CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Let’s say you are involved in a complicated project, perhaps designing a bridge, studying the movement of a car, or solving complicated puzzles. Before long, you may find that you have to solve them purposely for the sake of working through various complex variables—how do you do that? The answer is Determinants. This chapter is a good foundation for the students so that they not only have a theoretical understanding of determinants but can apply them to circumstances for engineering, physics and even computer science.
This Story also Contains
The NCERT Exemplar for Class 12 Determinants provides an easier way to solve systems of linear equations, find area and volume, and determine if a matrix is invertible for example. Students will learn the rules and properties of determinants in this chapter, including cofactor expansion, the determinant of a 3x3 matrix, and solving linear equations using Cramer's Rule. These are important concepts to learn to understand higher-level topics in math and science. Students will need to regularly practice the material to fully understand it. They should be able to apply the properties and procedures for determining determinants to solve problems and equations with ease. If they need further background or explanations, students can use the NCERT Class 12 Maths Solutions.
| Class 12 Maths Chapter 4 Exemplar Solutions Exercise: 4.3 Page number: 77-85 Total questions: 58 |
Question:1
Answer:
$
\left|\begin{array}{cc}
x^2-x+1 & x-1 \\
x+1 & x+1
\end{array}\right|
$
If $A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
The value of the determinant of A can then be found by:
$
\begin{aligned}
& |A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \\
& =\left(x^2-x+1\right) \times(x+1)-(x+1) \times(x-1) \\
& =x\left(x^2-x+1\right)+1\left(x^2-x+1\right)-\left(x^2-1\right) \\
& \quad\left(\text { Since }(a-b)(a+b)=\left(a^2-b^2\right)\right) \\
& =x^3-x^2+x+x^2-x+1-x^2+1 \\
& =x^3-x^2+2
\end{aligned}
$
Question:2
Answer:
$A=\left|\begin{array}{ccc} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{array}\right|$
$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$
$\begin{array}{l} =\left|\begin{array}{ccc} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 1 & a+y & z \\ y & a+z \end{array}\right| \end{array}$
$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-R_{\mathrm{1}}$
$\begin{array}{l} =(a+x+y+z)\left|\begin{array}{ccc} 1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a \end{array}\right| \\\\ =(a+x+y+z)\left|\begin{array}{ll} a & 0 \\ 0 & a \end{array}\right|\\\\=a^{2}(a+z+x+y) \end{array}$
Question:3
Answer:
$\text{Let } A=\left|\begin{array}{ccc} 0 & x y^{2} & x z^{2} \\ x^{2} y & 0 & y z^{2} \\ x^{2} z & z y^{2} & 0 \end{array}\right|$
$=x^{2} y^{2} z^{2}\left|\begin{array}{lll} 0 & x & x \\ y & 0 & y \\ z & z & 0 \end{array}\right|$
$C_{2} \rightarrow C_{2}-C_{3}$
$=x^{2} y^{2} z^{2}\left|\begin{array}{ccc} 0 & 0 & x \\ y & -y & y \\ z & z & 0 \end{array}\right|$
Expand IAI along C3 to get:
$=x^{2} y^{2} z^{2}(x(y z+y z))$
$=x^{2} y^{2} z^{2}(2xy z)$
$=2x^{3} y^{3} z^{3}$
Question:4
Answer:
$Let \: \: A=\left|\begin{array}{ccc} 3 x & -x+y & -x+z \\ x-y & 3 y & z-y \\ x-z & y-z & 3 z \end{array}\right|$
Apply - $C_1 \rightarrow C_1+C_2+C_3$
$\\\begin{aligned} &=\left|\begin{array}{ccc} 3 x-x+y-x+z & -x+y & -x+z \\ x-y+3 y+z-y & 3 y & z-y \\ x-z+y-z+3 z & y-z & 3 z \end{array}\right|\\ &=\left|\begin{array}{ccc} x+y+z & -x+y & -x+z \\ x+y+z & 3 y & z-y \\ x+y+z & y-z & 3 z \end{array}\right|\\ &\text { Take }(x+y+z) \text { common from } C_{1}\\ &=(x+y+z)\left|\begin{array}{ccc} 1 & -x+y & -x+z \\ 1 & 3 y & z-y \\ 1 & y-z & 3 z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1,} \text { you will get }\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 1-1 & 3 \mathrm{y}-(-\mathrm{x}+\mathrm{y}) & \mathrm{z}-\mathrm{y}-(-\mathrm{x}+\mathrm{z}) \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\\end{aligned}$
$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y}+\mathrm{x}-\mathrm{y} & \mathrm{z}-\mathrm{y}+\mathrm{x}-\mathrm{z} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1 & \mathrm{y}-\mathrm{z} & 3 \mathrm{z} \end{array}\right|\\ &\text { Now apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 1-1 & \mathrm{y}-\mathrm{z}-(-\mathrm{x}+\mathrm{y}) & 3 \mathrm{z}-(-\mathrm{x}+\mathrm{z}) \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{y}-\mathrm{z}+\mathrm{x}-\mathrm{y} & 3 \mathrm{z}+\mathrm{x}-\mathrm{z} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3},\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}-(-\mathrm{x}+\mathrm{z}) & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-(\mathrm{x}-\mathrm{y}) & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-(2 \mathrm{z}+\mathrm{x}) & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\\end{aligned}$
$\\\\\begin{aligned} &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & -\mathrm{x}+\mathrm{y}+\mathrm{x}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & \mathrm{x}+2 \mathrm{y}-\mathrm{x}+\mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & \mathrm{x}-\mathrm{z}-2 \mathrm{z}-\mathrm{x} & 2 \mathrm{z}+\mathrm{x} \end{array}\right|\\ &=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left|\begin{array}{ccc} 1 & \mathrm{y}-\mathrm{z} & -\mathrm{x}+\mathrm{z} \\ 0 & 3 \mathrm{y} & \mathrm{x}-\mathrm{y} \\ 0 & -3 \mathrm{z} & 2 \mathrm{z}+\mathrm{x} \end{array}\right| \end{aligned}$
Now, expand the determinant along Column 1
$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$
Question:5
Answer:
$Let\: \: A=\left|\begin{array}{ccc} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{array}\right|$
$\\\begin{aligned} &\text { Using } C_{1} \rightarrow C_{1}+C_{2}+C_{3},\\ &=\left|\begin{array}{ccc} x+4+x+x & x & x \\ x+x+4+x & x+4 & x \\ x+x+x+4 & x & x+4 \end{array}\right|\\ &=\left|\begin{array}{ccc} 3 x+4 & x & x \\ 3 x+4 & x+4 & x \\ 3 x+4 & x & x+4 \end{array}\right|\\ &\text { Take }(3 x+4) \text { common form } C \text { , }\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 1 & x+4 & x \\ 1 & x & x+4 \end{array}\right|\\ &\mathrm{Apply}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=(3 x+4)\left|\begin{array}{ccc} 1 & x & x \\ 0 & 4 & 0 \\ 1-1 & x-x & x+4-x \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=(3 \mathrm{x}+4)\left|\begin{array}{lll} 1 & \mathrm{x} & \mathrm{x} \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array}\right|\\ &\text { Expand along } \mathrm{C}_{1}\\ &=(3 x+4)[1 \times\{(16)-0\}]\\ &=(3 x+4)(16)\\ &=16(3 x+4) \end{aligned}$
$\begin{aligned} & =(x+y+z)[1 \times\{(3 y)(2 z+x)-(-3 z)(x-y)\}] \\ & =(x+y+z)[6 y z+3 y x+(3 z)(x-y)] \\ & =(x+y+z)[6 y z+3 y x+3 z x-3 z y] \\ & =(x+y+z)[3 y z+3 z x+3 y x] \\ & =3(x+y+z)(y z+z x+y x)\end{aligned}$
Question:6
Answer:
$Let\: \: A=\left|\begin{array}{ccc} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|$
$\\\begin{aligned} &\text { Apply } R_{1} \rightarrow R_{1}+R_{2}+R_{y}\\ &=\left|\begin{array}{ccc} \mathrm{a}-\mathrm{b}-\mathrm{c}+2 \mathrm{~b}+2 \mathrm{c} & 2 \mathrm{a}+\mathrm{b}-\mathrm{c}-\mathrm{a}+2 \mathrm{c} & 2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}-\mathrm{a}-\mathrm{b} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &=\left|\begin{array}{ccc} \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} & \mathrm{a}+\mathrm{b}+\mathrm{c} \\ 2 \mathrm{~b} & \mathrm{~b}-\mathrm{c}-\mathrm{a} & 2 \mathrm{~b} \\ 2 \mathrm{c} & 2 \mathrm{c} & \mathrm{c}-\mathrm{a}-\mathrm{b} \end{array}\right|\\ &\text { Take }(a+b+c) \text { common form the first row }\\ &=(a+b+c)\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{array}\right|\\ &\text { Apply } C_{2} \rightarrow C_{2}-C_{1} \end{aligned}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 2 b & b-c-a-2 b & 2 b \\ 2 c & 2 c-2 c & c-a-b \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1 \\ 2 b & -b-c-a & 2 b \\ 2 c & 0 & c-a-b \end{array}\right| \end{array}$
Now apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\begin{array}{l} =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 2 b & -(a+b+c) & 2 b-2 b \\ 2 c & 0 & c-a-b-2 c \end{array}\right| \\ =(a+b+c)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{array}\right| \end{array}$
Expand the determinant along Row 1
$\begin{aligned} & =(a+b+c)[1 \times\{-(a+b+c) \times\{-(a+b+c)\}-0\} \\ & =(a+b+c)\left[(a+b+c)^2\right] \\ & =(a+b+c)^3\end{aligned}$
Question:7
Answer:
Taking LHS, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|$
$\\\begin{aligned} &\text { Multiply and divide } \mathrm{R}_{1} \mathrm{R}_{2}, \mathrm{R}_{3} \text { respectively by } \mathrm{x}, \mathrm{y}, \mathrm{z}\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x(y+z) \\ y z^{2} x^{2} & y z x & y(z+x) \\ z x^{2} y^{2} & z x y & z(x+y) \end{array}\right|\\ &=\frac{1}{x y z}\left|\begin{array}{lll} x y^{2} z^{2} & x y z & x y+x z \\ x^{2} y z^{2} & x y z & y z+x y \\ x^{2} y^{2} z & x y z & x z+y z \end{array}\right|\\ &\text { Now, take xyz common from the first and second Column }\\ &=\frac{1}{\mathrm{xyz}} \times \mathrm{xyz} \times \mathrm{xyz}\left|\begin{array}{lll} \mathrm{yz} & 1 & \mathrm{xy}+\mathrm{xz} \\ \mathrm{xz} & 1 & \mathrm{yz}+\mathrm{xy} \\ \mathrm{xy} & 1 & \mathrm{xz}+\mathrm{yz} \end{array}\right|\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z \\ x z & 1 & y z+x y \\ x y & 1 & x z+y z \end{array}\right| \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}\\ &=\operatorname{xyz}\left|\begin{array}{lll} y z & 1 & x y+x z+y z \\ x z & 1 & y z+x y+x z \\ x y & 1 & x z+y z+x y \end{array}\right|\\ &\text { Take }(\mathrm{xy}+\mathrm{yz}+\mathrm{xz}) \text { common from } \mathrm{C}_{3}\\ &=(\text { xyz })(\mathrm{xy}+\mathrm{yz}+\mathrm{xz})\left|\begin{array}{lll} \mathrm{yz} & 1 & 1 \\ \mathrm{xz} & 1 & 1 \\ \mathrm{xy} & 1 & 1 \end{array}\right| \end{aligned}$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0
Hence, $\left|\begin{array}{lll} y^{2} z^{2} & y z & y+z \\ z^{2} x^{2} & z x & z+x \\ x^{2} y^{2} & x y & x+y \end{array}\right|=0$
∴ LHS = RHS
Question:8
Answer:
LHS given,
$\left|\begin{array}{ccc} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|$
$\\\begin{aligned} &=\left|\begin{array}{ccc} \mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{z}+\mathrm{x}+\mathrm{x} & \mathrm{y}+\mathrm{x}+\mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ &=\left|\begin{array}{ccc} 2 z+2 y & 2 z+2 x & 2 x+2 y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &2 \text { can be taken common from } \mathrm{R}_{1}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y} & \mathrm{z}+\mathrm{x} & \mathrm{x}+\mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right|\\ \end{aligned}$
$\\\begin{aligned} \\&\text { Apply, } R_{1} \rightarrow R_{1}-R_{2}\\ &=2\left|\begin{array}{ccc} \mathrm{z}+\mathrm{y}-\mathrm{z} & \mathrm{z}+\mathrm{x}-(\mathrm{z}+\mathrm{x}) & \mathrm{x}+\mathrm{y}-\mathrm{x} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y} & \mathrm{x} & \mathrm{x}+\mathrm{y} \end{array}\right| \end{aligned}$
$\\\begin{aligned} &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ y & x & x+y \end{array}\right|\\ &\text { Apply, } R_{3} \rightarrow R_{3}-R_{1},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z} & \mathrm{z}+\mathrm{x} & \mathrm{x} \\ \mathrm{y}-\mathrm{y} & \mathrm{x}-0 & \mathrm{x}+\mathrm{y}-\mathrm{y} \end{array}\right|\\ &=2\left|\begin{array}{ccc} y & 0 & y \\ z & z+x & x \\ 0 & x & x \end{array}\right|\\ &\text { Now, Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3},\\ &=2\left|\begin{array}{ccc} \mathrm{y} & 0 & \mathrm{y} \\ \mathrm{z}-0 & \mathrm{z}+\mathrm{x}-\mathrm{x} & \mathrm{x}-\mathrm{x} \\ 0 & \mathrm{x} & \mathrm{x} \end{array}\right|\\ &=2\left|\begin{array}{lll} y & 0 & y \\ z & z & 0 \\ 0 & x & x \end{array}\right| \end{aligned}$
Take y,z,x common from the R1, R2 and R3 respectively
$\begin{aligned} &\text { Expand along Column } 1\\ &\begin{array}{r} |A|=a_{11}(-1)^{1+1}\left|\begin{array}{ll} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+a_{21}(-1)^{2+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array}\right| \\ +a_{31}(-1)^{3+1}\left|\begin{array}{ll} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array}\right| \end{array} \end{aligned}$
$\begin{aligned} & =2 x y z[(1)\{(1)-0\}-(1)\{0-1\}+0\}] \\ & =2 x y z[1+1] \\ & =4 x y z \\ & =\text { RHS } \\ & \therefore \text { LHS }=\text { RHS }\end{aligned}$
Hence Proved
Question:9
Take LHS
$
\left|\begin{array}{ccc}
a^2+2 a & 2 a+1 & 1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $R_1 \rightarrow R_1-R_2$
$
=\left|\begin{array}{ccc}
a^2+2 a-(2 a+1) & 2 a+1-(a+2) & 1-1 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
a^2+2 a-2 a-1 & 2 a+1-a-2 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
a^2-1 & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
$
=\left|\begin{array}{ccc}
(a-1)(a+1) & a-1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|\left[\because\left(a^2-b^2\right)=(a-b)(a+b)\right]
$
Take (a-1) common from $R$
$
=(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1 & a+2 & 1 \\
3 & 3 & 1
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3$
$
=\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a+1-3 & a+2-3 & 1-1 \\
3 & 3 & 1
\end{array}\right|
$
$
\begin{aligned}
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 a-2 & a-1 & 0 \\
3 & 3 & 1
\end{array}\right| \\
& =(a-1)\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2(a-1) & a-1 & 0 \\
3 & 3 & 1
\end{array}\right|
\end{aligned}
$
Take (a-1) common from $R_2$
$
=(a-1)^2\left|\begin{array}{ccc}
a+1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|
$
Expand along $\mathrm{C}_3$
$
\begin{aligned}
& =(a-1)^2[1\{(a+1)-2\}] \\
& =(a-1)^2[a+1-2] \\
& =(a-1)^3 \\
& =\text { RHS }
\end{aligned}
$
Hence, proved.
Question:10
Answer:
Let the determinant be:
$
D=\left|\begin{array}{ccc}
1 & \cos C & \cos B \\
\cos C & 1 & \cos A \\
\cos B & \cos A & 1
\end{array}\right|
$
Expand the determinant:
$
D=1-\cos ^2 A-\cos ^2 B-\cos ^2 C+2 \cos A \cos B \cos C
$
Use identity:
$
\cos ^2 A+\cos ^2 B+\cos ^2 C=1+2 \cos A \cos B \cos C
$
So:
$
D=1-(1+2 \cos A \cos B \cos C)+2 \cos A \cos B \cos C=0
$
Hence, proved.
$
D=0
$
Question:11
Answer:
The area of a triangle with the given vertices will be:
$\\\Delta=\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|$
Given: Length of the sides of the equilateral triangle = a
Thus, the area
$=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$
$\therefore \frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$$
Square both sides
$\Rightarrow\left(\frac{1}{2}\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3}\end{array}\right|\right)^{2}=\left(\frac{\sqrt{3}}{4} \mathrm{a}^{2}\right)^{2}$
$\\\begin{aligned} &\Rightarrow\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} \\ \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} \\ \mathrm{z}_{1} & \mathrm{z}_{2} & \mathrm{z}_{3} \end{array}\right|^{2}=\frac{3}{4} \mathrm{a}^{4}\\ &\text { Hence Proved } \end{aligned}$
Question:12
Answer:
Given:
$
\left|\begin{array}{ccc}
1 & 1 & \sin 3 \theta \\
-4 & 3 & \cos 2 \theta \\
7 & -7 & -2
\end{array}\right|=0
$
Expand along Row 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{12}(-1)^{1+2}\left|\begin{array}{ll}
\mathrm{a}_{21} & a_{23} \\
\mathrm{a}_{31} & a_{33}
\end{array}\right| \\
& +\mathrm{a}_{13}(-1)^{1+3}\left|\begin{array}{cc}
\mathrm{a}_{21} & \mathrm{a}_{22} \\
\mathrm{a}_{31} & \mathrm{a}_{32}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 & \cos 2 \theta \\
-7 & -2
\end{array}\right|-1\left|\begin{array}{cc}
-4 & \cos 2 \theta \\
7 & -2
\end{array}\right|+\sin 3 \theta\left|\begin{array}{cc}
-4 & 3 \\
7 & -7
\end{array}\right|
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow(1)\{-6-\{(-7) \cos 2 \theta\}\}-1\{8-7 \cos 2 \theta\}+\sin 3 \theta\{28-21\}=0 \\
& \Rightarrow-6+7 \cos 2 \theta-8+7 \cos 2 \theta+7 \sin 3 \theta=0 \\
& \Rightarrow 14 \cos 2 \theta+7 \sin 3 \theta-14=0 \\
& \Rightarrow 2 \cos 2 \theta+\sin 3 \theta-2=0
\end{aligned}
$
We know,
$
\begin{aligned}
& \cos 2 \theta=1-2 \sin ^2 \theta \\
& \sin 3 \theta=3 \sin \theta-4 \sin ^3 \theta \\
& \Rightarrow 2\left(1-2 \sin ^2 \theta\right)+\left(3 \sin \theta-4 \sin ^3 \theta\right)-2=0 \\
& \Rightarrow 2-4 \sin ^2 \theta+3 \sin \theta-4 \sin ^3 \theta-2=0 \\
& \Rightarrow-2+4 \sin ^2 \theta-3 \sin \theta+4 \sin ^3 \theta+2=0 \\
& \Rightarrow \sin \theta\left(4 \sin \theta-3+4 \sin ^2 \theta\right)=0
\end{aligned}
$
$
\begin{aligned}
& \Rightarrow \sin \theta\left(4 \sin ^2 \theta-6 \sin \theta+2 \sin \theta-3\right)=0 \\
& \Rightarrow \sin \theta[2 \sin \theta(2 \sin \theta-3)+1(2 \sin \theta-3)]=0 \\
& \Rightarrow \sin \theta(2 \sin \theta+1)(2 \sin \theta-3)=0 \\
& \Rightarrow \sin \theta=0 \text { or } 2 \sin \theta+1=0 \text { or } 2 \sin \theta-3=0 \\
& \Rightarrow \theta=n \pi \text { or } 2 \sin \theta=-1 \text { or } 2 \sin \theta=3 \\
& \Rightarrow \text { or } \sin \theta=-\frac{1}{2} \text { or } \sin \theta=\frac{3}{2} \\
& \Rightarrow \theta=\mathrm{n} \pi \text { or } \theta=\mathrm{m} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{6}\right) ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}
\end{aligned}
$
But it is not possible to have $\sin \theta=\frac{3}{2}$
Question:13
Answer:
Given:
$\left|\begin{array}{ccc} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{array}\right|=0$
$\\\begin{aligned} &\text { Apply, } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 4-x+4+x+4+x & 4+x & 4+x \\ 4+x+4-x+4+x & 4-x & 4+x \\ 4+x+4+x+4-x & 4+x & 4-x \end{array}\right|=0\\ &\text { Take, }(12+\mathrm{x}) \text { common from Row } 1\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x & 4+x \\ 1 & 4-x & 4+x \\ 1 & 4+x & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 4+x+4+x & 4+x \\ 1 & 4-x+4+x & 4+x \\ 1 & 4+x+4-x & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1 & 8 & 4+x \\ 1 & 8 & 4-x \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 1-1 & 8-8 & 4+x-(4-x) \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1 & 8 & 4-x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 1-1 & 8-8-2 x & 4-x-4-x \end{array}\right|=0\\ &\Rightarrow(12+x)\left|\begin{array}{ccc} 1 & 2(4+x) & 4+x \\ 0 & 0 & 2 x \\ 0 & -2 x & -2 x \end{array}\right|=0 \end{aligned}$
Expand along Column 1
$
\Rightarrow(12+x)[(1)\{0-(2 x)(-2 x)\}]=0
$
$
\Rightarrow(12+x)\left(4 x^2\right)=0
$
$
\Rightarrow 12+x=0 \text { or } 4 x^2=0
$
$
\Rightarrow x=-12 \text { or } x=0
$
Hence, the value of $\mathrm{x}=-12$ and 0
Question:14
Answer:
$a_1, a_2, \ldots, a_r$ are in G.P
We know that, $a_{r+1}=A R^{(r+1)-1}=A R^r \ldots(i)$
[ $\because a_n=a r^{n-1}$, where $a=$ first term and $r=$ common ratio]
A is the first term of G.P
R is the common ratio of G.P.
$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=\left|\begin{array}{ccc}
A R^r & A R^{r+4} & A R^{r+8} \\
A R^{r+6} & A R^{r+10} & A R^{r+14} \\
A R^{r+10} & A R^{r+16} & A R^{r+20}
\end{array}\right| \ldots[\text { from (i) }]
$
Taking $A R^r, A R^{r+6}$ and $A R^{r+10}$ common from $R_1, R_2$ and $R_3$
$
=\mathrm{AR}^{\mathrm{r}} \times \mathrm{AR}^{\mathrm{r}+6} \times \mathrm{AR}^{\mathrm{r}+10}\left|\begin{array}{ccc}
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^4 & \mathrm{AR}^8 \\
1 & \mathrm{AR}^6 & \mathrm{AR}^{10}
\end{array}\right|
$
Whenever any of the values in any two rows or columns of a determinant are identical, the resultant value of that determinant is 0 Rows 1 and 2 are identical.
$
\therefore\left|\begin{array}{ccc}
a_{r+1} & a_{r+5} & a_{r+9} \\
a_{r+7} & a_{r+11} & a_{r+15} \\
a_{r+11} & a_{r+17} & a_{r+21}
\end{array}\right|=0
$
Hence Proved
Question:15
Answer:
(a + 5, a – 4), (a – 2, a + 3) and (a, a) is given.
We need to prove that they don’t line in a straight line for any value of a
This can be done by proving the points to be vertices of the triangle.
Area of triangle:-
$\\\begin{array}{l} \Delta=\frac{1}{2}\left|\begin{array}{ccc} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \\ z_{1} & z_{2} & z_{3} \end{array}\right| \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2 & a+3 & 1 \\ a & a & 1 \end{array}\right| \\ \text { Apply } R_{2} \rightarrow R_{2}-R_{1} \\ =\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ a-2-a-5 & a+3-a+4 & 1-1 \\ a & a & 1 \end{array}\right| \\\\ =\frac{1}{2}\left| \begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a & a & 1 \end{array}\right| \end{array}$
$\\\begin{aligned} &\text { Apply, } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ a-a-5 & a-a+4 & 1-1 \end{array}\right|\\ &=\frac{1}{2}\left|\begin{array}{ccc} a+5 & a-4 & 1 \\ -7 & 7 & 0 \\ -5 & 4 & 0 \end{array}\right|\\ &\text { Expand along Column } 3\\ &=\frac{1}{2}[(1)(-28-(7)(-5))]\\ &=\frac{1}{2}(-28+35)=\frac{7}{2} \neq 0 \end{aligned}$
This proves that the given points form a triangle and therefore do not lie on a straight line.
Question:16
$\\\begin{aligned} &\Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 1+\cos A & 1+\cos B & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply, } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\\ &=\left|\begin{array}{ccc} 1 & 1-1 & 1 \\ 1+\cos A & 1+\cos B-1-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & \cos ^{2} B+\cos B-\cos ^{2} A-\cos A & \cos ^{2} C+\cos C \end{array}\right|=0\\ &=\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)(\cos B+\cos A)+(\cos B-\cos A) & \cos ^{2} C+\cos C \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\begin{array}{|ccc|} 1 & 0 & 1 \\ 1+\cos A & \cos B-\cos A & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B-\cos A)[(\cos B+\cos A)+1] & \cos ^{2} C+\cos C \end{array} \mid=0\\ &\text { Take, cosB-cosA common from column } 2\\ &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1 \\ 1+\cos A & 1 & 1+\cos C \\ \cos ^{2} A+\cos A & (\cos B+\cos A)+1 & \cos ^{2} C+\cos C \end{array}\right|=0\\ &\text { Apply } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\\ &\cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 1-1 \\ 1+\cos A & 1 & 1+\cos C-1-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C+\cos C-\cos ^{2} A-\cos A \end{array}\right|=0 \end{aligned}$
$\\\begin{aligned} &\Rightarrow \cos B-\cos A\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & \cos C-\cos A \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos ^{2} C-\cos ^{2} A+\cos C-\cos A \end{array}\right|=0\\ &\Rightarrow(\cos B-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & (\cos C-\cos A) \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & (\cos C-\cos A)(\cos C+\cos A+1) \end{array}\right|=0\\ &\text { Take cosC-cosA common from Column } 3\\ &\Rightarrow(\cos B-\cos A)(\cos C-\cos A)\left|\begin{array}{ccc} 1 & 0 & 0 \\ 1+\cos A & 1 & 1 \\ \cos ^{2} A+\cos A & \cos B+\cos A+1 & \cos C+\cos A+1 \end{array}\right|=0 \end{aligned}$
Expand along Row 1
$
\begin{aligned}
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[(1)\{\cos C+\cos A+1-(\cos B+\cos A+1)\}]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)[\cos C+\cos A+1-\cos B-\cos A-1]=0 \\
& \Rightarrow(\cos B-\cos A)(\cos C-\cos A)(\cos C-\cos B)=0 \\
& \Rightarrow \cos B-\cos A=0 \backslash \text { or } \cos C-\cos A=0 \backslash \text { or } \cos C-\cos B=0 \\
& \Rightarrow \cos B=\cos A \text { or } \cos C=\cos A \text { or } \cos C=\cos B \\
& \Rightarrow B=A \text { or } C=A \text { or } C=B
\end{aligned}
$
$
\text { Hence, } \triangle A B C \text { is an isosceles triangle. }
$
Question:17
Answer:
To find $\operatorname{adj} \mathrm{A}$
$
\begin{aligned}
& a_{11}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{12}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{13}=\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|=1-0=1 \\
& a_{21}=-\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=-(0-1)=1 \\
& a_{22}=\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|=0-1=-1 \\
& a_{23}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \mathrm{a}_{31}=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1-0=1 \\
& \mathrm{a}_{32}=-\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=-(0-1)=1 \\
& \therefore \text { adjA }=\left[\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
\end{aligned}
$
$
\therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]}{2}=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$
$
A^{-1}=\frac{A^2-31}{2}
$
Now, we need to prove that.t
$
\begin{aligned}
& A^2=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0+1+1 & 0+0+1 & 0+1+0 \\
0+0+1 & 1+0+1 & 1+0+0 \\
0+1+0 & 1+0+0 & 1+1+0
\end{array}\right] \\
& A^2=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
& \therefore \frac{A^2-3 I}{2}=\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left\{\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\right\} \\
& 2-3 \\
& =\frac{1}{2}\left\{\left[\begin{array}{cc}
1 \\
1 & 2-3 \\
1 & 1 \\
1 & 1
\end{array}\right]\right\} \\
& \left.=\frac{1}{2}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\right\} \\
& =A^{-1}
\end{aligned}
$
Hence Proved
Question:18
Answer:
Find IAI Expand IAI along Column 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{ll}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
a_{32} & a_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & a_{23}
\end{array}\right| \\
& \left.|\mathrm{A}|=(1)\left|\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-1 & 1
\end{array}\right|-(-2)|+0| \begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array} \right\rvert\, \\
& =(-1+2)+2(0)+0 \\
& =1
\end{aligned}
$
To find adj $A$
$
\begin{aligned}
& a_{11}=\left|\begin{array}{cc}
-1 & -2 \\
-1 & 1
\end{array}\right|=-1-2=-3 \\
& a_{12}=-\left|\begin{array}{cc}
-2 & -2 \\
0 & 1
\end{array}\right|=-(-2+0)=2 \\
& a_{13}=\left|\begin{array}{cc}
-2 & -1 \\
0 & -1
\end{array}\right|=2+0=2 \\
& a_{21}=-\left|\begin{array}{cc}
2 & 0 \\
-1 & 1
\end{array}\right|=-(2+0)=-2 \\
& a_{22}=\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|=1 \\
& a_{23}=-\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right|=-(-1)=1 \\
& a_{31}=\left|\begin{array}{cc}
2 & 0 \\
-1 & -2
\end{array}\right|=-4 \\
& a_{32}=-\left|\begin{array}{cc}
1 & 0 \\
-2 & -2
\end{array}\right|=-(-2)=2 \\
& a_{33}=\left|\begin{array}{cc}
1 & 2 \\
-2 & -1
\end{array}\right|=-1+4=3
\end{aligned}
$
$
\begin{aligned}
& \therefore \operatorname{adj} A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& \therefore A^{-1}=\frac{\operatorname{adj} A}{|A|}=\frac{\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 3
\end{array}\right]}{1}=\left[\begin{array}{ccc}
-3 & -2 & -4 \\
2 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]
\end{aligned}
$
According to the linear equation:
$
x-2 y=10
$
$
2 x-y-z=8
$
$
-2 y+z=7
$
We know that, $\mathrm{AX}=\mathrm{B}$
$
A=\left[\begin{array}{ccc}
1 & -2 & 0 \\
2 & -1 & -1 \\
0 & -2 & 1
\end{array}\right]
$
Here,
So, transpose of $A^{-1}$
$
\begin{aligned}
& A^{-1}=\left[\begin{array}{lll}
-3 & 2 & 2 \\
-2 & 1 & 1 \\
-4 & 2 & 3
\end{array}\right] \\
& \Rightarrow X=A^{-1} B
\end{aligned}
$
$\begin{aligned} & \Rightarrow\left[\begin{array}{l}x \\ y \\ z \\ x \\ y \\ y\end{array}\right]=\left[\begin{array}{lll}-3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3\end{array}\right]\left[\begin{array}{l}10 \\ 8 \\ -30+16+14 \\ -20+8+7 \\ -40+16+21\end{array}\right] \\ & \therefore x=0, y=-5 \text { and } z=-3\end{aligned}$
Question:19
Answer:
Given system:
$
\begin{array}{r}
3 x+2 y-2 z=3 \\
x+2 y+3 z=6 \\
2 x-y+z=2
\end{array}
$
Matrix form:
$
\left[\begin{array}{ccc}
3 & 2 & -2 \\
1 & 2 & 3 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right]
$
The inverse of the coefficient matrix:
$
A^{-1}=\left[\begin{array}{ccc}
\frac{7}{17} & \frac{8}{17} & -\frac{4}{17} \\
\frac{1}{17} & \frac{5}{17} & \frac{6}{17} \\
\frac{5}{17} & -\frac{2}{17} & \frac{3}{17}
\end{array}\right]
$
Multiply:
$
X=A^{-1} B=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$
Final Answer:
$
x=1, \quad y=2, \quad z=1
$
Question:20
Answer:
$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right] \\
& \therefore B A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2+4 & 2-2 & -4+4 \\
4-12+8 & 4+6-4 & -8-12+20 \\
-4+4 & 2-2 & -4+10
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right] \\
& =6\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& B A=6 I \ldots(i)
\end{aligned}
$
Now, the given system of equations is:
$
y+2 z=7,
$
$
x-y=3
$
$
2 x+3 y+4 z=17
$
So,
$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
3 \\
17
\end{array}\right]
$
Apply, $\mathrm{R}_1 \leftrightarrow \mathrm{R}_2$
$
\begin{aligned}
& \mathrm{R}_2 \leftrightarrow \mathrm{R}_3 \\
& {\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
3 \\
17 \\
7
\end{array}\right]}
\end{aligned}
$
So, $B A=6 I[$ from eg(i) $]$
$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
12 \\
-6 \\
24
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]}
\end{aligned}
$
$\therefore x=2, y=-1$ and $z=4$
Question:21
Answer:
$
A=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3$
$
=\left|\begin{array}{lll}
a+b+c & b & c \\
b+a+c & c & a \\
c+a+b & a & b
\end{array}\right|
$
Take $(a+b+c)$ common from Column 1
$
=(a+b+c)\left|\begin{array}{ccc}
1 & b & c \\
1 & c & a \\
1 & a & b
\end{array}\right|
$
Expand along Column 1
$
\begin{aligned}
& =(a+b+c)\left[(1)\left(b c-a^2\right)-(1)\left(b^2-a c\right)+(1)\left(b a-c^2\right)\right] \\
& =(a+b+c)\left[b c-a^2-b^2+a c+a b-c^2\right] \\
& =(a+b+c)\left[-\left(a^2+b^2+c^2-a b-b c-a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left(2 a^2+2 b^2+2 c^2-2 a b-2 b c-2 a c\right) \\
& =-\frac{1}{2}(a+b+c)\left[\left(a^2+b^2-2 a b\right)+\left(b^2+c^2-2 b c\right)+\left(c^2+a^2-2 a c\right)\right] \\
& =-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right] \\
& {\left[\because(a-b)^2=a^2+b^2-2 a b\right]}
\end{aligned}
$
Given that $\Delta=0$
$
\Rightarrow-\frac{1}{2}(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0 $
$\Rightarrow(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]=0$
$\text {Either }(a+b+c)=0 \text { or }(a-b)^2+(b-c)^2+(c-a)^2=0$
$\text {but it is given that }(a+b+c) \neq 0 \therefore(a-b)^2+(b-c)^2+(c-a)^2=0 $
$\Rightarrow a-b=b-c=c-a=0 \Rightarrow a=b=c
$
Hence Proved
Question:22
Answer:
$\left|\begin{array}{lll}b c-a^2 & c a-b^2 & a b-c^2 \\ c a-b^2 & a b-c^2 & b c-a^2 \\ a b-c^2 & b c-a^2 & c a-b^2\end{array}\right|$ is given.
Apply, $R_1 \rightarrow R_1-R_2$,
$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathrm{b} c-\mathrm{a}^2-\mathrm{ca}+\mathrm{b}^2 & \mathrm{ca}-\mathrm{b}^2-\mathrm{ab}+\mathrm{c}^2 & \mathrm{ab}-\mathrm{c}^2-\mathrm{bc}+\mathrm{a}^2 \\
\mathrm{ca}-\mathrm{b}^2 & \mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 \\
\mathrm{ab}-\mathrm{c}^2 & \mathrm{bc}-\mathrm{a}^2 & \mathrm{ca}-\mathrm{b}^2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
(b c-c a)+\left(b^2-a^2\right) & (c a-a b)+\left(c^2-b^2\right) & (a b-b c)+\left(a^2-c^2\right) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
c(b-a)+(b-a)(b+a) & a(c-b)+(c-b)(c+b) & b(a-c)+(a-c)(a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2 \\
=\left|\begin{array}{ccc}
(b-a)(c+b+a) & (c-b)(a+c+b) & (a-c)(b+a+c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 1
$
=(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2 & a b-c^2 & b c-a^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
$
Apply $R_2 \rightarrow R_2-R_3$
$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
c a-b^2-a b+c^2 & a b-c^2-b c+a^2 & b c-a^2-c a+b^2 \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
(b-a) & (c-b) & (a-c) \\
(c-b)(a+b+c) & (a-c)(a+b+c) & (b-a)(a+b+c) \\
a b-c^2 & b c-a^2 & c a-b^2
\end{array}\right|
\end{aligned}
$
Take (a+b+c) common from Column 2
$
=(a+b+c)^2\left|\begin{array}{ccc}
b-a+c-b+a-c & (c-b) & (a-c) \\
c-b+a-c+b-a & (a-c) & (b-a) \\
a b-c^2+b c-a^2+c a-b^2 & b c-a^2 & c a-b^2
\end{array}\right|
$
Expand along Column 1
$
\begin{aligned}
& =(a+b+c)^2\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2 \\
& =(a+b+c)(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2
\end{aligned}
$
The determinant is divisible by $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and the quotient is $(a+b+c)\left[a b+b c+c a-\left(a^2+b^2+c^2\right)\right]^2$
Question:23
Answer:
Given LHS,
$
\left|\begin{array}{ccc}
x a & y b & z c \\
y c & z a & x b \\
z b & x c & y a
\end{array}\right|
$
Expand along Row 1
$
\begin{aligned}
& =x a\{(z a)(y a)-(x c)(x b)\}-(y b)\{(y c)(y a)-(z b)(x b)\}+(z c)\{(y c)(x c)- \\
& (z b)(z a)\} \\
& =x a\left\{a^2 y z-x^2 b c\right\}-y b\left\{y^2 a c-b^2 x z\right\}+z c\left\{c^2 x y-z^2 a b\right\} \\
& =a^3 x y z-x^3 a b c-y^3 a b c+b^3 x y z+c^3 x y z-z^3 a b c \\
& =x y z\left(a^3+b^3+c^3\right)-a b c\left(x^3+y^3+z^3\right)
\end{aligned}
$
Given $x+y+z=0$
$
\begin{aligned}
& \Rightarrow x^3+y^3+z^3=3 x y z=x y z\left(a^3+b^3+c^3\right)-a b c(3 x y z)=x y z\left(a^3+b^3+c^3-3 a b c\right) \\
& =x y z\left|\begin{array}{ccc}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
\end{aligned}
$
Question:24
If $\left|\begin{array}{cc} 2 \mathrm{x} & 5 \\ 8 & \mathrm{x} \end{array}\right|=\left|\begin{array}{cc} 6 & -2 \\ 7 & 3 \end{array}\right|$ then value of x is
A. 3
B. ± 3
C. ± 6
D. 6
Answer:
Given:
$
\begin{aligned}
& \left|\begin{array}{cc}
2 \mathrm{x} & 5 \\
8 & \mathrm{x}
\end{array}\right|=\left|\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right| \\
& A=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
\end{aligned}
$
Then the determinant of A is
$
\begin{aligned}
& |\mathrm{A}|=\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc} \\
& \Rightarrow(2 x)(x)-(5)(8)=(6)(3)-(7)(-2) \Rightarrow 2 x^2-40=18-(-14) \Rightarrow 2 x^2-40=18+14 \Rightarrow x^2-20=9+7 \Rightarrow x^2-20=16 \Rightarrow x^2=16+20 \Rightarrow x^2=36 \Rightarrow x=\sqrt{36} \Rightarrow x= \pm 6
\end{aligned}
$
Question:25
The value of determinant $\left|\begin{array}{lll} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{array}\right|$
A. $a^3 + b^3 + c^3$
B. 3 bc
C. $a^3 + b^3 + c^3-3abc$
D. none of these
Answer:
C)
Given:
$
\left|\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right|
$
Apply C2 $\rightarrow \mathrm{C} 2+\mathrm{C} 3$
$
=\left|\begin{array}{lll}
a-b & a+b+c & a \\
b-c & c+a+b & b \\
c-a & a+b+c & c
\end{array}\right|
$
Take $(a+b+c)$ common from Column 2
$
=(a+b+c)\left|\begin{array}{lll}
a-b & 1 & a \\
b-c & 1 & b \\
c-a & 1 & c
\end{array}\right|
$
Apply $\mathrm{C}_1 \rightarrow \mathrm{C}_1-\mathrm{C}_3$
$
\begin{aligned}
& =(a+b+c)\left|\begin{array}{ccc}
a-b-a & 1 & a \\
b-c-b & 1 & b \\
c-a-c & 1 & c
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{lll}
-b & 1 & a \\
-c & 1 & b \\
-a & 1 & c
\end{array}\right|
\end{aligned}
$
Expand along Row 1
$
\begin{aligned}
& =(a+b+c)\left[(-b)\{c-b\}-(1)\left\{-c^2-(-a b)\right\}+a\{-c-(-a)\}\right] \\
& =(a+b+c)\left(-b c+b^2+c^2-a b-a c+a^2\right)
\end{aligned}
$
$\begin{aligned} & =a\left(-b c+b^2+c^2-a b-a c+a^2\right)+b\left(-b c+b^2+c^2-a b-a c+a^2\right)+c(-b c+ \\ & \left.b^2+c^2-a b-a c+a^2\right) \\ & =-a b c+a b^2+a c^2-a^2 b-a^2 c+a^3-b^2 c+b^3+b c^2-a b^2-a b c+a^2 b-b c^2+ \\ & b^2 c+c^3-a b c-a c^2+a^2 c \\ & =a^3+b^3+c^3-3 a b c\end{aligned}$
Question:26
The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be
A. 9
B. 3
C. – 9
D. 6
Answer:
B)
$\\ \begin{aligned} &\text { The area of a triangle with vertices }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \text { is given by }\\ &\Delta=\frac{1}{2}\left|\begin{array}{lll} \mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1 \end{array}\right|\\ &\Delta=\frac{1}{2}\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=9\\ &\Delta=\left|\begin{array}{ccc} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & \mathrm{k} & 1 \end{array}\right|=18 \end{aligned}$
Expand along Column 2
$
\Rightarrow-(k)\{-3-3\}=18
$
$
\Rightarrow-k(-6)=18
$
$
\Rightarrow 6 k=18
$
$
\Rightarrow k=3
$
Question:27
A. abc (b–c) (c – a) (a – b)
B. (b–c) (c – a) (a – b)
C. (a + b + c) (b – c) (c – a) (a – b)
D. None of these
Answer:
D)
Given:
$\left|\begin{array}{ccc} b^{2}-a b & b-c & b c-a c \\ a b-a^{2} & a-b & b^{2}-a b \\ b c-a c & c-a & a b-a^{2} \end{array}\right|$
$\\=\left|\begin{array}{lll}b(b-a) & b-c & c(b-a) \\ a(b-a) & a-b & b(b-a) \\ c(b-a) & c-a & a(b-a)\end{array}\right|$
Take (b-a) common from both Columns 1 and 3
$=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Apply
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3}\\$ $=(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{a})\left|\begin{array}{lll}\mathrm{b}-\mathrm{c} & \mathrm{b}-\mathrm{c} & \mathrm{c} \\ \mathrm{a}-\mathrm{b} & \mathrm{a}-\mathrm{b} & \mathrm{b} \\ \mathrm{c}-\mathrm{a} & \mathrm{c}-\mathrm{a} & \mathrm{a}\end{array}\right|$
Whenever any two columns or rows in any determinant are equal, its value becomes = 0
Here Columns 1 and 2 are identical$\therefore\left|\begin{array}{lll}b^2-a b & b-c & b c-a c \\ a b-a^2 & a-b & b^2-a b \\ b c-a c & c-a & a b-a^2\end{array}\right|=0$
Question:28
A. 0
B. –1
C. 1
D. None of these
Answer:
C)
Given
$\left|\begin{array}{ccc} \sin x & \cos & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{array}\right|=0$
$\begin{aligned} &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\\ &\Rightarrow\left|\begin{array}{lll} \sin x+\cos x+\cos x & \cos x & \cos x \\ \cos x+\sin x+\cos x & \sin x & \cos x \\ \cos x+\cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\Rightarrow\left|\begin{array}{ccc} 2 \cos x+\sin x & \cos x & \cos x \\ 2 \cos x+\sin x & \sin x & \cos x \\ 2 \cos x+\sin x & \cos x & \sin x \end{array}\right|=0\\ &\text { Take }(2 \cos x+\sin x) \text { common from Column } 1\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1 & \sin x & \cos x \\ 1 & \cos x & \sin x \end{array}\right|=0\\ &\text { Apply } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\\ &\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 1-1 & \sin x-\cos x & \cos x-\cos x \\ 1 & \cos x & \sin x \end{array}\right|=0 \end{aligned}$
$\\\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1 & \cos x & \sin x \end{array}\right|=0 \\ \text { Apply } R_{3} \rightarrow R_{3}-R_{1} \\ \Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 1-1 & \cos x-\cos x & \sin x-\cos x \end{array}\right|=0 \\$
$\Rightarrow 2 \cos x+\sin x\left|\begin{array}{ccc} 1 & \cos x & \cos x \\ 0 & \sin x-\cos x & 0 \\ 0 & 0 & \sin x-\cos x \end{array}\right|=0$
Expand along Column 1
$
\begin{aligned}
& (2 \cos X+\sin X)[(1)\{(\sin X-\cos X)(\sin X-\cos X)\}] \\
& \Rightarrow(2 \cos X+\sin X)(\sin X-\cos X)^2=0 \\
& \Rightarrow 2 \cos X=-\sin X \operatorname{or}(\sin X-\cos X)^2=0 \\
& \Rightarrow 2=-\frac{\sin \mathrm{x}}{\cos \mathrm{x}} \text { or } \sin \mathrm{x}=\cos \mathrm{x} \\
& \Rightarrow \tan x=-2 \text { ortan } x=1\left[\because \tan x=\frac{\sin x}{\cos x}\right] \\
& \text { buttan } x=-2 \text { isnotpossibleasfor }-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
\end{aligned}
$
$
\text { So, } \tan x=1
$
$
\therefore x=\frac{\pi}{4}
$
Only one real and distinct root occurs.
Question:29
B. –1
C. 1
D. None of these
Answer:
A)
Given:
$
\left.\left|\begin{array}{ccc}
-1 & \cos \mathrm{C} & \cos \mathrm{~B} \\
\cos \mathrm{C} & -1 & \cos \mathrm{~A} \\
\cos \mathrm{~B} & \cos \mathrm{~A} & -1
\end{array}\right| \right\rvert\,
$
Expand along Column 1
$
\begin{aligned}
& |\mathrm{A}|=\mathrm{a}_{11}(-1)^{1+1}\left|\begin{array}{cc}
\mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{21}(-1)^{2+1}\left|\begin{array}{cc}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right|+\mathrm{a}_{31}(-1)^{3+1}\left|\begin{array}{ll}
\mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{22} & \mathrm{a}_{23}
\end{array}\right| \\
& \Delta=(-1)\left|\begin{array}{cc}
-1 & \cos A \\
\cos A & -1
\end{array}\right|-\cos C\left|\begin{array}{cc}
\cos C & \cos B \\
\cos A & -1
\end{array}\right|+\cos B\left|\begin{array}{cc}
\cos C & \cos B \\
-1 & \cos A
\end{array}\right| \\
& =\left[(-1)\left\{1-\cos ^2 A\right\}-\cos C\{-\cos C-\cos A \cos B\}+\cos B\{\cos A \cos C+\right. \\
& \cos B\}]
\end{aligned}
$
$
=-1+\cos ^2 A+\cos ^2 C+\cos A \cos B \cos C+\cos A \cos B \cos C+\cos ^2 B
$
$
=-1+\cos ^2 A+\cos ^2 B+\cos ^2 C+2 \cos A \cos B \cos C
$
Using the formula
$
\begin{aligned}
& 1+\cos 2 A=2 \cos ^2 A \\
& =-1+\frac{1+\cos 2 \mathrm{~A}}{2}+\frac{1+\cos 2 \mathrm{~B}}{2}+\frac{1+\cos 2 \mathrm{C}}{2}+2 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}
\end{aligned}
$
Taking L.C.M, we get
$
=\frac{-2+1+\cos 2 A+1+\cos 2 B+1+\cos 2 C+4 \cos A \cos B \cos C}{2}
$
$
\begin{aligned}
& =\frac{1+(\cos 2 A+\cos 2 B)+\cos 2 C+4 \cos C \cos A \cos B}{2} \\
& \text { Now use: } \cos (A+B) \cos (A-B)=2 \cos A \cos B \\
& \text { so, } \cos 2 A+\cos 2 B=2 \cos (A+B) \cos (A-B) \\
& =\frac{1+\cos 2 C+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{1+2 \cos ^2 C-1+\{2 \cos (A+B) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 \mathrm{C}+[2 \cos (\mathrm{~A}+\mathrm{B}) \cos (\mathrm{A}-\mathrm{B})\}+4 \cos \mathrm{~A} \cos \mathrm{~B} \cos C}{2} \ldots \text { (i) }
\end{aligned}
$
We know that $A, B, C$ are angles of triangle
$
\begin{aligned}
& \Rightarrow A+B+C=\pi \\
& \Rightarrow A+B=\pi-C \\
& =\frac{2 \cos ^2 C+\{2 \cos (\pi-C) \cos (A-B)\}+4 \cos A \cos B \cos C}{2} \\
& =\frac{2 \cos ^2 C+\{-2 \cos C \cos (A-B)\}+4 \cos A \cos B \cos C}{2}[\because \cos (\pi-x)=-\cos x] \\
& =\frac{-2 \cos C\{\cos (A-B)-\cos C\}+4 \cos A \cos B \cos C}{2}
\end{aligned}
$
$=-\cos C\{\cos (A-B)-\cos C\}+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)-\cos \{\pi-(A+B)\}]+2 \cos A \cos B \cos C=-\cos C[\cos (A-B)+\cos (A+B)]+2 \cos A \cos B \cos C=-\cos C[2 \cos A \cos B]+2 \cos A \cos B \cos C=0$
Question:30
Answer:
Given:
$
f(t)=\left|\begin{array}{ccc}
\cos t & t & 1 \\
2 \sin t & t & 2 t \\
\sin t & t & t
\end{array}\right|
$
Divide $\mathrm{R}_2$ and $\mathrm{R}_3$ by $t$
$
f(t)=t^2\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & \frac{t}{t} & \frac{2 t}{t} \\
\frac{\sin t}{t} & \frac{t}{t} & \frac{t}{t}
\end{array}\right|
$
$
\Rightarrow \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\frac{\mathrm{t}^2}{\mathrm{t}^2}\left|\begin{array}{ccc}
\cos t & t & 1 \\
\frac{2 \sin t}{t} & 1 & 2 \\
\frac{\sin t}{t} & 1 & 1
\end{array}\right|
$
$
\Rightarrow \lim _{t \rightarrow 0} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}^2}=\left|\begin{array}{lll}
\lim _{t \rightarrow 0} \cos t & \lim _{t \rightarrow 0} t & \lim _{t \rightarrow 0} 1 \\
\lim _{t \rightarrow 0} \frac{2 \sin t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 2 \\
\lim _{t \rightarrow 0} \frac{\sin ^t}{t} & \lim _{t \rightarrow 0} 1 & \lim _{t \rightarrow 0} 1
\end{array}\right|
$
$
=\left|\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 2 \\
1 & 1 & 1
\end{array}\right|\left(\because \lim _{t \rightarrow 0} \frac{\sin t}{t}=1\right)
$
Expand along Row 1
$
\begin{aligned}
& =(1)(1-2)+(1)(2-1) \\
& =-1+1
\end{aligned}
$
$=0$
Question:31
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{2}$
D. $\frac{2 \sqrt{3}}{4}$
Answer:
A)
We have:
$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1+\cos \theta & 1 & 1
\end{array}\right|
$
Apply, $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$ and $\mathrm{C}_2 \rightarrow \mathrm{C}_2-\mathrm{C}_3$
$
\Rightarrow \Delta=\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & \sin \theta & 1 \\
\cos \theta & 0 & 1
\end{array}\right|
$
$=0-0+1(\sin \theta \cdot \cos \theta)$ Multiply and divide by $2,=\frac{1}{2}(2 \sin \theta \cos \theta)$ We already know that $\underline{2 \sin \theta \cos \theta=\sin 2 \theta}=\frac{1}{2}(\sin 2 \theta)$
The maximum value of $: \sin 2 \theta$ is $1, \theta=45^{\circ}$.
$
\begin{aligned}
& \therefore \Delta=\frac{1}{2}\left(\sin 2\left(45^{\circ}\right)\right)=\frac{1}{2} \sin 90^{\circ}=\frac{1}{2}(1) \\
& \therefore \Delta=\frac{1}{2}
\end{aligned}
$
Question:32
A. f (a) = 0
B. f (b) = 0
C. f (0) = 0
D. f (1) = 0
Answer:
C)
We have:
$
f(x)=\left|\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right|
$
If we put $x=a$
$
\begin{aligned}
& f(a)=\left|\begin{array}{ccc}
0 & a-a & a-b \\
a+a & 0 & a-c \\
a+b & a+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & a-c \\
a+c & 0
\end{array}\right|-0\left|\begin{array}{cc}
2 a & a-c \\
a+b & 0
\end{array}\right|+(a-b)\left|\begin{array}{cc}
2 a & 0 \\
a+b & a+c
\end{array}\right| \\
& =0-0+(a-b)[2 a(a+c)-0(a+b)]=(a-b)\left[2 a^2+2 a c-0\right]=(a-b)\left(2 a^2+2 a c\right) \neq 0 \text { If } x=b \\
& f(b)=\left|\begin{array}{ccc}
0 & b-a & b-b \\
b+a & 0 & b-c \\
b+b & b+c & 0
\end{array}\right| \\
& =0\left|\begin{array}{cc}
0 & b-c \\
b+c & 0
\end{array}\right|-(b-a)\left|\begin{array}{cc}
b+a & b-c \\
2 b & 0
\end{array}\right|+0\left|\begin{array}{cc}
b+a & 0 \\
2 b & b+c
\end{array}\right| \\
& =0-(b-a)[(b+a)(0)-(b-c)(2 b)]+0=-(b-a)\left[0-2 b^2+2 b c\right]=(a-b)\left(2 b^2-2 b c\right) \neq 0
\end{aligned}
$
If $x=0$ according to the given question:
$
f(0)=\left|\begin{array}{ccc}
0 & 0-a & 0-b \\
0+a & 0 & 0-c \\
0+b & 0+c & 0
\end{array}\right|
$
$
\begin{aligned}
& =0\left|\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right|-(-a)\left|\begin{array}{cc}
a & -c \\
b & 0
\end{array}\right|+(-b)\left|\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right| \\
& =0+a[a(0)-(-b c)]-b[a c-b(0)]
\end{aligned}
$
$
=a[b c]-b[a c]
$
$
=a b c-a b c=0
$
Then the condition is satisfied.
Question:33
If $A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$
then $A^{-1}$ exists if
A. λ = 2
B. λ ≠ 2
C. λ ≠ -2
D. None of these
Answer:
D)
We have
$A=\left[\begin{array}{ccc} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{array}\right]$
$
\begin{aligned}
& \Rightarrow|A|=2(6-5)-\lambda(0-5)+(-3)(0-2) \\
& =2+5 \lambda+6 \\
& =5 \lambda+8
\end{aligned}
$
ithe inverse of A exists only if A is non-singular.e. $|A| \neq 0$.
$
\begin{aligned}
& .5 \lambda+8 \neq 0 \\
& \Rightarrow 5 \lambda \neq-8
\end{aligned}
$
$\therefore \lambda \neq-\frac{8}{5}$
So, $A^{-1}$ exists if and only if $\lambda \neq-\frac{8}{5}$
Question:34
If A and B are invertible matrices, then which of the following is not correct?
A. $adj A = |A|. A^{-1}$
B. $det (A)^{-1} = [det (A)]^{-1}$
C. $(AB)^{-1} = B^{-1} A^{-1}$
D. $(A + B)^{-1} = B^{-1} + A^{-1}$
Answer:
D)
We know, that A and B are invertible matrices
$
\begin{aligned}
& \text { Consider }(A B) B^{-1} A^{-1} \Rightarrow(A B) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=(A I) A^{-1}=A A^{-1}=I \Rightarrow(A B)^{-1}=B^{-1} A^{-1} \ldots \text { option }(C) \\
& \text { Also } A A^{-1}=I \Rightarrow\left|A A^{-1}\right|=|I| \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \Rightarrow|\mathrm{~A}|^{-1}=\frac{1}{|\mathrm{~A}|} \\
& \therefore \operatorname{det}(A)^{-1}=[\operatorname{det}(A)]^{-1} \ldots(B)
\end{aligned}
$
We know that $\frac{|\mathrm{A}|^{-1}}{\operatorname{adj} \mathrm{~A}} \frac{|\vec{A}|}{\text { We }}$
$\Rightarrow \operatorname{adj} A=|A| \cdot A^{-1} \ldots$ option $(A)$
$
\Rightarrow(\mathrm{A}+\mathrm{B})^{-1}=\frac{1}{|\mathrm{~A}+\mathrm{B}|} \operatorname{adj}(\mathrm{A}+\mathrm{B})
$
But $\mathrm{B}^{-1}+\mathrm{A}^{-1}=\frac{1}{|\mathrm{~B}|} \operatorname{adj} \mathrm{B}+\frac{1}{|\mathrm{~A}|}$ adj A
$
\therefore(A+B)^{-1} \neq B^{-1}+A^{-1}
$
Question:35
If x, y, z are all different from zero and ,$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$, then value of $x^{-1} + y^{-1} + z^{-1}$ is
$\\A. x y z\\B. x^{-1} y^{-1} z^{-1}\\C. -x -y -z\\D. -1$
Answer:
We have
$\left|\begin{array}{ccc} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{array}\right|=0$
$\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \text { and } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc} x & 0 & 1 \\ 0 & y & 1 \\ -z & -z & 1+z \end{array}\right|=0$
Expand along Row 1
$
\Rightarrow x[y(1+z)+z]-0+1(y z)=0
$
$
x y+x y z+x z+y z=0
$
Divide both sides by XYZ
$\\ \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+1=0 \\ \therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x^{-1}+y^{-1}+z^{-1}=-1$
Question:36
The value of the determinant $\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right|$ is
A. $9x^2 (x + y)$
B. $9y^2 (x + y)$
C. $3y^2 (x + y)$
D. $7x^2 (x + y)$
Answer:
B)
Matrix given:
$
\begin{aligned}
& \left|\begin{array}{ccc}
x & x+y & x+2 y \\
x+2 y & x & x+y \\
x+y & x+2 y & x
\end{array}\right| \\
& =\mathrm{x}\left|\begin{array}{cc}
\mathrm{x} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+2 \mathrm{y} & \mathrm{x}
\end{array}\right|-(\mathrm{x}+\mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x}+\mathrm{y} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}
\end{array}\right|+(\mathrm{x}+2 \mathrm{y})\left|\begin{array}{cc}
\mathrm{x}+2 \mathrm{y} & \mathrm{x} \\
\mathrm{x}+\mathrm{y} & \mathrm{x}+2 \mathrm{y}
\end{array}\right| \\
& =x\left[x^2-(x+y)(x+2 y)\right]-(x+y)\left[(x+2 y)(x)-(x+y)^2\right]+(x+2 y)[(x+ \\
& \left.2 y)^2-x(x+y)\right] \\
& =x\left[x^2-x^2-3 x y-2 y^2\right]-(x+y)\left[x^2+2 x y-x^2-2 x y-y^2\right]+(x+2 y)\left[x^2+\right. \\
& \left.4 x y+4 y^2-x^2-x y\right] \\
& =x\left[-3 x y-2 y^2\right]-(x+y)\left[-y^2\right]+(x+2 y)\left[3 x y+4 y^2\right] \\
& =-3 x^2 y-2 x y^2+x y^2+y^3+3 x^2 y+4 x y^2+6 x y^2+8 y^3 \\
& =9 y^3+9 x y^2 \\
& =9 y^2(x+y)
\end{aligned}
$
Question:37
Answer:
C)
We have:
$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2 a
\end{array}\right|=86 \\
& 1\left|\begin{array}{cc}
\mathrm{a} & -1 \\
4 & 2 \mathrm{a}
\end{array}\right|-(-2)\left|\begin{array}{cc}
2 & -1 \\
0 & 2 \mathrm{a}
\end{array}\right|+5\left|\begin{array}{cc}
2 & \mathrm{a} \\
0 & 4
\end{array}\right|=86 \\
& 1\left[2 a^2-(-4)\right]+2[4 a-0]+5[8-0]=86
\end{aligned}
$
$
1\left[2 a^2+4\right]+2[4 a]+5[8]=86
$
$
2 a^2+4+8 a+40=86
$
$
2 a^2+8 a+44=86
$
$
2 a^2+8 a=42
$
$
2\left(a^2+4 a\right)=42
$
$
\left(a^2+4 a\right)=21 \Rightarrow a^2+4 a-21=0 \Rightarrow(a+7)(a-3)=0 \therefore a=-7 \text { or } 3
$
The sum of -7 and $3=-4$
Question:38
Fill in the blanks
If A is a matrix of order 3 × 3, then |3A| = ___.
Answer:
If A is a matrix of order $3 \times 3$, then $|3 A|=27|A|$.
We know:
$
\begin{aligned}
& \text { if } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k \cdot A|=k^3|A| \\
& \therefore|3 A|=3^3|A|=27|A|
\end{aligned}
$
Question:39
Fill in the blanks
If A is an invertible matrix of order 3 × 3, then |$A^{-1}$|= ____.
Answer:
If A is an invertible matrix of order $3 \times 3$, then $\left|A^{-1}\right|=|A|^{-1}$
Given
$\mathrm{A}=$ invertible matrix $3 \times 3$
$
\begin{aligned}
& A A^{-1}=I \Rightarrow|A|\left|A^{-1}\right|=1 \\
& \therefore\left|A^{-1}\right|=\frac{1}{|A|}
\end{aligned}
$
Question:40
Answer:
$\\ \begin{aligned} &\text { Given }\\ &\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\\ &=\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2}-\left(2^{x}-2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2}-\left(3^{x}-3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2}-\left(4^{x}-4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Apply Formula: }(a+b)^{2}-(a-b)^{2}=4 a b \text { . } \end{aligned}$
$\\ \begin{aligned} &=\left|\begin{array}{lll} 4\left(2^{x}\right)\left(2^{-x}\right) & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4\left(3^{x}\right)\left(3^{-x}\right) & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4\left(4^{x}\right)\left(4^{-x}\right) & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &=\left|\begin{array}{lll} 4 & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ 4 & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ 4 & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|\\ &\text { Column } 1 \text { and } 3 \text { thus become proportional }\\ &\therefore\left|\begin{array}{lll} \left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1 \end{array}\right|=0 \end{aligned}$
Question:41
If cos 2θ = 0, then $\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=$
Answer:
We know
$
\cos 2 \theta=0 \Rightarrow \cos 2 \theta=\cos \pi / 2 \Rightarrow 2 \theta=\pi / 2 \therefore \theta=\pi / 4
$
$\\ \begin{aligned} &\therefore \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} \text { and } \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\\ &\text { Then }\\ &\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\left|\begin{array}{ccc} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{array}\right|^{2}\\ &\Rightarrow\left[0-\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)+\frac{1}{\sqrt{2}}\left(-\frac{1}{2}\right)\right]^{2}=\left[\frac{-2}{2 \sqrt{2}}\right]^{2}=\left[-\frac{1}{\sqrt{2}}\right]^{2}\\ &\therefore\left|\begin{array}{ccc} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{array}\right|^{2}=\frac{1}{2} \end{aligned}$
Question:42
Fill in the blanks
If A is a matrix of order 3 × 3, then $(A^2)^{-1 }$= ____.
Answer:
For matrix A is of order 3X3
$\begin{aligned} \left(A^{2}\right)^{-1} &=(A \cdot A)^{-1} \\ &=A^{-1} \cdot A^{-1} \\ &=\left(A^{-1}\right)^{2} \end{aligned}$
Question:43
If A is a matrix of order 3 × 3, then the number of minors in the determinant of A is
Answer:
If matrix A is of order 3X3 then
Number of Minors of IAI = 9 as there are 9 elements in a 3x3 matrix
Question:44
Answer:
If, $A=\left|\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right|$
then $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$
We know that the determinant is equal to the sum of corresponding co-factors of any row or column.
Question:45
Answer:
We know that
$
\begin{aligned}
& x=-9 \text { is a root of }\left|\begin{array}{lll}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right|=0 \\
& \Rightarrow \mathrm{x}\left|\begin{array}{ll}
\mathrm{x} & 2 \\
6 & \mathrm{x}
\end{array}\right|-3\left|\begin{array}{ll}
2 & 2 \\
7 & \mathrm{x}
\end{array}\right|+7\left|\begin{array}{ll}
2 & \mathrm{x} \\
7 & 6
\end{array}\right|=0
\end{aligned}
$
$\Rightarrow x\left[x^2-12\right]-3[2 x-14]+7[12-7 x]=0 \Rightarrow x^3-12 x-6 x+42+84-49 x=0 \Rightarrow x^3-67 x+126=0(x+9)(2-x)(7-x)=0 H$ ere, $126 \times 1=9 \times 2 \times 7$ Forx $=2, \Rightarrow 2^3-67 \cdot 2+126=134-134=0 \therefore x=2$ is one root. For $=7, \Rightarrow 7^3-677-7+126=469-469=0; x=7$ will be another root.
Question:46
Answer:
$
\begin{aligned}
& =(z-x)[1[0-(y-z)(z-y)]-(x y z)[0-(y-z)]+(x-z)[(z-y)-0]] \\
& =(z-x)(z-y)(-y+z-x y z+x-z) \\
& =(z-x)(z-y)(x-y-x y z) \\
& =(z-x)(y-z)(y-x+x y z)
\end{aligned}
$
Question:47
Answer:
Given $f(x)=\left|\begin{array}{ccc}(1+x)^{17} & (1+x)^{19} & (1+x)^{23} \\ (1+x)^{23} & (1+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47}\end{array}\right| \Rightarrow \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}(1+x)^{41}\left|\begin{array}{ccc}1 & (1+x)^2 & (1+x)^6 \\ 1 & (1+x)^6 & (1+x)^{11} \\ 1 & (1+x)^2 & (1+x)^6\end{array}\right|$ Wecanseethatrow1 androw3areidentical $\therefore \mathrm{f}(x)=(1+x)^{17}(1+x)^{23}$
$
\therefore A=0
$
Question:48
Answer:
$\left(A^3\right)^{-1}=\left(A^{-1}\right)^3$ Because, $\left(A^n\right)^{-1}=\left(A^{-1}\right)^n$, wheren $\in \mathbb{N}$.
Question:49
Answer:
For a non-singular matrix, aA is invertible such that
$\\ (\mathrm{aA})\left(\frac{1}{\mathrm{a}} \mathrm{A}^{-1}\right)=\left(\mathrm{a} \cdot \frac{1}{\mathrm{a}}\right)\left(\mathrm{AA}^{-1}\right) \\ \text {i.e. } \quad(\mathrm{aA})^{-1}=\frac{1}{\mathrm{a}} \mathrm{A}^{-1} \\$
here a = any non-zero scalar. Here A should be a non-singular matrix which is not given in the statement, thus the statement given in the question is false.
Question:50
State True or False for the statements
$|A^{-1}| \neq |A|^{-1}$, where A is non-singular matrix.
Answer:
We know A is a non-singular Matrix
In that case: $A A^{-1}=I$.
$
\Rightarrow|A|\left|A^{-1}\right|=1 \therefore\left|A^{-1}\right|=1 /|A|=|A|^{-1}
$
Thus the statement is false.
Question:51
Answer:
We know that:
$
\begin{aligned}
& |A B|=|A| \cdot|B| \text { andif } A=\left[a_{i j}\right]_{3 \times 3}, \text { then }|k . A|=k^3|A| . \\
& \therefore|3 A|=27|A B|=27|A||B|=27 \cdot 5 \cdot 3=405
\end{aligned}
$
Hence the statement given in question is true.
Question:52
Answer:
Given $\therefore|A|=12$
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
$
\text { Forn }=3,|\operatorname{adj} A|=|A|^{3-1}=|A|^2=12^2=144
$
Thus the given statement is true.
Question:53
Answer:
$\\ \begin{aligned} &\text { since } a, b, c \text { are in } A P, 2 b=a+c .\\ &\therefore\left|\begin{array}{lll} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0\\ &A p p l y_{i}, R_{1} \rightarrow R_{1}+R_{3}\\ &\Rightarrow\left|\begin{array}{ccc} 2 x+4 & 2 x+6 & 2 x+a+c \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0 \end{aligned}$
Since 2b = a + c,
$\Rightarrow\left|\begin{array}{ccc} 2(x+2) & 2(x+3) & 2(x+b) \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{array}\right|=0$
We can see that Row 1 and 3 are proportional
Thus determinant = 0
Question:54
State True or False for the statements
$|adj. A| = |A|^2$, where A is a square matrix of order two.
Answer:
For any square matrix of order $\mathrm{n}, \operatorname{adj} A\left|=|A|^{n-1}\right.$
Here $\mathrm{n}=2$,
$
\Rightarrow|\operatorname{adj} A|=|A|^{n-1}=|A|
$
Thus the statement given in question is false
Question:55
$\left|\begin{array}{ccc} \sin A & \cos A & \sin A+\cos A \\ \sin B & \cos B & \sin B+\cos B \\ \sin C & \cos C & \sin C+\cos C \end{array}\right|$
$\\=\left|\begin{array}{ccc} \sin A & \cos A & \sin A \\ \sin B & \cos B & \sin B \\ \sin C & \cos C & \sin C \end{array}\right|+\left|\begin{array}{ccc} \sin A & \cos A & \cos A \\ \sin B & \cos B & \cos B \\ \sin C & \cos C & \cos C \end{array}\right|$
We can see that columns are identical in both the matrix on the right-hand side
Thus Determinant = 0
The statement in question is therefore true.
Question:56
Answer:
Given $\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$ Splitrow $1 \Rightarrow\left|\begin{array}{ccc}x+a & p+u & 1+f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|=\left|\begin{array}{ccc}x & p & 1 \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|+\left|\begin{array}{ccc}a & u & f \\ y+b & q+v & m+g \\ z+c & r+w & n+h\end{array}\right|$
Split row 2
$
\left|\begin{array}{ccc}
x & p & 1 \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
a & u & f \\
y & q & m \\
z+c & r+w & n+h
\end{array}\right|+\left|\begin{array}{ccc}
x & p & l \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
$
+\left|\begin{array}{ccc}
a & u & f \\
b & v & g \\
z+c & r+w & n+h
\end{array}\right|
$
We can split all the rows in the same way. Thus the statement given in the question is true.
Question:57
Answer:
$
\begin{aligned}
& \text { Wehave } \Delta=\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=16 \text { Weneedtoprove } \Delta_1=\left|\begin{array}{lll}
p+x & a+x & a+p \\
q+y & b+y & b+q \\
r+z & c+z & c+r
\end{array}\right|=32 \text {. } \\
& \mathrm{C}_1 \rightarrow \mathrm{C}_1+\mathrm{C}_2+\mathrm{C}_3 \\
& \left|\begin{array}{lll}
2(p+x+a) & a+x & a+p \\
2(q+y+b) & b+y & b+q \\
2(r+z+c) & c+z & c+r
\end{array}\right|=32
\end{aligned}
$
2 can be taken common from Column 1
$
2\left|\begin{array}{ccc}
(p+x+a) & a+x & a+p \\
(q+y+b) & b+y & b+q \\
(r+z+c) & c+z & c+r
\end{array}\right|=32
$
After that apply $\mathrm{C} 1 \rightarrow \mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 2 \rightarrow \mathrm{C} 2-\mathrm{C} 3$
$
\begin{aligned}
& \left|\begin{array}{lll}
p & x-p & a+p \\
q & y-q & b+q \\
r & z-r & c+r
\end{array}\right|=16 \\
& \left|\begin{array}{ccc}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-\left|\begin{array}{lll}
p & p & a+p \\
q & q & b+q \\
r & r & c+r
\end{array}\right|=16
\end{aligned}
$
The second determinant of columns 2 and 3 are identical.l
$
\left|\begin{array}{lll}
p & x & a+p \\
q & y & b+q \\
r & z & c+r
\end{array}\right|-0=16
$
$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|+\left|\begin{array}{lll}
p & x & p \\
q & y & q \\
r & z & r
\end{array}\right|=16
$
Again, the second determinant of columns 1 and 3 is identic. al
$
\left|\begin{array}{lll}
p & x & a \\
q & y & b \\
r & z & c
\end{array}\right|=16
$
Hence the statement given in question is true
Question:58
Answer:
$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+\sin \theta & 1 \\
1 & 1 & 1+\cos \theta
\end{array}\right|
$
Apply, $\mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1$ and $\mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1$
$
\Rightarrow \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & \sin \theta & 0 \\
0 & 0 & \cos \theta
\end{array}\right|
$
$=\cos \theta \cdot \sin \theta$ Multiply and divide by $2,=1 / 2(2 \sin \theta \cos \theta)$ We know, $2 \sin \theta \cos \theta=\sin 2 \theta=1 / 2(\sin 2 \theta)$
Since the maximum value of $\sin 2 \theta$ is $1, \theta=45^{\circ}$.
$
\therefore \Delta=1 / 2\left(\sin 2\left(45^{\circ}\right)\right)=1 / 2 \sin 90^{\circ}=1 / 2(1) \therefore \Delta=1 / 2
$
Thus the given statement is true.
Determinants are related to the matrices that are solved in chapter 3 of the 12 Class NCERT Maths book. Studying determinants is not just about passing exams, but is about being prepared for higher education in any field of maths, science, economics, etc. In Class 12 Maths NCERT exemplar solutions chapter 4, the students will learn about determinants, their elements, and how to calculate determinants of various square matrices.
The sub-topics that are covered in this chapter of NCERT Class 12 solution are:
These Class 12 Maths NCERT exemplar Chapter 4 solutions provide a basic knowledge of Determinants, which has great importance in higher classes.
The questions based on Determinants can be practised in a better way, along with these solutions.
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the subject-wise NCERT Notes of class 12 :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Frequently Asked Questions (FAQs)
Yes, you download NCERT exemplar Class 12 Maths solutions chapter 4 pdf by using the webpage to pdf tool available online.
The Properties of Determinants, Adjoint and Inverse of a Matrix and Application of Determinants and Matrices are the more important topics among others as per their weightage.
Practice, Practice and Practice. Once you have read the chapters well and made notes, you must practice being fast and precise with answers.
The NCERT exemplar solutions for Class 12 Maths chapter 4 has one exercise with 58 questions for practice.
On Question asked by student community
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters