Let’s say you are involved in a complicated project, perhaps designing a bridge, studying the movement of a car, or solving complicated puzzles. Before long, you may find that you have to solve them purposely for the sake of working through various complex variables. How do you do that? The answer is Determinants. This Chapter is a good foundation for the students so that they not only have a theoretical understanding of determinants but can apply them to circumstances for engineering, physics and even computer science.
The CBSE will hold the Class 12th 2026 examination from February 17 to April 10, 2026. The exam conducting authority has declared the CBSE Class 12 admit card for private candidates on the official website.
This Story also Contains
The NCERT Exemplar for Class 12 Determinants provides an easier way to solve systems of linear equations, find area and volume, and determine if a matrix is invertible, for example. Students will learn the rules and properties of determinants in this Chapter, including cofactor expansion, the determinant of a 3x3 matrix, and solving linear equations using Cramer's Rule. These are important concepts to learn to understand higher-level topics in math and science. Students will need to regularly practice the material to fully understand it. They should be able to apply the properties and procedures for determining determinants to solve problems and equations with ease. If they need further background or explanations, students can use the NCERT Class 12 Maths Solutions.
Also, read,
| Class 12 Maths Chapter 4 Exemplar Solutions Exercise: 4.3 Page number: 77-85 Total questions: 58 |
Question 1:
Answer:
$
\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|
$
If $A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
The value of the determinant of A can then be found by:
$
\begin{aligned}
& |A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& =\left(x^2-x+1\right) \times(x+1)-(x+1) \times(x-1) \\
& =x\left(x^2-x+1\right)+1\left(x^2-x+1\right)-\left(x^2-1\right) \\
& \quad\left(\text { Since }(a-b)(a+b)=\left(a^2-b^2\right)\right) \\
& =x^3-x^2+x+x^2-x+1-x^2+1 \\
& =x^3-x^2+2
\end{aligned}
$
Question 2:
Answer:
$A=\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\begin{array}{l} =\left|\begin{array}{ccc} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 1 & a+y & z \\ y & a+z \end{array}\right| \end{array}$
$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-R_{\mathrm{1}}$
$\begin{array}{l} =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right|\\\\=a^{2}(a+z+x+y) \end{array}$
Question 3
Answer:
$\text{Let } A=\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$
$=x^{2} y^{2} z^{2}\left|\begin{array}{lll} 0 & x & x \\ y & 0 & y \\ z & z & 0 \end{array}\right|$
$C_{2} \rightarrow C_{2}-C_{3}$
$=x^{2} y^{2} z^{2}\left|\begin{array}{ccc} 0 & 0 & x \\ y & -y & y \\ z & z & 0 \end{array}\right|$
Expand IAI along C3 to get:
$=x^{2} y^{2} z^{2}(x(y z+y z))$
$=x^{2} y^{2} z^{2}(2xy z)$
$=2x^{3} y^{3} z^{3}$
Question 4
Answer:
$Let \: \: A=\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$
Apply - $C_1 \rightarrow C_1+C_2+C_3$
$\\\begin{aligned} &=\left|\begin{array}{ccc} 3 x-x+y-x+z & -x+y & -x+z \\ x-y+3 y+z-y & 3 y & z-y \\ x-z+y-z+3 z & y-z & 3 z \end{array}\right|\\ &=\left|\begin{array}{ccc} x+y+z & -x+y & -x+z \\ x+y+z & 3 y & z-y \\ x+y+z & y-z & 3 z \end{array}\right|\\ &\text { Take }(x+y+z) \text { common from } C_{1}\\ &=(x+y+z)\left|\begin{array}{ccc} 1 & -x+y & -x+z \\ 1 & 3 y & z-y \\ 1 & y-z & 3 z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1,} \text { you will get }\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 1-1 & 3 \mathrm{y}-(-\mathrm{x}+\mathrm{y}) & \mathrm{z}-\mathrm{y}-(-\mathrm{x}+\mathrm{z}) \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\\end{aligned}$
$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y}+\mathrm{x}-\mathrm{y} & \mathrm{z}-\mathrm{y}+\mathrm{x}-\mathrm{z} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &\text { Now apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1-1 & \mathrm{y}-\mathrm{z}-(-\mathrm{x}+\mathrm{y}) & 3 \mathrm{z}-(-\mathrm{x}+\mathrm{z}) \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{y}-\mathrm{z}+\mathrm{x}-\mathrm{y} & 3 \mathrm{z}+\mathrm{x}-\mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3},\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}-(-\mathrm{x}+\mathrm{z}) & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-(\mathrm{x}-\mathrm{y}) & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-(2 \mathrm{z}+\mathrm{x}) & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\\end{aligned}$
$\\\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}+\mathrm{x}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-\mathrm{x}+\mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-2 \mathrm{z}-\mathrm{x} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & \mathrm{y}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & -3 \mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right| \end{aligned}$
Now, expand the determinant along Column 1
$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$
Question 5
Answer:
$Let\: \: A=\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$
$\\\begin{aligned} &\text { Using } C_{1} \rightarrow C_{1}+C_{2}+C_{3},\\ &=\left|\begin{array}{ccc} x+4+x+x & x & x \\ x+x+4+x & x+4 & x \\ x+x+x+4 & x & x+4 \end{array}\right|\\ &=\left|\begin{array}{ccc} 3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4 \end{array}\right|\\ &\text { Take }(3 x+4) \text { common form } C \text { , }\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4 \end{array}\right|\\ &\mathrm{Apply}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 0 & 4 & 0 \\ 1-1 & x-x & x+4-x \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(3 \mathrm{x}+4)\left|\begin{array}{lll} 1 & \mathrm{x} & \mathrm{x} \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right|\\ &\text { Expand along } \mathrm{C}_{1}\\ &=(3 x+4)[1 \times\{(16)-0\}]\\ &=(3 x+4)(16)\\ &=16(3 x+4) \end{aligned}$
$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$
Question 6
Answer:
$Let\: \: A=\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$
$\\\begin{aligned} &\text { Apply } R_{1} \rightarrow R_{1}+R_{2}+R_{y}\\ &=\left|\begin{array}{ccc} \mathrm{a}-\mathrm{b}-\mathrm{c}+2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}-\mathrm{c}-\mathrm{a}+2 \mathrm{c} & 2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}-\mathrm{a}-\mathrm{b} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &=\left|\begin{array}{ccc} \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &\text { Take }(a+b+c) \text { common form the first row }\\ &=(a+b+c)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &\text { Apply } C_{2} \rightarrow C_{2}-C_{1} \end{aligned}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 2 b & b-c-a-2 b & 2 b \\ 2 c & 2 c-2 c & c-a-b \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1 \\ 2 b & -b-c-a & 2 b \\ 2 c & 0 & c-a-b \end{array}\right| \end{array}$
Now apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 2 b & -(a+b+c) & 2 b-2 b \\ 2 c & 0 & c-a-b-2 c \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{array}\right| \end{array}$
Expand the determinant along Row 1
$\begin{aligned} & =(a+b+c)[1 \times\{-(a+b+c) \times\{-(a+b+c)\}-0\} \\ & =(a+b+c)\left[(a+b+c)^2\right] \\ & =(a+b+c)^3\end{aligned}$
Question 7
Answer:
Taking LHS, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|$
$\\\begin{aligned} &\text { Multiply and divide } \mathrm{R}_{1} \mathrm{R}_{2}, \mathrm{R}_{3} \text { respectively by } \mathrm{x}, \mathrm{y}, \mathrm{z}\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x(y+z) \\ y z^{2} x^{2} & y z x & y(z+x) \\ z x^{2} y^{2} & z x y & z(x+y) \end{array}\right|\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x y+x z \\ x^{2} y z^{2} & x y z & y z+x y \\ x^{2} y^{2} z & x y z & x z+y z \end{array}\right|\\ &\text { Now, take xyz common from the first and second Column }\\ &=\frac{1}{\mathrm{xyz}} \times \mathrm{xyz} \times \mathrm{xyz}\left|\begin{array}{lll} \mathrm{yz} & 1 & \mathrm{xy}+\mathrm{xz} \\ \mathrm{xz} & 1 & \mathrm{yz}+\mathrm{xy} \\ \mathrm{xy} & 1 & \mathrm{xz}+\mathrm{yz} \end{array}\right|\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z \\ x z & 1 & y z+x y \\ x y & 1 & x z+y z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z+y z \\ x z & 1 & y z+x y+x z \\ x y & 1 & x z+y z+x y \end{array}\right|\\ &\text { Take }(\mathrm{xy}+\mathrm{yz}+\mathrm{xz}) \text { common from } \mathrm{C}_{3}\\ &=(\text { xyz })(\mathrm{xy}+\mathrm{yz}+\mathrm{xz})\left|\begin{array}{lll} \mathrm{yz} & 1 & 1 \\ \mathrm{xz} & 1 & 1 \\ \mathrm{xy} & 1 & 1 \end{array}\right| \end{aligned}$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0
Hence, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$
∴ LHS = RHS
Question 8
Answer:
LHS given,
$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|$
$\\\begin{aligned} &=\left|\begin{array}{ccc} \mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{z}+\mathrm{x}+\mathrm{x} & \mathrm{y}+\mathrm{x}+\mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ &=\left|\begin{array}{ccc} 2 z+2 y & 2 z+2 x & 2 x+2 y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &2 \text { can be taken common from } \mathrm{R}_{1}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{x} & \mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ \end{aligned}$
$\\\begin{aligned} \\&\text { Apply, } R_{1} \rightarrow R_{1}-R_{2}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y}-\mathrm{z} & \mathrm{z}+\mathrm{x}-(\mathrm{z}+\mathrm{x}) & \mathrm{x}+\mathrm{y}-\mathrm{x} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &\text { Apply, } R_{3} \rightarrow R_{3}-R_{1},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y}-\mathrm{y} & \mathrm{x}-0 & \mathrm{x}+\mathrm{y}-\mathrm{y} \end{array}\right|\\ &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ 0 & x & x \end{array}\right|\\ &\text { Now, Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z}-0 & \mathrm{z}+\mathrm{x}-\mathrm{x} & \mathrm{x}-\mathrm{x} \\ 0 & \mathrm{x} & \mathrm{x} \end{array}\right|\\ &=2\left|\begin{array}{lll} y & 0 & y \\ z & z & 0 \\ 0 & x & x \end{array}\right| \end{aligned}$
Take y,z,x common from the R1, R2 and R3 respectively
$\begin{aligned} &\text { Expand along Column } 1\\ &\begin{array}{r} |A|=a_{11}(-1)^{1+1}\left|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array}\right| \\ +a_{31}(-1)^{3+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array}\right| \end{array} \end{aligned}$
$\begin{aligned} & =2 x y z[(1)\{(1)-0\}-(1)\{0-1\}+0\}] \\ & =2 x y z[1+1] \\ & =4 x y z \\ & =\text { RHS } \\ & \therefore \text { LHS }=\text { RHS }\end{aligned}$
Hence Proved
Question 9
Take LHS
$
\left|\begin{array}{ccc}
a^2+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $R_1 \rightarrow R_1-R_2$
$
=\left|\begin{array}{ccc}
a^2+2 a-(2 a+1) & 2 a+1-(a+2) & 1-1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
a^2+2 a-2 a-1 & 2 a+1-a-2 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
a^2-1 & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
(a-1)(a+1) & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\left[\because\left(a^2-b^2\right)=(a-b)(a+b)\right]
$
Take (a-1) common from $R$
$
=(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3$
$
=\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1-3 & a+2-3 & 1-1 \\
3 & 3 & 1
\end{array}\right|
$
$
\begin{aligned}
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a-2 & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$
Take (a-1) common from $R_2$
$
=(a-1)^2\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
$
Expand along $\mathrm{C}_3$
$
\begin{aligned}
& =(a-1)^2[1\{(a+1)-2\}] \\
& =(a-1)^2[a+1-2] \\
& =(a-1)^3 \\
& =\text { RHS }
\end{aligned}
$
Hence, proved.
Question 10
Answer:
Let the determinant be:
$
D=\left|\begin{array}{ccc}
1 & \cos C & \cos B \\
\cos C & 1 & \cos A \\
\cos B & \cos A & 1
\end{array}\right|
$
Expand the determinant:
$
D=1-\cos ^2 A-\cos ^2 B-\cos ^2 C+2 \cos A \cos B \cos C
$
Use identity:
$
\cos ^2 A+\cos ^2 B+\cos ^2 C=1+2 \cos A \cos B \cos C
$
So:
$
D=1-(1+2 \cos A \cos B \cos C)+2 \cos A \cos B \cos C=0
$
Hence, proved.
$
D=0
$
Question 11
Answer:
The area of a triangle with the given vertices will be:
$\\\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|$
Given: Length of the sides of the equilateral triangle = a
Thus, the area
$=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$\therefore \frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$$
Square both sides
$\Rightarrow\left(\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|\right)^{2}=\left(\frac{\sqrt{3}}{4} \mathrm{a}^{2}\right)^{2}$
$\\\begin{aligned} &\Rightarrow\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3} \end{array}\right|^{2}=\frac{3}{4} \mathrm{a}^{4}\\ &\text { Hence Proved } \end{aligned}$
Question 12
Answer:
Given:
$
\left|\begin{array}{ccc}
1 & 1 & \sin 3 \theta \\
-4 & 3 & \cos 2 \theta \\
7 & -7 & -2
\end{array}\right|=0
$
Expand along Row 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{12}(-1)^{1+2}\left|\begin{array}{ll}
\mathrm{a}_{21} & a_{23} \\
\mathrm{a}_{31} & a_{33}
\end{array}\right| \\
& +\mathrm{a}_{13}(-1)^{1+3}\left|\begin{array}{cc}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 & \cos 2 \theta \\
-7 & -2
\end{array}\right|-1\left|\begin{array}{cc}
-4 & \cos 2 \theta \\
7 & -2
\end{array}\right|+\sin 3 \theta\left|\begin{array}{cc}
-4 & 3 \\
7 & -7
\end{array}\right|
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow(1)\{-6-\{(-7) \cos 2 \theta\}\}-1\{8-7 \cos 2 \theta\}+\sin 3 \theta\{28-21\}=0 \\
& \Rightarrow-6+7 \cos 2 \theta-8+7 \cos 2 \theta+7 \sin 3 \theta=0 \\
& \Rightarrow 14 \cos 2 \theta+7 \sin 3 \theta-14=0 \\
& \Rightarrow 2 \cos 2 \theta+\sin 3 \theta-2=0
\end{aligned}
$
We know,
$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^2 \theta \\
& \sin 3 \theta=3 \sin \theta-4 \sin ^3 \theta \\
& \Rightarrow 2\left(1-2 \sin ^2 \theta\right)+\left(3 \sin \theta-4 \sin ^3 \theta\right)-2=0 \\
& \Rightarrow 2-4 \sin ^2 \theta+3 \sin \theta-4 \sin ^3 \theta-2=0 \\
& \Rightarrow-2+4 \sin ^2 \theta-3 \sin \theta+4 \sin ^3 \theta+2=0 \\
& \Rightarrow \sin \theta\left(4 \sin \theta-3+4 \sin ^2 \theta\right)=0
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow \sin \theta\left(4 \sin ^2 \theta-6 \sin \theta+2 \sin \theta-3\right)=0 \\
& \Rightarrow \sin \theta[2 \sin \theta(2 \sin \theta-3)+1(2 \sin \theta-3)]=0 \\
& \Rightarrow \sin \theta(2 \sin \theta+1)(2 \sin \theta-3)=0 \\
& \Rightarrow \sin \theta=0 \text { or } 2 \sin \theta+1=0 \text { or } 2 \sin \theta-3=0 \\
& \Rightarrow \theta=n \pi \text { or } 2 \sin \theta=-1 \text { or } 2 \sin \theta=3 \\
& \Rightarrow \text { or } \sin \theta=-\frac{1}{2} \text { or } \sin \theta=\frac{3}{2} \\
& \Rightarrow \theta=\mathrm{n} \pi \text { or } \theta=\mathrm{m} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{6}\right) ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}
\end{aligned}
$
But it is not possible to have $\sin \theta=\frac{3}{2}$
Question 13
Answer:
Given:
$\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 4-x+4+x+4+x & 4+x & 4+x \\ 4+x+4-x+4+x & 4-x & 4+x \\ 4+x+4+x+4-x & 4+x & 4-x \end{array}\right|=0\\ &\text { Take, }(12+\mathrm{x}) \text { common from Row } 1\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x & 4+x \\ 1 & 4-x & 4+x \\ 1 & 4+x & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x+4+x & 4+x \\ 1 & 4-x+4+x & 4+x \\ 1 & 4+x+4-x & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1 & 8 & 4+x \\ 1 & 8 & 4-x \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1-1 & 8-8 & 4+x-(4-x) \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1-1 & 8-8-2 x & 4-x-4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 0 & -2 x & -2 x \end{array}\right|=0 \end{aligned}$
Expand along Column 1
$
\Rightarrow(12+x)[(1)\{0-(2 x)(-2 x)\}]=0
$
$
\Rightarrow(12+x)\left(4 x^2\right)=0
$
$
\Rightarrow 12+x=0 \text { or } 4 x^2=0
$
$
\Rightarrow x=-12 \text { or } x=0
$
Hence, the value of $\mathrm{x}=-12$ and 0
Question 14:
Answer:
$a_1, a_2, \ldots, a_r$ are in G.P
We know that, $a_{r+1}=A R^{(r+1)-1}=A R^r \ldots(i)$
[ $\because a_n=a r^{n-1}$, where $a=$ first term and $r=$ common ratio]
A is the first term of the G.P
R is the common ratio of G.P.
