begin{array}{lll}1+2 x+15 & 3+5 x+3 & 2+x+2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0 \\ & \Rightarrow\left[\begin{array}{lll}2 x+16 & 5 x+6 & x+4\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0 \\ & \Rightarrow\left[\begin{array}{ll}2 \mathrm{x}+16+10 \mathrm{x}+12+\mathrm{x}^2+4 \mathrm{x}\end{array}\right]=0 \\ & \Rightarrow \mathrm{x}^2+16 \mathrm{x}+28=0 \\ & \Rightarrow \mathrm{x}^2+14 \mathrm{x}+2 \mathrm{x}+28=0 \\ & \Rightarrow \mathrm{x}(\mathrm{x}+14)+2(\mathrm{x}+14)=0 \\ & \Rightarrow(\mathrm{x}+2)(\mathrm{x}+14)=0 \\ & \mathrm{x}+2=0 \quad \text { or } \quad \mathrm{x}+14=0 \\ & \therefore \mathrm{x}=-2 \quad \text { or } \quad \mathrm{x}=-14\end{aligned}$
Hence, the values of $x$ are -2 and -14.
Question 11
Answer:
Given that $\mathrm{A}=\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]$
$\begin{aligned} & \mathrm{A}^2=\mathrm{A} \cdot \mathrm{A} \\ & =\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right] \\ & =\left[\begin{array}{cc}25-3 & 15-6 \\ -5+2 & -3+4\end{array}\right] \\ & =\left[\begin{array}{cc}22 & 9 \\ -3 & 1\end{array}\right] \\ & \mathrm{A}^2-3 \mathrm{~A}-7 \mathrm{I}=\mathrm{O}\end{aligned}$
L.H.S. $\left[\begin{array}{cc}2 & 9 \\ -3 & 1\end{array}\right]-3\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]-7\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$
$\begin{aligned} & \Rightarrow\left[\begin{array}{cc}22 & 9 \\ -3 & 1\end{array}\right]-\left[\begin{array}{cc}15 & 9 \\ -3 & -6\end{array}\right]-\left[\begin{array}{cc}7 & 0 \\ 0 & 7\end{array}\right] \\ & \Rightarrow\left[\begin{array}{cc}22-15-7 & 9-9-0 \\ -3+3-0 & 1+6-7\end{array}\right] \\ & \Rightarrow\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \text { R.H.S. }\end{aligned}$
We are given $\mathrm{A}^2-3 \mathrm{~A}-7 \mathrm{I}=0$
$\begin{aligned} & \Rightarrow \mathrm{A}^{-1}\left[\mathrm{~A}^2-3 \mathrm{~A}-7 \mathrm{I}\right]=\mathrm{A}^{-1} \mathrm{O} \ldots .\left[\text { Pre-multiplying both sides by } \mathrm{A}^{-1}\right] \\ & \Rightarrow \mathrm{A}^{-1} \mathrm{~A} \cdot \mathrm{~A}-3 \mathrm{~A}^{-1} \cdot \mathrm{~A}-7 \mathrm{~A}^{-1} \mathrm{I}=\mathrm{O} \ldots . .\left[\mathrm{A}^{-1} \mathrm{O}=\mathrm{O}\right] \\ & \Rightarrow \mathrm{I} \cdot \mathrm{A}-3 \mathrm{I}-7 \mathrm{~A}-1 \mathrm{I}=\mathrm{O} \\ & \Rightarrow \mathrm{A}-3 \mathrm{I}-7 \mathrm{~A}^{-1}=\mathrm{O} \\ & \Rightarrow-7 \mathrm{~A}^{-1}=3 \mathrm{I}-\mathrm{A} \\ & \Rightarrow \mathrm{A}^{-1}=\frac{1}{-7}[3 \mathrm{I}-\mathrm{A}]\end{aligned}$
$\begin{aligned} & \Rightarrow \mathrm{A}^{-1}=\frac{1}{-7}\left[3\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right)\right] \\ & =\frac{1}{-7}\left[3\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right)\right] \\ & =1(-7)\left[\begin{array}{cc}3-5 & 0-3 \\ 0+1 & 3+2\end{array}\right] \\ & =\frac{1}{-7}\left[\begin{array}{cc}-2 & -3 \\ 1 & 5\end{array}\right]\end{aligned}$
Hence, $\mathrm{A}^{-1}=-\frac{1}{7}\left[\begin{array}{cc}-2 & -3 \\ 1 & 5\end{array}\right]$
Question 12
Answer:
We have $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \mathrm{A}\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $\mathrm{PAQ}=\mathrm{I}$,
Where $\mathrm{P}=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]$
$\begin{aligned} & \therefore \mathrm{P}^{-1} \mathrm{PAQ}=\mathrm{P}^{-1} \mathrm{I} \\ & \Rightarrow \mathrm{IQA}=\mathrm{P}^{-1} \\ & \Rightarrow \mathrm{AQ}=\mathrm{P}^{-1} \\ & \Rightarrow \mathrm{AQQ}^{-1}=\mathrm{P}^{-1} \mathrm{Q}^{-1} \\ & \Rightarrow \mathrm{AI}=\mathrm{P}^{-1} \mathrm{Q}^{-1} \\ & \Rightarrow \mathrm{~A}=\mathrm{P}^{-1} \mathrm{Q}^{-1}\end{aligned}$
Now adj. $\mathrm{P}=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$ and $|\mathrm{P}|=1$
$\therefore \mathrm{P}^{-1}=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$
$\begin{aligned} & \therefore \mathrm{Q}^{-1}=\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right] \\ & \Rightarrow \mathrm{A}=\mathrm{P}^{-1} \mathrm{Q}^{-1} \\ & =\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right] \\ & =\left[\begin{array}{cc}6-5 & 4-3 \\ -9+10 & -6+6\end{array}\right] \\ & =\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\end{aligned}$
Question 13
Answer:
We have, $\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right] \mathrm{A}=\left[\begin{array}{lll}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right]$
Let $\mathrm{A}=\left[\begin{array}{lll}x & y & z\end{array}\right]$
$\begin{aligned} & \therefore\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]\left[\begin{array}{lll}x & y & z\end{array}\right]=\left[\begin{array}{lll}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right] \\ & \Rightarrow\left[\begin{array}{ccc}4 x & 4 y & 4 z \\ x & y & z \\ 3 x & 3 y & 3 z\end{array}\right]\left[\begin{array}{lll}-4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3\end{array}\right]\end{aligned}$
Comparing elements of both sides
$\begin{aligned} & 4 x=-4 \\ & \Rightarrow x=-1 \\ & 4 y=8 \\ & y=2\end{aligned}$
And 4z = 4
⇒ z = 1
$\therefore \mathrm{A}=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$
Question 14
Answer:
Here, $B=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3}$ and $A=\left[\begin{array}{cc}3 & -4 \\ 1 & 1 \\ 2 & 0\end{array}\right]_{3 \times 2}$
$\begin{aligned} & \therefore \mathrm{BA}=\left[\begin{array}{ll}6+1+4 & -8+1+0 \\ 3+2+8 & -4+2+0\end{array}\right]_{2 \times 2} \\ & \Rightarrow \mathrm{BA}=\left[\begin{array}{ll}11 & -7 \\ 13 & -2\end{array}\right]\end{aligned}$
L.H.S: $(\mathrm{BA})^2=(\mathrm{BA}) \cdot(\mathrm{BA})$
$\begin{aligned} & =\left[\begin{array}{ll}11 & -7 \\ 13 & -2\end{array}\right]\left[\begin{array}{ll}11 & -7 \\ 13 & -2\end{array}\right] \\ & \Rightarrow\left[\begin{array}{cc}121-91 & -77+14 \\ 143-26 & -91+4\end{array}\right] \\ & \Rightarrow\left[\begin{array}{cc}30 & -63 \\ 117 & -87\end{array}\right]\end{aligned}$
$\begin{aligned} & \text { R.H.S: B }{ }^2=\mathrm{B} \cdot \mathrm{B} \\ & =\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3} \cdot\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3}\end{aligned}$
Here, the number of columns of the first
i.e., 3 is not equal to the number of rows of the second matrix i.e., 2.
So, $\mathrm{B}^2$ is not possible.
Similarly, $\mathrm{A}^2$ is also not possible.
Hence, $(\mathrm{BA})^2 \cdot \mathrm{~B}^2 \mathrm{~A}^2$
Question 15
Answer:
$\begin{aligned} & \mathrm{BA}=\left[\begin{array}{ll}4 & 1 \\ 2 & 3 \\ 1 & 2\end{array}\right]_{3 \times 2}\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3} \\ & \mathrm{BA}=\left[\begin{array}{lll}8+1 & 4+2 & 8+4 \\ 4+3 & 2+6 & 4+12 \\ 2+2 & 1+4 & 2+8\end{array}\right]_{3 \times 3} \\ & =\left[\begin{array}{lll}9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10\end{array}\right]_{3 \times 3}\end{aligned}$
Now $A B=\left[\begin{array}{lll}2 & 1 & 2 \\ 1 & 2 & 4\end{array}\right]_{2 \times 3}\left[\begin{array}{ll}4 & 1 \\ 2 & 3 \\ 1 & 2\end{array}\right]_{3 \times 2}$
$\begin{aligned} & =\left[\begin{array}{cc}8+2+2 & 2+3+4 \\ 4+4+4 & 1+6+8\end{array}\right]_{2 \times 2} \\ & =\left[\begin{array}{cc}12 & 9 \\ 12 & 15\end{array}\right]_{2 \times 2}\end{aligned}$
Hence, $\mathrm{BA}=\left[\begin{array}{lll}9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10\end{array}\right]$ and $\mathrm{AB}=\left[\begin{array}{cc}12 & 9 \\ 12 & 15\end{array}\right]$.
Question 16
An example is shown for A ≠ O, B ≠ O, AB = O.
Answer:
Let $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$\begin{aligned} & \mathrm{AB}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \\ & \Rightarrow \mathrm{AB}=\left[\begin{array}{cc}1-1 & 1-1 \\ -1+1 & -1+1\end{array}\right] \\ & =\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=\mathrm{O}\end{aligned}$
Hence, $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
Question 17
Answer:
$\begin{aligned} & \text { Here, } \mathrm{A}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right] \\ & \mathrm{AB}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right]\end{aligned}$
$\begin{aligned} & =\left[\begin{array}{cc}2+8+0 & 8+32+0 \\ 3+18+6 & 12+72+18\end{array}\right] \\ & =\left[\begin{array}{cc}10 & 40 \\ 27 & 102\end{array}\right]\end{aligned}$
$\begin{aligned} & \text { L.H.S. }(A B)^{\prime}=\left[\begin{array}{cc}10 & 27 \\ 40 & 102\end{array}\right] \\ & \text { Now } B=\left[\begin{array}{ll}1 & 4 \\ 2 & 8 \\ 1 & 3\end{array}\right]\end{aligned}$
$\begin{aligned} & \Rightarrow \mathrm{B}^{\prime}=\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 8 & 3\end{array}\right] \\ & \mathrm{A}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 9 & 6\end{array}\right] \\ & \Rightarrow \mathrm{A}^{\prime}=\left[\begin{array}{cc}2 & 3 \\ 4 & 90 \\ 0 & 6\end{array}\right]\end{aligned}$
R.H.S. $\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{lll}1 & 2 & 1 \\ 4 & 8 & 3\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 4 & 9 \\ 0 & 6\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}2+8+0 & 3+18+6 \\ 8+32+0 & 1272+18\end{array}\right] \\ & =\left[\begin{array}{cc}10 & 27 \\ 40 & 102\end{array}\right] \\ & =\text { L.H.S. }\end{aligned}$
Hence, L.H.S. = R.H.S.
Question 18
Answer:
Given that: $\mathrm{x}=x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=\mathrm{O}$
L.H.S. $x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=\mathrm{O}$
$\begin{aligned} & \Rightarrow\left[\begin{array}{c}2 x \\ x\end{array}\right]+\left[\begin{array}{c}3 y \\ 5 y\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=\mathrm{O} \\ & \Rightarrow\left[\begin{array}{c}2 x+3 y-8 \\ x+5 y-11\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]\end{aligned}$
Comparing the corresponding elements of both sides, we get,
$\begin{aligned} & 2 x+3 y-8=0 \\ & \Rightarrow 2 x+3 y=8 \\ & x+5 y-11=0 \\ & \Rightarrow x+5 y=11\end{aligned}$
Multiplying equation (1) by 1 and equation (2) by 2, and then subtracting, we get,
$\begin{aligned} 2 x+3 y & =8 \\ 2 x+10 y & =22 \\ (-)-(-) & -(-) \\ -7 y & =-14\end{aligned}$
$\therefore \mathrm{y}=2$
$\begin{aligned} & x+5 \times 2=11 \\ & \Rightarrow x+10=11 \\ & x=11-10=1\end{aligned}$
Hence, the values of x and y are 1 and 2, respectively.
Question 19
Answer:
We have the given matrix equations,
$2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right], 3 \mathrm{X}+2 \mathrm{Y}=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]$
By subtracting equation (i) from (ii), we get
$\begin{array}{l} (3 X+2 Y)-(2 X+3 Y)=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]-\left[\begin{array}{cc} 2 & 3 \\ 4 & 0 \end{array}\right] \\ \Rightarrow 3 X+2 Y-2 X-3 Y=\left[\begin{array}{cc} -2-2 & 2-3 \\ 1-4 & -5-0 \end{array}\right] \\ \Rightarrow 3 X-2 X+2 Y-3 Y=\left[\begin{array}{cc} -4 & -1 \\ -3 & -5 \end{array}\right] \\ \Rightarrow X-Y=\left[\begin{array}{ll} -4 & -1 \\ -3 & -5 \end{array}\right] \end{array}$
By adding equations (i) and (ii), we get
$\begin{aligned} &(3 X+2 Y)+(2 X+3 Y)=\left[\begin{array}{cc} -2 & 2 \\ 1 & -5 \end{array}\right]+\left[\begin{array}{ll} 2 & 3 \\ 4 & 0 \end{array}\right]\\ &\Rightarrow 3 \mathrm{X}+2 \mathrm{Y}+2 \mathrm{X}+3 \mathrm{Y}=\left[\begin{array}{cc} -2+2 & 2+3 \\ 1+4 & -5+0 \end{array}\right]\\ &\Rightarrow 3 \mathrm{X}+2 \mathrm{X}+2 \mathrm{Y}+3 \mathrm{Y}=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow 5 X+5 Y=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow 5(X+Y)=\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow X+Y=\frac{1}{5}\left[\begin{array}{cc} 0 & 5 \\ 5 & -5 \end{array}\right]\\ &\Rightarrow X+Y=\left[\begin{array}{ll} \frac{1}{5} \times 0 & \frac{1}{5} \times 5 \\ \frac{1}{5} \times 5 & \frac{1}{5} \times-5 \end{array}\right]\\ &\Rightarrow X+Y=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right] \end{aligned}$
By adding equations (iii) and (iv), we get
$\\ (\mathrm{X}-\mathrm{Y})+(\mathrm{X}+\mathrm{Y})=\left[\begin{array}{ll} -4 & -1 \\ -3 & -5 \end{array}\right]+\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right] \\ \Rightarrow \mathrm{X}-\mathrm{Y}+\mathrm{X}+\mathrm{Y}=\left[\begin{array}{ll} -4+0 & -1+1 \\ -3+1 & -5-1 \end{array}\right] \\ \Rightarrow \mathrm{X}+\mathrm{X}-\mathrm{Y}+\mathrm{Y}=\left[\begin{array}{ll} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow 2 \mathrm{X}=\left[\begin{array}{lc} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\frac{1}{2}\left[\begin{array}{lc} -4 & 0 \\ -2 & -6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\left[\begin{array}{ll} \frac{1}{2} \times-4 & \frac{1}{2} \times 0 \\ \frac{1}{2} \times-2 & \frac{1}{2} \times-6 \end{array}\right] \\ \Rightarrow \mathrm{X}=\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]$
Substituting the matrix A in equation (iv), we get
$\begin{array}{l} {\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]+\mathrm{Y}=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right]} \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array}\right]-\left[\begin{array}{cc} -2 & 0 \\ -1 & -3 \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 0-(-2) & 1-0 \\ 1-(-1) & -1-(-3) \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 2 & 1 \\ 1+1 & -1+3 \end{array}\right] \\ \Rightarrow \mathrm{Y}=\left[\begin{array}{cc} 2 & 1 \\ 2 & 2 \end{array}\right] \\ \mathrm{X}=\left[\begin{array}{lc} -2 & 0 \\ -1 & -3 \end{array}\right]_{\text {and }} \mathrm{Y}=\left[\begin{array}{ll} 2 & 1 \\ 2 & 2 \end{array}\right] \end{array}$
Question 20
If $A = [3\: \: 5], B = [7\: \: 3]$, then find a non-zero matrix C such that AC = BC.
Answer:
We have, $\mathrm{A}=\left[\begin{array}{ll}3 & 5\end{array}\right]_{1 \times 2}$ and $\mathrm{B}=\left[\begin{array}{ll}7 & 3\end{array}\right]_{1 \times 2}$
For $\mathrm{AC}=\mathrm{BC}$
We have order of $\mathrm{C}=2 \times \mathrm{n}$
For $\mathrm{n}=1$
Let $\mathrm{C}=\left[\begin{array}{l}x \\ y\end{array}\right]$
$\therefore \mathrm{AC}=\left[\begin{array}{ll}3 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=[(3 x+5 y]$
And $\mathrm{BC}=\left[\begin{array}{ll}7 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=[3 \mathrm{x}+5 \mathrm{y}]$
For $\mathrm{AC}=\mathrm{BC}$,
$\begin{aligned} & {[3 \mathrm{x}+5 \mathrm{y}]=[7 \mathrm{x}+3 \mathrm{y}]} \\ & \Rightarrow 3 \mathrm{x}+5 \mathrm{y}=7 \mathrm{x}+3 \mathrm{y} \\ & \Rightarrow 4 \mathrm{x}=2 \mathrm{y} \\ & \Rightarrow \mathrm{x}=\frac{1}{2} y \\ & \Rightarrow \mathrm{y}=2 \mathrm{x} \\ & \therefore \mathrm{C}=\left[\begin{array}{c}x \\ 2 x\end{array}\right]\end{aligned}$
We see that on taking C of order $2 \times 1,2 \times 2,2 \times 3, \ldots$, we get
$\mathrm{C}=\left[\begin{array}{c}x \\ 2 x\end{array}\right],\left[\begin{array}{cc}x & x \\ 2 x & 2 x\end{array}\right],\left[\begin{array}{ccc}x & x & x \\ 2 x & 2 x & 2 x\end{array}\right] \ldots$
In general,
$\mathrm{C}=\left[\begin{array}{c}\mathrm{k} \\ 2 \mathrm{k}\end{array}\right],\left[\begin{array}{cc}\mathrm{k} & \mathrm{k} \\ 2 \mathrm{k} & 2 \mathrm{k}\end{array}\right]$ etc $\ldots$
Where k is any real number.
Question 21
Given an example of matrices A, B, and C such that AB = AC, where A is an on-zero matrix, but B ≠ C.
Answer:
Let $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] \quad \ldots \ldots .[\because \mathrm{B} \neq \mathrm{C}]$
$\therefore \mathrm{AB}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \ldots . .(\mathrm{i})$
And $A C=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
We have $\mathrm{AB}=\mathrm{AC}$ but $\mathrm{B} \neq \mathrm{C}$
Question 22
Answer:
i) We have, $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$, $\mathrm{B}=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
$\begin{aligned} & \mathrm{AB}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right] \\ & =\left[\begin{array}{cc}2+6 & 3-8 \\ -4+3 & -6-4\end{array}\right] \\ & =\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\end{aligned}$
And $(\mathrm{AB}) \mathrm{C}=\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}8+5 & 0 \\ -1+10 & 0\end{array}\right] \\ & =\left[\begin{array}{cc}13 & 0 \\ 9 & 0\end{array}\right] \ldots . .(\mathrm{i})\end{aligned}$
Again, $(\mathrm{BC})=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{ll}2-3 & 0 \\ 3+4 & 0\end{array}\right] \\ & =\left[\begin{array}{cc}-1 & 0 \\ 7 & 0\end{array}\right]\end{aligned}$
And $A(B C)=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 7 & 0\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}-1+14 & 0 \\ 2+7 & 0\end{array}\right] \\ & =\left[\begin{array}{cc}13 & 0 \\ 9 & 0\end{array}\right]\end{aligned}$
From (i) and (ii), we get
$\therefore(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
ii) We have, $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
$\begin{aligned} & \mathrm{B}+\mathrm{C}=\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]+\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right] \\ & =\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]\end{aligned}$
$\Rightarrow \mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}3 & 3 \\ 2 & -4\end{array}\right]$
$=\left[\begin{array}{cc}3+4 & 3-8 \\ -6+2 & -6-4\end{array}\right]$
$=\left[\begin{array}{cc}7 & -5 \\ -4 & -10\end{array}\right] \ldots .$. (iii)
$\mathrm{AB}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 3 & -4\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}2+6 & 3-8 \\ -4+3 & -6-4\end{array}\right] \\ & =\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]\end{aligned}$
And $A C=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}1-2 & 0 \\ -2-1 & 0\end{array}\right] \\ & =\left[\begin{array}{ll}-1 & 0 \\ -3 & 0\end{array}\right]\end{aligned}$
$\therefore \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{cc}8 & -5 \\ -1 & -10\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ -3 & 0\end{array}\right]$
$=\left[\begin{array}{cc}7 & -5 \\ -4 & -10\end{array}\right]$
$\mathrm{A} \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{A} \cdot \mathrm{C}$
Question 23
Answer:
Given that,
$\begin{aligned} & \mathrm{P}=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right] \text { and } \mathrm{Q}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right] \\ & \mathrm{PQ}=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]\end{aligned}$
$\begin{aligned} \mathrm{PQ} & =\left[\begin{array}{ccc}x \mathrm{a}+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+y \mathrm{~b}+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+z \mathrm{c}\end{array}\right] \\ \mathrm{PQ} & =\left[\begin{array}{ccc}x \mathrm{a} & 0 & 0 \\ 0 & y \mathrm{~b} & 0 \\ 0 & 0 & z \mathrm{c}\end{array}\right]\end{aligned}$
Now $\mathrm{QP}=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
$\begin{aligned} & \mathrm{QP}=\left[\begin{array}{ccc}x \mathrm{a}+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+y \mathrm{~b}+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+z \mathrm{c}\end{array}\right] \\ & \mathrm{QP}=\left[\begin{array}{ccc}x \mathrm{a} & 0 & 0 \\ 0 & y \mathrm{~b} & 0 \\ 0 & 0 & z \mathrm{c}\end{array}\right]\end{aligned}$
Hence, $\mathrm{PQ}=\mathrm{QP}$.
Question 24
Answer:
We have, $\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]_{1 \times 3}\left[\begin{array}{ccc}-1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]_{3 \times 3}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]_{3 \times 1}=\mathrm{A}$
$\therefore\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]_{1 \times 3}\left[\begin{array}{c}-1+0+1 \\ -1+0+0 \\ 0+0-1\end{array}\right]_{3 \times 1}=\mathrm{A}$
$\begin{aligned} & \Rightarrow\left[\begin{array}{lll}2 & 1 & 3\end{array}\right]_{1 \times 3}\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]_{3 \times 1}{ }^`=\mathrm{A} \\ & \Rightarrow[0-1-3]=\mathrm{A} \\ & \Rightarrow \mathrm{A}=[-4]\end{aligned}$
Question 25
Answer:
We have $\mathrm{A}=\left[\begin{array}{ll}2 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}5 & 3 & 4 \\ 8 & 7 & 6\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$
$\begin{aligned} & \therefore \mathrm{A}(\mathrm{B}+\mathrm{C})=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{lll}5-1 & 3+2 & 4+1 \\ 8+1 & 7+0 & 6+2\end{array}\right] \\ & =\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{lll}4 & 5 & 5 \\ 9 & 7 & 8\end{array}\right] \\ & =\left[\begin{array}{lll}8+9 & 10+7 & 10+8\end{array}\right] \\ & =\left[\begin{array}{lll}17 & 17 & 18\end{array}\right] \ldots \ldots .(\mathrm{i})\end{aligned}$
Now $A B=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{lll}5 & 3 & 4 \\ 8 & 7 & 6\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{lll}10+8 & 6+7 & 8+6\end{array}\right] \\ & =\left[\begin{array}{lll}18 & 3 & 14\end{array}\right]\end{aligned}$
And $A C=\left[\begin{array}{ll}2 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 0 & 2\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{lll}-2+1 & 4+0 & 2+2\end{array}\right] \\ & {\left[\begin{array}{lll}-1 & 4 & 4\end{array}\right]} \\ & \therefore \mathrm{AB}+\mathrm{AC}=\left[\begin{array}{lll}18 & 13 & 14\end{array}\right]+\left[\begin{array}{lll}-1 & 4 & 4\end{array}\right] \\ & =\left[\begin{array}{lll}17 & 17 & 18\end{array}\right] \ldots . .(\mathrm{ii)}\end{aligned}$
From equations (i) and (ii)
$\mathrm{A}(\mathrm{B}+\mathrm{C})=(\mathrm{AB}+\mathrm{AC})$
Question 26
Answer:
We have, $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$
$\begin{aligned} & \therefore \mathrm{A}^2=\mathrm{A} \cdot \mathrm{A} \\ & =\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right] \\ & =\left[\begin{array}{ccc}1+0+0 & 0+0-1 & -1+0-1 \\ 2+2+0 & 0+1+3 & -2+3+3 \\ 0+2+0 & 0+1+1 & 0+3+1\end{array}\right] \\ & =\left[\begin{array}{ccc}1 & -1 & -2 \\ 4 & 4 & 4 \\ 2 & 2 & 4\end{array}\right]\end{aligned}$
$\therefore \mathrm{A}^2+\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & -2 \\ 4 & 4 & 4 \\ 2 & 2 & 4\end{array}\right]+\left[\begin{array}{ccc}1 & 0 & -4 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}2 & -1 & -3 \\ 6 & 5 & 7 \\ 2 & 3 & 5\end{array}\right] \ldots \ldots .(\mathrm{i})$
Now, $A+I=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$
So, $A(A+I)=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$
$=\left[\begin{array}{ccc}2+0+0 & 0+0-1 & -1+0-2 \\ 4+2+0 & 0+2+3 & -2+3+6 \\ 0+2+0 & 0+2+1 & 0+3+2\end{array}\right]$
$=\left[\begin{array}{ccc}2 & -1 & -3 \\ 6 & 5 & 7 \\ 2 & 3 & 5\end{array}\right]$
From (i) and (ii)
We get $\mathrm{A}^2+\mathrm{A}=\mathrm{A}(\mathrm{A}+\mathrm{I})$
Question 27
Answer:
i) Given that: $\mathrm{A}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]$
$\begin{aligned} & \mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]_{2 \times 3}^{\prime} \\ & =\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]_{3 \times 2} \\ & \left(\mathrm{~A}^{\prime}\right)^{\prime}=\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]_{3 \times 2}^{\prime} \\ & =\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]_{2 \times 3} \\ & =\mathrm{A}\end{aligned}$
ii) Given that: $\mathrm{A}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]$
L.H.S. $A B=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]_{2 \times 3}\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]_{3 \times 2}$
$\begin{aligned} & =\left[\begin{array}{cc}0-1+4 & 0-3+12 \\ 16+3-8 & 0+9-24\end{array}\right]_{2 \times 2} \\ & =\left[\begin{array}{cc}3 & 9 \\ 11 & -15\end{array}\right]_{2 \times 2}\end{aligned}$
$\begin{aligned} & (\mathrm{AB})^{\prime}=\left[\begin{array}{cc}3 & 11 \\ 9 & -15\end{array}\right]_{2 \times 2} \\ & \text { R.H.S. } \mathrm{B}^{\prime}=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right]^{\prime}\end{aligned}$
$\begin{aligned} & =\left[\begin{array}{lll}4 & 1 & 2 \\ 0 & 3 & 6\end{array}\right] \\ & \mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]^{\prime} \\ & =\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]\end{aligned}$
$\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{lll}4 & 1 & 2 \\ 0 & 3 & 6\end{array}\right]_{2 \times 3}\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right]_{3 \times 2}$
$\begin{aligned} & =\left[\begin{array}{cc}0-1+4 & 16+3-8 \\ 0-3+12 & 0+9-24\end{array}\right]_{2 \times 2} \\ & =\left[\begin{array}{cc}3 & 11 \\ 9 & -15\end{array}\right]_{2 \times 2}\end{aligned}$
L.H.S. = R.H.S.
Hence, $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ is verified.
iii) $\begin{aligned} & \text { Given that: } \mathrm{A}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 1 & 3 \\ 2 & 6\end{array}\right] \\ & \text { L.H.S. kA }=\mathrm{k}\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]\end{aligned}$
$\begin{aligned} & =\left[\begin{array}{ccc}0 & -\mathrm{k} & 2 \mathrm{k} \\ 4 \mathrm{k} & 3 \mathrm{k} & -4 \mathrm{k}\end{array}\right] \\ & (\mathrm{kA})^{\prime}=\left[\begin{array}{cc}0 & 4 \mathrm{k} \\ -\mathrm{k} & 3 \mathrm{k} \\ 2 \mathrm{k} & -\mathrm{k}\end{array}\right]\end{aligned}$
R.H.S. $\mathrm{kA}^{\prime}=\mathrm{k}\left[\begin{array}{ccc}0 & -1 & 2 \\ 4 & 3 & -4\end{array}\right]^{\prime}$
$\begin{aligned} & =\mathrm{k}\left[\begin{array}{cc}0 & 4 \\ -1 & 3 \\ 2 & -4\end{array}\right] \\ & =\left[\begin{array}{cc}0 & 4 \mathrm{k} \\ -\mathrm{k} & 3 \mathrm{k} \\ 2 \mathrm{k} & -4 \mathrm{k}\end{array}\right]\end{aligned}$
Hence, L.H.S. = R.H.S.
$(\mathrm{kA})^{\prime}=\left(\mathrm{kA}^{\prime}\right)$ is verified.
Question 28
Answer:
i) Given that: $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right]$
L.H.S. $(2 \mathrm{~A}+\mathrm{B})^{\prime}=\left[2\left(\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right)+\left(\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right)\right]^{\prime}$
$\begin{aligned} & =\left[\left(\begin{array}{cc}2 & 4 \\ 8 & 2 \\ 10 & 12\end{array}\right)+\left(\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right)\right]^{\prime} \\ & =\left[\begin{array}{cc}2+1 & 4+2 \\ 8+6 & 2+4 \\ 10+7 & 12+3\end{array}\right]^{\prime} \\ & =\left[\begin{array}{cc}3 & 6 \\ 14 & 6 \\ 17 & 15\end{array}\right]^{\prime} \\ & =\left[\begin{array}{ccc}3 & 14 & 17 \\ 6 & 6 & 15\end{array}\right]\end{aligned}$
R.H.S. $2 A^{\prime}+\mathrm{B}^{\prime}=2\left[\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right]^{\prime}+\left[\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right]^{\prime}$
$\begin{aligned} & =2\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 1 & 6\end{array}\right]+\left[\begin{array}{lll}1 & 6 & 7 \\ 2 & 4 & 3\end{array}\right] \\ & =\left[\begin{array}{lll}2 & 8 & 10 \\ 4 & 2 & 12\end{array}\right]+\left[\begin{array}{lll}1 & 6 & 7 \\ 2 & 4 & 3\end{array}\right] \\ & =\left[\begin{array}{ccc}2+1 & 8+6 & 10+7 \\ 4+2 & 2+4 & 12+3\end{array}\right] \\ & =\left[\begin{array}{ccc}3 & 14 & 17 \\ 6 & 6 & 15\end{array}\right]\end{aligned}$
Hence, L.H.S. = R.H.S.
$(2 \mathrm{~A}+\mathrm{B})^{\prime}=2 \mathrm{~A}^{\prime}+\mathrm{B}^{\prime}$ is verified.
ii) Given that: $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right]$
L.H.S. $(\mathrm{A}-\mathrm{B})^{\prime}=\left[\left(\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right)-\left(\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right)\right]^{\prime}$
$\begin{aligned} & =\left[\begin{array}{cc}1-1 & 2-2 \\ 4-6 & 1-4 \\ 5-7 & 6-3\end{array}\right]^{\prime} \\ & =\left[\begin{array}{cc}0 & 0 \\ -2 & -3 \\ -2 & 3\end{array}\right]^{\prime} \\ & =\left[\begin{array}{ccc}0 & -2 & -2 \\ 0 & -3 & 3\end{array}\right]\end{aligned}$
R.H.S. $\mathrm{A}^{\prime}-\mathrm{B}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 4 & 1 \\ 5 & 6\end{array}\right]^{\prime}-\left[\begin{array}{ll}1 & 2 \\ 6 & 4 \\ 7 & 3\end{array}\right]^{\prime}$
$\begin{aligned} & =\left[\begin{array}{lll}1 & 4 & 5 \\ 2 & 1 & 6\end{array}\right]-\left[\begin{array}{lll}1 & 6 & 7 \\ 2 & 4 & 3\end{array}\right] \\ & =\left[\begin{array}{ccc}1-1 & 4-6 & 5-7 \\ 2-2 & 1-4 & 6-3\end{array}\right] \\ & =\left[\begin{array}{ccc}0 & -2 & -2 \\ 0 & -3 & 3\end{array}\right]\end{aligned}$
Hence, L.H.S. = R.H.S. $(\mathrm{A}-\mathrm{B})^{\prime}=\mathrm{A}^{\prime}-\mathrm{B}^{\prime}$ is verified.
Question 29
Show that A’A and AA’ are both symmetric matrices for any matrix A.
Answer:
We know that,
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, because equal matrices have equal dimensions, only square matrices can be symmetric.
We know that the transposition of AB is given by
(AB)’ = B’A’
Using this result, and by taking the transpose of A’A, we have,
Transpose of A’A = (A’A)T = (A’A)’
Using, transpose of A’A = (A’A)’
⇒ (A’A)’ = A’(A’)’
And also,
(A’)’ = A
So,
(A’A)’ = A’A
Since (A’A)’ = A’A
This means that A’A is the symmetric matrix for any matrix A.
Now, take the transpose of AA’.
Transpose of AA’ = (AA’)’
⇒ (AA’)’ = (A’)’A’ [ (AB)’ = B’A’]
⇒ (AA’)’ = AA’ [(A’)’ = A]
Since (AA’)’ = AA’
This means, AA’ is the symmetric matrix for any matrix A.
Thus, A’A and AA’ are symmetric matrices for any matrix A.
Question 30 Let A and B be square matrices of the order 3 × 3. Is $(AB)^2 = A^2B^2$? Give reasons.
Answer:
As A and B are square matrices of order $3 \times 3$.
We have, $(\mathrm{AB})^2=\mathrm{AB} \cdot \mathrm{AB}$
$\begin{aligned} & =\mathrm{A}(\mathrm{BA}) \mathrm{B} \\ & =\mathrm{A}(\mathrm{AB}) \mathrm{B} \ldots \ldots .[\mathrm{If} \mathrm{AB}=\mathrm{BA}] \\ & =\mathrm{AABB} \\ & =\mathrm{A}^2 \mathrm{~B}^2\end{aligned}$
Thus, $(\mathrm{AB})^2=\mathrm{A}^2 \mathrm{~B}^2$ is true only if $\mathrm{AB}=\mathrm{BA}$.
Question 31
Show that if A and B are square matrices such that AB = BA, then $(A + B)^2 = A^2 + 2AB + B^2$.
Answer:
Given that $A$ and $B$ are square matrices such that $A B=B A$.
So, $(\mathrm{A}+\mathrm{B})^2=(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{B})$
$\begin{aligned} & =A^2+A B+B A+B^2 \\ & =A^2+A B+A B+B^2 \ldots \ldots .[\text { Since, } A B=B A] \\ & =A^2+2 A B+B^2\end{aligned}$
Question 32.1
Answer:
Given,
$A=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right], B=\left[\begin{array}{ll} 4 & 0 \\ 1 & 5 \end{array}\right], C=\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]$
$\begin{aligned} &\text { LHS }=A+(B+C)=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left(\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\right)\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left(\left[\begin{array}{ll} 4+2 & 0+0 \\ 1+1 & 5-2 \end{array}\right]\right) \end{aligned}$
$\begin{aligned} &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left[\begin{array}{ll} 6 & 0 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &R H S=(A+B)+C=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]+\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\right)+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left(\left[\begin{array}{cc} 1+4 & 2+0 \\ -1+1 & 3+5 \end{array}\right]\right)+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{ll} 5 & 2 \\ 0 & 8 \end{array}\right]+\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &\text { Clearly LHS }=R H S=\left[\begin{array}{ll} 7 & 2 \\ 1 & 6 \end{array}\right]\\ &\text { Hence, we have }\\ &A+(B+C)=(A+B)+C \text { ...proved } \end{aligned}$
Question 32.2
Answer:
We have to prove that: A(BC) = (AB)C
$\begin{array}{l} \text { LHS = } \mathrm{A}(\mathrm{BC})=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left(\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\right) \\ \Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left(\begin{array}{cc} 4 \times 2+0 \times 1 & 4 \times 0+0 \times(-2) \\ 1 \times 2+5 \times 1 & 1 \times 0+5 \times(-2)]) \end{array}\right. \\ \Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left[\begin{array}{cc} 8 & 0 \\ 7 & -10 \end{array}\right] \\ LHS= {\left[\begin{array}{cc} 22 & -20 \\ 13 & -30 \end{array}\right]} \end{array}$
$\begin{aligned} &\mathrm{RHS}=(\mathrm{AB}) \mathrm{C}=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]\left[\begin{array}{cc} 4 & 0 \\ 1 & 5 \end{array}\right]\right)\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\text { By matrix multiplication as done for LHS }\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc} 6 & 10 \\ -1 & 15 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array}\right]\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{ll} 22 & -20 \\ 13 & -30 \end{array}\right]\\ &\text { Evidently, LHS = RHS }=\left[\begin{array}{rr} 22 & -20 \\ 13 & -30 \end{array}\right]\\ &\therefore \mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C} \ldots \text { .proved } \end{aligned}$
Question 32.3
Answer:
To prove: (a + b)B = aB + bB
Given, a = 4 and b = -2
$\\LHS =(4+(-2)) B=2\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$ \\$\mathrm{RHS}=\mathrm{aB}+\mathrm{bB}=4\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]-2\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]$ \\$\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc}16 & 0 \\ 4 & 20\end{array}\right]-\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$
It is clear that, $\mathrm{LHS}=\mathrm{RHS}=\left[\begin{array}{cc}8 & 0 \\ 2 & 10\end{array}\right]$
Hence, we have,
(a + b)B = aB + bB …proved
Question 32.4
Show that:
a(C - A) = aC -aA
Answer:
We have,
$\begin{aligned} A & =\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right] \\ B & =\left[\begin{array}{cc}4 & 0 \\ 1 & 5\end{array}\right] \\ C & =\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]\end{aligned}$
And $a=4, b=-2$
And $a(C-A)=4(C-A)$
$=\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right]$
Also, $\mathrm{aC}-\mathrm{aA}=4 \mathrm{C}-4 \mathrm{~A}$
$\begin{aligned} & =\left[\begin{array}{cc}8 & 0 \\ 4 & -8\end{array}\right]-\left[\begin{array}{cc}4 & 8 \\ -4 & 12\end{array}\right] \\ & =\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right] \\ & =\mathrm{a}(\mathrm{C}-\mathrm{A})\end{aligned}$
Clearly $L H S=\mathrm{RHS}=\left[\begin{array}{cc}4 & -8 \\ 8 & -20\end{array}\right]$
Hence proved.
Question 32.5
Answer:
To prove: $(AT)^{}T = A$
In the transpose of a matrix, the rows of the matrix become the columns.
$\\\text { LHS }=\left(A^{T}\right)^{T}\\=\left(\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}\right)^{\mathrm{T}}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]=\mathrm{A}=\mathrm{RHS}$
Hence, proved.
Question 32.6
Answer:
a) To prove: $(bA)^T = bA^T$
As, LHS = $(bA)^T = (-2A)^T=(-2\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right])^T$
$(bA)^T = (-2A)^T=\left[\begin{array}{cc} -2 & -4 \\ 2 & -6 \end{array}\right]^T=\left[\begin{array}{cc} -2 & 2 \\ -4 & -6 \end{array}\right]$
$\begin{aligned} &\text { Similarly, }\\ &\mathrm{RHS}=-2\left[\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array}\right]^{\mathrm{T}}=-2\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{cc} -2 & 2 \\ -4 & -6 \end{array}\right]\\ &\text { Hence proved }L H S=R H S=\left[\begin{array}{cc} -2 &2 \\ -4 & -6 \end{array}\right]\\ &\text { Then, }(b A)^{T}=b A^{\top} \ldots \text { proved } \end{aligned}$
Question 32.7
Answer:
To prove: $(AB)^T = B^T A^T$
By multiplying the matrices and taking the transpose, we get,
$\begin{aligned} & \therefore \text { LHS }=\left(\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]\right)^{\mathrm{T}} \\ & \Rightarrow \text { LHS }=\left[\begin{array}{cl}1 \times 4+2 \times 1 & 1 \times 0+2 \times 5 \\ -1 \times 4+3 \times 1 & -1 \times 0+3 \times 5\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{cc}6 & 10 \\ -1 & 15\end{array}\right]^{\mathrm{T}} \\ & \therefore \text { LHS }=\left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]\end{aligned}$
As $\mathrm{RHS}=\mathrm{B}^{\top} \mathrm{A}^{\top}$
By taking the transpose of matrices and then multiplying, we get,
$\begin{aligned} & \text { RHS }=\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right] \\ & \Rightarrow \text { RHS }=\left[\begin{array}{l}4 \times 1+1 \times(2) \\ 4 \times(-1)+1 \times 3 \\ 0 \times 1+5 \times(2) \\ 0 \times(-1)+5 \times 3\end{array}\right]=\left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]\end{aligned}$
We have, LHS = RHS = $\left[\begin{array}{cc}6 & -1 \\ 10 & 15\end{array}\right]$
Hence $(A B)^{\top}=B^{\top} A^{\top}$... proved
Question 32.8
Answer:
We have,
$\begin{aligned} & A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right] \\ & B=\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right] \\ & C=\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right] a\end{aligned}$
And $a=4, b=-2$
$\begin{aligned} & (\mathrm{A}-\mathrm{B})=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]-\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right] \\ & =\left[\begin{array}{cc}1-4 & 2-0 \\ -1-1 & 3-5\end{array}\right] \\ & =\left[\begin{array}{cc}-3 & 2 \\ -2 & -2\end{array}\right]\end{aligned}$
$\begin{aligned} & \therefore(\mathrm{A}-\mathrm{B}) \mathrm{C}=\left[\begin{array}{cc}-3 & 2 \\ -2 & -2\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right] \\ & =\left[\begin{array}{cc}-4 & -4 \\ -6 & 4\end{array}\right]\end{aligned}$
Now, $A C=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]$
$=\left[\begin{array}{ll}4 & -4 \\ 1 & -6\end{array}\right]$
And $B C=\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 1 & -2\end{array}\right]$
$=\left[\begin{array}{cc}8 & 0 \\ 7 & -10\end{array}\right]$
$\begin{aligned} & \therefore \mathrm{AC}-\mathrm{BC}=\left[\begin{array}{ll}4-8 & -4-0 \\ 1-7 & -6+10\end{array}\right] \\ & =\left[\begin{array}{cc}-4 & -4 \\ -6 & 4\end{array}\right] \\ & =(\mathrm{A}-\mathrm{B}) \mathrm{C}\end{aligned}$
Hence proved.
Question 32.9
Show that:
$(A - B)^T = A^T - B^T$
Answer:
To Prove: $(A - B)^T = A^T - B^T$
$(A-B)=\left[\begin{array}{cc} 1-4 & 2-0 \\ -1-1 & 3-5 \end{array}\right]=\left[\begin{array}{cc} -3 & 2 \\ -2 & -2 \end{array}\right]$
$(A-B)^T=\left[\begin{array}{cc} -3 & -2 \\ 2 & -2 \end{array}\right]$
$\\A^{T}-B^{T}=\left[\begin{array}{cc} 1 & -1 \\ 2 & 3 \end{array}\right]-\left[\begin{array}{cc} 4 & 1 \\ 0 & 5 \end{array}\right]\\=\left[\begin{array}{cc} -3 & -2 \\ 2 & -2 \end{array}\right]\\=(A-B)^{T}$
Hence $(A-B)^{T}=A^T-B^T$.
Question 33
Answer:
As $A=\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right],$
$A^2=\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]$
According to the rule of matrix multiplication:
$\\$$ \mathrm{A}^{2}=\left[\begin{array}{cc} \cos \theta \times \cos \theta+\sin \theta \times(-\sin \theta) & \cos \theta \times \sin \theta+\sin \theta \times \cos \theta \\ -\cos \theta \times \sin \theta+(-\sin \theta \times \cos \theta) & \cos \theta \times \cos \theta+\sin \theta \times(-\sin \theta) \end{array}\right] $$ \\ \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{cc}\cos ^{2} \theta-\sin ^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos ^{2} \theta-\sin ^{2} \theta\end{array}\right]$
We know that:
$\\2 \sin \theta \cos \theta=\sin 2 \theta$ and $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta \\\therefore A^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]_{\ldots}$
Hence, proved.
Question 34
Answer:
$\begin{aligned} &\text { As, LHS }=(A+B)^{2}=\left(\left[\begin{array}{cc} 0 & -x \\ x & 0 \end{array}\right]+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\right)^{2}\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]^{2}=\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]\left[\begin{array}{cc} 0 & 1-\mathrm{x} \\ 1+\mathrm{x} & 0 \end{array}\right]\\ &\text { By the rule of matrix multiplication we can write LHS as - }\\ &\text { LHS }=\left[\begin{array}{cc} 0+(1-x)(1+x) & 0 \\ 0 & (1+x)(1-x) \end{array}\right]\\ &\Rightarrow \mathrm{LHS}=\left[\begin{array}{cc} 1-\mathrm{x}^{2} & 0 \\ 0 & 1-\mathrm{x}^{2} \end{array}\right]\\ &\text { Given } x^{2}=-1\\ &\therefore \mathrm{LHS}=\left[\begin{array}{cc} 1-(-1) & 0 \\ 0 & 1-(-1) \end{array}\right]=\left[\begin{array}{ll} 2 & 0 \\ 0 & 2 \end{array}\right]\\ \end{aligned}$
$\begin{aligned} &\mathrm{RHS}=\mathrm{A}^{2}+\mathrm{B}^{2}=\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]^{2}+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]^{2}\\ &\Rightarrow \mathrm{RHS}=\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]\left[\begin{array}{cc} 0 & -\mathrm{x} \\ \mathrm{x} & 0 \end{array}\right]+\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \end{aligned}$
By the rule of matrix multiplication, we can write-
$\mathrm{RHS}=\left[\begin{array}{cc}-\mathrm{x}^{2} & 0 \\ 0 & -\mathrm{x}^{2}\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1-\mathrm{x}^{2} & 0 \\ 0 & 1-\mathrm{x}^{2}\end{array}\right]$
Given $x^{2}=-1$
$\therefore \mathrm{RHS}=\left[\begin{array}{cc}1-(-1) & 0 \\ 0 & 1-(-1)\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
We have, $\mathrm{RHS}=\mathrm{LHS}=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
Hence, $(A+B)^{2}=A^{2}+B^{2}$. -proved
Question 35
Answer:
We need to prove that
$\begin{array}{l} A^{2}=I=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \because A=\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right] \\ \therefore A^{2}=\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right]\left[\begin{array}{ccc} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{array}\right] \end{array}$
According to the rule of matrix multiplication, we have-
$\begin{aligned} &A^{2}=\left[\begin{array}{ccc} 0 \times 0+1 \times 4+(-1) \times 3 & 0 \times 1+1 \times(-3)+(-1) \times(-3) & 0 \times(-1)+1 \times 4+(-1) \times 4 \\ 4 \times 0+(-3) \times 4+4 \times 3 & 4 \times 1+(-3) \times(-3)+4 \times(-3) & 4 \times(-1)+(-3) \times 4+4 \times 4 \\ 3 \times 0+(-3) \times 4+4 \times 3 & 3 \times 1+(-3) \times(-3)+4 \times(-3) & 3 \times(-1)+(-3) \times 4+4 \times 4 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{ccc} 4-3 & -3+3 & 4-4 \\ -12+12 & 4+9-12 & -4-12+16 \\ -12+12 & 3+9-12 & -3+16-12 \end{array}\right]\\ &\therefore \mathrm{A}^{2}=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=I\\ &\text { Hence Proved } \end{aligned}$
Question 36
Prove by Mathematical Induction that $(A')^n = (A^n)'$, where n ∈ N for any square matrix A.
Answer:
Let $\mathrm{P}(\mathrm{n}):\left(\mathrm{A}^{\prime}\right)^{\mathrm{n}}=\left(\mathrm{A}^{\mathrm{n}}\right)^{\prime}$
$\therefore \mathrm{P}(1):\left(\mathrm{A}^{\prime}\right)=(\mathrm{A})^{\prime}$
$\Rightarrow \mathrm{A}^{\prime}=\mathrm{A}^{\prime}$
$\Rightarrow \mathrm{P}(1)$ is true.
Now, let $\mathrm{P}(\mathrm{k})=\left(\mathrm{A}^{\prime}\right)^{\mathrm{k}}=\left(\mathrm{A}^{\mathrm{k}}\right)^{\prime}$
Where $k \in N$
And $\mathrm{P}(\mathrm{k}+1):\left(\mathrm{A}^{\prime}\right)^{\mathrm{k}+1}=\left(\mathrm{A}^{\prime}\right)^{\mathrm{k}} \mathrm{A}^{\prime}$
$=\left(\mathrm{A}^{\prime}\right)^{\mathrm{k}^{\prime}} \mathrm{A}^{\prime}$
$=\left(\mathrm{AA}^{\mathrm{k}}\right)^{\prime} \quad . . . . .\left(\mathrm{As}(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\right)$
$=\left(\mathrm{A}^{\mathrm{k}+1}\right)^{\prime}$
Thus $\mathrm{P}(1)$ is true and whenever $\mathrm{P}(\mathrm{k})$ is true $\mathrm{P}(\mathrm{k}+1)$ is true, So, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$
Question 37.1
Let $A=\begin{bmatrix} 1 &3 \\-5 & 7 \end{bmatrix}$
To apply elementary row transformations, we can say that:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that.
I = XA
And this X is called the inverse of A = A-1.
So we get:
$\begin{aligned} &\left[\begin{array}{cc} 1 & 3 \\ -5 & 7 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+5 \mathrm{R}_{1}\\ &\Rightarrow\left[\begin{array}{cc} 1 & 3 \\ 0 & 22 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 5 & 1 \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{2} \rightarrow(1 / 22) \mathrm{R}_{2}\\ &\Rightarrow\left[\begin{array}{ll} 1 & 3 \\ 0 & 1 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \mathrm{A}\\ &\text { By Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2}\\ &\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]=\left[\begin{array}{ll} \frac{7}{22} & -\frac{3}{22} \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \mathrm{A}\\ &\text { As we have an Identity matrix in LHS. }\\ \end{aligned}$
$\begin{aligned} &\therefore A^{-1}=\left[\begin{array}{ll} \frac{7}{22} & -\frac{3}{22} \\ \frac{5}{22} & \frac{1}{22} \end{array}\right] \end{aligned}$
Question 37.2
Answer:
Let $B=\begin{bmatrix} 1 &-3 \\-2 & 6 \end{bmatrix}$
To apply elementary row transformations, we write:
B = IB where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that.
I = XB
And this X is called inverse of $B = B^{-1}$
So we get,
$\begin{array}{l} {\left[\begin{array}{cc} 1 & -3 \\ -2 & 6 \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \mathrm{B}} \end{array}$
By Applying R2→ R2 + 2R1
$\Rightarrow\left[\begin{array}{cc} 1 & -3 \\ 0 & 0 \end{array}\right]=\left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right] \mathrm{A}$
We have all zeroes in one of the rows of the matrix in the LHS.
So by any means, we can't make an identity matrix in LHS.
∴ The inverse of B does not exist.
$B^{-1}$ does not exist.
Question 38
Answer:
Given that: $\left[\begin{array}{cc}x y & 4 \\ z+6 & x+y\end{array}\right]=\left[\begin{array}{cc}8 & w \\ 0 & 6\end{array}\right]$
Equating the corresponding elements,
$\begin{aligned} & x y=8 \\ & w=4 \\ & z+6=0 \\ & \Rightarrow z=-6, x+y=6\end{aligned}$
Now, solving $x+y=6$ $\qquad$
And $x y=8$ $\qquad$ (ii)
From equation (i), $y=6-x$ $\qquad$
Putting the value of $y$ in equation (ii), we get,
$\begin{aligned} & x(6-x)=8 \\ & \Rightarrow 6 x-x^2=8 \\ & \Rightarrow x^2-6 x+8=0 \\ & \Rightarrow x^2-4 x-2 x+8=0 \\ & \Rightarrow x(x-4)-2(x-4)=0 \\ & \Rightarrow(x-4)(x-2)=0 \\ & \therefore x=4,2\end{aligned}$
From equation (iii)
$y=2,4$
Hence, $x=4$ or $2, y=2$ or $4, z=-6$ and $w=4$.
Question 39
Answer:
Given that:
3A + 5B + 2C = O = null matrix
We have to determine the value of C,
$\begin{array}{l} \text { As, } 3\left[\begin{array}{lr} 1 & 5 \\ 7 & 12 \end{array}\right]+5\left[\begin{array}{ll} 9 & 1 \\ 7 & 8 \end{array}\right]+2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \Rightarrow\left[\begin{array}{ll} 3 & 15 \\ 21 & 36 \end{array}\right]+\left[\begin{array}{ll} 45 & 5 \\ 35 & 40 \end{array}\right]+2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \Rightarrow 2 C+\left[\begin{array}{ll} 48 & 20 \\ 56 & 76 \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ \therefore 2 C=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right]-\left[\begin{array}{ll} 48 & 20 \\ 56 & 76 \end{array}\right] \\ \Rightarrow 2 C=\left[\begin{array}{ll} -48 & -20 \\ -56 & -76 \end{array}\right] \\ \therefore C=\frac{1}{2}\left[\begin{array}{ll} -48 & -20 \\ -56 & -76 \end{array}\right]=\left[\begin{array}{ll} -24 & -10 \\ -28 & -38 \end{array}\right] \end{array}$
Question 40
If $A=\begin{bmatrix} 3 &-5 \\-4 & 2 \end{bmatrix}$ then find $A^2 - 5A - 14I$. Hence, obtain $A^3$.
Answer:
Given that: $\mathrm{A}=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$
$\mathrm{A}^2=\mathrm{A} \cdot \mathrm{A}$
$\begin{aligned} & =\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right] \\ & =\left[\begin{array}{cc}9+20 & -15-10 \\ -12-8 & 20+4\end{array}\right] \\ & =\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]\end{aligned}$
$\therefore \mathrm{A}^2-5 \mathrm{~A}-14 \mathrm{I}=\left[\begin{array}{cc}29 & -25 \\ -20 & -24\end{array}\right]-5\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]-14\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]-\left[\begin{array}{cc}15 & -25 \\ -20 & 10\end{array}\right]-\left[\begin{array}{cc}14 & 0 \\ 0 & 14\end{array}\right] \\ & =\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]-\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right] \\ & =\left[\begin{array}{cc}29-29 & -25+25 \\ -20+20 & 24-24\end{array}\right] \\ & =\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]\end{aligned}$
Hence, $\mathrm{A}^2-5 \mathrm{~A}-14 \mathrm{I}=0$
Now, multiplying both sides by A, we get,
$A^2 \cdot A-5 A \cdot A-14 I A=0 A$
$\begin{aligned} & \Rightarrow A^3-5 A^2-14 A=0 \\ & \Rightarrow A^3=5 A^2+14 A \\ & \Rightarrow A^3=5\left[\begin{array}{cc}29 & -25 \\ -20 & 24\end{array}\right]+14\left[\begin{array}{cc}3 & -5 \\ -4 & -2\end{array}\right]\end{aligned}$
$\begin{aligned} & =\left[\begin{array}{cc}145 & -125 \\ -100 & 120\end{array}\right]+\left[\begin{array}{cc}42 & -70 \\ -56 & 28\end{array}\right] \\ & =\left[\begin{array}{cc}145+42 & -125-70 \\ -100-56 & 120+28\end{array}\right] \\ & =\left[\begin{array}{cc}187 & -195 \\ -156 & 148\end{array}\right]\end{aligned}$
Hence, $A^3=\left[\begin{array}{cc}187 & -195 \\ -156 & 148\end{array}\right]$
Question 41
Answer:
Given that: $3\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right]=\left[\begin{array}{cc}\mathrm{a} & 6 \\ -1 & 2 \mathrm{~d}\end{array}\right]+\left[\begin{array}{cc}4 & \mathrm{a}+\mathrm{b} \\ \mathrm{c}+\mathrm{d} & 3\end{array}\right]$
$\left[\begin{array}{ll}3 \mathrm{a} & 3 \mathrm{~b} \\ 3 \mathrm{c} & 3 \mathrm{~d}\end{array}\right]=\left[\begin{array}{cc}\mathrm{a}+4 & 6+\mathrm{a}+\mathrm{b} \\ -1+\mathrm{c}+\mathrm{d} & 2 \mathrm{~d}+3\end{array}\right]$
Equating the corresponding elements, we get,
$\begin{aligned} & 3 \mathrm{a}=\mathrm{a}+4 \\ & \Rightarrow 3 \mathrm{a}-\mathrm{a}=4 \\ & \Rightarrow 2 \mathrm{a}=4 \\ & \Rightarrow \mathrm{a}=2 \\ & 3 \mathrm{~b}=6+\mathrm{a}+\mathrm{b} \\ & \Rightarrow 3 \mathrm{~b}-\mathrm{b}-\mathrm{a}=6 \\ & \Rightarrow 2 \mathrm{~b}-\mathrm{a}=6 \\ & \Rightarrow 2 \mathrm{~b}-2=6 \\ & \Rightarrow 2 \mathrm{~b}=8 \\ & \Rightarrow \mathrm{~b}=4\end{aligned}$
$\begin{aligned} & 3 \mathrm{c}=-1+\mathrm{c}+\mathrm{d} \\ & \Rightarrow 3 \mathrm{c}-\mathrm{c}-\mathrm{d}=-1 \\ & \Rightarrow 2 \mathrm{c}-\mathrm{d}=-1\end{aligned}$
And $3 \mathrm{~d}=2 \mathrm{~d}+3$
$\begin{aligned} & \Rightarrow 3 d-2 d=3 \\ & \Rightarrow d=3\end{aligned}$
Now $2 \mathrm{c}-\mathrm{d}=-1$
$\begin{aligned} & \Rightarrow 2 \mathrm{c}-3=-1 \\ & \Rightarrow 2 \mathrm{c}=3-1 \\ & \Rightarrow 2 \mathrm{c}=2 \\ & \therefore \mathrm{c}=1 \\ & \therefore \mathrm{a}=2, \mathrm{~b}=4, \mathrm{c}=1 \text { and } \mathrm{d}=3 .\end{aligned}$
Question 42
Answer:
Order of matrix $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]$ is $3 \times 2$ and the matrix
$\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$ is $3 \times 3$
$\therefore$ Order of matrix A must be $2 \times 3$
Let $\mathrm{A}=\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]_{2 \times 3}$
So, $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$
$\left[\begin{array}{ccc}2 \mathrm{a}-\mathrm{d} & 2 \mathrm{~b}-\mathrm{e} & 2 \mathrm{c}-\mathrm{f} \\ \mathrm{a}+0 & \mathrm{~b}+0 & \mathrm{c}+0 \\ -3 \mathrm{a}+4 \mathrm{~d} & -3 \mathrm{~b}+4 \mathrm{e} & -3 \mathrm{c}+4 \mathrm{f}\end{array}\right]=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 5\end{array}\right]$
Equating the corresponding elements, we get,
$\begin{aligned} & 2 a-d=-1 \text { and } a=1 \\ & \Rightarrow 2 \times 1-d=-1 \\ & \Rightarrow d=2+1 \\ & \Rightarrow d=3\end{aligned}$
$\begin{aligned} & 2 \mathrm{~b}-\mathrm{e}=-8 \text { and } \mathrm{b}=-2 \\ & \Rightarrow 2(-2)-\mathrm{e} \\ & \Rightarrow-8 \\ & \Rightarrow-4-\mathrm{e}=-8 \\ & \Rightarrow \mathrm{e}=4 \\ & 2 \mathrm{c}-\mathrm{f}=-10 \text { and } \mathrm{c}=-5 \\ & \Rightarrow 2(-5)-\mathrm{f}=-10 \\ & \Rightarrow-10-\mathrm{f}=-10 \\ & \Rightarrow \mathrm{f}=0 \\ & \mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=-5, \mathrm{~d}=3, \mathrm{e}=4 \text { and } \mathrm{f}=0\end{aligned}$
Hence, $A=\left[\begin{array}{ccc}1 & -2 & -5 \\ 3 & 4 & 0\end{array}\right]$.
Question 43
If $A=\begin{bmatrix} 1 &2 \\4 &1 \end{bmatrix}$ find $A^2 + 2A + 7I$
Answer:
We are given the following matrix A such that,
$A=\begin{bmatrix} 1 &2 \\4 &1 \end{bmatrix}$
$\begin{array}{l} \because \mathrm{A}^{2}=\mathrm{A} . \mathrm{A} \\ \Rightarrow \mathrm{A}^{2}=\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right]\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right] \end{array}$
According to the rule of matrix multiplication, we get
$\begin{aligned} &A^{2}=\left[\begin{array}{ll} 1 \times 1+2 \times 4 & 1 \times 2+2 \times 1 \\ 4 \times 1+1 \times 4 & 4 \times 2+1 \times 1 \end{array}\right]\\ &\Rightarrow A^{2}=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]\\ &\therefore \mathrm{A}^{2}+2 \mathrm{~A}+71=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]+2\left[\begin{array}{ll} 1 & 2 \\ 4 & 1 \end{array}\right]+7\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}+2 \mathrm{~A}+7 \mathrm{I}=\left[\begin{array}{ll} 9 & 4 \\ 8 & 9 \end{array}\right]+\left[\begin{array}{ll} 2 & 4 \\ 8 & 2 \end{array}\right]+\left[\begin{array}{ll} 7 & 0 \\ 0 & 7 \end{array}\right]\\ &\Rightarrow A^{2}+2 A+7 I=\left[\begin{array}{ll} 9+2+7 & 4+4+0 \\ 8+8+0 & 9+2+7 \end{array}\right]\\ &\Rightarrow \mathrm{A}^{2}+2 \mathrm{~A}+7I=\left[\begin{array}{cc} 18 & 8 \\ 16 & 18 \end{array}\right] \ldots \mathrm{ans} \end{aligned}$
Question 44
Answer:
Here, $\mathrm{A}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$
Given that: $\mathrm{A}^{-1}=\mathrm{A}^{\prime}$
Pre-multiplying both sides by A
$\mathrm{AA}^{-1}=\mathrm{AA}^{\prime}$
$\begin{aligned} & \Rightarrow \mathrm{I}=\mathrm{AA}^{\prime} \quad \ldots \ldots .\left[\because \mathrm{AA}^{-1}=\mathrm{I}\right] \\ & \Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right] \\ & \Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\cos ^2 \alpha+\sin ^2 \alpha & -\sin \alpha \cos \alpha+\sin \alpha \cos \alpha \\ -\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^2 \alpha+\cos ^2 \alpha\end{array}\right] \\ & \Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\end{aligned}$
Hence, it is true for all values of a.
Question 45
Answer:
A matrix is said to be skew-symmetric if A = -A’
Let, A = $\begin{bmatrix} 0 &a &3 \\2 & b & -1\\c &1 &0 \end{bmatrix}$
As A is a skew-symmetric matrix.
∴ A = -A’
$\begin{array}{l} \left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=-\left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]^{T} \\\\ \left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=-\left[\begin{array}{ccc} 0 & 2 & c \\ a & b & 1 \\ 3 & -1 & 0 \end{array}\right] \\\\ {\left[\begin{array}{ccc} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & -2 & -c \\ -a & -b & -1 \\ -3 & 1 & 0 \end{array}\right]} \end{array}$
Equating the respective elements of both matrices, as both matrices are equal to each other, we have,
a = -2 ; c = -3 ; b = -b ⇒ 2b = 0 ⇒ b = 0
Thus, we get,
a = -2 , b = 0 and c = -3
Question 46
Answer:
We have, $\mathrm{P}(\mathrm{x})=\left[\begin{array}{cc}\cos x & \operatorname{six} \\ -\sin x & \cos x\end{array}\right]$
$\therefore \mathrm{P}(\mathrm{y})=\left[\begin{array}{cc}\cos y & \sin y \\ -\sin y & \cos y\end{array}\right]$
Now,
$\mathrm{P}(\mathrm{x}) \cdot \mathrm{P}(\mathrm{y})=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]\left[\begin{array}{cc}\cos y & \sin y \\ -\sin y & \cos y\end{array}\right]$
$\begin{aligned} & =\left[\begin{array}{cc}\cos x \cdot \cos y-\sin x \cdot \sin y & \cos x \cdot \sin y+\sin x \cdot \cos y \\ -\sin x \cdot \cos y-\cos x \cdot \sin y & -\sin x \cdot \sin y+\cos x \cdot \cos y\end{array}\right] \\ & =\left[\begin{array}{cc}\cos (x+y) & \sin (x+y) \\ -\sin (x+y) & \cos (x+y)\end{array}\right]\end{aligned}$
$=P(x+y) \ldots \ldots(i)$
Also,
$\mathrm{P}(\mathrm{y}) \cdot \mathrm{P}(\mathrm{x})=\left[\begin{array}{cc}\cos y & \sin y \\ -\sin y & \cos y\end{array}\right]\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$
$=\left[\begin{array}{cc}\cos y \cdot \cos x-\sin y \cdot \sin x & \cos y \cdot \sin x+\sin y \cdot \cos x \\ -\sin y \cdot \cos x-\sin x \cdot \cos y & -\sin y \cdot \sin x+\cos y \cdot \cos x\end{array}\right]$
$=\left[\begin{array}{cc}\cos (x+y) & \sin (x+y) \\ -\sin (x+y) & \cos (x+y)\end{array}\right]$
$\mathrm{P}(\mathrm{x}) \cdot(\mathrm{y})=\mathrm{P}(\mathrm{x}+\mathrm{y})=\mathrm{P}(\mathrm{y}) \cdot \mathrm{P}(\mathrm{x})$
Question 47
If A is square matrix such that $A^2 = A$, show that $(I + A)^3 = 7A + I$.
Answer:
We know that,
A. I = I. A
So, A and I are commutative.
Thus, we can expand $(\mathrm{I}+\mathrm{A})^3$ like real numbers expansion.
So, $(I+A)^3=I^3+3 I^2 A+3 \mathrm{IA}^2+A^3$
$\begin{aligned} & =\mathrm{I}+3 \mathrm{IA}+3 \mathrm{~A}^2+\mathrm{AA}^2 \ldots . .\left(\mathrm{As} \mathrm{I}^{\mathrm{n}}=\mathrm{I}, \mathrm{n} \in \mathrm{N}\right) \\ & =\mathrm{I}+3 \mathrm{~A}+3 \mathrm{~A}+\mathrm{AA} \\ & =\mathrm{I}+3 \mathrm{~A}+3 \mathrm{~A}+\mathrm{A}^2 \\ & =\mathrm{I}+3 \mathrm{~A}+3 \mathrm{~A}+\mathrm{A} \\ & =\mathrm{I}+7 \mathrm{~A}\end{aligned}$
Hence proved,
$(I + A)^{3} = I + 7A$
Question 48
Answer:
Given that B is a skew-symmetric matrix
$\therefore \mathrm{B}^{\prime}=-\mathrm{B}$
Let $\mathrm{P}=\mathrm{A}^{\prime} \mathrm{BA}$
$\begin{aligned} & =\mathrm{A}^{\prime} \mathrm{B}^{\prime}\left(\mathrm{A}^{\prime}\right)^{\prime} \ldots \ldots .\left[(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\right] \\ & =\mathrm{A}^{\prime}(-\mathrm{B}) \mathrm{A} \\ & =-\mathrm{A}^{\prime} \mathrm{BA} \\ & =-\mathrm{P}\end{aligned}$
So $\mathrm{P}^{\prime}=-\mathrm{P}$
Thus, we say that C = A’ BA is a skew-symmetric matrix.
Question 49
If AB = BA for any two square matrices, prove by mathematical induction that $(AB)^n = A^n B^n$.
Answer:
Let $\mathrm{P}(\mathrm{n}):(\mathrm{AB})^{\mathrm{n}}=\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}$
So, $\mathrm{P}(1)$ : $(\mathrm{AB})^1=\mathrm{A}^1 \mathrm{~B}^1$
$\Rightarrow \mathrm{AB}=\mathrm{AB}$
So, $\mathrm{P}(1)$ is true.
Let $\mathrm{P}(\mathrm{n})$ is true for some $\mathrm{k} \in \mathrm{N}$
So, $P(k):(A B)^k=A^k B^k, k \in N$
Now $(A B)^{k+1}=(A B)^{\mathrm{k}}(\mathrm{AB}) \quad \ldots .($ Using $(\mathrm{i}))$
$\begin{aligned} & =A^k B^k(A B) \\ & =A^k B^{k-1}(B A) B \\ & =A^k B^{k-1}(A B) B \quad \ldots .(\text { As given } A B=B A) \\ & =A^k B^{k-1} A B^2 \\ & =A^k B^{k-2}(B A) B^2 \\ & =A^k B^{k-2} A B B^2 \\ & =A^k B^{k-2} A B^3\end{aligned}$
$=\mathrm{A}^{\mathrm{k}+1} \mathrm{~B}^{\mathrm{k}+1}$
Thus $\mathrm{P}(1)$ is true and whenever $\mathrm{P}(\mathrm{k})$ is true $\mathrm{P}(\mathrm{k}+1)$ is true.
So, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$.
Question 50
Answer:
Matrix A is such that $\mathrm{A}^{\prime}=\mathrm{A}^{-1}$
$\Rightarrow \mathrm{AA}^{\prime}=\mathrm{I}$
$\Rightarrow\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]\left[\begin{array}{ccc}0 & x & x \\ 2 y & y & -y \\ z & -z & z\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}4 y^2+z^2 & 2 y^2-z^2 & -2 y^2+z^2 \\ 2 y^2-z^2 & x^2+y^2+z^2 & x^2-y^2-z^2 \\ -2^2+z^2 & x^2-y^2+z^2 & x^2+y^2+z^2\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\begin{aligned} & \Rightarrow 4 y^2+z^2=1 \\ & 2 y^2-z^2=0 \\ & x^2+y^2+z^2=1 \\ & x^2-y^2-z^2=0\end{aligned}$
$\begin{aligned} & \Rightarrow y^2=\frac{1}{6}, z^2=\frac{1}{3}, x^2=\frac{1}{2} \\ & \Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{2}} \\ & \Rightarrow \mathrm{y}= \pm \frac{1}{\sqrt{6}}\end{aligned}$
And $z= \pm \frac{1}{\sqrt{3}}$
Question 51.1
Answer:
Let A = $\begin{bmatrix} 2 &-1 & 3\\-5 &3 &1\\-3 &2 &3 \end{bmatrix}$
To apply elementary row transformations, we write:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that.t
I = XA
And this X is called inverse of $A = A^{-1}$
Note: Never apply row and column transformations simultaneously over a matrix.
So we get,
$\begin{aligned} &\left[\begin{array}{ccc} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } R_{2} \rightarrow R_{2}+R_{1}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & -1 & 3 \\ -3 & 2 & 4 \\ -3 & 2 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & -1 & 3 \\ -3 & 2 & 4 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } R_{1} \rightarrow R_{1}+R_{2}\\ &\Rightarrow\left[\begin{array}{ccc} -1 & 1 & 7 \\ -3 & 2 & 4 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A} \end{aligned}$
Applying R 2 → R 2 - 3R 1
$\begin{aligned} &\left[\begin{array}{ccc} -1 & 1 & 7 \\ 0 & -1 & -17 \\ 0 & 0 & -1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ -5 & -2 & 0 \\ -1 & -1 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{3} \rightarrow(-1) \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} -1 & 1 & 7 \\ 0 & -1 & -17 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 2 & 1 & 0 \\ -5 & -2 & 0 \\ 1 & 1 & -1 \end{array}\right] \mathrm{A}\\ \end{aligned}$
$\text { Applying } R_{1} \rightarrow R_{1}+R_{2}$
$\left[\begin{array}{ccc} -1 & 0 & -10 \\ 0 & -1 & -17 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} -3 & -1 & 0 \\ -5 & -2 & 0 \\ 1 & 1 & -1 \end{array}\right] A$
$\\\text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+10 \mathrm{R}_{3} \text { and } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+17 \mathrm{R}_{3}\\ \Rightarrow\left[\begin{array}{ccc} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 7 & 9 & -10 \\ 12 & 15 & -17 \\ 1 & 1 & -1 \end{array}\right] \mathrm{A}\\ \text { Applying } \mathrm{R}_{1} \rightarrow(-1) \mathrm{R}_{1} \text { and } \mathrm{R}_{2} \rightarrow(-1) \mathrm{R}_{2}\\$
$\Rightarrow\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{array}\right] A$
$\text { As we have an Identity Matrix in LHS, }\\ \\\therefore \mathrm{A}^{-1}=\left[\begin{array}{ccc} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{array}\right]$
Question 51.2
Answer:
Let A = $\begin{bmatrix} 2 &3 &-3 \\-1 &-2 &2 \\1 &1 &-1 \end{bmatrix}$
To apply elementary row transformations, we write:
A = IA where I is the identity matrix
We proceed with solving the problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that.t
I = XA
And this X is called inverse of $A = A^{-1}$
Note: Never apply row and column transformations simultaneously over a matrix.
So we get:
$\begin{array}{l} {\left[\begin{array}{ccc} 2 & 3 & -3 \\ -1 & -2 & 2 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \\\\ \text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{3} \\ {\left[\begin{array}{ccc} 2 & 3 & -3 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}}\\ \\ \text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-2 \mathrm{R}_{3} \\ {\left[\begin{array}{ccc} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \\\\ \text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \\ {\left[\begin{array}{ccc} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & -2 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}} \end{array}$
The second row of LHS contains all zeros, so we aren’t going to get any matrix in LHS.
∴ The inverse of A does not exist.
Hence, A-1 does not exist.
Question 51.3
Answer:
Let A = $\begin{bmatrix} 2 &0 &-1 \\5 &1 &0 \\0 &1 &3 \end{bmatrix}$
To apply elementary row transformations, we write:
A = IA where I is the identity matrix
We proceed with solving our problem in such a way that LHS becomes I and the transformations in I give us a new matrix such that:
I = XA
And this X is called inverse of $A = A^{-1}$
Note: Never apply row and column transformations simultaneously over a matrix.
So we get,
$\begin{aligned} &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \mathrm{A}\\ &\text { Applying } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-(5 / 2) \mathrm{R}_{1}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] A\\ &\text { Applying } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}\\ &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ \frac{5}{2} & -1 & 1 \end{array}\right] \mathrm{A}\\ \end{aligned}$
$\begin{aligned} &\text { Applying } R_{2} \rightarrow R_{2}-5 R_{3}\\ &\left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ -15 & 6 & -5 \\ \frac{5}{2} & -1 & 1 \end{array}\right]\\ &\text { Applying } \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+2 \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{array}\right]=\left[\begin{array}{ccc} 6 & -2 & 2 \\ -15 & 6 & -5 \\ \frac{5}{2} & -1 & 1 \end{array}\right]\\ &\text { Applying } \mathrm{R}_{1} \rightarrow(1 / 2) \mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}\\ &\Rightarrow\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ -5 & -2 & 2 \end{array}\right] \mathrm{A}\\ \end{aligned}$
$\begin{aligned} &\text { As we have Identity matrix in LHS, we get, }\\ &\therefore \mathrm{A}^{-1}=\left[\begin{array}{ccc} 3 & -1 & 1 \\ -15 & 6 & -5 \\ -5 & -2 & 2 \end{array}\right] \end{aligned}$
Question 52
Answer:
If A is any matrix, then it can be written as the sum of a symmetric and skew-symmetric matrix.
Symmetric matrix is given by 1/2(A + A’)
Skew symmetric is given by 1/2(A - A’)
And A = 1/2(A + A’) + 1/2(A - A’)
Here, A = $\begin{bmatrix} 2 &3 & 1\\1 &-1 &2 \\4 &1 &2 \end{bmatrix}$
The symmetric matrix is given by –
$\Rightarrow \frac{1}{2}\left ( A+A' \right )=\frac{1}{2}\left (\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]+\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}} \right )$
$\begin{array}{l} \Rightarrow 1 / 2\left(A+A^{\prime}\right)={\frac{1}{2}}\left(\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]+\left[\begin{array}{ccc} 2 & 1 & 4 \\ 3 & -1 & 1 \\ 1 & 2 & 2 \end{array}\right]\right) \\ \end{array}$
$\Rightarrow 1 / 2\left(A+A^{\prime}\right)={\frac{1}{2}}\left(\left[\begin{array}{ccc} 2+2 & 3+1 & 1+4 \\ 1+3 & -1-1 & 2+1 \\ 4+1 & 1+2 & 2+2 \end{array}\right]\right)$
$\Rightarrow 1 / 2\left(A+A^{\prime}\right)=\left[\begin{array}{ccc} 4 & 4 & 5 \\ 4 & -2 & 3 \\ 5 & 3 & 4 \end{array}\right]=\left[\begin{array}{ccc} 2 & 2 & \frac{5}{2} \\ 2 & -1 & \frac{3}{2} \\ \frac{5}{2} & \frac{3}{2} & 2 \end{array}\right]$
Skew Symmetric matrix is given by –
$\frac{1}{2}\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\frac{1}{2}\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}}$
$\Rightarrow \frac{1}{2}\left ( A-A' \right )=\frac{1}{2}\left (\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]^{\mathrm{T}} \right )$
$\begin{array}{l} \Rightarrow 1 / 2\left(A-A^{\prime}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{array}\right]-\left[\begin{array}{ccc} 2 & 1 & 4 \\ 3 & -1 & 1 \\ 1 & 2 & 2 \end{array}\right]\right) \\ \end{array}$
$\Rightarrow 1 / 2\left(A-A^{\prime}\right)=\frac{1}{2}\left(\left[\begin{array}{ccc} 2-2 & 3-1 & 1-4 \\ 1-3 & -1+1 & 2-1 \\ 4-1 & 1-2 & 2-2 \end{array}\right]\right)$
$\frac{1}{2}\left[\begin{array}{ccc} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{array}\right]=\left[\begin{array}{ccc} 0 & 1 & \frac{-3}{2} \\ -1 & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{-1}{2} & 0 \end{array}\right]$
$\therefore A=\left[\begin{array}{ccc} 2 & 2 & \frac{5}{2} \\ 2 & -1 & \frac{3}{2} \\ \frac{5}{2} & \frac{3}{2} & 2 \end{array}\right]+\left[\begin{array}{ccc} 0 & 1 & \frac{-3}{2} \\ -1 & 0 & \frac{1}{2} \\ \frac{3}{2} & \frac{-1}{2} & 0 \end{array}\right]$
Question 53
The matrix $P=\begin{bmatrix} 0 &0 &4 \\0 &4 &0 \\4 &0 &0 \end{bmatrix}$ is a
A. square matrix
B. diagonal matrix
C. unit matrix
D. none
Answer:
As P has an equal number of rows and columns and thus it matches the definition of a square matrix.
The given matrix does not satisfy the definition of unit and diagonal matrices.
Hence, we can say that,
∴ Option (A) is the only correct answer.
Question 54
Answer:
D)
As the above matrix has a total of 3×3 = 9 elements, then
As each element can take 2 values (0 or 2)
∴ By simply counting principles, we can say that the total number of possible matrices = total number of ways in which 9 elements can take possible values = $2^9$ = 512
It matches with option D.
Hence, we can say that,
∴ Option (D) is the only correct answer.
Question 55
If $\left[\begin{array}{cc} 2 x+y & 4 x \\ 5 x-7 & 4 x \end{array}\right]=\left[\begin{array}{cc} 7 & 7 y-13 \\ y & x+6 \end{array}\right]$ then the value of x + y is
A. x = 3, y = 1
B. x = 2, y = 3
C. x = 2, y = 4
D. x = 3, y = 3
Answer:
Given that: $\left[\begin{array}{ll}2 x+y & 4 x \\ 5 x-7 & 4 x\end{array}\right]=\left[\begin{array}{cc}7 & 7 y-13 \\ y & x+6\end{array}\right]$
Equating the corresponding elements, we get,
$2 x+y=7 \ldots \ldots .(i)$
And $4 x=x+6$
From equations (ii)
$\begin{aligned} & 4 x-x=6 \\ & 3 x=6 \\ & \therefore x=2\end{aligned}$
From equations (i)
$\begin{aligned} & 2 \times 2+y=7 \\ & 4+y=7 \\ & \therefore y=7-4=3\end{aligned}$
$\therefore$ Option(B) is the correct answer.
Question 56
If $A=\frac{1}{\pi}\left[\begin{array}{cc} \sin ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & \cot ^{-1}(\pi \mathrm{x}) \end{array}\right], \mathrm{B}=\frac{1}{\pi}\left[\begin{array}{cc} -\cos ^{-1}(\mathrm{x} \pi) & \tan ^{-1} \frac{\mathrm{x}}{\pi} \\ \sin ^{-1} \frac{\mathrm{x}}{\pi} & -\tan ^{-1}(\pi \mathrm{x}) \end{array}\right]$ then A - B is equal to
A. I
B. O
C. 2I
D. $\frac{1}{2}I$
Answer:
Given that: $\mathrm{A}=\frac{1}{\pi}\left[\begin{array}{ll}\sin ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & \cot ^{-1}(\pi x)\end{array}\right]$
And $\mathrm{B}=\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1}\left(\frac{x}{\pi}\right) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & -\tan ^{-1}(\pi x)\end{array}\right]$
$\mathrm{A}-\mathrm{B}=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & \cot ^{-1}(\pi x)\end{array}\right]-\frac{1}{\pi}\left[\begin{array}{cc}-\cos ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right) & -\tan ^{-1}(\pi x)\end{array}\right]$
$=\frac{1}{\pi}\left[\begin{array}{cc}\sin ^{-1}(x \pi)+\cos ^{-1}(x \pi) & \tan ^{-1}\left(\frac{x}{\pi}\right)-\tan ^{-1}\left(\frac{x}{\pi}\right) \\ \sin ^{-1}\left(\frac{x}{\pi}\right)-\sin ^{-1}\left(\frac{x}{\pi}\right) & \cot ^{-1}(\pi x)+\tan ^{-1}(\pi x)\end{array}\right]$
$=\frac{1}{\pi}\left[\begin{array}{ll}\frac{\pi}{2} & 0 \\ 0 & \frac{\pi}{2}\end{array}\right] \cdots \cdots\left[\begin{array}{l}\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} \\ \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\end{array}\right]$
$=\frac{1}{\pi} \times \frac{\pi}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\frac{1}{2} \mathrm{I}$
∴ Option (D) is the only correct answer.
Question 57
If A and B are two matrices of the order 3 × m and 3 × n, respectively, and m = n, then the order of matrix (5A - 2B) is
A. m × 3
B. 3 × 3
C. m × n
D. 3 × n
Answer:
As the order of A is 3 × m and the order of B is 3 × n
As m = n. So, the order of A and B is the same = 3 × m
∴ Subtraction can be carried out.
And (5A - 3B) also has the same order.
Hence, option D is correct.
Question 58
If $A= \begin{bmatrix} 0 &1 \\1 &0 \end{bmatrix}$ then $A^2$ is equal to
A. $\begin{bmatrix} 0 &1 \\1 &0 \end{bmatrix}$
B.$\begin{bmatrix} 1&0 \\1 &0 \end{bmatrix}$
C.$\begin{bmatrix} 0&1 \\0 &1 \end{bmatrix}$
D.$\begin{bmatrix} 1&0 \\0 &1 \end{bmatrix}$
Answer:
$\begin{aligned} &\text { Let } A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\\ &\therefore \mathrm{A}^{2}=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\\ &\text { By the rule of matrix multiplication, we have, }\\ &\Rightarrow \mathrm{A}^{2}=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \text { which matches with option (D) } \end{aligned}$
Hence, we can say that,
∴ Option (D) is the correct answer.
Question 59
If matrix $A=[a_{ij}]_{2\times 2}$, where aij = 1 if i ≠ j
aij = 0 if i = j, then $A^2$ is equal to
A. I
B. A
C. 0
D. None of these
Answer:
We are given that,
$a_{11} = 0 , a_{12} = 1 , a_{21} = 1 $ and $a_{22} = 0$
$\begin{array}{l} \therefore A=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \\ \therefore A^{2}=\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right] \end{array}$
According to the rule of matrix multiplication:
$\begin{array}{l} \therefore A^2=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ \end{array}$ which matches with option (A)
Hence, we can say that,
∴ Option (A) is the correct answer.
Question 60
The matrix $\begin{bmatrix} 1 &0 &0 \\0 &2 &0 \\0 &0 &4 \end{bmatrix}$ is a
A. Identity matrix
B. symmetric matrix
C. skew-symmetric matrix
D. none of these
Answer:
$\begin{aligned} &\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{array}\right]\\ &\text { Then, }\\ &A^{\prime}=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{array}\right]^{T}=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{array}\right]=A \end{aligned}$
As, $A^T = A$
∴ It is a symmetric matrix.
Hence, we can say that,
∴ Option(B) is the correct answer.
Question 61
The matrix $\begin{bmatrix} 0 &-5 &8 \\5 &0 &12 \\-8 &-12 &0 \end{bmatrix}$ is a
A. diagonal matrix
B. symmetric matrix
C. skew-symmetric matrix
D. scalar matrix
Answer:
Let A = $\begin{bmatrix} 0 &-5 &8 \\5 &0 &12 \\-8 &-12 &0 \end{bmatrix}$
$\mathrm{A}^{\prime}=\left[\begin{array}{ccc} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc} 0 & 5 & -8 \\ -5 & 0 & -12 \\ 8 & 12 & 0 \end{array}\right]=-\mathrm{A}$
As $A^T = -A$
∴ It is a skew-symmetric matrix.
Hence, we can say that,
∴ Option(C) is the correct answer.
Question 62
If A is a matrix of order m × n and B is a matrix such that AB’ and B’A are both defined, then the other of matrix B is
A. m × m
B. n × n
C. n × m
D. m × n
Answer:
As AB’ is defined. So, B’ must have n rows.
∴ B has n columns.
And, B’A is also defined. As A’ has order n × m
∴ B’A to exist, B must have m rows.
∴ m × n is the order of B.
Hence, we can say that,
Option (D) is the correct answer.
Question 63
If A and B are matrices of the same order, then (AB’ - BA’) is a
A. skew-symmetric matrix
B. null matrix
C. symmetric matrix
D. unit matrix
Answer:
Let C = (AB’ - BA’)
C’ = (AB’ - BA’)’
$\\ \Rightarrow$ C’ = (AB’)’ - (BA’)’
$\\ \Rightarrow$ C’ = (B’)’ A’ - (A’)’ B’
$\\ \Rightarrow$ C’ = BA’ - AB’
$\\ \Rightarrow$ C’ = -C
∴ C is a skew-symmetric matrix.
Option (A) matches with our deduction.
Hence, we can say that,
∴ Option (A) is the correct.
Question 64
If A is a square matrix such that $A^2 = I$, then $(A - I)^3 + (A + I)^3 - 7A$ is equal to
A. A
B. I - A
C. I + A
D. 3A
Answer:
As, $(A - I)^3 + (A + I)^3 - 7A$
Use $a^3 + b^3 = (a + b)(a^2 + ab + b^2)$
Also, $A^2 = I$
$(A - I)^3 + (A + I)^3 - 7A$
$\begin{array}{l} =A^{3}-3 A^{2}+3 A-I^{3}+A^{3}+3 A^{2}+3 A+I^{3}-7 A \\ =2 A^{3}+6 A-7 A \\ =2 A^{2} \cdot A+6 A-7 A \\ =2 I \cdot A+6 A-7 A \\ =2 A+6 A-7 A=8 A-7 A=A \end{array}$
∴ then $(A - I)^3 + (A + I)^3 - 7A= A$Ourr answer is similar to option (A)
Hence, we can say that,
∴ Option (A) is the correct answer.
Question 65
For any two matrices A and B, we have
A. AB = BA
B. AB ≠ BA
C. AB = O
D. None of the above
Answer:
For any two matrices:
Not always are options A, B, and C true.
Hence, we can say that,
∴ Option (D) is the only suitable answer
Question 66
On using elementary column operations C2→ C2 — 2C1 in the following matrix equation
$\left[\begin{array}{cc} 1 & -3 \\ 2 & 4 \end{array}\right]=\left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 3 & 1 \\ 2 & 4 \end{array}\right]$ we have:
A.$\left[\begin{array}{cc}1 & -5 \\ 0 & 4\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ 2 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -5 \\ 0 & 4\end{array}\right]=\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\left[\begin{array}{cc}3 & -5 \\ -0 & 5\end{array}\right]$
C.$\left[\begin{array}{cc}1 & -5 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -2 & 4\end{array}\right]$
D. $\left[\begin{array}{cc}1 & -5 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ 2 & 0\end{array}\right]$
Answer:
$\left[\begin{array}{cc} 1 & -3 \\ 2 & 4 \end{array}\right]=\left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 3 & 1 \\ 2 & 4 \end{array}\right]$
For column transformation, we operate on the post matrix.
As,
$\left[\begin{array}{cc} 1 & -3 \\ 2 & 4 \end{array}\right]=\left[\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right]\left[\begin{array}{ll} 3 & 1 \\ 2 & 4 \end{array}\right]$
By Applying C 2 → C 2 — 2C 1 ,
$\left[\begin{array}{cc}1 & -5 \\ 2 & 0\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}3 & -5 \\ 2 & 0\end{array}\right]$,It matches with option (D).
Hence, we can say that,
∴ Option (D) is the correct answer.
Question 67
On using elementary row operation R1→ R1 — 3R2 in the following matrix equation:
$\left[\begin{array}{ll} 4 & 2 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right]$
$\begin{array}{l} \text { A. }\left[\begin{array}{cc} -5 & -7 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 & -7 \\ 0 & 3 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right] \\ \\B.{\left[\begin{array}{cc} -5 & -7 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{cc} -1 & -3 \\ 1 & 1 \end{array}\right]} \\ \\C.{\left[\begin{array}{cc} -5 & -7 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 & 2 \\ 1 & -7 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right]} \\\\ D.{\left[\begin{array}{cc} 4 & 2 \\ -5 & -7 \end{array}\right]=\left[\begin{array}{cc} 1 & 2 \\ -3 & -3 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right]} \end{array}$
Answer:
Elementary row transformation is applied to the first matrix of the RHS.
$\left[\begin{array}{ll} 4 & 2 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right]$
By Applying R 1 → R 1 — 3R 2 we get -
$\left[\begin{array}{ll} 4 & 2 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{ll} 1 & 2 \\ 0 & 3 \end{array}\right]\left[\begin{array}{ll} 2 & 0 \\ 1 & 1 \end{array}\right]$
$\left[\begin{array}{cc} -5 & -7 \\ 3 & 3 \end{array}\right]=\left[\begin{array}{cc} 1 & -7 \\ 0 & 3 \end{array}\right]\left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right] \\$
It matches with option (A)
Hence, we can say that,
∴ Option (A) is the correct answer.
Question 68
Fill in the blanks in each of the following:
______ matrix is both symmetric and skew-symmetric matrix.
Answer:
A Zero matrix
∴ Let A be the symmetric and skew-symmetric matrix.
⇒ A’=A (Symmetric)
⇒ A’=-A (Skew-Symmetric)
Considering the above two equations,
⇒ A=-A
⇒ 2A=0
⇒ A=0 (A Zero Matrix)
Hence zero matrix is both a symmetric and skew-symmetric matrix.
Question 69
Fill in the blanks in each of the following:
The sum of two skew-symmetric matrices is always _______ matrix.
Answer:
A skew-symmetric matrix
Let A and B be any two matrices
$\therefore$ For skew-symmetric matrices
$\mathrm{A}=-\mathrm{A}^{\prime} \quad \ldots . . .(\mathrm{i})$
And B = - $\mathrm{B}^{\prime}$
Adding (i) and (ii), we get
$\begin{aligned} & \mathrm{A}+\mathrm{B}=-\mathrm{A}^{\prime}-\mathrm{B}^{\prime} \\ & \Rightarrow \mathrm{A}+\mathrm{B}=-\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\end{aligned}$
So $\mathrm{A}+\mathrm{B}$ is skew-symmetric matrix.
Question 70
Fill in the blanks in each of the following:
The negative of a matrix is obtained by multiplying it by ________.
Answer:
The negative of a matrix is obtained by multiplying it by -1.
For example:
$\begin{aligned} \text { Let}&A=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\\ \\ \end{aligned}$
$\text { So }\left[\begin{array}{ll} -1 & -2 \\ -3 & -4 \end{array}\right]=-1\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\\ =-A$
Question 71
Fill in the blanks in each of the following:
The product of any matrix by the scalar _____ is the null matrix.
Answer:
The null matrix is the one in which all elements are zero.
If we want to make A = $\begin{bmatrix} 1 &2 \\3 &4 \end{bmatrix}$ a null matrix we need to multiply it by 0.
0A = $0\begin{bmatrix} 1 &2 \\3 &4 \end{bmatrix}$
$\begin{bmatrix} 0 &0 \\0 &0 \end{bmatrix}$
Hence, we can say that,
The product of any matrix by the scalar 0 is the null matrix.
Question 72
Fill in the blanks in each of the following:
A matrix that is not a square matrix is called a _____ matrix.
Answer:
Rectangular Matrix
As we know, a square matrix is one in which there is the same number of rows and columns.
Eg: A = $\begin{bmatrix} 1 &2 \\3 &4 \end{bmatrix}$
Here there are 2 rows and 2 columns.
The matrix that is not square is called a rectangular matrix as it does not have the same number of rows and columns.
Eg $\begin{bmatrix} 1 &2 &3 \\4 &5 &6 \end{bmatrix}$
Here number of rows is 2 and columns are 3.
Question 73
Fill in the blanks in each of the following:
Matrix multiplication is _____ over addition.
Answer:
Distributive
⇒ Matrix multiplication is distributive over addition.
i.e A(B+C)=AB+AC
and (A+B)C=AC+BC
Question 74
Fill in the blanks in each of the following:
If A is a symmetric matrix, then $A^3$ is a ______ matrix.
Answer:
Given A is a symmetric matrix
$\therefore \mathrm{A}^{\prime}=-\mathrm{A}$
$\operatorname{Now}\left(\mathrm{A}^3\right)^{\prime}=\left(\mathrm{A}^{\prime}\right)^3 \quad \ldots \ldots .\left[\because\left(\mathrm{A}^{\prime}\right)^{\mathrm{n}}=\left(\mathrm{A}^{\mathrm{n}}\right)^{\prime}\right]$
$=\mathrm{A}^3$
Question 75
Fill in the blanks in each of the following:
If A is a skew-symmetric matrix, then $A^2$ is a _________.
Answer:
Given A is a skew-symmetric matrix.
$\begin{aligned} & \therefore \mathrm{A}^{\prime}=-\mathrm{A} \\ & \therefore\left(\mathrm{A}^2\right)^{\prime}=\left(\mathrm{A}^{\prime}\right)^2 \\ & =(-\mathrm{A})^2 \\ & =\mathrm{A}^2\end{aligned}$
So, $\mathrm{A}^2$ is a symmetric matrix.
Question 76
Fill in the blanks in each of the following:
If A and B are square matrices of the same order, then
(i) (AB)’ = ________.
(ii) (kA)’ = ________. (k is any scalar)
(iii) [k (A - B)]’ = ________.
Answer:
(i) (AB)’ = ________.
(AB)’ = B’A’
Let A be the matrix of order m× n and B be of n× p.
A’ is of order n× m and B’ is of order p× n.
Hence, we get, B’ A’ is of order p× m.
So, AB is of order m× p.
And (AB)’ is of order p× m.
We can see (AB)’ and B’ A’ are of the same order p× m.
Hence proved, (AB)’ = B’ A’
(ii) (kA)’ = ________. (k is any scalar)
If a scalar “k” is multiplied by any matrix the new matrix becomes
K times of the old matrix.
$\begin{array}{l} \text { Eg: } A=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right] \\ 2 A=2\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]=\left[\begin{array}{ll} 2 & 4 \\ 6 & 8 \end{array}\right] \\ (2 A)=\left[\begin{array}{ll} 2 & 6 \\ 4 & 8 \end{array}\right] \\ A^{\prime}=\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right] \end{array}$
Now 2A’ = $2\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right]=\left[\begin{array}{ll} 2 & 6 \\ 4 & 8 \end{array}\right]$
Hence (2A)’ =2A’
Hence (kA)’ = k(A)’
(iii) [k (A - B)]’ = ________.
$\begin{aligned} &A=\left[\begin{array}{ll} 5 & 7 \\ 7 & 6 \end{array}\right]\\ &A'=\left[\begin{array}{ll} 5 & 7 \\ 7 & 6 \end{array}\right]\\ &2A'=\left[\begin{array}{ll} 10 & 14 \\ 14 & 12 \end{array}\right]\\ &B=\left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]\\ &B^{\prime}=\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right]\\ &2 B^{\prime}={2}\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right]\\ &=\left[\begin{array}{ll} 2 & 6 \\ 4 & 8 \end{array}\right]\\ &A-B=\left[\begin{array}{ll} 4 & 5 \\ 4 & 2 \end{array}\right] \end{aligned}$
$\begin{array}{l} \text { Now Let } k=2 \\ 2(A-B)=2\left[\begin{array}{ll} 4 & 5 \\ 4 & 2 \end{array}\right]=\left[\begin{array}{ll} 8 & 10 \\ 8 & 4 \end{array}\right] \\ {[2(A-B)]=\left[\begin{array}{cc} 8 & 8 \\ 10 & 4 \end{array}\right]} \\ 2 A^{\prime}-2 B'=\left[\begin{array}{ll} 10 & 14 \\ 14 & 12 \end{array}\right]-\left[\begin{array}{ll} 2 & 6 \\ 4 & 8 \end{array}\right]=\left[\begin{array}{cc} 8 & 8 \\ 10 & 4 \end{array}\right] \\ A^{\prime}-B'=\left[\begin{array}{ll} 5 & 7 \\ 7 & 6 \end{array}\right]-\left[\begin{array}{ll} 1 & 3 \\ 2 & 4 \end{array}\right]=\left[\begin{array}{ll} 4 & 4 \\ 5 & 3 \end{array}\right] \\ 2\left(A^{\prime}-B^{\prime}\right)=2\left[\begin{array}{ll} 4 & 4 \\ 5 & 3 \end{array}\right]=\left[\begin{array}{cc} 8 & 8 \\ 10 & 6 \end{array}\right] \\ \text { Hence we can see }[k(A-B)]^{\prime}=k(A)^{\prime}-k(B)^{\prime}=k\left(A^{\prime}-B^{\prime}\right) \end{array}$
Question 77
Fill in the blanks in each of the following:
If A is skew-symmetric, then kA is a ______. (k is any scalar)
Answer:
A skew-symmetric matrix.
We are given that, A’=-A
⇒ (kA)’=k(A)’=k(-A)
⇒ (kA)’=-(kA)
Question 78
Fill in the blanks in each of the following:
If A and B are symmetric matrices, then
(i) AB - BA is a _________.
(ii) BA - 2AB is a _________.
Answer:
(i) AB - BA is a Skew Symmetric matrix
We are given that A’=A and B’=B
⇒ (AB-BA)’=(AB)’-(BA)’
⇒ (AB)’-(BA)’=B’A’-A’B’
⇒ B’A’-A’B’=BA-AB=-(AB-BA)
⇒ (AB-BA)’=-(AB-BA) (skew symmetric matrix)
$\begin{aligned} &\text { For example, Let }\\ &A=\left[\begin{array}{ll} 1 & 3 \\ 3 & 2 \end{array}\right]\\ &B=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]\\ &\Rightarrow \mathrm{AB}=\left[\begin{array}{ll} 7 & 5 \\ 7 & 8 \end{array}\right] \text { and } \mathrm{BA}=\left[\begin{array}{ll} 7 & 7 \\ 5 & 8 \end{array}\right]\\ &\Rightarrow A B-B A=\left[\begin{array}{cc} 0 & -2 \\ 2 & 0 \end{array}\right]\\ &\Rightarrow(A B-B A)^{\prime}=\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right]\\ &\Rightarrow=(A B-B A)=\left[\begin{array}{cc} 0 & 2 \\ -2 & 0 \end{array}\right] \end{aligned}$
(ii) BA - 2AB is neither a Symmetric nor Skew Symmetric matrix
Given A’=A and B’=B
⇒ (BA-2AB)’=(BA)’-(2AB)’
⇒ (BA)’-(2AB)’=A’B’-2B’A’
⇒ A’B’-2B’A’=AB-2BA=-(2BA-AB)
⇒ (BA-2AB)’=-(2BA-AB)
$\begin{aligned} &\text { For example Let }\\ &A=\left[\begin{array}{ll} 1 & 3 \\ 3 & 2 \end{array}\right]\\ &B=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right]\\ &\Rightarrow \mathrm{AB}=\left[\begin{array}{ll} 7 & 5 \\ 7 & 8 \end{array}\right] \text { and } B A=\left[\begin{array}{ll} 7 & 7 \\ 5 & 8 \end{array}\right]\\ &\Rightarrow B A-2 A B=\left[\begin{array}{cc} 7 & -3 \\ -9 & 8 \end{array}\right] \end{aligned}$
Question 79
Fill in the blanks in each of the following:
If A is a symmetric matrix, then B’AB is _______.
Answer:
B’AB is a symmetric matrix.
Solution:
Given A is a symmetric matrix.
⇒ A’=A ..(1)
Now in B’AB,
Let AB=C ..(2)
⇒ B’AB=B’C
Now Using Property (AB)’=B’A’
⇒ (B’C)’=C’(B’)’ (As (B’)’=B)
⇒ C’(B’)’=C’B
⇒ C’B=(AB)’B (Using Property (AB)’=B’A’)
⇒ (AB)’ B=B’A’B (Using (1))
⇒ B’A’B= B’AB
⇒ Hence (B’AB)’= B’AB
Question 80
Answer:
Given A and B are symmetric matrices,
⇒ A’=A ..(1)
⇒ B’=B ..(2)
Let AB be a Symmetric matrix:-
⇒ (AB)’=AB
Using Property (AB)’=B’A’
⇒ B’A’=AB
⇒ Now using (1) and (2)
⇒ BA=AB
Hence, A and B matrices commute.
Question 81
Fill in the blanks in each of the following:
In applying one or more now operations while finding $A^{-1}$ by elementary row operations, we obtain all zeros in one or more, then $A^{-1}$ ______.
Answer:
$A^{-1}$ Does not exist,
$A^{-1}=\frac{1}{|A|} a d j(A)$
And |A|=0 if there is one or more rows or columns with all zero elements.
Question 82
Which of the following statements are True or False
A matrix denotes a number.
Answer:
False
A matrix is an ordered rectangular array of numbers of functions.
Only a matrix of order (1×1) denotes a number.
For example, $[8]_{1\times 1}=8$
Question 83
Which of the following statements are True or False
Matrices of any order can be added.
Answer:
False
Matrices having the same order can be added.
For example
$\begin{array}{l} \text { Let } A=\left[\begin{array}{ll} 1 & 3 \\ 3 & 2 \end{array}\right] \\ B=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right] \\ \Rightarrow A+B=\left[\begin{array}{ll} 2 & 5 \\ 5 & 3 \end{array}\right] \end{array}$
Question 84
Answer:
False
Two matrices are equal if they have the same number of rows and the same number of columns, and corresponding elements within each matrix are equal or identical.
For example:
$\Rightarrow A=\left[\begin{array}{ll} 2 & 5 \\ 5 & 3 \end{array}\right], B=\left[\begin{array}{ll} 2 & 5 \\ 5 & 3 \end{array}\right]$
Here, both matrices have two rows and two columns.
Also, they both have the same elements.
Question 85
Answer:
True
Matrices of only the same order can be added or subtracted.
Let A = $\begin{bmatrix} 1 &3 \\3 &2 \end{bmatrix}$
B= $\begin{bmatrix} 1 & 0 \end{bmatrix}$
⇒ A-B= Not possible
Question 86
Answer:
True
1. A+B=B+A (commutative)
2. (A+B)+C= A+(B+C) (associative)
Question 87
Which of the following statements are True or False
Matrix multiplication is commutative.
Answer:
False
In general matrix multiplication is not commutative.
But it’s associative.
⇒ (AB)C=A(BC)
Question 88
Answer:
False
A square matrix where every element of the leading diagonal is unity and the rest elements are zero is called an identity matrix.
i.e $I=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$
Question 89
Answer:
True
If A and B are two square matrices of the same order, then A + B = B + A ( Property of square matrix)
For example,
$\begin{array}{l} \text {Let } A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{array}\right] \text { and } B=\left[\begin{array}{lll} 4 & 5 & 7 \\ 5 & 5 & 6 \\ 7 & 6 & 9 \end{array}\right] \\ A+B=\left[\begin{array}{lll} 5 & 7 & 10 \\ 7 & 6 & 10 \\ 10 & 10 & 10 \end{array}\right] \\ \Rightarrow \quad B+A=\left[\begin{array}{lll} 5 & 7 & 10 \\ 7 & 6 & 10 \\ 10 & 10 & 10 \end{array}\right] \\ \end{array}$
Question 90
Answer:
False
If A and B are two matrices of the same order,
then A - B = -(B - A)
For example,
$\begin{aligned} &\text { Let } A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{array}\right] \text { and } B=\left[\begin{array}{lll} 4 & 5 & 7 \\ 5 & 5 & 6 \\ 7 & 6 & 9 \end{array}\right]\\ &A-B=\left[\begin{array}{lll} -3 & -3 & -4 \\ -3 & -4 & -2 \\ -4 & -2 & -8 \end{array}\right]\\ &B-A=\left[\begin{array}{lll} 3 & 3 & 4 \\ 3 & 4 & 2 \\ 4 & 2 & 8 \end{array}\right]\\ &\Rightarrow-(B-A)=\left[\begin{array}{ccc} -3 & -3 & -4 \\ -3 & -4 & -2 \\ -4 & -2 & -8 \end{array}\right] \end{aligned}$
Question 91
Answer:
False
It's not necessary that for the multiplication of matrices A and B to be 0 one of them has to be a null matrix.
For example,
$\begin{array}{c} \text {Let } A=\left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{array}\right] \\ A \times B=\left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{array}\right]\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{array}\right]=\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] \end{array}$
Question 92
Which of the following statements are True or False
Transpose of a column matrix is a column matrix.
Answer:
False
Transpose of a column matrix is a Row matrix and vice versa.
$\begin{array}{l} \text { Let } A=\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right] \text { (Column Matrix) } \\ \Rightarrow A^{\prime}=\left[\begin{array}{lll} 1 & 2 & 3 \end{array}\right] \text { (Row Matrix) } \end{array}$
Question 93
Answer:
False
Matrix multiplication is not commutative.
For example,
$\begin{array}{l} \text { Let } A=\left[\begin{array}{ll} 1 & 3 \\ 3 & 2 \end{array}\right] \\ B=\left[\begin{array}{ll} 1 & 2 \\ 2 & 1 \end{array}\right] \\ \Rightarrow A B=\left[\begin{array}{ll} 7 & 5 \\ 7 & 8 \end{array}\right] \text { and } B A=\left[\begin{array}{ll} 7 & 7 \\ 5 & 8 \end{array}\right] \\ \Rightarrow A B \neq B A \end{array}$
Question 94
Answer:
True
For example,
$\begin{array}{l} \text { Let } A=\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{array}\right], B=\left[\begin{array}{lll} 4 & 5 & 7 \\ 5 & 5 & 6 \\ 7 & 6 & 9 \end{array}\right] \end{array}$ and $C = \begin{bmatrix} 3 &9 &1 \\ 9 &2 &8 \\1 &8 &5 \end{bmatrix}$
$\Rightarrow A+B+C=\left[\begin{array}{lll} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 4 & 1 \end{array}\right]+\left[\begin{array}{lll} 4 & 5 & 7 \\ 5 & 5 & 6 \\ 7 & 6 & 9 \end{array}\right]+\left[\begin{array}{lll} 3 & 9 & 1 \\ 9 & 2 & 8 \\ 1 & 8 & 5 \end{array}\right]$
$A+B+C=\left[\begin{array}{lll} (1+4+3) & (2+5+9) & (3+7+1) \\ (2+5+9) & (1+5+2) & (4+6+8) \\ (3+7+1) & (4+6+8) & (1+9+5) \end{array}\right]$
$A+B+C=\left[\begin{array}{ccc} 8 & 16 & 11 \\ 16 & 8 & 18 \\ 11 & 18 & 15 \end{array}\right]$
Question 95
Answer:
False
If A and B are any two matrices for which AB is defined, then
(AB)’=B’A’.
Question 96
Answer:
Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}}$ and $\mathrm{B}=\left[\mathrm{b}_{\mathrm{ij}}\right]_{\mathrm{p} \times \mathrm{q}}$
$A B$ is defined when $n=P$
$\therefore$ Order of $\mathrm{AB}=\mathrm{m} \times \mathrm{q}$
$\Rightarrow \operatorname{Order}$ of $(\mathrm{AB})^{\prime}=\mathrm{q} \times \mathrm{m}$
Order of $\mathrm{B}^{\prime}$ is $\mathrm{q} \times \mathrm{p}$ and order of $\mathrm{A}^{\prime}$ is $\mathrm{n} \times \mathrm{m}$
$\therefore \mathrm{B}^{\prime} \mathrm{A}^{\prime}$ is defined when $\mathrm{P}=\mathrm{n}$
And the order of $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ is $\mathrm{q} \times \mathrm{m}$
Hence, order of $(A B)^{\prime}=$ Order of $B^{\prime} A^{\prime}$ i.e., $q \times m$
Hence, the given statement is true.
Question 97
Answer:
False
Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
$B=\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]$
And $C=\left[\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right]$
$\therefore \mathrm{AB}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{AC}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
Here $\mathrm{AB}=\mathrm{AC}=0$ but $\mathrm{B} \neq \mathrm{C}$.
Question 98
Answer:
True
(AA’)’=(A’)’A’
As we know (A’)’ = A
(AA’)’=AA’ (Condition of the symmetric matrix)
Question 99
Answer:
False
Here, A has an order (2×3), and B has an order (3×2),
Hence, AB is defined and will give an output matrix of order (2×2)
And BA is also defined, but will give an output matrix of order (3×3).
⇒ AB ≠ BA
Question 100
Answer:
True
For skew-symmetric matrix A’=-A
$\begin{gathered}\Rightarrow\left(A^2\right)^{\prime}=(A A)^{\prime}=A^{\prime} A^{\prime} \\ \Rightarrow A^{\prime} A^{\prime}=(-A)(-A)=A^2 \\ \left.\Rightarrow\left(A^2\right)^{\prime}=A^2 \quad \text { (since } A \text { is symmetric }\right)\end{gathered}$
This equation shows that the transpose of $A^2$ is equal to $A^2$ itself when $A$ is a symmetric matrix (i.e., $\left.A^{\prime}=A\right)$.
Question 101:
Answer:
True
Given:
$\begin{aligned} & A B=B A \\ & \begin{aligned}(A B)\left(A^{-1} B^{-1}\right) & =(B A)\left(A^{-1} B^{-1}\right) \\ & =B\left(A A^{-1}\right) B^{-1} \\ & =B \cdot I \cdot B^{-1}=B \cdot B^{-1}=I \\ (A B)^{-1} & =A^{-1} B^{-1}\end{aligned}\end{aligned}$
Solutions are gathered together on Careers360 for quick access. Click the links below to view them.
Careers360 makes it easy by providing all NCERT Class 12 Maths Exemplar Solutions in a single place. Use the links below to check them out.
Here are the subject-wise links for the NCERT Solutions of Class 12:
Given below are the subject-wise NCERT Notes of Class 12 :
Students are advised to go through the current syllabus at the start of the academic year to understand the topics to be covered. The updated syllabus links and recommended books are provided below.
Given below are the subject-wise Exemplar Solutions of Class 12 NCERT:
Frequently Asked Questions (FAQs)
Determinants play a crucial role in matrix algebra and have wide applications in solving mathematical and real-world problems. The determinant of a square matrix is a scalar value that helps determine whether a matrix is invertible; if the determinant is zero, the matrix is singular and non-invertible. Determinants are essential in solving systems of linear equations using Cramer’s Rule, finding the area or volume in geometry, and analyzing linear transformations. In physics and engineering, they help study stability, force systems, and transformations. Thus, determinants are key tools in understanding and applying matrix concepts effectively.
Condition for a Matrix to Be Invertible
A square matrix is invertible (also called non-singular) if there exists another matrix, called its inverse, such that A-1 A=A A-1=I, where I is the identity matrix of the same order.
The key condition for a matrix to be invertible is that its determinant must not be zero, i.e., {det}(A) not equal to 0.
If {det}(A)=0, the matrix is called singular and does not have an inverse.
Invertible matrices are essential in solving systems of linear equations, finding matrix equations, and various applications in linear algebra.
Properties of Matrix Multiplication
Matrix multiplication has unique properties different from regular multiplication:
1. Associative Property: (A B) C=A(B C), when the order is compatible.
2. Distributive Property: A(B+C)=A B+A C and (A+B) C=A C+B C.
3. Non-Commutative: In general, AB is not equal to BA, even if both products are defined.
4. Multiplicative Identity: AI=IA=A, where I is the identity matrix of suitable order.
5. Zero Product Property Doesn't Hold: AB=0 does not imply A=0 or B=0.
6. Compatibility: Matrix multiplication is only defined when the number of columns in the first matrix equals the number of rows in the second.
Properties of Matrix Addition
Matrix addition has several important properties, similar to regular number addition:
1. Commutative Property: A+B=B+A, if A and B are of the same order.
2. Associative Property: (A+B)+C=A+(B+C), for matrices of the same order.
3. Additive Identity: There exists a zero matrix O such that A+O=A.
4. Additive Inverse: For every matrix A, there exists a matrix -A such that A+(-A)=O.
5. Closure Property: The sum of two matrices of the same order is also a matrix of the same order.
Matrices come in various types based on their elements and structure. A row matrix has only one row, while a column matrix has only one column. A square matrix has the same number of rows and columns. A diagonal matrix has non-zero elements only on its main diagonal, and if all diagonal elements are 1, it's called an identity matrix. A zero matrix has all elements as zero. A symmetric matrix is equal to its transpose, while a skew-symmetric matrix has its transpose equal to its negative. Matrices are also classified as upper or lower triangular based on zero entries.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters