NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 30 Mar 2025, 10:55 PM IST

Let’s say you are involved in a complicated project, perhaps designing a bridge, studying the movement of a car, or solving complicated puzzles. Before long, you may find that you have to solve them purposely for the sake of working through various complex variables—how do you do that? The answer is Determinants. This chapter is a good foundation for the students so that they not only have a theoretical understanding of determinants but can apply them to circumstances for engineering, physics and even computer science.

This Story also Contains

  1. NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants
  2. More About NCERT Exemplar Solutions for Class 12 Maths Chapter 4
  3. NCERT solutions of class 12 - Subject-wise
  4. NCERT Notes of class 12 - Subject Wise
  5. NCERT Books and NCERT Syllabus
  6. NCERT Exemplar Class 12 Solutions - Subject Wise

The NCERT Exemplar for Class 12 Determinants provides an easier way to solve systems of linear equations, find area and volume, and determine if a matrix is invertible for example. Students will learn the rules and properties of determinants in this chapter, including cofactor expansion, the determinant of a 3x3 matrix, and solving linear equations using Cramer's Rule. These are important concepts to learn to understand higher-level topics in math and science. Students will need to regularly practice the material to fully understand it. They should be able to apply the properties and procedures for determining determinants to solve problems and equations with ease. If they need further background or explanations, students can use the NCERT Class 12 Maths Solutions.

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants

Class 12 Maths Chapter 4 Exemplar Solutions Exercise: 4.3
Page number: 77-85
Total questions: 58

Question:1

Using the properties of determinants in evaluation:
$\left|\begin{array}{cc} x^{2}-x+1 & x-1 \\ x+1 & x+1 \end{array}\right|$

Answer:

$
\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|
$
If $A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
The value of the determinant of A can then be found by:

$
\begin{aligned}
& |A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& =\left(x^2-x+1\right) \times(x+1)-(x+1) \times(x-1) \\
& =x\left(x^2-x+1\right)+1\left(x^2-x+1\right)-\left(x^2-1\right) \\
& \quad\left(\text { Since }(a-b)(a+b)=\left(a^2-b^2\right)\right) \\
& =x^3-x^2+x+x^2-x+1-x^2+1 \\
& =x^3-x^2+2
\end{aligned}
$

Question:2

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$

Answer:

$A=\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\begin{array}{l} =\left|\begin{array}{ccc} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 1 & a+y & z \\ y & a+z \end{array}\right| \end{array}$
$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-R_{\mathrm{1}}$
$\begin{array}{l} =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right|\\\\=a^{2}(a+z+x+y) \end{array}$

Question:3

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$

Answer:

$\text{Let } A=\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$
$=x^{2} y^{2} z^{2}\left|\begin{array}{lll} 0 & x & x \\ y & 0 & y \\ z & z & 0 \end{array}\right|$
$C_{2} \rightarrow C_{2}-C_{3}$
$=x^{2} y^{2} z^{2}\left|\begin{array}{ccc} 0 & 0 & x \\ y & -y & y \\ z & z & 0 \end{array}\right|$
Expand IAI along C3 to get:
$=x^{2} y^{2} z^{2}(x(y z+y z))$
$=x^{2} y^{2} z^{2}(2xy z)$
$=2x^{3} y^{3} z^{3}$

Question:4

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$

Answer:

$Let \: \: A=\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$

Apply - $C_1 \rightarrow C_1+C_2+C_3$

$\\\begin{aligned} &=\left|\begin{array}{ccc} 3 x-x+y-x+z & -x+y & -x+z \\ x-y+3 y+z-y & 3 y & z-y \\ x-z+y-z+3 z & y-z & 3 z \end{array}\right|\\ &=\left|\begin{array}{ccc} x+y+z & -x+y & -x+z \\ x+y+z & 3 y & z-y \\ x+y+z & y-z & 3 z \end{array}\right|\\ &\text { Take }(x+y+z) \text { common from } C_{1}\\ &=(x+y+z)\left|\begin{array}{ccc} 1 & -x+y & -x+z \\ 1 & 3 y & z-y \\ 1 & y-z & 3 z \end{array}\right| \end{aligned}$

$\\\begin{aligned} &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1,} \text { you will get }\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 1-1 & 3 \mathrm{y}-(-\mathrm{x}+\mathrm{y}) & \mathrm{z}-\mathrm{y}-(-\mathrm{x}+\mathrm{z}) \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\\end{aligned}$

$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y}+\mathrm{x}-\mathrm{y} & \mathrm{z}-\mathrm{y}+\mathrm{x}-\mathrm{z} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &\text { Now apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1-1 & \mathrm{y}-\mathrm{z}-(-\mathrm{x}+\mathrm{y}) & 3 \mathrm{z}-(-\mathrm{x}+\mathrm{z}) \end{array}\right| \end{aligned}$

$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{y}-\mathrm{z}+\mathrm{x}-\mathrm{y} & 3 \mathrm{z}+\mathrm{x}-\mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3},\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}-(-\mathrm{x}+\mathrm{z}) & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-(\mathrm{x}-\mathrm{y}) & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-(2 \mathrm{z}+\mathrm{x}) & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\\end{aligned}$

$\\\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}+\mathrm{x}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-\mathrm{x}+\mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-2 \mathrm{z}-\mathrm{x} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & \mathrm{y}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & -3 \mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right| \end{aligned}$

Now, expand the determinant along Column 1

$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$

Question:5

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$

Answer:

$Let\: \: A=\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$
$\\\begin{aligned} &\text { Using } C_{1} \rightarrow C_{1}+C_{2}+C_{3},\\ &=\left|\begin{array}{ccc} x+4+x+x & x & x \\ x+x+4+x & x+4 & x \\ x+x+x+4 & x & x+4 \end{array}\right|\\ &=\left|\begin{array}{ccc} 3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4 \end{array}\right|\\ &\text { Take }(3 x+4) \text { common form } C \text { , }\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4 \end{array}\right|\\ &\mathrm{Apply}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 0 & 4 & 0 \\ 1-1 & x-x & x+4-x \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(3 \mathrm{x}+4)\left|\begin{array}{lll} 1 & \mathrm{x} & \mathrm{x} \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right|\\ &\text { Expand along } \mathrm{C}_{1}\\ &=(3 x+4)[1 \times\{(16)-0\}]\\ &=(3 x+4)(16)\\ &=16(3 x+4) \end{aligned}$

$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$

Question:6

Using the properties of determinants in evaluation:
$\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$

Answer:

$Let\: \: A=\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$
$\\\begin{aligned} &\text { Apply } R_{1} \rightarrow R_{1}+R_{2}+R_{y}\\ &=\left|\begin{array}{ccc} \mathrm{a}-\mathrm{b}-\mathrm{c}+2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}-\mathrm{c}-\mathrm{a}+2 \mathrm{c} & 2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}-\mathrm{a}-\mathrm{b} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &=\left|\begin{array}{ccc} \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &\text { Take }(a+b+c) \text { common form the first row }\\ &=(a+b+c)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &\text { Apply } C_{2} \rightarrow C_{2}-C_{1} \end{aligned}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 2 b & b-c-a-2 b & 2 b \\ 2 c & 2 c-2 c & c-a-b \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1 \\ 2 b & -b-c-a & 2 b \\ 2 c & 0 & c-a-b \end{array}\right| \end{array}$
Now apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 2 b & -(a+b+c) & 2 b-2 b \\ 2 c & 0 & c-a-b-2 c \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{array}\right| \end{array}$
Expand the determinant along Row 1

$\begin{aligned} & =(a+b+c)[1 \times\{-(a+b+c) \times\{-(a+b+c)\}-0\} \\ & =(a+b+c)\left[(a+b+c)^2\right] \\ & =(a+b+c)^3\end{aligned}$

Question:7

Using the properties of determinants to prove that:
$\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$

Answer:

Taking LHS, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|$
$\\\begin{aligned} &\text { Multiply and divide } \mathrm{R}_{1} \mathrm{R}_{2}, \mathrm{R}_{3} \text { respectively by } \mathrm{x}, \mathrm{y}, \mathrm{z}\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x(y+z) \\ y z^{2} x^{2} & y z x & y(z+x) \\ z x^{2} y^{2} & z x y & z(x+y) \end{array}\right|\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x y+x z \\ x^{2} y z^{2} & x y z & y z+x y \\ x^{2} y^{2} z & x y z & x z+y z \end{array}\right|\\ &\text { Now, take xyz common from the first and second Column }\\ &=\frac{1}{\mathrm{xyz}} \times \mathrm{xyz} \times \mathrm{xyz}\left|\begin{array}{lll} \mathrm{yz} & 1 & \mathrm{xy}+\mathrm{xz} \\ \mathrm{xz} & 1 & \mathrm{yz}+\mathrm{xy} \\ \mathrm{xy} & 1 & \mathrm{xz}+\mathrm{yz} \end{array}\right|\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z \\ x z & 1 & y z+x y \\ x y & 1 & x z+y z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z+y z \\ x z & 1 & y z+x y+x z \\ x y & 1 & x z+y z+x y \end{array}\right|\\ &\text { Take }(\mathrm{xy}+\mathrm{yz}+\mathrm{xz}) \text { common from } \mathrm{C}_{3}\\ &=(\text { xyz })(\mathrm{xy}+\mathrm{yz}+\mathrm{xz})\left|\begin{array}{lll} \mathrm{yz} & 1 & 1 \\ \mathrm{xz} & 1 & 1 \\ \mathrm{xy} & 1 & 1 \end{array}\right| \end{aligned}$

Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0

Hence, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$

∴ LHS = RHS

Question:8

Using the properties of determinants to prove that:
$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|=4 x y z$

Answer:

LHS given,

$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|$

$\\\begin{aligned} &=\left|\begin{array}{ccc} \mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{z}+\mathrm{x}+\mathrm{x} & \mathrm{y}+\mathrm{x}+\mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ &=\left|\begin{array}{ccc} 2 z+2 y & 2 z+2 x & 2 x+2 y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &2 \text { can be taken common from } \mathrm{R}_{1}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{x} & \mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ \end{aligned}$

$\\\begin{aligned} \\&\text { Apply, } R_{1} \rightarrow R_{1}-R_{2}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y}-\mathrm{z} & \mathrm{z}+\mathrm{x}-(\mathrm{z}+\mathrm{x}) & \mathrm{x}+\mathrm{y}-\mathrm{x} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right| \end{aligned}$

$\\\begin{aligned} &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &\text { Apply, } R_{3} \rightarrow R_{3}-R_{1},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y}-\mathrm{y} & \mathrm{x}-0 & \mathrm{x}+\mathrm{y}-\mathrm{y} \end{array}\right|\\ &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ 0 & x & x \end{array}\right|\\ &\text { Now, Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z}-0 & \mathrm{z}+\mathrm{x}-\mathrm{x} & \mathrm{x}-\mathrm{x} \\ 0 & \mathrm{x} & \mathrm{x} \end{array}\right|\\ &=2\left|\begin{array}{lll} y & 0 & y \\ z & z & 0 \\ 0 & x & x \end{array}\right| \end{aligned}$

Take y,z,x common from the R1, R2 and R3 respectively

$\begin{aligned} &\text { Expand along Column } 1\\ &\begin{array}{r} |A|=a_{11}(-1)^{1+1}\left|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array}\right| \\ +a_{31}(-1)^{3+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array}\right| \end{array} \end{aligned}$

$\begin{aligned} & =2 x y z[(1)\{(1)-0\}-(1)\{0-1\}+0\}] \\ & =2 x y z[1+1] \\ & =4 x y z \\ & =\text { RHS } \\ & \therefore \text { LHS }=\text { RHS }\end{aligned}$

Hence Proved

Question:9

Using the properties of determinants to prove that:
$\left|\begin{array}{ccc} a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1 \end{array}\right|=(a-1)^{3}$

Take LHS

$
\left|\begin{array}{ccc}
a^2+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $R_1 \rightarrow R_1-R_2$

$
=\left|\begin{array}{ccc}
a^2+2 a-(2 a+1) & 2 a+1-(a+2) & 1-1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
a^2+2 a-2 a-1 & 2 a+1-a-2 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
a^2-1 & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


$
=\left|\begin{array}{ccc}
(a-1)(a+1) & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\left[\because\left(a^2-b^2\right)=(a-b)(a+b)\right]
$


Take (a-1) common from $R$

$
=(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$


Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3$

$
=\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1-3 & a+2-3 & 1-1 \\
3 & 3 & 1
\end{array}\right|
$

$
\begin{aligned}
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a-2 & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$


Take (a-1) common from $R_2$

$
=(a-1)^2\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
$

Expand along $\mathrm{C}_3$

$
\begin{aligned}
& =(a-1)^2[1\{(a+1)-2\}] \\
& =(a-1)^2[a+1-2] \\
& =(a-1)^3 \\
& =\text { RHS }
\end{aligned}
$
Hence, proved.

Question:10

If A + B + C = 0, then prove that $\begin{array}{|ccc|} 1 & \cos C & \cos B \\ \cos C & 1 & \cos A \\ \cos B & \cos A & 1 \end{array} =0$

Answer:

Let the determinant be:

$
D=\left|\begin{array}{ccc}
1 & \cos C & \cos B \\
\cos C & 1 & \cos A \\
\cos B & \cos A & 1
\end{array}\right|
$
Expand the determinant:

$
D=1-\cos ^2 A-\cos ^2 B-\cos ^2 C+2 \cos A \cos B \cos C
$
Use identity:

$
\cos ^2 A+\cos ^2 B+\cos ^2 C=1+2 \cos A \cos B \cos C
$
So:

$
D=1-(1+2 \cos A \cos B \cos C)+2 \cos A \cos B \cos C=0
$
Hence, proved.

$
D=0
$

Question:11

If the coordinates of the vertices of an equilateral triangle with sides of length ‘a’ are $\left (x_1, y_1 \right )$, $\left (x_2, y_2 \right )$, $\left (x_3, y_3 \right )$, then $\left|\begin{array}{lll} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{array}\right|^{2}=\frac{3 a^{4}}{4}$

Answer:

The area of a triangle with the given vertices will be:

$\\\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|$

Given: Length of the sides of the equilateral triangle = a

Thus, the area

$=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$

$\therefore \frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$$

Square both sides

$\Rightarrow\left(\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|\right)^{2}=\left(\frac{\sqrt{3}}{4} \mathrm{a}^{2}\right)^{2}$

$\\\begin{aligned} &\Rightarrow\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3} \end{array}\right|^{2}=\frac{3}{4} \mathrm{a}^{4}\\ &\text { Hence Proved } \end{aligned}$

Question:12

Find the value of θ satisfying $\left|\begin{array}{ccc} 1 & 1 & \sin 3 \theta \\ -4 & 3 & \cos 2 \theta \\ 7 & -7 & -2 \end{array}\right|=0$

Answer:

Given:

$
\left|\begin{array}{ccc}
1 & 1 & \sin 3 \theta \\
-4 & 3 & \cos 2 \theta \\
7 & -7 & -2
\end{array}\right|=0
$
Expand along Row 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{12}(-1)^{1+2}\left|\begin{array}{ll}
\mathrm{a}_{21} & a_{23} \\
\mathrm{a}_{31} & a_{33}
\end{array}\right| \\
& +\mathrm{a}_{13}(-1)^{1+3}\left|\begin{array}{cc}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 & \cos 2 \theta \\
-7 & -2
\end{array}\right|-1\left|\begin{array}{cc}
-4 & \cos 2 \theta \\
7 & -2
\end{array}\right|+\sin 3 \theta\left|\begin{array}{cc}
-4 & 3 \\
7 & -7
\end{array}\right|
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow(1)\{-6-\{(-7) \cos 2 \theta\}\}-1\{8-7 \cos 2 \theta\}+\sin 3 \theta\{28-21\}=0 \\
& \Rightarrow-6+7 \cos 2 \theta-8+7 \cos 2 \theta+7 \sin 3 \theta=0 \\
& \Rightarrow 14 \cos 2 \theta+7 \sin 3 \theta-14=0 \\
& \Rightarrow 2 \cos 2 \theta+\sin 3 \theta-2=0
\end{aligned}
$
We know,

$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^2 \theta \\
& \sin 3 \theta=3 \sin \theta-4 \sin ^3 \theta \\
& \Rightarrow 2\left(1-2 \sin ^2 \theta\right)+\left(3 \sin \theta-4 \sin ^3 \theta\right)-2=0 \\
& \Rightarrow 2-4 \sin ^2 \theta+3 \sin \theta-4 \sin ^3 \theta-2=0 \\
& \Rightarrow-2+4 \sin ^2 \theta-3 \sin \theta+4 \sin ^3 \theta+2=0 \\
& \Rightarrow \sin \theta\left(4 \sin \theta-3+4 \sin ^2 \theta\right)=0
\end{aligned}
$

$
\begin{aligned}
& \Rightarrow \sin \theta\left(4 \sin ^2 \theta-6 \sin \theta+2 \sin \theta-3\right)=0 \\
& \Rightarrow \sin \theta[2 \sin \theta(2 \sin \theta-3)+1(2 \sin \theta-3)]=0 \\
& \Rightarrow \sin \theta(2 \sin \theta+1)(2 \sin \theta-3)=0 \\
& \Rightarrow \sin \theta=0 \text { or } 2 \sin \theta+1=0 \text { or } 2 \sin \theta-3=0 \\
& \Rightarrow \theta=n \pi \text { or } 2 \sin \theta=-1 \text { or } 2 \sin \theta=3 \\
& \Rightarrow \text { or } \sin \theta=-\frac{1}{2} \text { or } \sin \theta=\frac{3}{2} \\
& \Rightarrow \theta=\mathrm{n} \pi \text { or } \theta=\mathrm{m} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{6}\right) ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}
\end{aligned}
$
But it is not possible to have $\sin \theta=\frac{3}{2}$

Question:13

If $\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$ then find values of x.

Answer:

Given:
$\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 4-x+4+x+4+x & 4+x & 4+x \\ 4+x+4-x+4+x & 4-x & 4+x \\ 4+x+4+x+4-x & 4+x & 4-x \end{array}\right|=0\\ &\text { Take, }(12+\mathrm{x}) \text { common from Row } 1\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x & 4+x \\ 1 & 4-x & 4+x \\ 1 & 4+x & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x+4+x & 4+x \\ 1 & 4-x+4+x & 4+x \\ 1 & 4+x+4-x & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1 & 8 & 4+x \\ 1 & 8 & 4-x \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1-1 & 8-8 & 4+x-(4-x) \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1-1 & 8-8-2 x & 4-x-4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 0 & -2 x & -2 x \end{array}\right|=0 \end{aligned}$
Expand along Column 1

$
\Rightarrow(12+x)[(1)\{0-(2 x)(-2 x)\}]=0
$
$
\Rightarrow(12+x)\left(4 x^2\right)=0
$
$
\Rightarrow 12+x=0 \text { or } 4 x^2=0
$
$
\Rightarrow x=-12 \text { or } x=0
$
Hence, the value of $\mathrm{x}=-12$ and 0

Question:14

If a1, a2, a3, ..., ar are in G.P., then prove that the determinant $\left|\begin{array}{ccc} a_{r+1} & a_{r+5} & a_{r+9} \\ a_{r+7} & a_{r+11} & a_{r+15} \\ a_{r+11} & a_{r+17} & a_{r+21} \end{array}\right|$ is independent of r.

Answer:

$a_1, a_2, \ldots, a_r$ are in G.P
We know that, $a_{r+1}=A R^{(r+1)-1}=A R^r \ldots(i)$
[ $\because a_n=a r^{n-1}$, where $a=$ first term and $r=$ common ratio]
A is the first term of G.P
R is the common ratio of G.P.

$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=\left|\begin{array}{ccc}
A R^r & A R^{r+4} & A R^{r+8} \\
A R^{r+6} & A R^{r+10} & A R^{r+14} \\
A R^{r+10} & A R^{r+16} & A R^{r+20}
\end{array}\right| \ldots[\text { from (i) }]
$
Taking $A R^r, A R^{r+6}$ and $A R^{r+10}$ common from $R_1, R_2$ and $R_3$

$
=\mathrm{AR}^{\mathrm{r}} \times \mathrm{AR}^{\mathrm{r}+6} \times \mathrm{AR}^{\mathrm{r}+10}\left|\begin{array}{ccc}
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^6 & \mathrm{AR}^{10}
\end{array}\right|
$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0 Rows 1 and 2 are identical.

$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=0
$
Hence Proved

Question:15

Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a straight line for any value of a.

Answer:

(a + 5, a – 4), (a – 2, a + 3) and (a, a) is given.

We need to prove that they don’t line in a straight line for any value of a
This can be done by proving the points to be vertices of the triangle.
Area of triangle:-
$\\\begin{array}{l} \Delta=\frac{1}{2}\left|\begin{array}{ccc} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3} \end{array}\right| \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2 & a+3 & 1 \\ a & a & 1 \end{array}\right| \\ \text { Apply } R_{2} \rightarrow R_{2}-R_{1} \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2-a-5 & a+3-a+4 & 1-1 \\ a & a & 1 \end{array}\right| \\\\ =\frac{1}{2}\left| \begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a & a & 1 \end{array}\right| \end{array}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a-a-5 & a-a+4 & 1-1 \end{array}\right|\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ -5 & 4 & 0 \end{array}\right|\\ &\text { Expand along Column } 3\\ &=\frac{1}{2}[(1)(-28-(7)(-5))]\\ &=\frac{1}{2}(-28+35)=\frac{7}{2} \neq 0 \end{aligned}$
This proves that the given points form a triangle and therefore do not lie on a straight line.

Question:16

Show that the Δ ABC is an isosceles triangle if the determinant

$\Delta=\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right]=0$

Answer:

$\\\begin{aligned} &\Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\\ &=\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 1+\cos A & 1+\cos B-1-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)(\cos B+\cos A)+(\cos B-\cos A) & \cos ^{2} C+\cos C \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\begin{array}{|ccc|} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)[(\cos B+\cos A)+1] & \cos ^{2} C+\cos C \end{array} \mid=0\\ &\text { Take, cosB-cosA common from column } 2\\ &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & 1 & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B+\cos A)+1 & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\\ &\cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 1+\cos A & 1 & 1+\cos C-1-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C+\cos C-\cos ^{2} A-\cos A \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & \cos C-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C-\cos ^{2} A+\cos C-\cos A \end{array}\right|=0\\ &\Rightarrow(\cos B-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & (\cos C-\cos A) \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & (\cos C-\cos A)(\cos C+\cos A+1) \end{array}\right|=0\\ &\text { Take cosC-cosA common from Column } 3\\ &\Rightarrow(\cos B-\cos A)(\cos C-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & 1 \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos C+\cos A+1 \end{array}\right|=0 \end{aligned}$

Expand along Row 1

$
\begin{aligned}
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[(1)\{\cos C+\cos A+1-(\cos B+\cos A+1)\}]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[\cos C+\cos A+1-\cos B-\cos A-1]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)(\cos C-\cos B)=0 \\
& \Rightarrow \cos B-\cos A=0 \backslash \text { or } \cos C-\cos A=0 \backslash \text { or } \cos C-\cos B=0 \\
& \Rightarrow \cos B=\cos A \text { or } \cos C=\cos A \text { or } \cos C=\cos B \\
& \Rightarrow B=A \text { or } C=A \text { or } C=B
\end{aligned}
$
$
\text { Hence, } \triangle A B C \text { is an isosceles triangle. }
$

Question:17

Find $A^{-1}$ if $A=\left[\begin{array}{lll} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right]$ and show that $A^{-1}=\frac{A^{2}-3 I}{2}$

Answer:

To find $\operatorname{adj} \mathrm{A}$

$
\begin{aligned}
& a_{11}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{12}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{13}=\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=1-0=1 \\
& a_{21}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{22}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{23}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \mathrm{a}_{31}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1-0=1 \\
& \mathrm{a}_{32}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \therefore \text { adjA }=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$
$
\therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]}{2}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$
$
A^{-1}=\frac{A^2-31}{2}
$

Now, we need to prove that.t

$
\begin{aligned}
& A^2=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0+1+1 & 0+0+1 & 0+1+0 \\
0+0+1 & 1+0+1 & 1+0+0 \\
0+1+0 & 1+0+0 & 1+1+0
\end{array}\right] \\
& A^2=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \therefore \frac{A^2-3 I}{2}=\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right\} \\
& 2-3 \\
& =\frac{1}{2}\left\{\left[\begin{array}{cc}
1 \\
1 & 2-3 \\
1 & 1 \\
1 & 1
\end{array}\right]\right\} \\
& \left.=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\right\} \\
& =A^{-1}
\end{aligned}
$
Hence Proved

Question:18

If $A=\left[\begin{array}{ccc} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{array}\right]$ find $A^{-1}$. Using $A^{-1}$, solve the system of linear equations $x-2y = 10, 2x -y -z = 8, -2y + z = 7$

Answer:

Find IAI Expand IAI along Column 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
a_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & a_{23}
\end{array}\right| \\
& \left.|\mathrm{A}|=(1)\left|\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-1 & 1
\end{array}\right|-(-2)|+0| \begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array} \right\rvert\, \\
& =(-1+2)+2(0)+0 \\
& =1
\end{aligned}
$
To find adj $A$

$
\begin{aligned}
& a_{11}=\left|\begin{array}{cc}
-1 & -2 \\
-1 & 1
\end{array}\right|=-1-2=-3 \\
& a_{12}=-\left|\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}\right|=-(-2+0)=2 \\
& a_{13}=\left|\begin{array}{cc}
-2 & -1 \\
0 & -1
\end{array}\right|=2+0=2 \\
& a_{21}=-\left|\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right|=-(2+0)=-2 \\
& a_{22}=\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& a_{23}=-\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right|=-(-1)=1 \\
& a_{31}=\left|\begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array}\right|=-4 \\
& a_{32}=-\left|\begin{array}{cc}
1 & 0 \\
-2 & -2
\end{array}\right|=-(-2)=2 \\
& a_{33}=\left|\begin{array}{cc}
1 & 2 \\
-2 & -1
\end{array}\right|=-1+4=3
\end{aligned}
$

$
\begin{aligned}
& \therefore \operatorname{adj} A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 3
\end{array}\right]}{1}=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]
\end{aligned}
$
According to the linear equation:

$
x-2 y=10
$
$
2 x-y-z=8
$
$
-2 y+z=7
$
We know that, $\mathrm{AX}=\mathrm{B}$

$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]
$
Here,
So, transpose of $A^{-1}$

$
\begin{aligned}
& A^{-1}=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right] \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$\begin{aligned} & \Rightarrow\left[\begin{array}{l}x \\ y \\ z \\ x \\ y \\ y\end{array}\right]=\left[\begin{array}{lll}-3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3\end{array}\right]\left[\begin{array}{l}10 \\ 8 \\ -30+16+14 \\ -20+8+7 \\ -40+16+21\end{array}\right] \\ & \therefore x=0, y=-5 \text { and } z=-3\end{aligned}$

Question:19

Using matrix method, solve the system of equations 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2.

Answer:

Given system:

$
\begin{array}{r}
3 x+2 y-2 z=3 \\
x+2 y+3 z=6 \\
2 x-y+z=2
\end{array}
$
Matrix form:

$
\left[\begin{array}{ccc}
3 & 2 & -2 \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]
$
The inverse of the coefficient matrix:

$
A^{-1}=\left[\begin{array}{ccc}
\frac{7}{17} & \frac{8}{17} & -\frac{4}{17} \\
\frac{1}{17} & \frac{5}{17} & \frac{6}{17} \\
\frac{5}{17} & -\frac{2}{17} & \frac{3}{17}
\end{array}\right]
$

Multiply:

$
X=A^{-1} B=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$
Final Answer:

$
x=1, \quad y=2, \quad z=1
$

Question:20

Given $A=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right], B=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right]$ find BA and use this to solve the system of equations $y + 2z = 7, x - y = 3, 2x + 3y + 4z = 17.$

Answer:

$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \\
& \therefore B A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+4 & 2-2 & -4+4 \\
4-12+8 & 4+6-4 & -8-12+20 \\
-4+4 & 2-2 & -4+10
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right] \\
& =6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& B A=6 I \ldots(i)
\end{aligned}
$
Now, the given system of equations is:

$
y+2 z=7,
$
$
x-y=3
$
$
2 x+3 y+4 z=17
$

So,

$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right]
$
Apply, $\mathrm{R}_1 \leftrightarrow \mathrm{R}_2$

$
\begin{aligned}
& \mathrm{R}_2 \leftrightarrow \mathrm{R}_3 \\
& {\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]}
\end{aligned}
$
So, $B A=6 I[$ from eg(i) $]$

$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
12 \\
-6 \\
24
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]}
\end{aligned}
$

$\therefore x=2, y=-1$ and $z=4$

Question:21

If a + b + c ≠ 0 and $\left|\begin{array}{lll} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|=0$ then prove that a = b = c.

Answer:

$
A=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3$

$
=\left|\begin{array}{lll}
a+b+c & b & c \\
b+a+c & c & a \\
c+a+b & a & b
\end{array}\right|
$
Take $(a+b+c)$ common from Column 1

$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|
$
Expand along Column 1

$
\begin{aligned}
& =(a+b+c)\left[(1)\left(b c-a^2\right)-(1)\left(b^2-a c\right)+(1)\left(b a-c^2\right)\right] \\
& =(a+b+c)\left[b c-a^2-b^2+a c+a b-c^2\right] \\
& =(a+b+c)\left[-\left(a^2+b^2+c^2-a b-b c-a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left(2 a^2+2 b^2+2 c^2-2 a b-2 b c-2 a c\right) \\
& =-\frac{1}{2}(a+b+c)\left[\left(a^2+b^2-2 a b\right)+\left(b^2+c^2-2 b c\right)+\left(c^2+a^2-2 a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right] \\
& {\left[\because(a-b)^2=a^2+b^2-2 a b\right]}
\end{aligned}
$

Given that $\Delta=0$

$
\Rightarrow-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0 $

$\Rightarrow(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0$

$\text {Either }(a+b+c)=0 \text { or }(a-b)^2+(b-c)^2+(c-a)^2=0$

$\text {but it is given that }(a+b+c) \neq 0 \therefore(a-b)^2+(b-c)^2+(c-a)^2=0 $

$\Rightarrow a-b=b-c=c-a=0 \Rightarrow a=b=c
$

Hence Proved

Question:22

Prove that $\left|\begin{array}{ccc} \mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} \\ \mathrm{ca}-\mathrm{b}^{2} & \mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} \\ \mathrm{ab}-\mathrm{c}^{2} & \mathrm{bc}-\mathrm{a}^{2} & \mathrm{ca}-\mathrm{b}^{2} \end{array}\right|$ is divisible by a + b + c and find the quotient.

Answer:

$\left|\begin{array}{lll}b c-a^2 & c a-b^2 & a b-c^2 \\ c a-b^2 & a b-c^2 & b c-a^2 \\ a b-c^2 & b c-a^2 & c a-b^2\end{array}\right|$ is given.
Apply, $R_1 \rightarrow R_1-R_2$,

$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathrm{b} c-\mathrm{a}^2-\mathrm{ca}+\mathrm{b}^2 & \mathrm{ca}-\mathrm{b}^2-\mathrm{ab}+\mathrm{c}^2 & \mathrm{ab}-\mathrm{c}^2-\mathrm{bc}+\mathrm{a}^2 \\
\mathrm{ca}-\mathrm{b}^2 & \mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 \\
\mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 & \mathrm{ca}-\mathrm{b}^2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
(b c-c a)+\left(b^2-a^2\right) & (c a-a b)+\left(c^2-b^2\right) & (a b-b c)+\left(a^2-c^2\right) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
c(b-a)+(b-a)(b+a) & a(c-b)+(c-b)(c+b) & b(a-c)+(a-c)(a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
=\left|\begin{array}{ccc}
(b-a)(c+b+a) & (c-b)(a+c+b) & (a-c)(b+a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 1

$
=(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
$


Apply $R_2 \rightarrow R_2-R_3$

$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2-a b+c^2 & a b-c^2-b c+a^2 & b c-a^2-c a+b^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
(c-b)(a+b+c) & (a-c)(a+b+c) & (b-a)(a+b+c) \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{aligned}
$

Take (a+b+c) common from Column 2

$
=(a+b+c)^2\left|\begin{array}{ccc}
b-a+c-b+a-c & (c-b) & (a-c) \\
c-b+a-c+b-a & (a-c) & (b-a) \\
a b-c^2+b c-a^2+c a-b^2 & b c-a^2 & c a-b^2
\end{array}\right|
$


Expand along Column 1

$
\begin{aligned}
& =(a+b+c)^2\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2 \\
& =(a+b+c)(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2
\end{aligned}
$
The determinant is divisible by $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and the quotient is $(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2$

Question:23

If x + y + z = 0, prove that $\left|\begin{array}{lll} x a & y b & z c \\ y c & z a & x b \\ z b & x c & y a \end{array}\right|=x y z\left|\begin{array}{lll} a & b & c \\ c & a & b \\ b & c & a \end{array}\right|$

Answer:

Given LHS,

$
\left|\begin{array}{ccc}
x a & y b & z c \\
y c & z a & x b \\
z b & x c & y a
\end{array}\right|
$
Expand along Row 1

$
\begin{aligned}
& =x a\{(z a)(y a)-(x c)(x b)\}-(y b)\{(y c)(y a)-(z b)(x b)\}+(z c)\{(y c)(x c)- \\
& (z b)(z a)\} \\
& =x a\left\{a^2 y z-x^2 b c\right\}-y b\left\{y^2 a c-b^2 x z\right\}+z c\left\{c^2 x y-z^2 a b\right\} \\
& =a^3 x y z-x^3 a b c-y^3 a b c+b^3 x y z+c^3 x y z-z^3 a b c \\
& =x y z\left(a^3+b^3+c^3\right)-a b c\left(x^3+y^3+z^3\right)
\end{aligned}
$
Given $x+y+z=0$

$
\begin{aligned}
& \Rightarrow x^3+y^3+z^3=3 x y z=x y z\left(a^3+b^3+c^3\right)-a b c(3 x y z)=x y z\left(a^3+b^3+c^3-3 a b c\right) \\
& =x y z\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
\end{aligned}
$

Question:24

If $\left|\begin{array}{cc} 2 \mathrm{x} & 5 \\ 8 & \mathrm{x} \end{array}\right|=\left|\begin{array}{cc} 6 & -2 \\ 7 & 3 \end{array}\right|$ then value of x is
A. 3
B. ± 3
C. ± 6
D. 6

Answer:

Given:

$
\begin{aligned}
& \left|\begin{array}{cc}
2 \mathrm{x} & 5 \\
8 & \mathrm{x}
\end{array}\right|=\left|\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right| \\
& A=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$
Then the determinant of A is

$
\begin{aligned}
& |\mathrm{A}|=\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc} \\
& \Rightarrow(2 x)(x)-(5)(8)=(6)(3)-(7)(-2) \Rightarrow 2 x^2-40=18-(-14) \Rightarrow 2 x^2-40=18+14 \Rightarrow x^2-20=9+7 \Rightarrow x^2-20=16 \Rightarrow x^2=16+20 \Rightarrow x^2=36 \Rightarrow x=\sqrt{36} \Rightarrow x= \pm 6
\end{aligned}
$

Question:25

The value of determinant $\left|\begin{array}{lll} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{array}\right|$
A. $a^3 + b^3 + c^3$
B. 3 bc
C. $a^3 + b^3 + c^3-3abc$
D. none of these

Answer:

C)

Given:

$
\left|\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right|
$


Apply C2 $\rightarrow \mathrm{C} 2+\mathrm{C} 3$

$
=\left|\begin{array}{lll}
a-b & a+b+c & a \\
b-c & c+a+b & b \\
c-a & a+b+c & c
\end{array}\right|
$
Take $(a+b+c)$ common from Column 2

$
=(a+b+c)\left|\begin{array}{lll}
a-b & 1 & a \\
b-c & 1 & b \\
c-a & 1 & c
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1-\mathrm{C}_3$

$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
a-b-a & 1 & a \\
b-c-b & 1 & b \\
c-a-c & 1 & c
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
-b & 1 & a \\
-c & 1 & b \\
-a & 1 & c
\end{array}\right|
\end{aligned}
$
Expand along Row 1

$
\begin{aligned}
& =(a+b+c)\left[(-b)\{c-b\}-(1)\left\{-c^2-(-a b)\right\}+a\{-c-(-a)\}\right] \\
& =(a+b+c)\left(-b c+b^2+c^2-a b-a c+a^2\right)
\end{aligned}
$
$\begin{aligned} & =a\left(-b c+b^2+c^2-a b-a c+a^2\right)+b\left(-b c+b^2+c^2-a b-a c+a^2\right)+c(-b c+ \\ & \left.b^2+c^2-a b-a c+a^2\right) \\ & =-a b c+a b^2+a c^2-a^2 b-a^2 c+a^3-b^2 c+b^3+b c^2-a b^2-a b c+a^2 b-b c^2+ \\ & b^2 c+c^3-a b c-a c^2+a^2 c \\ & =a^3+b^3+c^3-3 a b c\end{aligned}$

Question:26

The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
A. 9
B. 3
C. – 9
D. 6

Answer:

B)
$\\ \begin{aligned} &\text { The area of a triangle with vertices }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \text { is given by }\\ &\Delta=\frac{1}{2}\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1 \end{array}\right|\\ &\Delta=\frac{1}{2}\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=9\\ &\Delta=\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=18 \end{aligned}$
Expand along Column 2

$
\Rightarrow-(k)\{-3-3\}=18
$
$
\Rightarrow-k(-6)=18
$
$
\Rightarrow 6 k=18
$
$
\Rightarrow k=3
$

Question:27

The determinant $\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$ equals

A. abc (b–c) (c – a) (a – b)
B. (b–c) (c – a) (a – b)
C. (a + b + c) (b – c) (c – a) (a – b)
D. None of these

Answer:

D)
Given:

$\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$
$\\=\left|\begin{array}{lll}b(b-a) & b-c & c(b-a) \\ a(b-a) & a-b & b(b-a) \\ c(b-a) & c-a & a(b-a)\end{array}\right|$

Take (b-a) common from both Columns 1 and 3

$=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$

Apply

$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3}\\$ $=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b}-\mathrm{c} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a}-\mathrm{b} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c}-\mathrm{a} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Whenever any two columns or rows in any determinant are equal, its value becomes = 0
Here Columns 1 and 2 are identical$\therefore\left|\begin{array}{lll}b^2-a b & b-c & b c-a c \\ a b-a^2 & a-b & b^2-a b \\ b c-a c & c-a & a b-a^2\end{array}\right|=0$

Question:28

The number of distinct real roots of $\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$ in the interval $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ is

A. 0
B. –1
C. 1
D. None of these

Answer:

C)
Given
$\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$
$\begin{aligned} &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{lll} \sin x+\cos x+\cos x & \cos x & \cos x \\ \cos x+\sin x+\cos x & \sin x & \cos x \\ \cos x+\cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\Rightarrow\left|\begin{array}{ccc} 2 \cos x+\sin x & \cos x & \cos x \\ 2 \cos x+\sin x & \sin x & \cos x \\ 2 \cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\text { Take }(2 \cos x+\sin x) \text { common from Column } 1\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1-1 & \sin x-\cos x & \cos x-\cos x \\ 1 & \cos x & \sin x \end{array}\right|=0 \end{aligned}$
$\\\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1 & \cos x & \sin x \end{array}\right|=0 \\ \text { Apply } R_{3} \rightarrow R_{3}-R_{1} \\ \Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1-1 & \cos x-\cos x & \sin x-\cos x \end{array}\right|=0 \\$

$\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x \end{array}\right|=0$
Expand along Column 1

$
\begin{aligned}
& (2 \cos X+\sin X)[(1)\{(\sin X-\cos X)(\sin X-\cos X)\}] \\
& \Rightarrow(2 \cos X+\sin X)(\sin X-\cos X)^2=0 \\
& \Rightarrow 2 \cos X=-\sin X \operatorname{or}(\sin X-\cos X)^2=0 \\
& \Rightarrow 2=-\frac{\sin \mathrm{x}}{\cos \mathrm{x}} \text { or } \sin \mathrm{x}=\cos \mathrm{x} \\
& \Rightarrow \tan x=-2 \text { ortan } x=1\left[\because \tan x=\frac{\sin x}{\cos x}\right] \\
& \text { buttan } x=-2 \text { isnotpossibleasfor }-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
\end{aligned}
$
$
\text { So, } \tan x=1
$
$
\therefore x=\frac{\pi}{4}
$
Only one real and distinct root occurs.

Question:29

If A, B and C are angles of a triangle, then the determinant $\begin{array}{|ccc|} -1 & \cos \mathrm{C} & \cos \mathrm{B} \\ \cos \mathrm{C} & -1 & \cos \mathrm{A} \\ \cos \mathrm{B} & \cos \mathrm{A} & -1 \end{array} \mid$ is equal to
A. 0

B. –1
C. 1
D. None of these

Answer:

A)

Given:

$
\left.\left|\begin{array}{ccc}
-1 & \cos \mathrm{C} & \cos \mathrm{~B} \\
\cos \mathrm{C} & -1 & \cos \mathrm{~A} \\
\cos \mathrm{~B} & \cos \mathrm{~A} & -1
\end{array}\right| \right\rvert\,
$
Expand along Column 1

$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{cc}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{ll}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & \mathrm{a}_{23}
\end{array}\right| \\
& \Delta=(-1)\left|\begin{array}{cc}
-1 & \cos A \\
\cos A & -1
\end{array}\right|-\cos C\left|\begin{array}{cc}
\cos C & \cos B \\
\cos A & -1
\end{array}\right|+\cos B\left|\begin{array}{cc}
\cos C & \cos B \\
-1 & \cos A
\end{array}\right| \\
& =\left[(-1)\left\{1-\cos ^2 A\right\}-\cos C\{-\cos C-\cos A \cos B\}+\cos B\{\cos A \cos C+\right. \\
& \cos B\}]
\end{aligned}
$


$
=-1+\cos ^2 A+\cos ^2 C+\cos A \cos B \cos C+\cos A \cos B \cos C+\cos ^2 B
$
$
=-1+\cos ^2 A+\cos ^2 B+\cos ^2 C+2 \cos A \cos B \cos C
$
Using the formula

$
\begin{aligned}
& 1+\cos 2 A=2 \cos ^2 A \\
& =-1+\frac{1+\cos 2 \mathrm{~A}}{2}+\frac{1+\cos 2 \mathrm{~B}}{2}+\frac{1+\cos 2 \mathrm{C}}{2}+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}
\end{aligned}
$
Taking L.C.M, we get

$
=\frac{-2+1+\cos 2 A+1+\cos 2 B+1+\cos 2 C+4 \cos A \cos B \cos C}{2}
$

$
\begin{aligned}
& =\frac{1+(\cos 2 A+\cos 2 B)+\cos 2 C+4 \cos C \cos A \cos B}{2} \\
& \text { Now use: } \cos (A+B) \cos (A-B)=2 \cos A \cos B \\
& \text { so, } \cos 2 A+\cos 2 B=2 \cos (A+B) \cos (A-B) \\
& =\frac{1+\cos 2 C+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{1+2 \cos ^2 C-1+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 \mathrm{C}+[2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})\}+4 \cos \mathrm{~A} \cos \mathrm{~B} \cos C}{2} \ldots \text { (i) }
\end{aligned}
$


We know that $A, B, C$ are angles of triangle

$
\begin{aligned}
& \Rightarrow A+B+C=\pi \\
& \Rightarrow A+B=\pi-C \\
& =\frac{2 \cos ^2 C+\{2 \cos (\pi-C) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 C+\{-2 \cos C \cos (A-B)\}+4 \cos A \cos B \cos C}{2}[\because \cos (\pi-x)=-\cos x] \\
& =\frac{-2 \cos C\{\cos (A-B)-\cos C\}+4 \cos A \cos B \cos C}{2}
\end{aligned}
$
$=-\cos C\{\cos (A-B)-\cos C\}+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)-\cos \{\pi-(A+B)\}]+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)+\cos (A+B)]+2 \cos A \cos B \cos C=-\cos C[2 \cos A \cos B]+2 \cos A \cos B \cos C=0$

Question:30

Let $f(t)=\left|\begin{array}{ccc} \cos t & t & 1 \\ 2 \sin t & t & 2 t \\ \sin t & t & t \end{array}\right|$ then $\lim _{t \rightarrow 0} \frac{f(t)}{t^{2}}$ is equal to
A. 0
B. –1
C. 2
D. 3

Answer:

Given:

$
f(t)=\left|\begin{array}{ccc}
\cos t & t & 1 \\
2 \sin t & t & 2 t \\
\sin t & t & t
\end{array}\right|
$
Divide $\mathrm{R}_2$ and $\mathrm{R}_3$ by $t$

$
f(t)=t^2\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & \frac{t}{t} & \frac{2 t}{t} \\
\frac{\sin t}{t} & \frac{t}{t} & \frac{t}{t}
\end{array}\right|
$
$
\Rightarrow \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\frac{\mathrm{t}^2}{\mathrm{t}^2}\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & 1 & 2 \\
\frac{\sin t}{t} & 1 & 1
\end{array}\right|
$
$
\Rightarrow \lim _{t \rightarrow 0} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\left|\begin{array}{lll}
\lim _{t \rightarrow 0} \cos t & \lim _{t \rightarrow 0} t & \lim _{t \rightarrow 0} 1 \\
\lim _{t \rightarrow 0} \frac{2 \sin t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 2 \\
\lim _{t \rightarrow 0} \frac{\sin ^t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 1
\end{array}\right|
$
$
=\left|\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right|\left(\because \lim _{t \rightarrow 0} \frac{\sin t}{t}=1\right)
$


Expand along Row 1

$
\begin{aligned}
& =(1)(1-2)+(1)(2-1) \\
& =-1+1
\end{aligned}
$
$=0$

Question:31

The maximum value of $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1+\cos \theta & 1 & 1\end{array}\right|_{\text {is }(\theta \text { is a real number })}$

A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{2}$
D. $\frac{2 \sqrt{3}}{4}$

Answer:

A)

We have:

$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1+\cos \theta & 1 & 1
\end{array}\right|
$
Apply, $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$ and $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$

$
\Rightarrow \Delta=\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & \sin \theta & 1 \\
\cos \theta & 0 & 1
\end{array}\right|
$

$=0-0+1(\sin \theta \cdot \cos \theta)$ Multiply and divide by $2,=\frac{1}{2}(2 \sin \theta \cos \theta)$ We already know that $\underline{2 \sin \theta \cos \theta=\sin 2 \theta}=\frac{1}{2}(\sin 2 \theta)$
The maximum value of $: \sin 2 \theta$ is $1, \theta=45^{\circ}$.

$
\begin{aligned}
& \therefore \Delta=\frac{1}{2}\left(\sin 2\left(45^{\circ}\right)\right)=\frac{1}{2} \sin 90^{\circ}=\frac{1}{2}(1) \\
& \therefore \Delta=\frac{1}{2}
\end{aligned}
$

Question:32

If $f(x)=\left|\begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array}\right|$

A. f (a) = 0
B. f (b) = 0
C. f (0) = 0
D. f (1) = 0

Answer:

C)

We have:

$
f(x)=\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|
$


If we put $x=a$

$
\begin{aligned}
& f(a)=\left|\begin{array}{ccc}
0 & a-a & a-b \\
a+a & 0 & a-c \\
a+b & a+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & a-c \\
a+c & 0
\end{array}\right|-0\left|\begin{array}{cc}
2 a & a-c \\
a+b & 0
\end{array}\right|+(a-b)\left|\begin{array}{cc}
2 a & 0 \\
a+b & a+c
\end{array}\right| \\
& =0-0+(a-b)[2 a(a+c)-0(a+b)]=(a-b)\left[2 a^2+2 a c-0\right]=(a-b)\left(2 a^2+2 a c\right) \neq 0 \text { If } x=b \\
& f(b)=\left|\begin{array}{ccc}
0 & b-a & b-b \\
b+a & 0 & b-c \\
b+b & b+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & b-c \\
b+c & 0
\end{array}\right|-(b-a)\left|\begin{array}{cc}
b+a & b-c \\
2 b & 0
\end{array}\right|+0\left|\begin{array}{cc}
b+a & 0 \\
2 b & b+c
\end{array}\right| \\
& =0-(b-a)[(b+a)(0)-(b-c)(2 b)]+0=-(b-a)\left[0-2 b^2+2 b c\right]=(a-b)\left(2 b^2-2 b c\right) \neq 0
\end{aligned}
$
If $x=0$ according to the given question:

$
f(0)=\left|\begin{array}{ccc}
0 & 0-a & 0-b \\
0+a & 0 & 0-c \\
0+b & 0+c & 0
\end{array}\right|
$

$
\begin{aligned}
& =0\left|\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right|-(-a)\left|\begin{array}{cc}
a & -c \\
b & 0
\end{array}\right|+(-b)\left|\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right| \\
& =0+a[a(0)-(-b c)]-b[a c-b(0)]
\end{aligned}
$
$
=a[b c]-b[a c]
$
$
=a b c-a b c=0
$
Then the condition is satisfied.

Question:33

If $A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$

then $A^{-1}$ exists if
A. λ = 2
B. λ ≠ 2
C. λ ≠ -2
D. None of these

Answer:

D)
We have
$A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$

$
\begin{aligned}
& \Rightarrow|A|=2(6-5)-\lambda(0-5)+(-3)(0-2) \\
& =2+5 \lambda+6 \\
& =5 \lambda+8
\end{aligned}
$

ithe inverse of A exists only if A is non-singular.e. $|A| \neq 0$.

$
\begin{aligned}
& .5 \lambda+8 \neq 0 \\
& \Rightarrow 5 \lambda \neq-8
\end{aligned}
$

$\therefore \lambda \neq-\frac{8}{5}$
So, $A^{-1}$ exists if and only if $\lambda \neq-\frac{8}{5}$

Question:34

If A and B are invertible matrices, then which of the following is not correct?
A. $adj A = |A|. A^{-1}$
B. $det (A)^{-1} = [det (A)]^{-1}$

C. $(AB)^{-1} = B^{-1} A^{-1}$
D. $(A + B)^{-1} = B^{-1} + A^{-1}$

Answer:

D)

We know, that A and B are invertible matrices

$
\begin{aligned}
& \text { Consider }(A B) B^{-1} A^{-1} \Rightarrow(A B) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=(A I) A^{-1}=A A^{-1}=I \Rightarrow(A B)^{-1}=B^{-1} A^{-1} \ldots \text { option }(C) \\
& \text { Also } A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I| \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \Rightarrow|\mathrm{~A}|^{-1}=\frac{1}{|\mathrm{~A}|} \\
& \therefore \operatorname{det}(A)^{-1}=[\operatorname{det}(A)]^{-1} \ldots(B)
\end{aligned}
$
We know that $\frac{|\mathrm{A}|^{-1}}{\operatorname{adj} \mathrm{~A}} \frac{|\vec{A}|}{\text { We }}$
$\Rightarrow \operatorname{adj} A=|A| \cdot A^{-1} \ldots$ option $(A)$

$
\Rightarrow(\mathrm{A}+\mathrm{B})^{-1}=\frac{1}{|\mathrm{~A}+\mathrm{B}|} \operatorname{adj}(\mathrm{A}+\mathrm{B})
$


But $\mathrm{B}^{-1}+\mathrm{A}^{-1}=\frac{1}{|\mathrm{~B}|} \operatorname{adj} \mathrm{B}+\frac{1}{|\mathrm{~A}|}$ adj A

$
\therefore(A+B)^{-1} \neq B^{-1}+A^{-1}
$

Question:35

If x, y, z are all different from zero and ,$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$, then value of $x^{-1} + y^{-1} + z^{-1}$ is
$\\A. x y z\\B. x^{-1} y^{-1} z^{-1}\\C. -x -y -z\\D. -1$

Answer:

We have
$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$
$\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \text { and } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc} x & 0 & 1 \\ 0 & y & 1 \\ -z & -z & 1+z \end{array}\right|=0$
Expand along Row 1

$
\Rightarrow x[y(1+z)+z]-0+1(y z)=0
$


$
x y+x y z+x z+y z=0
$

Divide both sides by XYZ
$\\ \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1=0 \\ \therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x^{-1}+y^{-1}+z^{-1}=-1$

Question:36

The value of the determinant $\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right|$ is
A. $9x^2 (x + y)$
B. $9y^2 (x + y)$
C. $3y^2 (x + y)$
D. $7x^2 (x + y)$

Answer:

B)

Matrix given:

$
\begin{aligned}
& \left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right| \\
& =\mathrm{x}\left|\begin{array}{cc}
\mathrm{x} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+2 \mathrm{y} & \mathrm{x}
\end{array}\right|-(\mathrm{x}+\mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}
\end{array}\right|+(\mathrm{x}+2 \mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}+2 \mathrm{y}
\end{array}\right| \\
& =x\left[x^2-(x+y)(x+2 y)\right]-(x+y)\left[(x+2 y)(x)-(x+y)^2\right]+(x+2 y)[(x+ \\
& \left.2 y)^2-x(x+y)\right] \\
& =x\left[x^2-x^2-3 x y-2 y^2\right]-(x+y)\left[x^2+2 x y-x^2-2 x y-y^2\right]+(x+2 y)\left[x^2+\right. \\
& \left.4 x y+4 y^2-x^2-x y\right] \\
& =x\left[-3 x y-2 y^2\right]-(x+y)\left[-y^2\right]+(x+2 y)\left[3 x y+4 y^2\right] \\
& =-3 x^2 y-2 x y^2+x y^2+y^3+3 x^2 y+4 x y^2+6 x y^2+8 y^3 \\
& =9 y^3+9 x y^2 \\
& =9 y^2(x+y)
\end{aligned}
$

Question:37

There are two values of a which makes determinant, $\Delta=\left|\begin{array}{ccc} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2 a \end{array}\right|=86$ ,then sum of these number is
A. 4
B. 5
C. -4
D. 9

Answer:

C)

We have:

$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2 a
\end{array}\right|=86 \\
& 1\left|\begin{array}{cc}
\mathrm{a} & -1 \\
4 & 2 \mathrm{a}
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -1 \\
0 & 2 \mathrm{a}
\end{array}\right|+5\left|\begin{array}{cc}
2 & \mathrm{a} \\
0 & 4
\end{array}\right|=86 \\
& 1\left[2 a^2-(-4)\right]+2[4 a-0]+5[8-0]=86
\end{aligned}
$


$
1\left[2 a^2+4\right]+2[4 a]+5[8]=86
$


$
2 a^2+4+8 a+40=86
$


$
2 a^2+8 a+44=86
$


$
2 a^2+8 a=42
$


$
2\left(a^2+4 a\right)=42
$


$
\left(a^2+4 a\right)=21 \Rightarrow a^2+4 a-21=0 \Rightarrow(a+7)(a-3)=0 \therefore a=-7 \text { or } 3
$


The sum of -7 and $3=-4$

Question:38

Fill in the blanks
If A is a matrix of order 3 × 3, then |3A| = ___.

Answer:

If A is a matrix of order $3 \times 3$, then $|3 A|=27|A|$.
We know:

$
\begin{aligned}
& \text { if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k \cdot A|=k^3|A| \\
& \therefore|3 A|=3^3|A|=27|A|
\end{aligned}
$

Question:39

Fill in the blanks
If A is an invertible matrix of order 3 × 3, then |$A^{-1}$|= ____.

Answer:

If A is an invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=|A|^{-1}$
Given
$\mathrm{A}=$ invertible matrix $3 \times 3$

$
\begin{aligned}
& A A^{-1}=I \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \therefore\left|A^{-1}\right|=\frac{1}{|A|}
\end{aligned}
$

Question:40

Fill in the blanks
If x, y, z ∈ R, then the value of determinant $\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|$ is equal to ___.

Answer:

$\\ \begin{aligned} &\text { Given }\\ &\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\\ &=\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2}-\left(2^{x}-2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2}-\left(3^{x}-3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2}-\left(4^{x}-4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply Formula: }(a+b)^{2}-(a-b)^{2}=4 a b \text { . } \end{aligned}$
$\\ \begin{aligned} &=\left|\begin{array}{lll} 4\left(2^{x}\right)\left(2^{-x}\right) & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4\left(3^{x}\right)\left(3^{-x}\right) & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4\left(4^{x}\right)\left(4^{-x}\right) & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &=\left|\begin{array}{lll} 4 & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4 & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4 & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Column } 1 \text { and } 3 \text { thus become proportional }\\ &\therefore\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|=0 \end{aligned}$

Question:41

Fill in the blanks

If cos 2θ = 0, then $\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=$

Answer:

We know

$
\cos 2 \theta=0 \Rightarrow \cos 2 \theta=\cos \pi / 2 \Rightarrow 2 \theta=\pi / 2 \therefore \theta=\pi / 4
$

$\\ \begin{aligned} &\therefore \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \text { and } \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\\ &\text { Then }\\ &\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\left|\begin{array}{ccc} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right|^{2}\\ &\Rightarrow\left[0-\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)+\frac{1}{\sqrt{2}}\left(-\frac{1}{2}\right)\right]^{2}=\left[\frac{-2}{2 \sqrt{2}}\right]^{2}=\left[-\frac{1}{\sqrt{2}}\right]^{2}\\ &\therefore\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\frac{1}{2} \end{aligned}$

Question:42

Fill in the blanks
If A is a matrix of order 3 × 3, then $(A^2)^{-1 }$= ____.

Answer:

For matrix A is of order 3X3
$\begin{aligned} \left(A^{2}\right)^{-1} &=(A \cdot A)^{-1} \\ &=A^{-1} \cdot A^{-1} \\ &=\left(A^{-1}\right)^{2} \end{aligned}$

Question:43

If A is a matrix of order 3 × 3, then the number of minors in the determinant of A is

Answer:

If matrix A is of order 3X3 then
Number of Minors of IAI = 9 as there are 9 elements in a 3x3 matrix

Question:44

Fill in the blanks
The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ___.

Answer:

If, $A=\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$
then $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$

We know that the determinant is equal to the sum of corresponding co-factors of any row or column.

Question:45

Fill in the blanks
If x = -9 is a root of $\left|\begin{array}{lll} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{array}\right|=0$ , then other two roots are ___.

Answer:

We know that

$
\begin{aligned}
& x=-9 \text { is a root of }\left|\begin{array}{lll}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right|=0 \\
& \Rightarrow \mathrm{x}\left|\begin{array}{ll}
\mathrm{x} & 2 \\
6 & \mathrm{x}
\end{array}\right|-3\left|\begin{array}{ll}
2 & 2 \\
7 & \mathrm{x}
\end{array}\right|+7\left|\begin{array}{ll}
2 & \mathrm{x} \\
7 & 6
\end{array}\right|=0
\end{aligned}
$
$\Rightarrow x\left[x^2-12\right]-3[2 x-14]+7[12-7 x]=0 \Rightarrow x^3-12 x-6 x+42+84-49 x=0 \Rightarrow x^3-67 x+126=0(x+9)(2-x)(7-x)=0 H$ ere, $126 \times 1=9 \times 2 \times 7$ Forx $=2, \Rightarrow 2^3-67 \cdot 2+126=134-134=0 \therefore x=2$ is one root. For $=7, \Rightarrow 7^3-677-7+126=469-469=0; x=7$ will be another root.

Question:46

Fill in the blanks

$\left|\begin{array}{ccc} 0 & x y z & x-z \\ y-x & 0 & y-z \\ z-x & z-y & 0 \end{array}\right|=$

Answer:

$
\begin{aligned}
& =(z-x)[1[0-(y-z)(z-y)]-(x y z)[0-(y-z)]+(x-z)[(z-y)-0]] \\
& =(z-x)(z-y)(-y+z-x y z+x-z) \\
& =(z-x)(z-y)(x-y-x y z) \\
& =(z-x)(y-z)(y-x+x y z)
\end{aligned}
$

Question:47

If $f(x)=\left|\begin{array}{lll} (1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47} \end{array}\right|=A+B x+C x^{2}+\ldots$, then A = ____.

Answer:

Given $f(x)=\left|\begin{array}{ccc}(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{array}\right| \Rightarrow \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}(1+x)^{41}\left|\begin{array}{ccc}1 & (1+x)^2 & (1+x)^6 \\ 1 & (1+x)^6 & (1+x)^{11} \\ 1 & (1+x)^2 & (1+x)^6\end{array}\right|$ Wecanseethatrow1 androw3areidentical $\therefore \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}$

$
\therefore A=0
$

Question:48

State True or False for the statements
$(A^3)^{-1} = (A^{-1})^3$, where A is a square matrix and |A| ≠ 0.

Answer:

$\left(A^3\right)^{-1}=\left(A^{-1}\right)^3$ Because, $\left(A^n\right)^{-1}=\left(A^{-1}\right)^n$, wheren $\in \mathbb{N}$.

Question:49

State True or False for the statements
$(aA)^{-1} = (1/a) A^{-1}$, where a is any real number and A is a square matrix.

Answer:

For a non-singular matrix, aA is invertible such that
$\\ (\mathrm{aA})\left(\frac{1}{\mathrm{a}} \mathrm{A}^{-1}\right)=\left(\mathrm{a} \cdot \frac{1}{\mathrm{a}}\right)\left(\mathrm{AA}^{-1}\right) \\ \text {i.e. } \quad(\mathrm{aA})^{-1}=\frac{1}{\mathrm{a}} \mathrm{A}^{-1} \\$
here a = any non-zero scalar. Here A should be a non-singular matrix which is not given in the statement, thus the statement given in the question is false.

Question:50

State True or False for the statements
$|A^{-1}| \neq |A|^{-1}$, where A is non-singular matrix.

Answer:

We know A is a non-singular Matrix

In that case: $A A^{-1}=I$.

$
\Rightarrow|A|\left|A^{-1}\right|=1 \therefore\left|A^{-1}\right|=1 /|A|=|A|^{-1}
$
Thus the statement is false.

Question:51

State True or False for the statements
If A and B are matrices of order 3 and |A| = 5, |B| = 3, then |3AB| = 27 × 5 × 3 = 405.

Answer:

We know that:

$
\begin{aligned}
& |A B|=|A| \cdot|B| \text { andif } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k . A|=k^3|A| . \\
& \therefore|3 A|=27|A B|=27|A||B|=27 \cdot 5 \cdot 3=405
\end{aligned}
$
Hence the statement given in question is true.

Question:52

State True or False for the statements
If the value of a third-order determinant is 12, then the value of the determinant formed by replacing each element with its co-factor will be 144.

Answer:

Given $\therefore|A|=12$
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$

$
\text { Forn }=3,|\operatorname{adj} A|=|A|^{3-1}=|A|^2=12^2=144
$
Thus the given statement is true.

Question:53

State True or False for the statements
$\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$, where a, b, c are in A.P.

Answer:

$\\ \begin{aligned} &\text { since } a, b, c \text { are in } A P, 2 b=a+c .\\ &\therefore\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0\\ &A p p l y_{i}, R_{1} \rightarrow R_{1}+R_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 2 x+4 & 2 x+6 & 2 x+a+c \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0 \end{aligned}$
Since 2b = a + c,
$\Rightarrow\left|\begin{array}{ccc} 2(x+2) & 2(x+3) & 2(x+b) \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$
We can see that Row 1 and 3 are proportional

Thus determinant = 0

Question:54

State True or False for the statements
$|adj. A| = |A|^2$, where A is a square matrix of order two.

Answer:

For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
Here $\mathrm{n}=2$,

$
\Rightarrow|\operatorname{adj} A|=|A|^{n-1}=|A|
$
Thus the statement given in question is false

Question:55

State True or False for the statements

The determinant $\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$ is equal to zero.

Answer:

$\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$
$\\=\left|\begin{array}{ccc} \sin A & \cos A & \sin A \\ \sin B & \cos B & \sin B \\ \sin C & \cos C & \sin C \end{array}\right|+\left|\begin{array}{ccc} \sin A & \cos A & \cos A \\ \sin B & \cos B & \cos B \\ \sin C & \cos C & \cos C \end{array}\right|$
We can see that columns are identical in both the matrix on the right-hand side

Thus Determinant = 0

The statement in question is therefore true.

Question:56

State True or False for the statements

If the determinant $\left|\begin{array}{ccc} x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h \end{array}\right|$ splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8

Answer:

Given $\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$ Splitrow $1 \Rightarrow\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|=\left|\begin{array}{ccc}x & p & 1 \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|+\left|\begin{array}{ccc}a & u & f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$
Split row 2

$
\left|\begin{array}{ccc}
x & p & 1 \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
a & u & f \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
x & p & l \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
$
+\left|\begin{array}{ccc}
a & u & f \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
We can split all the rows in the same way. Thus the statement given in the question is true.

Question:57

State True or False for the statements

Let $\Delta=\left|\begin{array}{lll} a & p & x \\ b & q & y \\ c & r & z \end{array}\right|=16$ ,then $\Delta_{1}=\left|\begin{array}{lll} p+x & a+x & a+p \\ q+y & b+y & b+q \\ r+z & c+z & c+r \end{array}\right|=32$

Answer:

$
\begin{aligned}
& \text { Wehave } \Delta=\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=16 \text { Weneedtoprove } \Delta_1=\left|\begin{array}{lll}
p+x & a+x & a+p \\
q+y & b+y & b+q \\
r+z & c+z & c+r
\end{array}\right|=32 \text {. } \\
& \mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3 \\
& \left|\begin{array}{lll}
2(p+x+a) & a+x & a+p \\
2(q+y+b) & b+y & b+q \\
2(r+z+c) & c+z & c+r
\end{array}\right|=32
\end{aligned}
$
2 can be taken common from Column 1

$
2\left|\begin{array}{ccc}
(p+x+a) & a+x & a+p \\
(q+y+b) & b+y & b+q \\
(r+z+c) & c+z & c+r
\end{array}\right|=32
$
After that apply $\mathrm{C} 1 \rightarrow \mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2 \rightarrow \mathrm{C} 2-\mathrm{C} 3$

$
\begin{aligned}
& \left|\begin{array}{lll}
p & x-p & a+p \\
q & y-q & b+q \\
r & z-r & c+r
\end{array}\right|=16 \\
& \left|\begin{array}{ccc}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-\left|\begin{array}{lll}
p & p & a+p \\
q & q & b+q \\
r & r & c+r
\end{array}\right|=16
\end{aligned}
$
The second determinant of columns 2 and 3 are identical.l

$
\left|\begin{array}{lll}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-0=16
$

$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|+\left|\begin{array}{lll}
p & x & p \\
q & y & q \\
r & z & r
\end{array}\right|=16
$
Again, the second determinant of columns 1 and 3 is identic. al

$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|=16
$
Hence the statement given in question is true

Question:58

State True or False for the statements

The maximum value of $\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta \end{array}\right|$ is 1/2.

Answer:

$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1$ and $\mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1$

$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \sin \theta & 0 \\
0 & 0 & \cos \theta
\end{array}\right|
$

$=\cos \theta \cdot \sin \theta$ Multiply and divide by $2,=1 / 2(2 \sin \theta \cos \theta)$ We know, $2 \sin \theta \cos \theta=\sin 2 \theta=1 / 2(\sin 2 \theta)$

Since the maximum value of $\sin 2 \theta$ is $1, \theta=45^{\circ}$.

$
\therefore \Delta=1 / 2\left(\sin 2\left(45^{\circ}\right)\right)=1 / 2 \sin 90^{\circ}=1 / 2(1) \therefore \Delta=1 / 2
$
Thus the given statement is true.

More About NCERT Exemplar Solutions for Class 12 Maths Chapter 4

Determinants are related to the matrices that are solved in chapter 3 of the 12 Class NCERT Maths book. Studying determinants is not just about passing exams, but is about being prepared for higher education in any field of maths, science, economics, etc. In Class 12 Maths NCERT exemplar solutions chapter 4, the students will learn about determinants, their elements, and how to calculate determinants of various square matrices.

NCERT Exemplar Class 12 Maths Solutions Chapter 4 Determinants Sub-topics covered

The sub-topics that are covered in this chapter of NCERT Class 12 solution are:

  • Introduction
  • Determinant
  • Determinant of a matrix of order one
  • Determinant of a matrix of order 2
  • Determinant of a matrix of order 3x3
  • Properties of determinants
  • Area of triangle
  • Minors and co-factors
  • Adjoint and inverse of a matrix
  • Adjoint of a matrix
  • Applications of matrices and determinants
  • Solution of a system of linear equations using the inverse of matrices

NCERT Exemplar Class 12 Mathematics Chapters

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Importance of Solving NCERT Exemplar Class 12 Maths Solutions Chapter 4

  • These Class 12 Maths NCERT exemplar Chapter 4 solutions provide a basic knowledge of Determinants, which has great importance in higher classes.

  • The questions based on Determinants can be practised in a better way, along with these solutions.


NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 12:

NCERT Exemplar Class 12 Solutions - Subject Wise

Given below are the subject-wise exemplar solutions of class 12 NCERT:

Frequently Asked Questions (FAQs)

Q: Can I download the solutions for this chapter?
A:

Yes, you download NCERT exemplar Class 12 Maths solutions chapter 4 pdf by using the webpage to pdf tool available online.

Q: What are the important topics of this chapter?
A:

The Properties of Determinants, Adjoint and Inverse of a Matrix and Application of Determinants and Matrices are the more important topics among others as per their weightage.

Q: How to study well for boards?
A:

Practice, Practice and Practice. Once you have read the chapters well and made notes, you must practice being fast and precise with answers.

Q: How many questions are there in this chapter?
A:

The NCERT exemplar solutions for Class 12 Maths chapter 4 has one exercise with 58 questions for practice.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Here is Link you can refer: https://school.careers360.com/download/ebooks/karnataka-sslc-mid-term-english-answer-key-2025-26

Also,

check your school website or notice board regularly for any updates about the English mid-term exam question paper for 2025–26. The school usually uploads or announces it before the exam schedule.

Next, focus on revising all chapters from the first half of the syllabus. Practice grammar rules, comprehension passages, and essay writing to strengthen your basics and writing skills.

Finally, keep your admit card, timetable, and stationery ready before the exam. Stay calm, manage your time well, and revise once more before the test day for better results.

Hello,

The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.

Hope this information is useful to you.

Hello,

Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.

Hope this information is useful to you.

Hello Pruthvi,

Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.

The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.

For more details about the KCET Exam preparation, CLICK HERE.

I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.

Thank you, and I wish you all the best in your bright future.

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.