$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=\left|\begin{array}{ccc}
A R^r & A R^{r+4} & A R^{r+8} \\
A R^{r+6} & A R^{r+10} & A R^{r+14} \\
A R^{r+10} & A R^{r+16} & A R^{r+20}
\end{array}\right| \ldots[\text { from (i) }]
$
Taking $A R^r, A R^{r+6}$ and $A R^{r+10}$ common from $R_1, R_2$ and $R_3$
$
=\mathrm{AR}^{\mathrm{r}} \times \mathrm{AR}^{\mathrm{r}+6} \times \mathrm{AR}^{\mathrm{r}+10}\left|\begin{array}{ccc}
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^6 & \mathrm{AR}^{10}
\end{array}\right|
$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0 Rows 1 and 2 are identical.
$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=0
$
Hence Proved
Question 15
Answer:
(a + 5, a – 4), (a – 2, a + 3) and (a, a) are given.
We need to prove that they don’t lie in a straight line for any value of a
This can be done by proving the points to be the vertices of the triangle.
Area of triangle:-
$\\\begin{array}{l} \Delta=\frac{1}{2}\left|\begin{array}{ccc} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3} \end{array}\right| \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2 & a+3 & 1 \\ a & a & 1 \end{array}\right| \\ \text { Apply } R_{2} \rightarrow R_{2}-R_{1} \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2-a-5 & a+3-a+4 & 1-1 \\ a & a & 1 \end{array}\right| \\\\ =\frac{1}{2}\left| \begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a & a & 1 \end{array}\right| \end{array}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a-a-5 & a-a+4 & 1-1 \end{array}\right|\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ -5 & 4 & 0 \end{array}\right|\\ &\text { Expand along Column } 3\\ &=\frac{1}{2}[(1)(-28-(7)(-5))]\\ &=\frac{1}{2}(-28+35)=\frac{7}{2} \neq 0 \end{aligned}$
This proves that the given points form a triangle and therefore do not lie on a straight line.
Question 16
$\\\begin{aligned} &\Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\\ &=\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 1+\cos A & 1+\cos B-1-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)(\cos B+\cos A)+(\cos B-\cos A) & \cos ^{2} C+\cos C \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\begin{array}{|ccc|} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)[(\cos B+\cos A)+1] & \cos ^{2} C+\cos C \end{array} \mid=0\\ &\text { Take, cosB-cosA common from column } 2\\ &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & 1 & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B+\cos A)+1 & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\\ &\cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 1+\cos A & 1 & 1+\cos C-1-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C+\cos C-\cos ^{2} A-\cos A \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & \cos C-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C-\cos ^{2} A+\cos C-\cos A \end{array}\right|=0\\ &\Rightarrow(\cos B-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & (\cos C-\cos A) \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & (\cos C-\cos A)(\cos C+\cos A+1) \end{array}\right|=0\\ &\text { Take cosC-cosA common from Column } 3\\ &\Rightarrow(\cos B-\cos A)(\cos C-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & 1 \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos C+\cos A+1 \end{array}\right|=0 \end{aligned}$
Expand along Row 1
$
\begin{aligned}
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[(1)\{\cos C+\cos A+1-(\cos B+\cos A+1)\}]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[\cos C+\cos A+1-\cos B-\cos A-1]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)(\cos C-\cos B)=0 \\
& \Rightarrow \cos B-\cos A=0 \backslash \text { or } \cos C-\cos A=0 \backslash \text { or } \cos C-\cos B=0 \\
& \Rightarrow \cos B=\cos A \text { or } \cos C=\cos A \text { or } \cos C=\cos B \\
& \Rightarrow B=A \text { or } C=A \text { or } C=B
\end{aligned}
$
$
\text { Hence, } \triangle A B C \text { is an isosceles triangle. }
$
Question 17
Answer:
To find $\operatorname{adj} \mathrm{A}$
$
\begin{aligned}
& a_{11}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{12}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{13}=\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=1-0=1 \\
& a_{21}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{22}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{23}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \mathrm{a}_{31}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1-0=1 \\
& \mathrm{a}_{32}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \therefore \text { adjA }=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$
$
\therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]}{2}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$
$
A^{-1}=\frac{A^2-31}{2}
$
Now, we need to prove that.t
$
\begin{aligned}
& A^2=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0+1+1 & 0+0+1 & 0+1+0 \\
0+0+1 & 1+0+1 & 1+0+0 \\
0+1+0 & 1+0+0 & 1+1+0
\end{array}\right] \\
& A^2=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \therefore \frac{A^2-3 I}{2}=\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right\} \\
& 2-3 \\
& =\frac{1}{2}\left\{\left[\begin{array}{cc}
1 \\
1 & 2-3 \\
1 & 1 \\
1 & 1
\end{array}\right]\right\} \\
& \left.=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\right\} \\
& =A^{-1}
\end{aligned}
$
Hence Proved
Question 18
Answer:
Find IAI Expand IAI along Column 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
a_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & a_{23}
\end{array}\right| \\
& \left.|\mathrm{A}|=(1)\left|\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-1 & 1
\end{array}\right|-(-2)|+0| \begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array} \right\rvert\, \\
& =(-1+2)+2(0)+0 \\
& =1
\end{aligned}
$
To find adj $A$
$
\begin{aligned}
& a_{11}=\left|\begin{array}{cc}
-1 & -2 \\
-1 & 1
\end{array}\right|=-1-2=-3 \\
& a_{12}=-\left|\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}\right|=-(-2+0)=2 \\
& a_{13}=\left|\begin{array}{cc}
-2 & -1 \\
0 & -1
\end{array}\right|=2+0=2 \\
& a_{21}=-\left|\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right|=-(2+0)=-2 \\
& a_{22}=\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& a_{23}=-\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right|=-(-1)=1 \\
& a_{31}=\left|\begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array}\right|=-4 \\
& a_{32}=-\left|\begin{array}{cc}
1 & 0 \\
-2 & -2
\end{array}\right|=-(-2)=2 \\
& a_{33}=\left|\begin{array}{cc}
1 & 2 \\
-2 & -1
\end{array}\right|=-1+4=3
\end{aligned}
$
$
\begin{aligned}
& \therefore \operatorname{adj} A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 3
\end{array}\right]}{1}=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]
\end{aligned}
$
According to the linear equation:
$
x-2 y=10
$
$
2 x-y-z=8
$
$
-2 y+z=7
$
We know that, $\mathrm{AX}=\mathrm{B}$
$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]
$
Here,
So, transpose of $A^{-1}$
$
\begin{aligned}
& A^{-1}=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right] \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$\begin{aligned} & \Rightarrow\left[\begin{array}{l}x \\ y \\ z \\ x \\ y \\ y\end{array}\right]=\left[\begin{array}{lll}-3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3\end{array}\right]\left[\begin{array}{l}10 \\ 8 \\ -30+16+14 \\ -20+8+7 \\ -40+16+21\end{array}\right] \\ & \therefore x=0, y=-5 \text { and } z=-3\end{aligned}$
Question 19
Answer:
Given system:
$
\begin{array}{r}
3 x+2 y-2 z=3 \\
x+2 y+3 z=6 \\
2 x-y+z=2
\end{array}
$
Matrix form:
$
\left[\begin{array}{ccc}
3 & 2 & -2 \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]
$
The inverse of the coefficient matrix:
$
A^{-1}=\left[\begin{array}{ccc}
\frac{7}{17} & \frac{8}{17} & -\frac{4}{17} \\
\frac{1}{17} & \frac{5}{17} & \frac{6}{17} \\
\frac{5}{17} & -\frac{2}{17} & \frac{3}{17}
\end{array}\right]
$
Multiply:
$
X=A^{-1} B=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$
Final Answer:
$
x=1, \quad y=2, \quad z=1
$
Question 20
Answer:
$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \\
& \therefore B A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+4 & 2-2 & -4+4 \\
4-12+8 & 4+6-4 & -8-12+20 \\
-4+4 & 2-2 & -4+10
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right] \\
& =6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& B A=6 I \ldots(i)
\end{aligned}
$
Now, the given system of equations is:
$
y+2 z=7,
$
$
x-y=3
$
$
2 x+3 y+4 z=17
$
So,
$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right]
$
Apply, $\mathrm{R}_1 \leftrightarrow \mathrm{R}_2$
$
\begin{aligned}
& \mathrm{R}_2 \leftrightarrow \mathrm{R}_3 \\
& {\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]}
\end{aligned}
$
So, $B A=6 I[$ from eg(i) $]$
$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
12 \\
-6 \\
24
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]}
\end{aligned}
$
$\therefore x=2, y=-1$ and $z=4$
Question 21
Answer:
$
A=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3$
$
=\left|\begin{array}{lll}
a+b+c & b & c \\
b+a+c & c & a \\
c+a+b & a & b
\end{array}\right|
$
Take $(a+b+c)$ common from Column 1
$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|
$
Expand along Column 1
$
\begin{aligned}
& =(a+b+c)\left[(1)\left(b c-a^2\right)-(1)\left(b^2-a c\right)+(1)\left(b a-c^2\right)\right] \\
& =(a+b+c)\left[b c-a^2-b^2+a c+a b-c^2\right] \\
& =(a+b+c)\left[-\left(a^2+b^2+c^2-a b-b c-a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left(2 a^2+2 b^2+2 c^2-2 a b-2 b c-2 a c\right) \\
& =-\frac{1}{2}(a+b+c)\left[\left(a^2+b^2-2 a b\right)+\left(b^2+c^2-2 b c\right)+\left(c^2+a^2-2 a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right] \\
& {\left[\because(a-b)^2=a^2+b^2-2 a b\right]}
\end{aligned}
$
Given that $\Delta=0$
$
\Rightarrow-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0 $
$\Rightarrow(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0$
$\text {Either }(a+b+c)=0 \text { or }(a-b)^2+(b-c)^2+(c-a)^2=0$
$\text {but it is given that }(a+b+c) \neq 0 \therefore(a-b)^2+(b-c)^2+(c-a)^2=0 $
$\Rightarrow a-b=b-c=c-a=0 \Rightarrow a=b=c
$
Hence Proved
Question 22
Answer:
$\left|\begin{array}{lll}b c-a^2 & c a-b^2 & a b-c^2 \\ c a-b^2 & a b-c^2 & b c-a^2 \\ a b-c^2 & b c-a^2 & c a-b^2\end{array}\right|$ is given.
Apply, $R_1 \rightarrow R_1-R_2$,
$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathrm{b} c-\mathrm{a}^2-\mathrm{ca}+\mathrm{b}^2 & \mathrm{ca}-\mathrm{b}^2-\mathrm{ab}+\mathrm{c}^2 & \mathrm{ab}-\mathrm{c}^2-\mathrm{bc}+\mathrm{a}^2 \\
\mathrm{ca}-\mathrm{b}^2 & \mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 \\
\mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 & \mathrm{ca}-\mathrm{b}^2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
(b c-c a)+\left(b^2-a^2\right) & (c a-a b)+\left(c^2-b^2\right) & (a b-b c)+\left(a^2-c^2\right) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
c(b-a)+(b-a)(b+a) & a(c-b)+(c-b)(c+b) & b(a-c)+(a-c)(a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
=\left|\begin{array}{ccc}
(b-a)(c+b+a) & (c-b)(a+c+b) & (a-c)(b+a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 1
$
=(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
$
Apply $R_2 \rightarrow R_2-R_3$
$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2-a b+c^2 & a b-c^2-b c+a^2 & b c-a^2-c a+b^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
(c-b)(a+b+c) & (a-c)(a+b+c) & (b-a)(a+b+c) \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 2
$
=(a+b+c)^2\left|\begin{array}{ccc}
b-a+c-b+a-c & (c-b) & (a-c) \\
c-b+a-c+b-a & (a-c) & (b-a) \\
a b-c^2+b c-a^2+c a-b^2 & b c-a^2 & c a-b^2
\end{array}\right|
$
Expand along Column 1
$
\begin{aligned}
& =(a+b+c)^2\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2 \\
& =(a+b+c)(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2
\end{aligned}
$
The determinant is divisible by $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and the quotient is $(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2$
Question 23
Answer:
Given LHS,
$
\left|\begin{array}{ccc}
x a & y b & z c \\
y c & z a & x b \\
z b & x c & y a
\end{array}\right|
$
Expand along Row 1
$
\begin{aligned}
& =x a\{(z a)(y a)-(x c)(x b)\}-(y b)\{(y c)(y a)-(z b)(x b)\}+(z c)\{(y c)(x c)- \\
& (z b)(z a)\} \\
& =x a\left\{a^2 y z-x^2 b c\right\}-y b\left\{y^2 a c-b^2 x z\right\}+z c\left\{c^2 x y-z^2 a b\right\} \\
& =a^3 x y z-x^3 a b c-y^3 a b c+b^3 x y z+c^3 x y z-z^3 a b c \\
& =x y z\left(a^3+b^3+c^3\right)-a b c\left(x^3+y^3+z^3\right)
\end{aligned}
$
Given $x+y+z=0$
$
\begin{aligned}
& \Rightarrow x^3+y^3+z^3=3 x y z=x y z\left(a^3+b^3+c^3\right)-a b c(3 x y z)=x y z\left(a^3+b^3+c^3-3 a b c\right) \\
& =x y z\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
\end{aligned}
$
Question 24
If $\left|\begin{array}{cc} 2 \mathrm{x} & 5 \\ 8 & \mathrm{x} \end{array}\right|=\left|\begin{array}{cc} 6 & -2 \\ 7 & 3 \end{array}\right|$ then value of x is
A. 3
B. ± 3
C. ± 6
D. 6
Answer:
Given:
$
\begin{aligned}
& \left|\begin{array}{cc}
2 \mathrm{x} & 5 \\
8 & \mathrm{x}
\end{array}\right|=\left|\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right| \\
& A=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$
Then the determinant of A is
$
\begin{aligned}
& |\mathrm{A}|=\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc} \\
& \Rightarrow(2 x)(x)-(5)(8)=(6)(3)-(7)(-2)\\& \Rightarrow 2 x^2-40=18-(-14)\\ & \Rightarrow 2 x^2-40=18+14\\& \Rightarrow x^2-20=9+7 \\ &\Rightarrow x^2-20=16 \\& \Rightarrow x^2=16+20\\& \Rightarrow x^2=36\\& \Rightarrow x=\sqrt{36} \\&\Rightarrow x= \pm 6
\end{aligned}
$
Question 25
The value of determinant $\left|\begin{array}{lll} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{array}\right|$
A. $a^3 + b^3 + c^3$
B. 3 bc
C. $a^3 + b^3 + c^3-3abc$
D. none of these
Answer:
C)
Given:
$
\left|\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right|
$
Apply C2 $\rightarrow \mathrm{C} 2+\mathrm{C} 3$
$
=\left|\begin{array}{lll}
a-b & a+b+c & a \\
b-c & c+a+b & b \\
c-a & a+b+c & c
\end{array}\right|
$
Take $(a+b+c)$ common from Column 2
$
=(a+b+c)\left|\begin{array}{lll}
a-b & 1 & a \\
b-c & 1 & b \\
c-a & 1 & c
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1-\mathrm{C}_3$
$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
a-b-a & 1 & a \\
b-c-b & 1 & b \\
c-a-c & 1 & c
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
-b & 1 & a \\
-c & 1 & b \\
-a & 1 & c
\end{array}\right|
\end{aligned}
$
Expand along Row 1
$
\begin{aligned}
& =(a+b+c)\left[(-b)\{c-b\}-(1)\left\{-c^2-(-a b)\right\}+a\{-c-(-a)\}\right] \\
& =(a+b+c)\left(-b c+b^2+c^2-a b-a c+a^2\right)
\end{aligned}
$
$\begin{aligned} & =a\left(-b c+b^2+c^2-a b-a c+a^2\right)+b\left(-b c+b^2+c^2-a b-a c+a^2\right)+c(-b c+ \\ & \left.b^2+c^2-a b-a c+a^2\right) \\ & =-a b c+a b^2+a c^2-a^2 b-a^2 c+a^3-b^2 c+b^3+b c^2-a b^2-a b c+a^2 b-b c^2+ \\ & b^2 c+c^3-a b c-a c^2+a^2 c \\ & =a^3+b^3+c^3-3 a b c\end{aligned}$
Question 26
The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
A. 9
B. 3
C. – 9
D. 6
Answer:
B)
$\\ \begin{aligned} &\text { The area of a triangle with vertices }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \text { is given by }\\ &\Delta=\frac{1}{2}\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1 \end{array}\right|\\ &\Delta=\frac{1}{2}\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=9\\ &\Delta=\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=18 \end{aligned}$
Expand along Column 2
$
\Rightarrow-(k)\{-3-3\}=18
$
$
\Rightarrow-k(-6)=18
$
$
\Rightarrow 6 k=18
$
$
\Rightarrow k=3
$
Question 27
A. abc (b–c) (c – a) (a – b)
B. (b–c) (c – a) (a – b)
C. (a + b + c) (b – c) (c – a) (a – b)
D. None of these
Answer:
D)
Given:
$\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$
$\\=\left|\begin{array}{lll}b(b-a) & b-c & c(b-a) \\ a(b-a) & a-b & b(b-a) \\ c(b-a) & c-a & a(b-a)\end{array}\right|$
Take (b-a) common from both Columns 1 and 3
$=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Apply
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3}\\$ $=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b}-\mathrm{c} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a}-\mathrm{b} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c}-\mathrm{a} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Whenever any two columns or rows in any determinant are equal, its value becomes = 0
Here Columns 1 and 2 are identical$\therefore\left|\begin{array}{lll}b^2-a b & b-c & b c-a c \\ a b-a^2 & a-b & b^2-a b \\ b c-a c & c-a & a b-a^2\end{array}\right|=0$
Question 28
A. 0
B. –1
C. 1
D. None of these
Answer:
C)
Given
$\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$
$\begin{aligned} &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{lll} \sin x+\cos x+\cos x & \cos x & \cos x \\ \cos x+\sin x+\cos x & \sin x & \cos x \\ \cos x+\cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\Rightarrow\left|\begin{array}{ccc} 2 \cos x+\sin x & \cos x & \cos x \\ 2 \cos x+\sin x & \sin x & \cos x \\ 2 \cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\text { Take }(2 \cos x+\sin x) \text { common from Column } 1\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1-1 & \sin x-\cos x & \cos x-\cos x \\ 1 & \cos x & \sin x \end{array}\right|=0 \end{aligned}$
$\\\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1 & \cos x & \sin x \end{array}\right|=0 \\ \text { Apply } R_{3} \rightarrow R_{3}-R_{1} \\ \Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1-1 & \cos x-\cos x & \sin x-\cos x \end{array}\right|=0 \\$
$\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x \end{array}\right|=0$
Expand along Column 1
$
\begin{aligned}
& (2 \cos X+\sin X)[(1)\{(\sin X-\cos X)(\sin X-\cos X)\}] \\
& \Rightarrow(2 \cos X+\sin X)(\sin X-\cos X)^2=0 \\
& \Rightarrow 2 \cos X=-\sin X \operatorname{or}(\sin X-\cos X)^2=0 \\
& \Rightarrow 2=-\frac{\sin \mathrm{x}}{\cos \mathrm{x}} \text { or } \sin \mathrm{x}=\cos \mathrm{x} \\
& \Rightarrow \tan x=-2 \text { ortan } x=1\left[\because \tan x=\frac{\sin x}{\cos x}\right] \\
& \text { buttan } x=-2 \text { isnotpossibleasfor }-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
\end{aligned}
$
$
\text { So, } \tan x=1
$
$
\therefore x=\frac{\pi}{4}
$
Only one real and distinct root occurs.
Question 29
B. –1
C. 1
D. None of these
Answer:
A)
Given:
$
\left.\left|\begin{array}{ccc}
-1 & \cos \mathrm{C} & \cos \mathrm{~B} \\
\cos \mathrm{C} & -1 & \cos \mathrm{~A} \\
\cos \mathrm{~B} & \cos \mathrm{~A} & -1
\end{array}\right| \right\rvert\,
$
Expand along Column 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{cc}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{ll}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & \mathrm{a}_{23}
\end{array}\right| \\
& \Delta=(-1)\left|\begin{array}{cc}
-1 & \cos A \\
\cos A & -1
\end{array}\right|-\cos C\left|\begin{array}{cc}
\cos C & \cos B \\
\cos A & -1
\end{array}\right|+\cos B\left|\begin{array}{cc}
\cos C & \cos B \\
-1 & \cos A
\end{array}\right| \\
& =\left[(-1)\left\{1-\cos ^2 A\right\}-\cos C\{-\cos C-\cos A \cos B\}+\cos B\{\cos A \cos C+\right. \\
& \cos B\}]
\end{aligned}
$
$
=-1+\cos ^2 A+\cos ^2 C+\cos A \cos B \cos C+\cos A \cos B \cos C+\cos ^2 B
$
$
=-1+\cos ^2 A+\cos ^2 B+\cos ^2 C+2 \cos A \cos B \cos C
$
Using the formula
$
\begin{aligned}
& 1+\cos 2 A=2 \cos ^2 A \\
& =-1+\frac{1+\cos 2 \mathrm{~A}}{2}+\frac{1+\cos 2 \mathrm{~B}}{2}+\frac{1+\cos 2 \mathrm{C}}{2}+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}
\end{aligned}
$
Taking L.C.M, we get
$
=\frac{-2+1+\cos 2 A+1+\cos 2 B+1+\cos 2 C+4 \cos A \cos B \cos C}{2}
$
$
\begin{aligned}
& =\frac{1+(\cos 2 A+\cos 2 B)+\cos 2 C+4 \cos C \cos A \cos B}{2} \\
& \text { Now use: } \cos (A+B) \cos (A-B)=2 \cos A \cos B \\
& \text { so, } \cos 2 A+\cos 2 B=2 \cos (A+B) \cos (A-B) \\
& =\frac{1+\cos 2 C+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{1+2 \cos ^2 C-1+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 \mathrm{C}+[2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})\}+4 \cos \mathrm{~A} \cos \mathrm{~B} \cos C}{2} \ldots \text { (i) }
\end{aligned}
$
We know that $A, B, C$ are angles of triangle
$
\begin{aligned}
& \Rightarrow A+B+C=\pi \\
& \Rightarrow A+B=\pi-C \\
& =\frac{2 \cos ^2 C+\{2 \cos (\pi-C) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 C+\{-2 \cos C \cos (A-B)\}+4 \cos A \cos B \cos C}{2}[\because \cos (\pi-x)=-\cos x] \\
& =\frac{-2 \cos C\{\cos (A-B)-\cos C\}+4 \cos A \cos B \cos C}{2}
\end{aligned}
$
$=-\cos C\{\cos (A-B)-\cos C\}+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)-\cos \{\pi-(A+B)\}]+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)+\cos (A+B)]+2 \cos A \cos B \cos C=-\cos C[2 \cos A \cos B]+2 \cos A \cos B \cos C=0$
Question 30
Let $f(t)=\left|\begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t \end{array}\right|$ then $\lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}$ is equal to
A. 0
B. –1
C. 2
D. 3
Answer:
Given:
$
f(t)=\left|\begin{array}{ccc}
\cos t & t & 1 \\
2 \sin t & t & 2 t \\
\sin t & t & t
\end{array}\right|
$
Divide $\mathrm{R}_2$ and $\mathrm{R}_3$ by $t$
$
f(t)=t^2\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & \frac{t}{t} & \frac{2 t}{t} \\
\frac{\sin t}{t} & \frac{t}{t} & \frac{t}{t}
\end{array}\right|
$
$
\Rightarrow \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\frac{\mathrm{t}^2}{\mathrm{t}^2}\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & 1 & 2 \\
\frac{\sin t}{t} & 1 & 1
\end{array}\right|
$
$
\Rightarrow \lim _{t \rightarrow 0} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\left|\begin{array}{lll}
\lim _{t \rightarrow 0} \cos t & \lim _{t \rightarrow 0} t & \lim _{t \rightarrow 0} 1 \\
\lim _{t \rightarrow 0} \frac{2 \sin t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 2 \\
\lim _{t \rightarrow 0} \frac{\sin ^t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 1
\end{array}\right|
$
$
=\left|\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right|\left(\because \lim _{t \rightarrow 0} \frac{\sin t}{t}=1\right)
$
Expand along Row 1
$
\begin{aligned}
& =(1)(1-2)+(1)(2-1) \\
& =-1+1
\end{aligned}
$
$=0$
Question 31
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{2}$
D. $\frac{2 \sqrt{3}}{4}$
Answer:
A)
We have:
$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1+\cos \theta & 1 & 1
\end{array}\right|
$
Apply, $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$ and $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$
$
\Rightarrow \Delta=\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & \sin \theta & 1 \\
\cos \theta & 0 & 1
\end{array}\right|
$
$=0-0+1(\sin \theta \cdot \cos \theta)$ Multiply and divide by $2,=\frac{1}{2}(2 \sin \theta \cos \theta)$ We already know that $\underline{2 \sin \theta \cos \theta=\sin 2 \theta}=\frac{1}{2}(\sin 2 \theta)$
The maximum value of $: \sin 2 \theta$ is $1, \theta=45^{\circ}$.
$
\begin{aligned}
& \therefore \Delta=\frac{1}{2}\left(\sin 2\left(45^{\circ}\right)\right)=\frac{1}{2} \sin 90^{\circ}=\frac{1}{2}(1) \\
& \therefore \Delta=\frac{1}{2}
\end{aligned}
$
Question 32
A. f (a) = 0
B. f (b) = 0
C. f (0) = 0
D. f (1) = 0
Answer:
C)
We have:
$
f(x)=\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|
$
If we put $x=a$
$
\begin{aligned}
& f(a)=\left|\begin{array}{ccc}
0 & a-a & a-b \\
a+a & 0 & a-c \\
a+b & a+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & a-c \\
a+c & 0
\end{array}\right|-0\left|\begin{array}{cc}
2 a & a-c \\
a+b & 0
\end{array}\right|+(a-b)\left|\begin{array}{cc}
2 a & 0 \\
a+b & a+c
\end{array}\right| \\
& =0-0+(a-b)[2 a(a+c)-0(a+b)]=(a-b)\left[2 a^2+2 a c-0\right]=(a-b)\left(2 a^2+2 a c\right) \neq 0 \text { If } x=b \\
& f(b)=\left|\begin{array}{ccc}
0 & b-a & b-b \\
b+a & 0 & b-c \\
b+b & b+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & b-c \\
b+c & 0
\end{array}\right|-(b-a)\left|\begin{array}{cc}
b+a & b-c \\
2 b & 0
\end{array}\right|+0\left|\begin{array}{cc}
b+a & 0 \\
2 b & b+c
\end{array}\right| \\
& =0-(b-a)[(b+a)(0)-(b-c)(2 b)]+0=-(b-a)\left[0-2 b^2+2 b c\right]=(a-b)\left(2 b^2-2 b c\right) \neq 0
\end{aligned}
$
If $x=0$ according to the given Question
$
f(0)=\left|\begin{array}{ccc}
0 & 0-a & 0-b \\
0+a & 0 & 0-c \\
0+b & 0+c & 0
\end{array}\right|
$
$
\begin{aligned}
& =0\left|\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right|-(-a)\left|\begin{array}{cc}
a & -c \\
b & 0
\end{array}\right|+(-b)\left|\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right| \\
& =0+a[a(0)-(-b c)]-b[a c-b(0)]
\end{aligned}
$
$
=a[b c]-b[a c]
$
$
=a b c-a b c=0
$
Then the condition is satisfied.
Question 33
If $A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$
then $A^{-1}$ exists if
A. λ = 2
B. λ ≠ 2
C. λ ≠ -2
D. None of these
Answer:
D)
We have
$A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$
$
\begin{aligned}
& \Rightarrow|A|=2(6-5)-\lambda(0-5)+(-3)(0-2) \\
& =2+5 \lambda+6 \\
& =5 \lambda+8
\end{aligned}
$
The inverse of A exists only if A is nonsingular. ie $|A| \neq 0$.
$
\begin{aligned}
& .5 \lambda+8 \neq 0 \\
& \Rightarrow 5 \lambda \neq-8
\end{aligned}
$
$\therefore \lambda \neq-\frac{8}{5}$
So, $A^{-1}$ exists if and only if $\lambda \neq-\frac{8}{5}$
Question 34
If A and B are invertible matrices, then which of the following is not correct?
A. $adj A = |A|. A^{-1}$
B. $det (A)^{-1} = [det (A)]^{-1}$
C. $(AB)^{-1} = B^{-1} A^{-1}$
D. $(A + B)^{-1} = B^{-1} + A^{-1}$
Answer:
D)
We know that A and B are invertible matrices
$
\begin{aligned}
& \text { Consider }(A B) B^{-1} A^{-1} \Rightarrow(A B) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=(A I) A^{-1}=A A^{-1}=I \Rightarrow(A B)^{-1}=B^{-1} A^{-1} \ldots \text { option }(C) \\
& \text { Also } A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I| \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \Rightarrow|\mathrm{~A}|^{-1}=\frac{1}{|\mathrm{~A}|} \\
& \therefore \operatorname{det}(A)^{-1}=[\operatorname{det}(A)]^{-1} \ldots(B)
\end{aligned}
$
We know that $\frac{|\mathrm{A}|^{-1}}{\operatorname{adj} \mathrm{~A}} \frac{|\vec{A}|}{\text { We }}$
$\Rightarrow \operatorname{adj} A=|A| \cdot A^{-1} \ldots$ option $(A)$
$
\Rightarrow(\mathrm{A}+\mathrm{B})^{-1}=\frac{1}{|\mathrm{~A}+\mathrm{B}|} \operatorname{adj}(\mathrm{A}+\mathrm{B})
$
But $\mathrm{B}^{-1}+\mathrm{A}^{-1}=\frac{1}{|\mathrm{~B}|} \operatorname{adj} \mathrm{B}+\frac{1}{|\mathrm{~A}|}$ adj A
$
\therefore(A+B)^{-1} \neq B^{-1}+A^{-1}
$
Question 35
If x, y, z are all different from zero and ,$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$, then value of $x^{-1} + y^{-1} + z^{-1}$ is
$\\A. x y z\\B. x^{-1} y^{-1} z^{-1}\\C. -x -y -z\\D. -1$
Answer:
We have
$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$
$\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \text { and } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc} x & 0 & 1 \\ 0 & y & 1 \\ -z & -z & 1+z \end{array}\right|=0$
Expand along Row 1
$
\Rightarrow x[y(1+z)+z]-0+1(y z)=0
$
$
x y+x y z+x z+y z=0
$
Divide both sides by XYZ
$\\ \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1=0 \\ \therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x^{-1}+y^{-1}+z^{-1}=-1$
Question 36
The value of the determinant $\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right|$ is
A. $9x^2 (x + y)$
B. $9y^2 (x + y)$
C. $3y^2 (x + y)$
D. $7x^2 (x + y)$
Answer:
B)
Matrix given:
$
\begin{aligned}
& \left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right| \\
& =\mathrm{x}\left|\begin{array}{cc}
\mathrm{x} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+2 \mathrm{y} & \mathrm{x}
\end{array}\right|-(\mathrm{x}+\mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}
\end{array}\right|+(\mathrm{x}+2 \mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}+2 \mathrm{y}
\end{array}\right| \\
& =x\left[x^2-(x+y)(x+2 y)\right]-(x+y)\left[(x+2 y)(x)-(x+y)^2\right]+(x+2 y)[(x+ \\
& \left.2 y)^2-x(x+y)\right] \\
& =x\left[x^2-x^2-3 x y-2 y^2\right]-(x+y)\left[x^2+2 x y-x^2-2 x y-y^2\right]+(x+2 y)\left[x^2+\right. \\
& \left.4 x y+4 y^2-x^2-x y\right] \\
& =x\left[-3 x y-2 y^2\right]-(x+y)\left[-y^2\right]+(x+2 y)\left[3 x y+4 y^2\right] \\
& =-3 x^2 y-2 x y^2+x y^2+y^3+3 x^2 y+4 x y^2+6 x y^2+8 y^3 \\
& =9 y^3+9 x y^2 \\
& =9 y^2(x+y)
\end{aligned}
$
Question 37
There are two values of a which makes determinant, $\Delta=\left|\begin{array}{ccc} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a \end{array}\right|=86$ ,then sum of these number is
A. 4
B. 5
C. -4
D. 9
Answer:
C)
We have:
$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2 a
\end{array}\right|=86 \\
& 1\left|\begin{array}{cc}
\mathrm{a} & -1 \\
4 & 2 \mathrm{a}
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -1 \\
0 & 2 \mathrm{a}
\end{array}\right|+5\left|\begin{array}{cc}
2 & \mathrm{a} \\
0 & 4
\end{array}\right|=86 \\
& 1\left[2 a^2-(-4)\right]+2[4 a-0]+5[8-0]=86
\end{aligned}
$
$
1\left[2 a^2+4\right]+2[4 a]+5[8]=86
$
$
2 a^2+4+8 a+40=86
$
$
2 a^2+8 a+44=86
$
$
2 a^2+8 a=42
$
$
2\left(a^2+4 a\right)=42
$
$
\left(a^2+4 a\right)=21 \Rightarrow a^2+4 a-21=0 \Rightarrow(a+7)(a-3)=0 \therefore a=-7 \text { or } 3
$
The sum of -7 and $3=-4$
Question 38
Fill in the blanks
If A is a matrix of order 3 × 3, then |3A| = ___.
Answer:
If A is a matrix of order $3 \times 3$, then $|3 A|=27|A|$.
We know:
$
\begin{aligned}
& \text { if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k \cdot A|=k^3|A| \\
& \therefore|3 A|=3^3|A|=27|A|
\end{aligned}
$
Question 39
Fill in the blanks
If A is an invertible matrix of order 3 × 3, then |$A^{-1}$|= ____.
Answer:
If A is an invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=|A|^{-1}$
Given
$\mathrm{A}=$ invertible matrix $3 \times 3$
$
\begin{aligned}
& A A^{-1}=I \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \therefore\left|A^{-1}\right|=\frac{1}{|A|}
\end{aligned}
$
Question 40
Answer:
$\\ \begin{aligned} &\text { Given }\\ &\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\\ &=\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2}-\left(2^{x}-2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2}-\left(3^{x}-3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2}-\left(4^{x}-4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply Formula: }(a+b)^{2}-(a-b)^{2}=4 a b \text { . } \end{aligned}$
$\\ \begin{aligned} &=\left|\begin{array}{lll} 4\left(2^{x}\right)\left(2^{-x}\right) & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4\left(3^{x}\right)\left(3^{-x}\right) & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4\left(4^{x}\right)\left(4^{-x}\right) & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &=\left|\begin{array}{lll} 4 & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4 & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4 & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Column } 1 \text { and } 3 \text { thus become proportional }\\ &\therefore\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|=0 \end{aligned}$
Question 41
If cos 2θ = 0, then $\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=$
Answer:
We know
$
\cos 2 \theta=0 \Rightarrow \cos 2 \theta=\cos \pi / 2 \Rightarrow 2 \theta=\pi / 2 \therefore \theta=\pi / 4
$
$\\ \begin{aligned} &\therefore \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \text { and } \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\\ &\text { Then }\\ &\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\left|\begin{array}{ccc} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right|^{2}\\ &\Rightarrow\left[0-\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)+\frac{1}{\sqrt{2}}\left(-\frac{1}{2}\right)\right]^{2}=\left[\frac{-2}{2 \sqrt{2}}\right]^{2}=\left[-\frac{1}{\sqrt{2}}\right]^{2}\\ &\therefore\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\frac{1}{2} \end{aligned}$
Question 42
Fill in the blanks
If A is a matrix of order 3 × 3, then $(A^2)^{-1 }$= ____.
Answer:
For matrix A is of order 3X3
$\begin{aligned} \left(A^{2}\right)^{-1} &=(A \cdot A)^{-1} \\ &=A^{-1} \cdot A^{-1} \\ &=\left(A^{-1}\right)^{2} \end{aligned}$
Question 43
If A is a matrix of order 3 × 3, then the number of minors in the determinant of A is
Answer:
If matrix A is of order 3X3 then
Number of Minors of IAI = 9 as there are 9 elements in a 3x3 matrix
Question 44
Answer:
If, $A=\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$
then $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$
We know that the determinant is equal to the sum of the corresponding cofactors of any row or column.
Question 45
Answer:
We know that
$
\begin{aligned}
& x=-9 \text { is a root of }\left|\begin{array}{lll}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right|=0 \\
& \Rightarrow \mathrm{x}\left|\begin{array}{ll}
\mathrm{x} & 2 \\
6 & \mathrm{x}
\end{array}\right|-3\left|\begin{array}{ll}
2 & 2 \\
7 & \mathrm{x}
\end{array}\right|+7\left|\begin{array}{ll}
2 & \mathrm{x} \\
7 & 6
\end{array}\right|=0
\end{aligned}
$
$\Rightarrow x\left[x^2-12\right]-3[2 x-14]+7[12-7 x]=0$
$ \Rightarrow x^3-12 x-6 x+42+84-49 x=0$
$ \Rightarrow x^3-67 x+126=0(x+9)(2-x)(7-x)=0$
Here, $126 \times 1=9 \times 2 \times 7$
For x $=2,$
$ \Rightarrow 2^3-67 \cdot 2+126=134-134=0 $
$\therefore x=2$ is one root.
For $=7,$
$ \Rightarrow 7^3-677-7+126=469-469=0; x=7$ will be another root.
Question 46
Answer:
$
\begin{aligned}
& =(z-x)[1[0-(y-z)(z-y)]-(x y z)[0-(y-z)]+(x-z)[(z-y)-0]] \\
& =(z-x)(z-y)(-y+z-x y z+x-z) \\
& =(z-x)(z-y)(x-y-x y z) \\
& =(z-x)(y-z)(y-x+x y z)
\end{aligned}
$
Question 47
Answer:
Given $f(x)=\left|\begin{array}{ccc}(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{array}\right|$
$ \Rightarrow \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}(1+x)^{41}\left|\begin{array}{ccc}1 & (1+x)^2 & (1+x)^6 \\ 1 & (1+x)^6 & (1+x)^{11} \\ 1 & (1+x)^2 & (1+x)^6\end{array}\right|$
We can see that row1 and row3 are identical
$\therefore \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}$
$\therefore A=0$
Question 48
Answer:
$\left(A^3\right)^{-1}=\left(A^{-1}\right)^3$ Because, $\left(A^n\right)^{-1}=\left(A^{-1}\right)^n$, wheren $\in \mathbb{N}$.
Question 49
Answer:
For a non-singular matrix, aA is invertible such that
$\\ (\mathrm{aA})\left(\frac{1}{\mathrm{a}} \mathrm{A}^{-1}\right)=\left(\mathrm{a} \cdot \frac{1}{\mathrm{a}}\right)\left(\mathrm{AA}^{-1}\right)$
$ \text {i.e. } \quad(\mathrm{aA})^{-1}=\frac{1}{\mathrm{a}} \mathrm{A}^{-1} \\$
here a = any non-zero scalar.
Here, A should be a nonsingular matrix, which is not given in the statement.
Thus, the statement given in the question is false.
Question 50
State True or False for the statements
$|A^{-1}| \neq |A|^{-1}$, where A is non-singular matrix.
Answer:
We know A is a non-singular Matrix
In that case: $A A^{-1}=I$.
$
\Rightarrow|A|\left|A^{-1}\right|=1 \therefore\left|A^{-1}\right|=1 /|A|=|A|^{-1}
$
Thus, the statement is false.
Question 51
Answer:
We know that:
$
\begin{aligned}
& |A B|=|A| \cdot|B| \text { and if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k . A|=k^3|A| . \\
& \therefore|3 A|=27|A B|=27|A||B|=27 \cdot 5 \cdot 3=405
\end{aligned}
$
Hence, the statement given in question is true.
Question 52
Answer:
Given $\therefore|A|=12$
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
$
\text { Forn }=3,|\operatorname{adj} A|=|A|^{3-1}=|A|^2=12^2=144
$
Thus, the given statement is true.
Question 53
Answer:
$\\ \begin{aligned} &\text { since } a, b, c \text { are in } A P, 2 b=a+c .\\ &\therefore\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0\\ &A p p l y_{i}, R_{1} \rightarrow R_{1}+R_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 2 x+4 & 2 x+6 & 2 x+a+c \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0 \end{aligned}$
Since 2b = a + c,
$\Rightarrow\left|\begin{array}{ccc} 2(x+2) & 2(x+3) & 2(x+b) \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$
We can see that Rows 1 and 3 are proportional
Thus determinant = 0
Question 54
State True or False for the statements
$|adj. A| = |A|^2$, where A is a square matrix of order two.
Answer:
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
Here $\mathrm{n}=2$,
$
\Rightarrow|\operatorname{adj} A|=|A|^{n-1}=|A|
$
Thus, the statement given in question is false
Question 55
$\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$
$\\=\left|\begin{array}{ccc} \sin A & \cos A & \sin A \\ \sin B & \cos B & \sin B \\ \sin C & \cos C & \sin C \end{array}\right|+\left|\begin{array}{ccc} \sin A & \cos A & \cos A \\ \sin B & \cos B & \cos B \\ \sin C & \cos C & \cos C \end{array}\right|$
We can see that columns are identical in both the matrices on the right-hand side
Thus Determinant = 0
The statement in question is therefore true.
Question 56
Answer:
Given $\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$ Splitrow $1 \Rightarrow\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|=\left|\begin{array}{ccc}x & p & 1 \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|+\left|\begin{array}{ccc}a & u & f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$
Split row 2
$
\left|\begin{array}{ccc}
x & p & 1 \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
a & u & f \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
x & p & l \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
$
+\left|\begin{array}{ccc}
a & u & f \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
We can split all the rows in the same way.
Thus, the statement given in the question is true.
Question 57
Answer:
$
\begin{aligned}
& \text { Wehave } \Delta=\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=16 \text { Weneedtoprove } \Delta_1=\left|\begin{array}{lll}
p+x & a+x & a+p \\
q+y & b+y & b+q \\
r+z & c+z & c+r
\end{array}\right|=32 \text {. } \\
& \mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3 \\
& \left|\begin{array}{lll}
2(p+x+a) & a+x & a+p \\
2(q+y+b) & b+y & b+q \\
2(r+z+c) & c+z & c+r
\end{array}\right|=32
\end{aligned}
$
2 can be taken from Column 1
$
2\left|\begin{array}{ccc}
(p+x+a) & a+x & a+p \\
(q+y+b) & b+y & b+q \\
(r+z+c) & c+z & c+r
\end{array}\right|=32
$
After that apply $\mathrm{C} 1 \rightarrow \mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2 \rightarrow \mathrm{C} 2-\mathrm{C} 3$
$
\begin{aligned}
& \left|\begin{array}{lll}
p & x-p & a+p \\
q & y-q & b+q \\
r & z-r & c+r
\end{array}\right|=16 \\
& \left|\begin{array}{ccc}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-\left|\begin{array}{lll}
p & p & a+p \\
q & q & b+q \\
r & r & c+r
\end{array}\right|=16
\end{aligned}
$
The second determinant of columns 2 and 3 is identical.
$
\left|\begin{array}{lll}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-0=16
$
$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|+\left|\begin{array}{lll}
p & x & p \\
q & y & q \\
r & z & r
\end{array}\right|=16
$
Again, the second determinant of columns 1 and 3 is identic. al
$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|=16
$
Hence, the statement given in question is true
Question 58
Answer:
$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1$ and $\mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1$
$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \sin \theta & 0 \\
0 & 0 & \cos \theta
\end{array}\right|
$
$=\cos \theta \cdot \sin \theta$ Multiply and divide by $2,=1 / 2(2 \sin \theta \cos \theta)$ We know, $2 \sin \theta \cos \theta=\sin 2 \theta=1 / 2(\sin 2 \theta)$
Since the maximum value of $\sin 2 \theta$ is $1, \theta=45^{\circ}$.
$
\therefore \Delta=1 / 2\left(\sin 2\left(45^{\circ}\right)\right)=1 / 2 \sin 90^{\circ}=1 / 2(1) \therefore \Delta=1 / 2
$
Thus, the given statement is true.
The sub-topics that are covered in this Chapter are:
Careers360 offers all NCERT Class 12 Maths Exemplar Solutions in one place for students. Just click the links below to see them.
These Class 12 Maths NCERT exemplar Chapter 4 Solutions provide a basic knowledge of Determinants, which has great importance in higher Classes.
The questions based on Determinants can be practised in a better way, along with these Solutions.
Students can find every NCERT Class 12 Maths Solution in one spot on Careers360. Use the links below to access them.
Students can also check these NCERT exemplar Solutions of Class 12 by using the following links.
Access all the Chapter-wise solution links of the NCERT Class 12 subjects by clicking on the links below.
As students step into a new Class, they must first explore the latest syllabus to identify the Chapters included. Below are the links to the most recent syllabus and some essential reference books.
Frequently Asked Questions (FAQs)
Yes, you download NCERT exemplar Class 12 Maths solutions chapter 4 pdf by using the webpage to pdf tool available online.
The Properties of Determinants, Adjoint and Inverse of a Matrix and Application of Determinants and Matrices are the more important topics among others as per their weightage.
Practice, Practice and Practice. Once you have read the chapters well and made notes, you must practice being fast and precise with answers.
The NCERT exemplar solutions for Class 12 Maths chapter 4 has one exercise with 58 questions for practice.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters