NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

Hitesh SahuUpdated on 15 Jan 2026, 09:09 AM IST

Let’s say you are involved in a complicated project, perhaps designing a bridge, studying the movement of a car, or solving complicated puzzles. Before long, you may find that you have to solve them purposely for the sake of working through various complex variables. How do you do that? The answer is Determinants. This Chapter is a good foundation for the students so that they not only have a theoretical understanding of determinants but can apply them to circumstances for engineering, physics and even computer science.

LiveCBSE Admit Card 2026 (OUT) LIVE: Class 10 and 12 theory exam hall ticket at parikshasangam.cbse.gov.inFeb 3, 2026 | 10:34 PM IST

The CBSE will hold the Class 12th 2026 examination from February 17 to April 10, 2026. The exam conducting authority has declared the CBSE Class 12 admit card for private candidates on the official website.

Read More

This Story also Contains

  1. NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants
  2. NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants: Topics
  3. NCERT Exemplar Class 12 Mathematics Chapterwise
  4. NCERT Solutions for Class 12 Maths: Chapter Wise
  5. NCERT Syllabus and NCERT Books
NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants
NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

The NCERT Exemplar for Class 12 Determinants provides an easier way to solve systems of linear equations, find area and volume, and determine if a matrix is invertible, for example. Students will learn the rules and properties of determinants in this Chapter, including cofactor expansion, the determinant of a 3x3 matrix, and solving linear equations using Cramer's Rule. These are important concepts to learn to understand higher-level topics in math and science. Students will need to regularly practice the material to fully understand it. They should be able to apply the properties and procedures for determining determinants to solve problems and equations with ease. If they need further background or explanations, students can use the NCERT Class 12 Maths Solutions.

Also, read,

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

Class 12 Maths Chapter 4 Exemplar Solutions
Exercise: 4.3
Page number: 77-85
Total questions: 58

Question 1:

Using the properties of determinants in evaluation:
$\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|$

Answer:

$
\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|
$
If $A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
The value of the determinant of A can then be found by:

$
\begin{aligned}
& |A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& =\left(x^2-x+1\right) \times(x+1)-(x+1) \times(x-1) \\
& =x\left(x^2-x+1\right)+1\left(x^2-x+1\right)-\left(x^2-1\right) \\
& \quad\left(\text { Since }(a-b)(a+b)=\left(a^2-b^2\right)\right) \\
& =x^3-x^2+x+x^2-x+1-x^2+1 \\
& =x^3-x^2+2
\end{aligned}
$

Question 2:

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$

Answer:

$A=\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\begin{array}{l} =\left|\begin{array}{ccc} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 1 & a+y & z \\ y & a+z \end{array}\right| \end{array}$
$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-R_{\mathrm{1}}$
$\begin{array}{l} =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right|\\\\=a^{2}(a+z+x+y) \end{array}$

Question 3

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$

Answer:

$\text{Let } A=\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$
$=x^{2} y^{2} z^{2}\left|\begin{array}{lll} 0 & x & x \\ y & 0 & y \\ z & z & 0 \end{array}\right|$
$C_{2} \rightarrow C_{2}-C_{3}$
$=x^{2} y^{2} z^{2}\left|\begin{array}{ccc} 0 & 0 & x \\ y & -y & y \\ z & z & 0 \end{array}\right|$
Expand IAI along C3 to get:
$=x^{2} y^{2} z^{2}(x(y z+y z))$
$=x^{2} y^{2} z^{2}(2xy z)$
$=2x^{3} y^{3} z^{3}$

Question 4

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$

Answer:

$Let \: \: A=\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$

Apply - $C_1 \rightarrow C_1+C_2+C_3$

$\\\begin{aligned} &=\left|\begin{array}{ccc} 3 x-x+y-x+z & -x+y & -x+z \\ x-y+3 y+z-y & 3 y & z-y \\ x-z+y-z+3 z & y-z & 3 z \end{array}\right|\\ &=\left|\begin{array}{ccc} x+y+z & -x+y & -x+z \\ x+y+z & 3 y & z-y \\ x+y+z & y-z & 3 z \end{array}\right|\\ &\text { Take }(x+y+z) \text { common from } C_{1}\\ &=(x+y+z)\left|\begin{array}{ccc} 1 & -x+y & -x+z \\ 1 & 3 y & z-y \\ 1 & y-z & 3 z \end{array}\right| \end{aligned}$

$\\\begin{aligned} &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1,} \text { you will get }\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 1-1 & 3 \mathrm{y}-(-\mathrm{x}+\mathrm{y}) & \mathrm{z}-\mathrm{y}-(-\mathrm{x}+\mathrm{z}) \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\\end{aligned}$

$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y}+\mathrm{x}-\mathrm{y} & \mathrm{z}-\mathrm{y}+\mathrm{x}-\mathrm{z} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &\text { Now apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1-1 & \mathrm{y}-\mathrm{z}-(-\mathrm{x}+\mathrm{y}) & 3 \mathrm{z}-(-\mathrm{x}+\mathrm{z}) \end{array}\right| \end{aligned}$

$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{y}-\mathrm{z}+\mathrm{x}-\mathrm{y} & 3 \mathrm{z}+\mathrm{x}-\mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3},\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}-(-\mathrm{x}+\mathrm{z}) & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-(\mathrm{x}-\mathrm{y}) & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-(2 \mathrm{z}+\mathrm{x}) & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\\end{aligned}$

$\\\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}+\mathrm{x}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-\mathrm{x}+\mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-2 \mathrm{z}-\mathrm{x} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & \mathrm{y}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & -3 \mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right| \end{aligned}$

Now, expand the determinant along Column 1

$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$

Question 5

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$

Answer:

$Let\: \: A=\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$
$\\\begin{aligned} &\text { Using } C_{1} \rightarrow C_{1}+C_{2}+C_{3},\\ &=\left|\begin{array}{ccc} x+4+x+x & x & x \\ x+x+4+x & x+4 & x \\ x+x+x+4 & x & x+4 \end{array}\right|\\ &=\left|\begin{array}{ccc} 3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4 \end{array}\right|\\ &\text { Take }(3 x+4) \text { common form } C \text { , }\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4 \end{array}\right|\\ &\mathrm{Apply}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 0 & 4 & 0 \\ 1-1 & x-x & x+4-x \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(3 \mathrm{x}+4)\left|\begin{array}{lll} 1 & \mathrm{x} & \mathrm{x} \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right|\\ &\text { Expand along } \mathrm{C}_{1}\\ &=(3 x+4)[1 \times\{(16)-0\}]\\ &=(3 x+4)(16)\\ &=16(3 x+4) \end{aligned}$

$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$

Question 6

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$

Answer:

$Let\: \: A=\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$
$\\\begin{aligned} &\text { Apply } R_{1} \rightarrow R_{1}+R_{2}+R_{y}\\ &=\left|\begin{array}{ccc} \mathrm{a}-\mathrm{b}-\mathrm{c}+2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}-\mathrm{c}-\mathrm{a}+2 \mathrm{c} & 2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}-\mathrm{a}-\mathrm{b} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &=\left|\begin{array}{ccc} \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &\text { Take }(a+b+c) \text { common form the first row }\\ &=(a+b+c)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &\text { Apply } C_{2} \rightarrow C_{2}-C_{1} \end{aligned}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 2 b & b-c-a-2 b & 2 b \\ 2 c & 2 c-2 c & c-a-b \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1 \\ 2 b & -b-c-a & 2 b \\ 2 c & 0 & c-a-b \end{array}\right| \end{array}$
Now apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 2 b & -(a+b+c) & 2 b-2 b \\ 2 c & 0 & c-a-b-2 c \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{array}\right| \end{array}$
Expand the determinant along Row 1

$\begin{aligned} & =(a+b+c)[1 \times\{-(a+b+c) \times\{-(a+b+c)\}-0\} \\ & =(a+b+c)\left[(a+b+c)^2\right] \\ & =(a+b+c)^3\end{aligned}$

Question 7

Using the properties of determinants to prove that:
$\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$

Answer:

Taking LHS, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|$
$\\\begin{aligned} &\text { Multiply and divide } \mathrm{R}_{1} \mathrm{R}_{2}, \mathrm{R}_{3} \text { respectively by } \mathrm{x}, \mathrm{y}, \mathrm{z}\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x(y+z) \\ y z^{2} x^{2} & y z x & y(z+x) \\ z x^{2} y^{2} & z x y & z(x+y) \end{array}\right|\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x y+x z \\ x^{2} y z^{2} & x y z & y z+x y \\ x^{2} y^{2} z & x y z & x z+y z \end{array}\right|\\ &\text { Now, take xyz common from the first and second Column }\\ &=\frac{1}{\mathrm{xyz}} \times \mathrm{xyz} \times \mathrm{xyz}\left|\begin{array}{lll} \mathrm{yz} & 1 & \mathrm{xy}+\mathrm{xz} \\ \mathrm{xz} & 1 & \mathrm{yz}+\mathrm{xy} \\ \mathrm{xy} & 1 & \mathrm{xz}+\mathrm{yz} \end{array}\right|\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z \\ x z & 1 & y z+x y \\ x y & 1 & x z+y z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z+y z \\ x z & 1 & y z+x y+x z \\ x y & 1 & x z+y z+x y \end{array}\right|\\ &\text { Take }(\mathrm{xy}+\mathrm{yz}+\mathrm{xz}) \text { common from } \mathrm{C}_{3}\\ &=(\text { xyz })(\mathrm{xy}+\mathrm{yz}+\mathrm{xz})\left|\begin{array}{lll} \mathrm{yz} & 1 & 1 \\ \mathrm{xz} & 1 & 1 \\ \mathrm{xy} & 1 & 1 \end{array}\right| \end{aligned}$

Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0

Hence, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$

∴ LHS = RHS

Question 8

Using the properties of determinants to prove that:
$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|=4 x y z$

Answer:

LHS given,

$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|$

$\\\begin{aligned} &=\left|\begin{array}{ccc} \mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{z}+\mathrm{x}+\mathrm{x} & \mathrm{y}+\mathrm{x}+\mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ &=\left|\begin{array}{ccc} 2 z+2 y & 2 z+2 x & 2 x+2 y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &2 \text { can be taken common from } \mathrm{R}_{1}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{x} & \mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ \end{aligned}$

$\\\begin{aligned} \\&\text { Apply, } R_{1} \rightarrow R_{1}-R_{2}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y}-\mathrm{z} & \mathrm{z}+\mathrm{x}-(\mathrm{z}+\mathrm{x}) & \mathrm{x}+\mathrm{y}-\mathrm{x} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right| \end{aligned}$

$\\\begin{aligned} &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &\text { Apply, } R_{3} \rightarrow R_{3}-R_{1},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y}-\mathrm{y} & \mathrm{x}-0 & \mathrm{x}+\mathrm{y}-\mathrm{y} \end{array}\right|\\ &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ 0 & x & x \end{array}\right|\\ &\text { Now, Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z}-0 & \mathrm{z}+\mathrm{x}-\mathrm{x} & \mathrm{x}-\mathrm{x} \\ 0 & \mathrm{x} & \mathrm{x} \end{array}\right|\\ &=2\left|\begin{array}{lll} y & 0 & y \\ z & z & 0 \\ 0 & x & x \end{array}\right| \end{aligned}$

Take y,z,x common from the R1, R2 and R3 respectively

$\begin{aligned} &\text { Expand along Column } 1\\ &\begin{array}{r} |A|=a_{11}(-1)^{1+1}\left|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array}\right| \\ +a_{31}(-1)^{3+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array}\right| \end{array} \end{aligned}$

$\begin{aligned} & =2 x y z[(1)\{(1)-0\}-(1)\{0-1\}+0\}] \\ & =2 x y z[1+1] \\ & =4 x y z \\ & =\text { RHS } \\ & \therefore \text { LHS }=\text { RHS }\end{aligned}$

Hence Proved

Question 9

Using the properties of determinants to prove that:
$\left|\begin{array}{ccc} a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1 \end{array}\right|=(a-1)^{3}$

Take LHS

$
\left|\begin{array}{ccc}
a^2+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $R_1 \rightarrow R_1-R_2$

$
=\left|\begin{array}{ccc}
a^2+2 a-(2 a+1) & 2 a+1-(a+2) & 1-1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
a^2+2 a-2 a-1 & 2 a+1-a-2 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
a^2-1 & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
(a-1)(a+1) & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\left[\because\left(a^2-b^2\right)=(a-b)(a+b)\right]
$


Take (a-1) common from $R$

$
=(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3$

$
=\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1-3 & a+2-3 & 1-1 \\
3 & 3 & 1
\end{array}\right|
$

$
\begin{aligned}
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a-2 & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$


Take (a-1) common from $R_2$

$
=(a-1)^2\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
$

Expand along $\mathrm{C}_3$

$
\begin{aligned}
& =(a-1)^2[1\{(a+1)-2\}] \\
& =(a-1)^2[a+1-2] \\
& =(a-1)^3 \\
& =\text { RHS }
\end{aligned}
$
Hence, proved.

Question 10

If A + B + C = 0, then prove that $\begin{array}{|ccc|} 1 & \cos C & \cos B \\ \cos C & 1 & \cos A \\ \cos B & \cos A & 1 \end{array} =0$

Answer:

Let the determinant be:

$
D=\left|\begin{array}{ccc}
1 & \cos C & \cos B \\
\cos C & 1 & \cos A \\
\cos B & \cos A & 1
\end{array}\right|
$
Expand the determinant:

$
D=1-\cos ^2 A-\cos ^2 B-\cos ^2 C+2 \cos A \cos B \cos C
$
Use identity:

$
\cos ^2 A+\cos ^2 B+\cos ^2 C=1+2 \cos A \cos B \cos C
$
So:

$
D=1-(1+2 \cos A \cos B \cos C)+2 \cos A \cos B \cos C=0
$
Hence, proved.

$
D=0
$

Question 11

If the coordinates of the vertices of an equilateral triangle with sides of length ‘a’ are $\left (x_1, y_1 \right )$, $\left (x_2, y_2 \right )$, $\left (x_3, y_3 \right )$, then $\left|\begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right|^{2}=\frac{3 a^{4}}{4}$

Answer:

The area of a triangle with the given vertices will be:

$\\\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|$

Given: Length of the sides of the equilateral triangle = a

Thus, the area

$=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$

$\therefore \frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$$

Square both sides

$\Rightarrow\left(\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|\right)^{2}=\left(\frac{\sqrt{3}}{4} \mathrm{a}^{2}\right)^{2}$

$\\\begin{aligned} &\Rightarrow\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3} \end{array}\right|^{2}=\frac{3}{4} \mathrm{a}^{4}\\ &\text { Hence Proved } \end{aligned}$

Question 12

Find the value of θ satisfying $\left|\begin{array}{ccc} 1 & 1 & \sin 3 \theta \\ -4 & 3 & \cos 2 \theta \\ 7 & -7 & -2 \end{array}\right|=0$

Answer:

Given:

$
\left|\begin{array}{ccc}
1 & 1 & \sin 3 \theta \\
-4 & 3 & \cos 2 \theta \\
7 & -7 & -2
\end{array}\right|=0
$
Expand along Row 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{12}(-1)^{1+2}\left|\begin{array}{ll}
\mathrm{a}_{21} & a_{23} \\
\mathrm{a}_{31} & a_{33}
\end{array}\right| \\
& +\mathrm{a}_{13}(-1)^{1+3}\left|\begin{array}{cc}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 & \cos 2 \theta \\
-7 & -2
\end{array}\right|-1\left|\begin{array}{cc}
-4 & \cos 2 \theta \\
7 & -2
\end{array}\right|+\sin 3 \theta\left|\begin{array}{cc}
-4 & 3 \\
7 & -7
\end{array}\right|
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow(1)\{-6-\{(-7) \cos 2 \theta\}\}-1\{8-7 \cos 2 \theta\}+\sin 3 \theta\{28-21\}=0 \\
& \Rightarrow-6+7 \cos 2 \theta-8+7 \cos 2 \theta+7 \sin 3 \theta=0 \\
& \Rightarrow 14 \cos 2 \theta+7 \sin 3 \theta-14=0 \\
& \Rightarrow 2 \cos 2 \theta+\sin 3 \theta-2=0
\end{aligned}
$
We know,

$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^2 \theta \\
& \sin 3 \theta=3 \sin \theta-4 \sin ^3 \theta \\
& \Rightarrow 2\left(1-2 \sin ^2 \theta\right)+\left(3 \sin \theta-4 \sin ^3 \theta\right)-2=0 \\
& \Rightarrow 2-4 \sin ^2 \theta+3 \sin \theta-4 \sin ^3 \theta-2=0 \\
& \Rightarrow-2+4 \sin ^2 \theta-3 \sin \theta+4 \sin ^3 \theta+2=0 \\
& \Rightarrow \sin \theta\left(4 \sin \theta-3+4 \sin ^2 \theta\right)=0
\end{aligned}
$

$
\begin{aligned}
& \Rightarrow \sin \theta\left(4 \sin ^2 \theta-6 \sin \theta+2 \sin \theta-3\right)=0 \\
& \Rightarrow \sin \theta[2 \sin \theta(2 \sin \theta-3)+1(2 \sin \theta-3)]=0 \\
& \Rightarrow \sin \theta(2 \sin \theta+1)(2 \sin \theta-3)=0 \\
& \Rightarrow \sin \theta=0 \text { or } 2 \sin \theta+1=0 \text { or } 2 \sin \theta-3=0 \\
& \Rightarrow \theta=n \pi \text { or } 2 \sin \theta=-1 \text { or } 2 \sin \theta=3 \\
& \Rightarrow \text { or } \sin \theta=-\frac{1}{2} \text { or } \sin \theta=\frac{3}{2} \\
& \Rightarrow \theta=\mathrm{n} \pi \text { or } \theta=\mathrm{m} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{6}\right) ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}
\end{aligned}
$
But it is not possible to have $\sin \theta=\frac{3}{2}$

Question 13

If $\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$ then find values of x.

Answer:

Given:
$\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 4-x+4+x+4+x & 4+x & 4+x \\ 4+x+4-x+4+x & 4-x & 4+x \\ 4+x+4+x+4-x & 4+x & 4-x \end{array}\right|=0\\ &\text { Take, }(12+\mathrm{x}) \text { common from Row } 1\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x & 4+x \\ 1 & 4-x & 4+x \\ 1 & 4+x & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x+4+x & 4+x \\ 1 & 4-x+4+x & 4+x \\ 1 & 4+x+4-x & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1 & 8 & 4+x \\ 1 & 8 & 4-x \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1-1 & 8-8 & 4+x-(4-x) \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1-1 & 8-8-2 x & 4-x-4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 0 & -2 x & -2 x \end{array}\right|=0 \end{aligned}$
Expand along Column 1

$
\Rightarrow(12+x)[(1)\{0-(2 x)(-2 x)\}]=0
$
$
\Rightarrow(12+x)\left(4 x^2\right)=0
$
$
\Rightarrow 12+x=0 \text { or } 4 x^2=0
$
$
\Rightarrow x=-12 \text { or } x=0
$
Hence, the value of $\mathrm{x}=-12$ and 0

Question 14:

If a1, a2, a3, ..., ar are in G.P., then prove that the determinant $\left|\begin{array}{ccc} a_{r+1} & a_{r+5} & a_{r+9} \\ a_{r+7} & a_{r+11} & a_{r+15} \\ a_{r+11} & a_{r+17} & a_{r+21} \end{array}\right|$ is independent of r.

Answer:

$a_1, a_2, \ldots, a_r$ are in G.P
We know that, $a_{r+1}=A R^{(r+1)-1}=A R^r \ldots(i)$
[ $\because a_n=a r^{n-1}$, where $a=$ first term and $r=$ common ratio]
A is the first term of the G.P
R is the common ratio of G.P.

$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=\left|\begin{array}{ccc}
A R^r & A R^{r+4} & A R^{r+8} \\
A R^{r+6} & A R^{r+10} & A R^{r+14} \\
A R^{r+10} & A R^{r+16} & A R^{r+20}
\end{array}\right| \ldots[\text { from (i) }]
$
Taking $A R^r, A R^{r+6}$ and $A R^{r+10}$ common from $R_1, R_2$ and $R_3$

$
=\mathrm{AR}^{\mathrm{r}} \times \mathrm{AR}^{\mathrm{r}+6} \times \mathrm{AR}^{\mathrm{r}+10}\left|\begin{array}{ccc}
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^6 & \mathrm{AR}^{10}
\end{array}\right|
$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0 Rows 1 and 2 are identical.

$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=0
$
Hence Proved

Question 15

Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a straight line for any value of a.

Answer:

(a + 5, a – 4), (a – 2, a + 3) and (a, a) are given.

We need to prove that they don’t lie in a straight line for any value of a
This can be done by proving the points to be the vertices of the triangle.
Area of triangle:-
$\\\begin{array}{l} \Delta=\frac{1}{2}\left|\begin{array}{ccc} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3} \end{array}\right| \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2 & a+3 & 1 \\ a & a & 1 \end{array}\right| \\ \text { Apply } R_{2} \rightarrow R_{2}-R_{1} \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2-a-5 & a+3-a+4 & 1-1 \\ a & a & 1 \end{array}\right| \\\\ =\frac{1}{2}\left| \begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a & a & 1 \end{array}\right| \end{array}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a-a-5 & a-a+4 & 1-1 \end{array}\right|\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ -5 & 4 & 0 \end{array}\right|\\ &\text { Expand along Column } 3\\ &=\frac{1}{2}[(1)(-28-(7)(-5))]\\ &=\frac{1}{2}(-28+35)=\frac{7}{2} \neq 0 \end{aligned}$
This proves that the given points form a triangle and therefore do not lie on a straight line.

Question 16

Show that the Δ ABC is an isosceles triangle if the determinant

$\Delta=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right]=0$

Answer:

$\\\begin{aligned} &\Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\\ &=\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 1+\cos A & 1+\cos B-1-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)(\cos B+\cos A)+(\cos B-\cos A) & \cos ^{2} C+\cos C \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\begin{array}{|ccc|} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)[(\cos B+\cos A)+1] & \cos ^{2} C+\cos C \end{array} \mid=0\\ &\text { Take, cosB-cosA common from column } 2\\ &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & 1 & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B+\cos A)+1 & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\\ &\cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 1+\cos A & 1 & 1+\cos C-1-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C+\cos C-\cos ^{2} A-\cos A \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & \cos C-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C-\cos ^{2} A+\cos C-\cos A \end{array}\right|=0\\ &\Rightarrow(\cos B-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & (\cos C-\cos A) \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & (\cos C-\cos A)(\cos C+\cos A+1) \end{array}\right|=0\\ &\text { Take cosC-cosA common from Column } 3\\ &\Rightarrow(\cos B-\cos A)(\cos C-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & 1 \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos C+\cos A+1 \end{array}\right|=0 \end{aligned}$

Expand along Row 1

$
\begin{aligned}
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[(1)\{\cos C+\cos A+1-(\cos B+\cos A+1)\}]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[\cos C+\cos A+1-\cos B-\cos A-1]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)(\cos C-\cos B)=0 \\
& \Rightarrow \cos B-\cos A=0 \backslash \text { or } \cos C-\cos A=0 \backslash \text { or } \cos C-\cos B=0 \\
& \Rightarrow \cos B=\cos A \text { or } \cos C=\cos A \text { or } \cos C=\cos B \\
& \Rightarrow B=A \text { or } C=A \text { or } C=B
\end{aligned}
$
$
\text { Hence, } \triangle A B C \text { is an isosceles triangle. }
$

Question 17

Find $A^{-1}$ if $A=\left[\begin{array}{lll} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right]$ and show that $A^{-1}=\frac{A^{2}-3 I}{2}$

Answer:

To find $\operatorname{adj} \mathrm{A}$

$
\begin{aligned}
& a_{11}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{12}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{13}=\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=1-0=1 \\
& a_{21}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{22}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{23}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \mathrm{a}_{31}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1-0=1 \\
& \mathrm{a}_{32}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \therefore \text { adjA }=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$
$
\therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]}{2}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$
$
A^{-1}=\frac{A^2-31}{2}
$

Now, we need to prove that.t

$
\begin{aligned}
& A^2=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0+1+1 & 0+0+1 & 0+1+0 \\
0+0+1 & 1+0+1 & 1+0+0 \\
0+1+0 & 1+0+0 & 1+1+0
\end{array}\right] \\
& A^2=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \therefore \frac{A^2-3 I}{2}=\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right\} \\
& 2-3 \\
& =\frac{1}{2}\left\{\left[\begin{array}{cc}
1 \\
1 & 2-3 \\
1 & 1 \\
1 & 1
\end{array}\right]\right\} \\
& \left.=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\right\} \\
& =A^{-1}
\end{aligned}
$
Hence Proved

Question 18

If $A=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right]$ find $A^{-1}$. Using $A^{-1}$, solve the system of linear equations $x-2y = 10, 2x -y -z = 8, -2y + z = 7$

Answer:

Find IAI Expand IAI along Column 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
a_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & a_{23}
\end{array}\right| \\
& \left.|\mathrm{A}|=(1)\left|\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-1 & 1
\end{array}\right|-(-2)|+0| \begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array} \right\rvert\, \\
& =(-1+2)+2(0)+0 \\
& =1
\end{aligned}
$
To find adj $A$

$
\begin{aligned}
& a_{11}=\left|\begin{array}{cc}
-1 & -2 \\
-1 & 1
\end{array}\right|=-1-2=-3 \\
& a_{12}=-\left|\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}\right|=-(-2+0)=2 \\
& a_{13}=\left|\begin{array}{cc}
-2 & -1 \\
0 & -1
\end{array}\right|=2+0=2 \\
& a_{21}=-\left|\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right|=-(2+0)=-2 \\
& a_{22}=\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& a_{23}=-\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right|=-(-1)=1 \\
& a_{31}=\left|\begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array}\right|=-4 \\
& a_{32}=-\left|\begin{array}{cc}
1 & 0 \\
-2 & -2
\end{array}\right|=-(-2)=2 \\
& a_{33}=\left|\begin{array}{cc}
1 & 2 \\
-2 & -1
\end{array}\right|=-1+4=3
\end{aligned}
$

$
\begin{aligned}
& \therefore \operatorname{adj} A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 3
\end{array}\right]}{1}=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]
\end{aligned}
$
According to the linear equation:

$
x-2 y=10
$
$
2 x-y-z=8
$
$
-2 y+z=7
$
We know that, $\mathrm{AX}=\mathrm{B}$

$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]
$
Here,
So, transpose of $A^{-1}$

$
\begin{aligned}
& A^{-1}=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right] \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$\begin{aligned} & \Rightarrow\left[\begin{array}{l}x \\ y \\ z \\ x \\ y \\ y\end{array}\right]=\left[\begin{array}{lll}-3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3\end{array}\right]\left[\begin{array}{l}10 \\ 8 \\ -30+16+14 \\ -20+8+7 \\ -40+16+21\end{array}\right] \\ & \therefore x=0, y=-5 \text { and } z=-3\end{aligned}$

Question 19

Using matrix method, solve the system of equations 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.

Answer:

Given system:

$
\begin{array}{r}
3 x+2 y-2 z=3 \\
x+2 y+3 z=6 \\
2 x-y+z=2
\end{array}
$
Matrix form:

$
\left[\begin{array}{ccc}
3 & 2 & -2 \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]
$
The inverse of the coefficient matrix:

$
A^{-1}=\left[\begin{array}{ccc}
\frac{7}{17} & \frac{8}{17} & -\frac{4}{17} \\
\frac{1}{17} & \frac{5}{17} & \frac{6}{17} \\
\frac{5}{17} & -\frac{2}{17} & \frac{3}{17}
\end{array}\right]
$

Multiply:

$
X=A^{-1} B=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$
Final Answer:

$
x=1, \quad y=2, \quad z=1
$

Question 20

Given $A=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right], B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]$ find BA and use this to solve the system of equations $y + 2z = 7, x - y = 3, 2x + 3y + 4z = 17.$

Answer:

$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \\
& \therefore B A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+4 & 2-2 & -4+4 \\
4-12+8 & 4+6-4 & -8-12+20 \\
-4+4 & 2-2 & -4+10
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right] \\
& =6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& B A=6 I \ldots(i)
\end{aligned}
$
Now, the given system of equations is:

$
y+2 z=7,
$
$
x-y=3
$
$
2 x+3 y+4 z=17
$

So,

$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right]
$
Apply, $\mathrm{R}_1 \leftrightarrow \mathrm{R}_2$

$
\begin{aligned}
& \mathrm{R}_2 \leftrightarrow \mathrm{R}_3 \\
& {\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]}
\end{aligned}
$
So, $B A=6 I[$ from eg(i) $]$

$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
12 \\
-6 \\
24
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]}
\end{aligned}
$

$\therefore x=2, y=-1$ and $z=4$

Question 21

If a + b + c ≠ 0 and $\left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|=0$ then prove that a = b = c.

Answer:

$
A=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3$

$
=\left|\begin{array}{lll}
a+b+c & b & c \\
b+a+c & c & a \\
c+a+b & a & b
\end{array}\right|
$
Take $(a+b+c)$ common from Column 1

$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|
$
Expand along Column 1

$
\begin{aligned}
& =(a+b+c)\left[(1)\left(b c-a^2\right)-(1)\left(b^2-a c\right)+(1)\left(b a-c^2\right)\right] \\
& =(a+b+c)\left[b c-a^2-b^2+a c+a b-c^2\right] \\
& =(a+b+c)\left[-\left(a^2+b^2+c^2-a b-b c-a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left(2 a^2+2 b^2+2 c^2-2 a b-2 b c-2 a c\right) \\
& =-\frac{1}{2}(a+b+c)\left[\left(a^2+b^2-2 a b\right)+\left(b^2+c^2-2 b c\right)+\left(c^2+a^2-2 a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right] \\
& {\left[\because(a-b)^2=a^2+b^2-2 a b\right]}
\end{aligned}
$

Given that $\Delta=0$

$
\Rightarrow-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0 $

$\Rightarrow(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0$

$\text {Either }(a+b+c)=0 \text { or }(a-b)^2+(b-c)^2+(c-a)^2=0$

$\text {but it is given that }(a+b+c) \neq 0 \therefore(a-b)^2+(b-c)^2+(c-a)^2=0 $

$\Rightarrow a-b=b-c=c-a=0 \Rightarrow a=b=c
$

Hence Proved

Question 22

Prove that $\left|\begin{array}{ccc} \mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} \\ \mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} \\ \mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2} \end{array}\right|$ is divisible by a + b + c and find the quotient.

Answer:

$\left|\begin{array}{lll}b c-a^2 & c a-b^2 & a b-c^2 \\ c a-b^2 & a b-c^2 & b c-a^2 \\ a b-c^2 & b c-a^2 & c a-b^2\end{array}\right|$ is given.
Apply, $R_1 \rightarrow R_1-R_2$,

$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathrm{b} c-\mathrm{a}^2-\mathrm{ca}+\mathrm{b}^2 & \mathrm{ca}-\mathrm{b}^2-\mathrm{ab}+\mathrm{c}^2 & \mathrm{ab}-\mathrm{c}^2-\mathrm{bc}+\mathrm{a}^2 \\
\mathrm{ca}-\mathrm{b}^2 & \mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 \\
\mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 & \mathrm{ca}-\mathrm{b}^2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
(b c-c a)+\left(b^2-a^2\right) & (c a-a b)+\left(c^2-b^2\right) & (a b-b c)+\left(a^2-c^2\right) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
c(b-a)+(b-a)(b+a) & a(c-b)+(c-b)(c+b) & b(a-c)+(a-c)(a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
=\left|\begin{array}{ccc}
(b-a)(c+b+a) & (c-b)(a+c+b) & (a-c)(b+a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 1

$
=(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
$


Apply $R_2 \rightarrow R_2-R_3$

$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2-a b+c^2 & a b-c^2-b c+a^2 & b c-a^2-c a+b^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
(c-b)(a+b+c) & (a-c)(a+b+c) & (b-a)(a+b+c) \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{aligned}
$

Take (a+b+c) common from Column 2

$
=(a+b+c)^2\left|\begin{array}{ccc}
b-a+c-b+a-c & (c-b) & (a-c) \\
c-b+a-c+b-a & (a-c) & (b-a) \\
a b-c^2+b c-a^2+c a-b^2 & b c-a^2 & c a-b^2
\end{array}\right|
$


Expand along Column 1

$
\begin{aligned}
& =(a+b+c)^2\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2 \\
& =(a+b+c)(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2
\end{aligned}
$
The determinant is divisible by $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and the quotient is $(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2$

Question 23

If x + y + z = 0, prove that $\left|\begin{array}{lll} x a & y b & z c \\ y c & z a & x b \\ z b & x c & y a \end{array}\right|=x y z\left|\begin{array}{lll} a & b & c \\ c & a & b \\ b & c & a \end{array}\right|$

Answer:

Given LHS,

$
\left|\begin{array}{ccc}
x a & y b & z c \\
y c & z a & x b \\
z b & x c & y a
\end{array}\right|
$
Expand along Row 1

$
\begin{aligned}
& =x a\{(z a)(y a)-(x c)(x b)\}-(y b)\{(y c)(y a)-(z b)(x b)\}+(z c)\{(y c)(x c)- \\
& (z b)(z a)\} \\
& =x a\left\{a^2 y z-x^2 b c\right\}-y b\left\{y^2 a c-b^2 x z\right\}+z c\left\{c^2 x y-z^2 a b\right\} \\
& =a^3 x y z-x^3 a b c-y^3 a b c+b^3 x y z+c^3 x y z-z^3 a b c \\
& =x y z\left(a^3+b^3+c^3\right)-a b c\left(x^3+y^3+z^3\right)
\end{aligned}
$
Given $x+y+z=0$

$
\begin{aligned}
& \Rightarrow x^3+y^3+z^3=3 x y z=x y z\left(a^3+b^3+c^3\right)-a b c(3 x y z)=x y z\left(a^3+b^3+c^3-3 a b c\right) \\
& =x y z\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
\end{aligned}
$

Question 24

If $\left|\begin{array}{cc} 2 \mathrm{x} & 5 \\ 8 & \mathrm{x} \end{array}\right|=\left|\begin{array}{cc} 6 & -2 \\ 7 & 3 \end{array}\right|$ then value of x is
A. 3
B. ± 3
C. ± 6
D. 6

Answer:

Given:

$
\begin{aligned}
& \left|\begin{array}{cc}
2 \mathrm{x} & 5 \\
8 & \mathrm{x}
\end{array}\right|=\left|\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right| \\
& A=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$
Then the determinant of A is

$
\begin{aligned}
& |\mathrm{A}|=\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc} \\
& \Rightarrow(2 x)(x)-(5)(8)=(6)(3)-(7)(-2)\\& \Rightarrow 2 x^2-40=18-(-14)\\ & \Rightarrow 2 x^2-40=18+14\\& \Rightarrow x^2-20=9+7 \\ &\Rightarrow x^2-20=16 \\& \Rightarrow x^2=16+20\\& \Rightarrow x^2=36\\& \Rightarrow x=\sqrt{36} \\&\Rightarrow x= \pm 6
\end{aligned}
$

Question 25

The value of determinant $\left|\begin{array}{lll} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{array}\right|$
A. $a^3 + b^3 + c^3$
B. 3 bc
C. $a^3 + b^3 + c^3-3abc$
D. none of these

Answer:

C)

Given:

$
\left|\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right|
$


Apply C2 $\rightarrow \mathrm{C} 2+\mathrm{C} 3$

$
=\left|\begin{array}{lll}
a-b & a+b+c & a \\
b-c & c+a+b & b \\
c-a & a+b+c & c
\end{array}\right|
$
Take $(a+b+c)$ common from Column 2

$
=(a+b+c)\left|\begin{array}{lll}
a-b & 1 & a \\
b-c & 1 & b \\
c-a & 1 & c
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1-\mathrm{C}_3$

$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
a-b-a & 1 & a \\
b-c-b & 1 & b \\
c-a-c & 1 & c
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
-b & 1 & a \\
-c & 1 & b \\
-a & 1 & c
\end{array}\right|
\end{aligned}
$
Expand along Row 1

$
\begin{aligned}
& =(a+b+c)\left[(-b)\{c-b\}-(1)\left\{-c^2-(-a b)\right\}+a\{-c-(-a)\}\right] \\
& =(a+b+c)\left(-b c+b^2+c^2-a b-a c+a^2\right)
\end{aligned}
$
$\begin{aligned} & =a\left(-b c+b^2+c^2-a b-a c+a^2\right)+b\left(-b c+b^2+c^2-a b-a c+a^2\right)+c(-b c+ \\ & \left.b^2+c^2-a b-a c+a^2\right) \\ & =-a b c+a b^2+a c^2-a^2 b-a^2 c+a^3-b^2 c+b^3+b c^2-a b^2-a b c+a^2 b-b c^2+ \\ & b^2 c+c^3-a b c-a c^2+a^2 c \\ & =a^3+b^3+c^3-3 a b c\end{aligned}$

Question 26

The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
A. 9
B. 3
C. – 9
D. 6

Answer:

B)
$\\ \begin{aligned} &\text { The area of a triangle with vertices }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \text { is given by }\\ &\Delta=\frac{1}{2}\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1 \end{array}\right|\\ &\Delta=\frac{1}{2}\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=9\\ &\Delta=\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=18 \end{aligned}$
Expand along Column 2

$
\Rightarrow-(k)\{-3-3\}=18
$
$
\Rightarrow-k(-6)=18
$
$
\Rightarrow 6 k=18
$
$
\Rightarrow k=3
$

Question 27

The determinant $\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$ equals

A. abc (b–c) (c – a) (a – b)
B. (b–c) (c – a) (a – b)
C. (a + b + c) (b – c) (c – a) (a – b)
D. None of these

Answer:

D)
Given:

$\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$
$\\=\left|\begin{array}{lll}b(b-a) & b-c & c(b-a) \\ a(b-a) & a-b & b(b-a) \\ c(b-a) & c-a & a(b-a)\end{array}\right|$

Take (b-a) common from both Columns 1 and 3

$=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$

Apply

$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3}\\$ $=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b}-\mathrm{c} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a}-\mathrm{b} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c}-\mathrm{a} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Whenever any two columns or rows in any determinant are equal, its value becomes = 0
Here Columns 1 and 2 are identical$\therefore\left|\begin{array}{lll}b^2-a b & b-c & b c-a c \\ a b-a^2 & a-b & b^2-a b \\ b c-a c & c-a & a b-a^2\end{array}\right|=0$

Question 28

The number of distinct real roots of $\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

A. 0
B. –1
C. 1
D. None of these

Answer:

C)
Given
$\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$
$\begin{aligned} &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{lll} \sin x+\cos x+\cos x & \cos x & \cos x \\ \cos x+\sin x+\cos x & \sin x & \cos x \\ \cos x+\cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\Rightarrow\left|\begin{array}{ccc} 2 \cos x+\sin x & \cos x & \cos x \\ 2 \cos x+\sin x & \sin x & \cos x \\ 2 \cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\text { Take }(2 \cos x+\sin x) \text { common from Column } 1\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1-1 & \sin x-\cos x & \cos x-\cos x \\ 1 & \cos x & \sin x \end{array}\right|=0 \end{aligned}$
$\\\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1 & \cos x & \sin x \end{array}\right|=0 \\ \text { Apply } R_{3} \rightarrow R_{3}-R_{1} \\ \Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1-1 & \cos x-\cos x & \sin x-\cos x \end{array}\right|=0 \\$

$\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x \end{array}\right|=0$
Expand along Column 1

$
\begin{aligned}
& (2 \cos X+\sin X)[(1)\{(\sin X-\cos X)(\sin X-\cos X)\}] \\
& \Rightarrow(2 \cos X+\sin X)(\sin X-\cos X)^2=0 \\
& \Rightarrow 2 \cos X=-\sin X \operatorname{or}(\sin X-\cos X)^2=0 \\
& \Rightarrow 2=-\frac{\sin \mathrm{x}}{\cos \mathrm{x}} \text { or } \sin \mathrm{x}=\cos \mathrm{x} \\
& \Rightarrow \tan x=-2 \text { ortan } x=1\left[\because \tan x=\frac{\sin x}{\cos x}\right] \\
& \text { buttan } x=-2 \text { isnotpossibleasfor }-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
\end{aligned}
$
$
\text { So, } \tan x=1
$
$
\therefore x=\frac{\pi}{4}
$
Only one real and distinct root occurs.

Question 29

If A, B and C are angles of a triangle, then the determinant $\begin{array}{|ccc|} -1 & \cos \mathrm{C} & \cos \mathrm{B} \\ \cos \mathrm{C} & -1 & \cos \mathrm{A} \\ \cos \mathrm{B} & \cos \mathrm{A} & -1 \end{array} \mid$ is equal to
A. 0

B. –1
C. 1
D. None of these

Answer:

A)

Given:

$
\left.\left|\begin{array}{ccc}
-1 & \cos \mathrm{C} & \cos \mathrm{~B} \\
\cos \mathrm{C} & -1 & \cos \mathrm{~A} \\
\cos \mathrm{~B} & \cos \mathrm{~A} & -1
\end{array}\right| \right\rvert\,
$
Expand along Column 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{cc}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{ll}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & \mathrm{a}_{23}
\end{array}\right| \\
& \Delta=(-1)\left|\begin{array}{cc}
-1 & \cos A \\
\cos A & -1
\end{array}\right|-\cos C\left|\begin{array}{cc}
\cos C & \cos B \\
\cos A & -1
\end{array}\right|+\cos B\left|\begin{array}{cc}
\cos C & \cos B \\
-1 & \cos A
\end{array}\right| \\
& =\left[(-1)\left\{1-\cos ^2 A\right\}-\cos C\{-\cos C-\cos A \cos B\}+\cos B\{\cos A \cos C+\right. \\
& \cos B\}]
\end{aligned}
$


$
=-1+\cos ^2 A+\cos ^2 C+\cos A \cos B \cos C+\cos A \cos B \cos C+\cos ^2 B
$
$
=-1+\cos ^2 A+\cos ^2 B+\cos ^2 C+2 \cos A \cos B \cos C
$
Using the formula

$
\begin{aligned}
& 1+\cos 2 A=2 \cos ^2 A \\
& =-1+\frac{1+\cos 2 \mathrm{~A}}{2}+\frac{1+\cos 2 \mathrm{~B}}{2}+\frac{1+\cos 2 \mathrm{C}}{2}+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}
\end{aligned}
$
Taking L.C.M, we get

$
=\frac{-2+1+\cos 2 A+1+\cos 2 B+1+\cos 2 C+4 \cos A \cos B \cos C}{2}
$

$
\begin{aligned}
& =\frac{1+(\cos 2 A+\cos 2 B)+\cos 2 C+4 \cos C \cos A \cos B}{2} \\
& \text { Now use: } \cos (A+B) \cos (A-B)=2 \cos A \cos B \\
& \text { so, } \cos 2 A+\cos 2 B=2 \cos (A+B) \cos (A-B) \\
& =\frac{1+\cos 2 C+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{1+2 \cos ^2 C-1+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 \mathrm{C}+[2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})\}+4 \cos \mathrm{~A} \cos \mathrm{~B} \cos C}{2} \ldots \text { (i) }
\end{aligned}
$


We know that $A, B, C$ are angles of triangle

$
\begin{aligned}
& \Rightarrow A+B+C=\pi \\
& \Rightarrow A+B=\pi-C \\
& =\frac{2 \cos ^2 C+\{2 \cos (\pi-C) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 C+\{-2 \cos C \cos (A-B)\}+4 \cos A \cos B \cos C}{2}[\because \cos (\pi-x)=-\cos x] \\
& =\frac{-2 \cos C\{\cos (A-B)-\cos C\}+4 \cos A \cos B \cos C}{2}
\end{aligned}
$
$=-\cos C\{\cos (A-B)-\cos C\}+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)-\cos \{\pi-(A+B)\}]+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)+\cos (A+B)]+2 \cos A \cos B \cos C=-\cos C[2 \cos A \cos B]+2 \cos A \cos B \cos C=0$

Question 30

Let $f(t)=\left|\begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t \end{array}\right|$ then $\lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}$ is equal to
A. 0
B. –1
C. 2
D. 3

Answer:

Given:

$
f(t)=\left|\begin{array}{ccc}
\cos t & t & 1 \\
2 \sin t & t & 2 t \\
\sin t & t & t
\end{array}\right|
$
Divide $\mathrm{R}_2$ and $\mathrm{R}_3$ by $t$

$
f(t)=t^2\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & \frac{t}{t} & \frac{2 t}{t} \\
\frac{\sin t}{t} & \frac{t}{t} & \frac{t}{t}
\end{array}\right|
$
$
\Rightarrow \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\frac{\mathrm{t}^2}{\mathrm{t}^2}\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & 1 & 2 \\
\frac{\sin t}{t} & 1 & 1
\end{array}\right|
$
$
\Rightarrow \lim _{t \rightarrow 0} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\left|\begin{array}{lll}
\lim _{t \rightarrow 0} \cos t & \lim _{t \rightarrow 0} t & \lim _{t \rightarrow 0} 1 \\
\lim _{t \rightarrow 0} \frac{2 \sin t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 2 \\
\lim _{t \rightarrow 0} \frac{\sin ^t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 1
\end{array}\right|
$
$
=\left|\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right|\left(\because \lim _{t \rightarrow 0} \frac{\sin t}{t}=1\right)
$


Expand along Row 1

$
\begin{aligned}
& =(1)(1-2)+(1)(2-1) \\
& =-1+1
\end{aligned}
$
$=0$

Question 31

The maximum value of $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1+\cos \theta & 1 & 1\end{array}\right|_{\text {is }(\theta \text { is a real number })}$

A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{2}$
D. $\frac{2 \sqrt{3}}{4}$

Answer:

A)

We have:

$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1+\cos \theta & 1 & 1
\end{array}\right|
$
Apply, $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$ and $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$

$
\Rightarrow \Delta=\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & \sin \theta & 1 \\
\cos \theta & 0 & 1
\end{array}\right|
$

$=0-0+1(\sin \theta \cdot \cos \theta)$ Multiply and divide by $2,=\frac{1}{2}(2 \sin \theta \cos \theta)$ We already know that $\underline{2 \sin \theta \cos \theta=\sin 2 \theta}=\frac{1}{2}(\sin 2 \theta)$
The maximum value of $: \sin 2 \theta$ is $1, \theta=45^{\circ}$.

$
\begin{aligned}
& \therefore \Delta=\frac{1}{2}\left(\sin 2\left(45^{\circ}\right)\right)=\frac{1}{2} \sin 90^{\circ}=\frac{1}{2}(1) \\
& \therefore \Delta=\frac{1}{2}
\end{aligned}
$

Question 32

If $f(x)=\left|\begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array}\right|$

A. f (a) = 0
B. f (b) = 0
C. f (0) = 0
D. f (1) = 0

Answer:

C)

We have:

$
f(x)=\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|
$


If we put $x=a$

$
\begin{aligned}
& f(a)=\left|\begin{array}{ccc}
0 & a-a & a-b \\
a+a & 0 & a-c \\
a+b & a+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & a-c \\
a+c & 0
\end{array}\right|-0\left|\begin{array}{cc}
2 a & a-c \\
a+b & 0
\end{array}\right|+(a-b)\left|\begin{array}{cc}
2 a & 0 \\
a+b & a+c
\end{array}\right| \\
& =0-0+(a-b)[2 a(a+c)-0(a+b)]=(a-b)\left[2 a^2+2 a c-0\right]=(a-b)\left(2 a^2+2 a c\right) \neq 0 \text { If } x=b \\
& f(b)=\left|\begin{array}{ccc}
0 & b-a & b-b \\
b+a & 0 & b-c \\
b+b & b+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & b-c \\
b+c & 0
\end{array}\right|-(b-a)\left|\begin{array}{cc}
b+a & b-c \\
2 b & 0
\end{array}\right|+0\left|\begin{array}{cc}
b+a & 0 \\
2 b & b+c
\end{array}\right| \\
& =0-(b-a)[(b+a)(0)-(b-c)(2 b)]+0=-(b-a)\left[0-2 b^2+2 b c\right]=(a-b)\left(2 b^2-2 b c\right) \neq 0
\end{aligned}
$
If $x=0$ according to the given Question

$
f(0)=\left|\begin{array}{ccc}
0 & 0-a & 0-b \\
0+a & 0 & 0-c \\
0+b & 0+c & 0
\end{array}\right|
$

$
\begin{aligned}
& =0\left|\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right|-(-a)\left|\begin{array}{cc}
a & -c \\
b & 0
\end{array}\right|+(-b)\left|\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right| \\
& =0+a[a(0)-(-b c)]-b[a c-b(0)]
\end{aligned}
$
$
=a[b c]-b[a c]
$
$
=a b c-a b c=0
$
Then the condition is satisfied.

Question 33

If $A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$

then $A^{-1}$ exists if
A. λ = 2
B. λ ≠ 2
C. λ ≠ -2
D. None of these

Answer:

D)
We have
$A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$

$
\begin{aligned}
& \Rightarrow|A|=2(6-5)-\lambda(0-5)+(-3)(0-2) \\
& =2+5 \lambda+6 \\
& =5 \lambda+8
\end{aligned}
$

The inverse of A exists only if A is nonsingular. ie $|A| \neq 0$.

$
\begin{aligned}
& .5 \lambda+8 \neq 0 \\
& \Rightarrow 5 \lambda \neq-8
\end{aligned}
$

$\therefore \lambda \neq-\frac{8}{5}$
So, $A^{-1}$ exists if and only if $\lambda \neq-\frac{8}{5}$

Question 34

If A and B are invertible matrices, then which of the following is not correct?
A. $adj A = |A|. A^{-1}$
B. $det (A)^{-1} = [det (A)]^{-1}$

C. $(AB)^{-1} = B^{-1} A^{-1}$
D. $(A + B)^{-1} = B^{-1} + A^{-1}$

Answer:

D)

We know that A and B are invertible matrices

$
\begin{aligned}
& \text { Consider }(A B) B^{-1} A^{-1} \Rightarrow(A B) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=(A I) A^{-1}=A A^{-1}=I \Rightarrow(A B)^{-1}=B^{-1} A^{-1} \ldots \text { option }(C) \\
& \text { Also } A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I| \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \Rightarrow|\mathrm{~A}|^{-1}=\frac{1}{|\mathrm{~A}|} \\
& \therefore \operatorname{det}(A)^{-1}=[\operatorname{det}(A)]^{-1} \ldots(B)
\end{aligned}
$
We know that $\frac{|\mathrm{A}|^{-1}}{\operatorname{adj} \mathrm{~A}} \frac{|\vec{A}|}{\text { We }}$
$\Rightarrow \operatorname{adj} A=|A| \cdot A^{-1} \ldots$ option $(A)$

$
\Rightarrow(\mathrm{A}+\mathrm{B})^{-1}=\frac{1}{|\mathrm{~A}+\mathrm{B}|} \operatorname{adj}(\mathrm{A}+\mathrm{B})
$


But $\mathrm{B}^{-1}+\mathrm{A}^{-1}=\frac{1}{|\mathrm{~B}|} \operatorname{adj} \mathrm{B}+\frac{1}{|\mathrm{~A}|}$ adj A

$
\therefore(A+B)^{-1} \neq B^{-1}+A^{-1}
$

Question 35

If x, y, z are all different from zero and ,$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$, then value of $x^{-1} + y^{-1} + z^{-1}$ is
$\\A. x y z\\B. x^{-1} y^{-1} z^{-1}\\C. -x -y -z\\D. -1$

Answer:

We have
$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$
$\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \text { and } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc} x & 0 & 1 \\ 0 & y & 1 \\ -z & -z & 1+z \end{array}\right|=0$
Expand along Row 1

$
\Rightarrow x[y(1+z)+z]-0+1(y z)=0
$


$
x y+x y z+x z+y z=0
$

Divide both sides by XYZ
$\\ \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1=0 \\ \therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x^{-1}+y^{-1}+z^{-1}=-1$

Question 36

The value of the determinant $\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right|$ is
A. $9x^2 (x + y)$
B. $9y^2 (x + y)$
C. $3y^2 (x + y)$
D. $7x^2 (x + y)$

Answer:

B)

Matrix given:

$
\begin{aligned}
& \left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right| \\
& =\mathrm{x}\left|\begin{array}{cc}
\mathrm{x} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+2 \mathrm{y} & \mathrm{x}
\end{array}\right|-(\mathrm{x}+\mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}
\end{array}\right|+(\mathrm{x}+2 \mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}+2 \mathrm{y}
\end{array}\right| \\
& =x\left[x^2-(x+y)(x+2 y)\right]-(x+y)\left[(x+2 y)(x)-(x+y)^2\right]+(x+2 y)[(x+ \\
& \left.2 y)^2-x(x+y)\right] \\
& =x\left[x^2-x^2-3 x y-2 y^2\right]-(x+y)\left[x^2+2 x y-x^2-2 x y-y^2\right]+(x+2 y)\left[x^2+\right. \\
& \left.4 x y+4 y^2-x^2-x y\right] \\
& =x\left[-3 x y-2 y^2\right]-(x+y)\left[-y^2\right]+(x+2 y)\left[3 x y+4 y^2\right] \\
& =-3 x^2 y-2 x y^2+x y^2+y^3+3 x^2 y+4 x y^2+6 x y^2+8 y^3 \\
& =9 y^3+9 x y^2 \\
& =9 y^2(x+y)
\end{aligned}
$

Question 37

There are two values of a which makes determinant, $\Delta=\left|\begin{array}{ccc} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a \end{array}\right|=86$ ,then sum of these number is
A. 4
B. 5
C. -4
D. 9

Answer:

C)

We have:

$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2 a
\end{array}\right|=86 \\
& 1\left|\begin{array}{cc}
\mathrm{a} & -1 \\
4 & 2 \mathrm{a}
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -1 \\
0 & 2 \mathrm{a}
\end{array}\right|+5\left|\begin{array}{cc}
2 & \mathrm{a} \\
0 & 4
\end{array}\right|=86 \\
& 1\left[2 a^2-(-4)\right]+2[4 a-0]+5[8-0]=86
\end{aligned}
$


$
1\left[2 a^2+4\right]+2[4 a]+5[8]=86
$


$
2 a^2+4+8 a+40=86
$


$
2 a^2+8 a+44=86
$


$
2 a^2+8 a=42
$


$
2\left(a^2+4 a\right)=42
$


$
\left(a^2+4 a\right)=21 \Rightarrow a^2+4 a-21=0 \Rightarrow(a+7)(a-3)=0 \therefore a=-7 \text { or } 3
$


The sum of -7 and $3=-4$

Question 38

Fill in the blanks
If A is a matrix of order 3 × 3, then |3A| = ___.

Answer:

If A is a matrix of order $3 \times 3$, then $|3 A|=27|A|$.
We know:

$
\begin{aligned}
& \text { if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k \cdot A|=k^3|A| \\
& \therefore|3 A|=3^3|A|=27|A|
\end{aligned}
$

Question 39

Fill in the blanks
If A is an invertible matrix of order 3 × 3, then |$A^{-1}$|= ____.

Answer:

If A is an invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=|A|^{-1}$
Given
$\mathrm{A}=$ invertible matrix $3 \times 3$

$
\begin{aligned}
& A A^{-1}=I \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \therefore\left|A^{-1}\right|=\frac{1}{|A|}
\end{aligned}
$

Question 40

Fill in the blanks
If x, y, z ∈ R, then the value of determinant $\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|$ is equal to ___.

Answer:

$\\ \begin{aligned} &\text { Given }\\ &\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\\ &=\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2}-\left(2^{x}-2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2}-\left(3^{x}-3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2}-\left(4^{x}-4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply Formula: }(a+b)^{2}-(a-b)^{2}=4 a b \text { . } \end{aligned}$
$\\ \begin{aligned} &=\left|\begin{array}{lll} 4\left(2^{x}\right)\left(2^{-x}\right) & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4\left(3^{x}\right)\left(3^{-x}\right) & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4\left(4^{x}\right)\left(4^{-x}\right) & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &=\left|\begin{array}{lll} 4 & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4 & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4 & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Column } 1 \text { and } 3 \text { thus become proportional }\\ &\therefore\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|=0 \end{aligned}$

Question 41

Fill in the blanks

If cos 2θ = 0, then $\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=$

Answer:

We know

$
\cos 2 \theta=0 \Rightarrow \cos 2 \theta=\cos \pi / 2 \Rightarrow 2 \theta=\pi / 2 \therefore \theta=\pi / 4
$

$\\ \begin{aligned} &\therefore \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \text { and } \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\\ &\text { Then }\\ &\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\left|\begin{array}{ccc} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right|^{2}\\ &\Rightarrow\left[0-\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)+\frac{1}{\sqrt{2}}\left(-\frac{1}{2}\right)\right]^{2}=\left[\frac{-2}{2 \sqrt{2}}\right]^{2}=\left[-\frac{1}{\sqrt{2}}\right]^{2}\\ &\therefore\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\frac{1}{2} \end{aligned}$

Question 42

Fill in the blanks
If A is a matrix of order 3 × 3, then $(A^2)^{-1 }$= ____.

Answer:

For matrix A is of order 3X3
$\begin{aligned} \left(A^{2}\right)^{-1} &=(A \cdot A)^{-1} \\ &=A^{-1} \cdot A^{-1} \\ &=\left(A^{-1}\right)^{2} \end{aligned}$

Question 43

If A is a matrix of order 3 × 3, then the number of minors in the determinant of A is

Answer:

If matrix A is of order 3X3 then
Number of Minors of IAI = 9 as there are 9 elements in a 3x3 matrix

Question 44

Fill in the blanks
The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ___.

Answer:

If, $A=\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$
then $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$

We know that the determinant is equal to the sum of the corresponding cofactors of any row or column.

Question 45

Fill in the blanks
If x = -9 is a root of $\left|\begin{array}{lll} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{array}\right|=0$ , then other two roots are ___.

Answer:

We know that

$
\begin{aligned}
& x=-9 \text { is a root of }\left|\begin{array}{lll}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right|=0 \\
& \Rightarrow \mathrm{x}\left|\begin{array}{ll}
\mathrm{x} & 2 \\
6 & \mathrm{x}
\end{array}\right|-3\left|\begin{array}{ll}
2 & 2 \\
7 & \mathrm{x}
\end{array}\right|+7\left|\begin{array}{ll}
2 & \mathrm{x} \\
7 & 6
\end{array}\right|=0
\end{aligned}
$
$\Rightarrow x\left[x^2-12\right]-3[2 x-14]+7[12-7 x]=0$
$ \Rightarrow x^3-12 x-6 x+42+84-49 x=0$
$ \Rightarrow x^3-67 x+126=0(x+9)(2-x)(7-x)=0$
Here, $126 \times 1=9 \times 2 \times 7$
For x $=2,$
$ \Rightarrow 2^3-67 \cdot 2+126=134-134=0 $
$\therefore x=2$ is one root.
For $=7,$
$ \Rightarrow 7^3-677-7+126=469-469=0; x=7$ will be another root.

Question 46

Fill in the blanks

$\left|\begin{array}{ccc} 0 & x y z & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0 \end{array}\right|=$

Answer:

$
\begin{aligned}
& =(z-x)[1[0-(y-z)(z-y)]-(x y z)[0-(y-z)]+(x-z)[(z-y)-0]] \\
& =(z-x)(z-y)(-y+z-x y z+x-z) \\
& =(z-x)(z-y)(x-y-x y z) \\
& =(z-x)(y-z)(y-x+x y z)
\end{aligned}
$

Question 47

If $f(x)=\left|\begin{array}{lll} (1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47} \end{array}\right|=A+B x+C x^{2}+\ldots$, then A = ____.

Answer:

Given $f(x)=\left|\begin{array}{ccc}(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{array}\right|$
$ \Rightarrow \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}(1+x)^{41}\left|\begin{array}{ccc}1 & (1+x)^2 & (1+x)^6 \\ 1 & (1+x)^6 & (1+x)^{11} \\ 1 & (1+x)^2 & (1+x)^6\end{array}\right|$
We can see that row1 and row3 are identical
$\therefore \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}$

$\therefore A=0$

Question 48

State True or False for the statements
$(A^3)^{-1} = (A^{-1})^3$, where A is a square matrix and |A| ≠ 0.

Answer:

$\left(A^3\right)^{-1}=\left(A^{-1}\right)^3$ Because, $\left(A^n\right)^{-1}=\left(A^{-1}\right)^n$, wheren $\in \mathbb{N}$.

Question 49

State True or False for the statements
$(aA)^{-1} = (1/a) A^{-1}$, where a is any real number, and A is a square matrix.

Answer:

For a non-singular matrix, aA is invertible such that
$\\ (\mathrm{aA})\left(\frac{1}{\mathrm{a}} \mathrm{A}^{-1}\right)=\left(\mathrm{a} \cdot \frac{1}{\mathrm{a}}\right)\left(\mathrm{AA}^{-1}\right)$
$ \text {i.e. } \quad(\mathrm{aA})^{-1}=\frac{1}{\mathrm{a}} \mathrm{A}^{-1} \\$
here a = any non-zero scalar.
Here, A should be a nonsingular matrix, which is not given in the statement.

Thus, the statement given in the question is false.

Question 50

State True or False for the statements
$|A^{-1}| \neq |A|^{-1}$, where A is non-singular matrix.

Answer:

We know A is a non-singular Matrix

In that case: $A A^{-1}=I$.

$
\Rightarrow|A|\left|A^{-1}\right|=1 \therefore\left|A^{-1}\right|=1 /|A|=|A|^{-1}
$
Thus, the statement is false.

Question 51

State True or False for the statements
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.

Answer:

We know that:

$
\begin{aligned}
& |A B|=|A| \cdot|B| \text { and if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k . A|=k^3|A| . \\
& \therefore|3 A|=27|A B|=27|A||B|=27 \cdot 5 \cdot 3=405
\end{aligned}
$
Hence, the statement given in question is true.

Question 52

State True or False for the statements
If the value of a third-order determinant is 12, then the value of the determinant formed by replacing each element with its cofactor will be 144.

Answer:

Given $\therefore|A|=12$
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$

$
\text { Forn }=3,|\operatorname{adj} A|=|A|^{3-1}=|A|^2=12^2=144
$
Thus, the given statement is true.

Question 53

State True or False for the statements
$\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$, where a, b, c are in A.P.

Answer:

$\\ \begin{aligned} &\text { since } a, b, c \text { are in } A P, 2 b=a+c .\\ &\therefore\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0\\ &A p p l y_{i}, R_{1} \rightarrow R_{1}+R_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 2 x+4 & 2 x+6 & 2 x+a+c \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0 \end{aligned}$
Since 2b = a + c,
$\Rightarrow\left|\begin{array}{ccc} 2(x+2) & 2(x+3) & 2(x+b) \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$
We can see that Rows 1 and 3 are proportional

Thus determinant = 0

Question 54

State True or False for the statements
$|adj. A| = |A|^2$, where A is a square matrix of order two.

Answer:

For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
Here $\mathrm{n}=2$,

$
\Rightarrow|\operatorname{adj} A|=|A|^{n-1}=|A|
$
Thus, the statement given in question is false

Question 55

State True or False for the statements

The determinant $\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$ is equal to zero.

Answer:

$\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$
$\\=\left|\begin{array}{ccc} \sin A & \cos A & \sin A \\ \sin B & \cos B & \sin B \\ \sin C & \cos C & \sin C \end{array}\right|+\left|\begin{array}{ccc} \sin A & \cos A & \cos A \\ \sin B & \cos B & \cos B \\ \sin C & \cos C & \cos C \end{array}\right|$
We can see that columns are identical in both the matrices on the right-hand side

Thus Determinant = 0

The statement in question is therefore true.

Question 56

State True or False for the statements

If the determinant $\left|\begin{array}{ccc} x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h \end{array}\right|$ splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8

Answer:

Given $\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$ Splitrow $1 \Rightarrow\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|=\left|\begin{array}{ccc}x & p & 1 \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|+\left|\begin{array}{ccc}a & u & f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$
Split row 2

$
\left|\begin{array}{ccc}
x & p & 1 \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
a & u & f \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
x & p & l \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
$
+\left|\begin{array}{ccc}
a & u & f \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
We can split all the rows in the same way.
Thus, the statement given in the question is true.

Question 57

State True or False for the statements

Let $\Delta=\left|\begin{array}{lll} a & p & x \\ b & q & y \\ c & r & z \end{array}\right|=16$ ,then $\Delta_{1}=\left|\begin{array}{lll} p+x & a+x & a+p \\ q+y & b+y & b+q \\ r+z & c+z & c+r \end{array}\right|=32$

Answer:

$
\begin{aligned}
& \text { Wehave } \Delta=\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=16 \text { Weneedtoprove } \Delta_1=\left|\begin{array}{lll}
p+x & a+x & a+p \\
q+y & b+y & b+q \\
r+z & c+z & c+r
\end{array}\right|=32 \text {. } \\
& \mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3 \\
& \left|\begin{array}{lll}
2(p+x+a) & a+x & a+p \\
2(q+y+b) & b+y & b+q \\
2(r+z+c) & c+z & c+r
\end{array}\right|=32
\end{aligned}
$
2 can be taken from Column 1

$
2\left|\begin{array}{ccc}
(p+x+a) & a+x & a+p \\
(q+y+b) & b+y & b+q \\
(r+z+c) & c+z & c+r
\end{array}\right|=32
$
After that apply $\mathrm{C} 1 \rightarrow \mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2 \rightarrow \mathrm{C} 2-\mathrm{C} 3$

$
\begin{aligned}
& \left|\begin{array}{lll}
p & x-p & a+p \\
q & y-q & b+q \\
r & z-r & c+r
\end{array}\right|=16 \\
& \left|\begin{array}{ccc}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-\left|\begin{array}{lll}
p & p & a+p \\
q & q & b+q \\
r & r & c+r
\end{array}\right|=16
\end{aligned}
$
The second determinant of columns 2 and 3 is identical.

$
\left|\begin{array}{lll}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-0=16
$

$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|+\left|\begin{array}{lll}
p & x & p \\
q & y & q \\
r & z & r
\end{array}\right|=16
$
Again, the second determinant of columns 1 and 3 is identic. al

$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|=16
$
Hence, the statement given in question is true

Question 58

State True or False for the statements

The maximum value of $\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta \end{array}\right|$ is 1/2.

Answer:

$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1$ and $\mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1$

$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \sin \theta & 0 \\
0 & 0 & \cos \theta
\end{array}\right|
$

$=\cos \theta \cdot \sin \theta$ Multiply and divide by $2,=1 / 2(2 \sin \theta \cos \theta)$ We know, $2 \sin \theta \cos \theta=\sin 2 \theta=1 / 2(\sin 2 \theta)$

Since the maximum value of $\sin 2 \theta$ is $1, \theta=45^{\circ}$.

$
\therefore \Delta=1 / 2\left(\sin 2\left(45^{\circ}\right)\right)=1 / 2 \sin 90^{\circ}=1 / 2(1) \therefore \Delta=1 / 2
$
Thus, the given statement is true.

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants: Topics

The sub-topics that are covered in this Chapter are:

  • Introduction
  • Determinant
  • Determinant of a matrix of order one
  • Determinant of a matrix of order 2
  • Determinant of a matrix of order 3x3
  • Properties of determinants
  • Area of a triangle
  • Minors and co-factors
  • Adjoint and inverse of a matrix
  • Adjoint of a matrix
  • Applications of matrices and determinants
  • Solution of a system of linear equations using the inverse of matrices

NCERT Exemplar Class 12 Mathematics Chapterwise

Careers360 offers all NCERT Class 12 Maths Exemplar Solutions in one place for students. Just click the links below to see them.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Importance of Solving NCERT Exemplar Class 12 Maths Solutions Chapter 4

  • These Class 12 Maths NCERT exemplar Chapter 4 Solutions provide a basic knowledge of Determinants, which has great importance in higher Classes.

  • The questions based on Determinants can be practised in a better way, along with these Solutions.

NCERT Solutions for Class 12 Maths: Chapter Wise

Students can find every NCERT Class 12 Maths Solution in one spot on Careers360. Use the links below to access them.

NCERT Exemplar Solutions for Class 12 Subject-wise

Students can also check these NCERT exemplar Solutions of Class 12 by using the following links.

NCERT Solutions for Class 12 Subject-wise

Access all the Chapter-wise solution links of the NCERT Class 12 subjects by clicking on the links below.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Syllabus and NCERT Books

As students step into a new Class, they must first explore the latest syllabus to identify the Chapters included. Below are the links to the most recent syllabus and some essential reference books.

Frequently Asked Questions (FAQs)

Q: Can I download the solutions for this chapter?
A:

Yes, you download NCERT exemplar Class 12 Maths solutions chapter 4 pdf by using the webpage to pdf tool available online.

Q: What are the important topics of this chapter?
A:

The Properties of Determinants, Adjoint and Inverse of a Matrix and Application of Determinants and Matrices are the more important topics among others as per their weightage.

Q: How to study well for boards?
A:

Practice, Practice and Practice. Once you have read the chapters well and made notes, you must practice being fast and precise with answers.

Q: How many questions are there in this chapter?
A:

The NCERT exemplar solutions for Class 12 Maths chapter 4 has one exercise with 58 questions for practice.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Ongoing Dates
CBSE Class 12th Exam Date

1 Jan'26 - 14 Feb'26 (Offline)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.