NCERT Exemplar Class 12 Maths Solutions chapter 13 deals with the possibility of any event or explains how likely it is for an event to occur. The possibility of any event occurring or not occurring cannot be predicted, but can be displayed in the form of probability with an absolute level of certainty. The probability of any event lies between 0 and 1, where 0 shows the absolute impossibility of an event, and 1 shows the maximum chances of happening of an event happening.
The CBSE will hold the Class 12th 2026 examination from February 17 to April 10, 2026. The exam conducting authority has declared the CBSE Class 12 admit card for private candidates on the official website.
This Story also Contains
NCERT Exemplar Class 12 Maths Solutions chapter 13 help students to interrelate such knowledge with real-life problems and display the application of such knowledge in different life scenarios and situations, along with enhancing decision-making at an efficient level. It is a highly scoring chapter of the NCERT Class 12 Maths Solutions that a student can utilise to gain higher scores in their exams.
Also, read,
| Class 12 Maths Chapter 13 Exemplar Solutions Exercise: 13.3 Page number: 271-286 Total questions: 108 |
Question 1
Answer:
A loaded die is thrown such that $\mathrm{P}(1)=\mathrm{P}(2)=0.2, \mathrm{P}(3)=\mathrm{P}(5)=\mathrm{P}(6)=0.1$ and $\mathrm{P}(4)=0.3$ and die is thrown two times.
Also given that: $\mathrm{A}=$ Same number each time and
$\mathrm{B}=$ Total score is 10 or more.
So, $\mathrm{P}(\mathrm{A})=[\mathrm{P}(1,1)+\mathrm{P}(2,2)+\mathrm{P}(3,3)+\mathrm{P}(4,4)+\mathrm{P}(5,5)+\mathrm{P}(6,6)]$
$\begin{aligned} & =P(1) \cdot P(1)+P(2) \cdot P(2)+P(3) \cdot P(3)+P(4) \cdot P(4)+P(5) \cdot P(5)+P(6) \cdot P(6) \\ & 0.2 \times 0.2+0.2 \times 0.2+0.1 \times 0.1+0.3 \times 0.3+0.1 \times 0.1+0.1 \times 0.1 \\ & =0.04+0.04+0.01+0.09+0.01+0.01=0.20\end{aligned}$
Now $B=[(4,6),(6,4),(5,5),(5,6),(6,5),(6,6)]$
$\begin{aligned} & \mathrm{P}(\mathrm{B})=[\mathrm{P}(4) \cdot \mathrm{P}(6)+\mathrm{P}(6) \cdot \mathrm{P}(4)+\mathrm{P}(5) \cdot \mathrm{P}(5)+\mathrm{P}(5) \cdot \mathrm{P}(6)+\mathrm{P}(6) \cdot \mathrm{P}(5)+\mathrm{P}(6) \cdot \mathrm{P}(6) \\ & =0.3 \times 0.1+0.1 \times 0.3+0.1 \times 0.1+0.1 \times 0.1+0.1 \times 0.1+0.1 \times 0.1 \\ & =0.03+0.03+0.01+0.01+0.01+0.01=0.10\end{aligned}$
$A$ and $B$ both events will be independent if
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$..............(i)
Here, $(\mathrm{A} \cap \mathrm{B})=\{(5,5),(6,6)\}$
$\begin{aligned} & \therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(5,5)+\mathrm{P}(6,6)=\mathrm{P}(5) \cdot \mathrm{P}(5)+\mathrm{P}(6) \cdot \mathrm{P}(6) \\ & =0.1 \times 0.1+0.1 \times 0.1 \\ & =0.02\end{aligned}$
From equation (i) we get
$\begin{aligned} & 0.02=0.20 \times 0.10 \\ & 0.02=0.02\end{aligned}$
Hence, A and B are independent events.
Question 2
Answer:
We have $\mathrm{A}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$\therefore \mathrm{n}(\mathrm{A})=6$ and $\mathrm{n}(\mathrm{S})=6 \times 6=36$
So, $\mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{6}{36}=\frac{1}{6}$
And $B=\{(4,6),(6,4),(5,5),(5,6),(6,5),(6,6)\}$
$\begin{aligned} & n(B)=6 \text { and } n(S)=36 \\ & \therefore P(B)=\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6} \\ & A \cap B=\{(5,5),(6,6)\} \\ & \therefore P(A \cap B)=\frac{2}{36}=\frac{1}{18}\end{aligned}$
Therefore, if A and B are independent Then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\begin{aligned} & \Rightarrow \frac{1}{18} \neq \frac{1}{6} \times \frac{1}{6} \\ & \Rightarrow \frac{1}{18} \neq \frac{1}{36}\end{aligned}$
Hence, A and B are not independent events.
Question 3
Answer:
Given-
At least one of the two events A and B occurs is 0.6 i.e. P(A$\cup$B) = 0.6
If A and B occur simultaneously, the probability is 0.3 i.e. P(A$\cap$B) = 0.3
It is known to us that
P(A$\cup$B) = P(A)+ P(B) – P(A$\cap$B)
$\Rightarrow$ 0.6 = P(A)+ P(B) – 0.3
$\Rightarrow$ P(A)+ P(B) = 0.6+ 0.3 = 0.9
To find- $P(\bar{A})+P(\bar{B})$
Therefore,
$\\ P(\bar{A})+P(\bar{B})=[1-P(A)+1-P(B)] $
$\Rightarrow P(\bar{A})+P(\bar{B})=2-[P(A)+P(B)] $
$\Rightarrow P(\bar{A})+P(\bar{B})=2-0.9 $
$ P(\bar{A})+P(\bar{B})=1.1$
Question 4
Answer:
Let red marble be represented with R and black marble with B.
The following three conditions are possible.
If at least one of the three marbles drawn is black and the first marble is red.
(i) $\mathbf{E}_{\mathbf{1}}$ : II ball is black and III is red
(ii) $\mathbf{E}_2:$ II ball is black and III is also black
(iii) $\mathbf{E}_3$ : II ball is red and III is black
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_1\right)=\mathrm{P}\left(\mathrm{R}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{B}_1}{\mathrm{R}_1}\right) \cdot \mathrm{P}\left(\frac{\mathrm{R}_2}{\mathrm{R}_1 \mathrm{~B}_1}\right) \\ & =\frac{5}{8} \cdot \frac{3}{7} \cdot \frac{4}{6} \\ & =\frac{60}{336} \\ & =\frac{5}{28} \\ & \mathrm{P}\left(\mathrm{E}_2\right)=\mathrm{P}\left(\mathrm{R}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{B}_1}{\mathrm{R}_1}\right) \cdot \mathrm{P}\left(\frac{\mathrm{B}_2}{\mathrm{R}_1 \mathrm{~B}_1}\right) \\ & =\frac{5}{8} \cdot \frac{3}{7} \cdot \frac{2}{6} \\ & =\frac{30}{336} \\ & =\frac{5}{36}\end{aligned}$
And $\mathrm{P}\left(\mathrm{E}_3\right)=\mathrm{P}\left(\mathrm{R}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{R}_2}{\mathrm{R}_1}\right) \cdot \mathrm{B}\left(\frac{\mathrm{B}_1}{\mathrm{R}_1 \mathrm{R}_2}\right)$
$\begin{aligned} & =\frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6} \\ & =\frac{60}{336} \\ & =\frac{5}{28} \\ & \therefore \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E}_1\right)+\mathrm{P}\left(\mathrm{E}_2\right)+\mathrm{P}\left(\mathrm{E}_3\right)=\frac{5}{28}+\frac{5}{56}+\frac{5}{28}=\frac{25}{56}\end{aligned}$
Hence the required probability is $\frac{25}{56}$.
Question 5
Answer:
Given- Two dice are drawn together i.e. n(S)= 36
S is the sample space
E = a of a total of 4
F= a total of 9 or more
G= a total divisible by 5
Therefore, for E,
E = a of a total of 4
∴E = {(2,2), (3,1), (1,3)}
∴n(E) = 3
For F,
F= a total of 9 or more
∴ F = {(3,6), (6,3), (4,5), (5,4), (6,4), (4,6), (6,5), (6,6), (5,5), (5,6)}
∴n(F)=10
For G,
G = a total divisible by 5
∴ G = {(1,4), (4,1), (2,3), (3,2), (4,6), (6,4), (5,5)}
∴ n(G) = 7
Here, (E $\cap$ F) = φ AND (E $\cap$ G) = φ
Also, (F $\cap$ G) = {(4,6), (6,4), (5,5)}
$\Rightarrow$ n (F $\cap$ G) = 3 and (E $\cap$ F $\cap$ G) = φ
$\\ P(E)=\frac{n(E)}{n(S)}=\frac{3}{36}=\frac{1}{12} $
$ P(F)=\frac{n(F)}{n(S)}=\frac{10}{36}=\frac{5}{18} $
$ P(G)=\frac{n(G)}{n(S)}=\frac{7}{36} $
$P(F \cap G)=\frac{3}{36}=\frac{1}{12} $
$P(F) \cdot P(G)=\frac{5}{18} \times \frac{7}{36}=\frac{35}{648}$
Therefore,
P (F $\cap$ G) ≠ P(F). P(G)
Hence, there is no independent pair
Question 6 Explain why the experiment of tossing a coin three times is said to have a binomial distribution.
Answer:
Let p=events of failure and q=events of success
It is known to us that,
A random variable X (=0,1, 2,…., n) is said to have Binomial parameters n and p if its probability distribution is given by
$\mathrm{P}(\mathrm{X}=\mathrm{r})=\mathrm{n}_{\mathrm{c}_{\mathrm{r}}} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}}$
Where, $q=1-p$ and $r=0,1,2, \ldots . . n$
In the experiment of a coin being tossed three times $\mathrm{n}=3$ and random variable $\mathrm{X}$ can take $\mathrm{q}=\frac{1}{2}$ values $r=0,1,2$ and 3 with $p=\frac{1}{2}$ and $q = \frac{1 }{2}$
$\begin{array}{|l|l|l|l|l|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}) & 3_{\mathrm{c}_{0}} \mathrm{q}^{3} & 3_{\mathrm{c}_{1}} \mathrm{pq}^{2} & 3_{\mathrm{c}_{2}} \mathrm{p}^{2} \mathrm{q} & 3_{\mathrm{c}_{3}} \mathrm{p}^{3} \\ \hline \end{array}$
Therefore, in the experiment of a coin being tossed three times,
we have random variable X which can take values 0,1,2 and 3 with parameters n=3 and $p=\frac{1}{2}$
Hence, tossing a coin 3 times is a Binomial distribution.
Question 7
Answer:
i) $\begin{aligned} & \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \\ & =1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})] \\ & =1-\left[\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right] \\ & =1-\left[\frac{6+4+3}{12}\right] \\ & =1-\frac{7}{12} \\ & =\frac{5}{12} \\ & \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ & ={ }^`(1 / 4) /(1 / 3) \\ & =\frac{3}{4}\end{aligned}$
ii) $\begin{aligned} & \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \\ & =1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})] \\ & =1-\left[\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right] \\ & =1-\left[\frac{6+4+3}{12}\right] \\ & =1-\frac{7}{12} \\ & =\frac{5}{12} \\ & \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})} \\ & =\frac{\frac{1}{4}}{\frac{1}{2}} \\ & =\frac{1}{2}\end{aligned}$
iii) $\begin{aligned} & \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \\ & =1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})] \\ & =1-\left[\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right] \\ & =1-\left[\frac{6+4+3}{12}\right] \\ & =1-\frac{7}{12} \\ & =\frac{5}{12} \\ & \mathrm{P}\left(\frac{A^{\prime}}{\mathrm{B}}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})} \\ & =\frac{\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ & =1-\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}\end{aligned}$
$\begin{aligned} & =1-\frac{\frac{1}{4}}{\frac{1}{3}} \\ & =1-\frac{3}{4} \\ & =\frac{1}{4}\end{aligned}$
iv) $\begin{aligned} & \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \\ & =1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})] \\ & =1-\left[\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right] \\ & =1-\left[\frac{6+4+3}{12}\right] \\ & =1-\frac{7}{12} \\ & =\frac{5}{12}\end{aligned}$
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{A}^{\prime}}{\mathrm{B}^{\prime}}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)}{\mathrm{P}\left(\mathrm{B}^{\prime}\right)} \\ & =\frac{\frac{5}{12}}{\frac{2}{3}} \\ & =\frac{5}{12} \times \frac{3}{12} \\ & =\frac{5}{8}\end{aligned}$
Question 8
Answer:
Given-
$\begin{aligned} &P(A)=\frac{2}{5}\\ &P(B)=\frac{1}{3} , P(C)=\frac{1}{2}\\ &P(A \cap C)=\frac{1}{5} , P(B \cap C)=\frac{1}{4}\\ &\therefore P(C \mid B)=\frac{P(B \cap C)}{P(B)}\\ &=\frac{\frac{1}{\frac{4}{1}}}{3}\\ &=\frac{3}{4}\\ &\text { By De Morgan's laws: }\\ &(A \cup B)^{\prime}=A' \cap B^{\prime}\\ &(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime} \end{aligned}$
$\\ P\left(A^{\prime} \cap C^{\prime}\right)=P(A \cup C)^{\prime}$
$ =1-P(A \cup C)$
$=1-[P(A)+P(C)-P(A \cap C)]$
$ =1-\left[\frac{2}{5}+\frac{1}{2}-\frac{1}{5}\right] $
$ =1-\left[\frac{4+5-2}{10}\right]$
$ =1-\frac{7}{10} \\ =\frac{3}{10}$
Question 9:
i) Here, $\mathrm{P}\left(\mathrm{E}_1\right)=\mathrm{P}_1$ and $\mathrm{P}\left(\mathrm{E}_2\right)=\mathrm{P}_2$
$\begin{aligned} & P_1 P_2=P\left(E_1\right) \cdot P\left(E_2\right) \\ & =P\left(E_1 \cap E_2\right)\end{aligned}$
So, $E_1$ and $E_2$ occur.
ii) Here, $\mathrm{P}\left(\mathrm{E}_1\right)=\mathrm{P}_1$ and $\mathrm{P}\left(\mathrm{E}_2\right)=\mathrm{P}_2$
$\begin{aligned} & \left(1-P_1\right) \cdot P_2=P\left(E_1\right)^{\prime} \cdot P\left(E_2\right) \\ & =P\left(E_1^{\prime} \cap E_2\right)\end{aligned}$
So, $\mathrm{E}_1$ does not occur but $\mathrm{E}_2$ occurs.
iii) Here, $\mathrm{P}\left(\mathrm{E}_1\right)=\mathrm{P}_1$ and $\mathrm{P}\left(\mathrm{E}_2\right)=\mathrm{P}_2$
$\begin{aligned} & 1-\left(1-\mathrm{P}_1\right)\left(1-\mathrm{P}_2\right)=1-\mathrm{P}\left(\mathrm{E}_1\right)^{\prime} \mathrm{P}\left(\mathrm{E}_2\right)^{\prime} \\ & =1-\mathrm{P}\left(\mathrm{E}_1^{\prime} \cap \mathrm{E}_2^{\prime}\right) \\ & =1-\left[1-\mathrm{P}\left(\mathrm{E}_1 \cup \mathrm{E}_2\right)\right] \\ & =\mathrm{P}\left(\mathrm{E}_1 \cup \mathrm{E}_2\right)\end{aligned}$
So, either $E_1$ or $E_2$ or both $E_1$ and $E_2$ occur.
iv) Here, $\mathrm{P}\left(\mathrm{E}_1\right)=\mathrm{P}_1$ and $\mathrm{P}\left(\mathrm{E}_2\right)=\mathrm{P}_2$
$\begin{aligned} & P_1+P_2-2 P_1 P_2=P\left(E_1\right)+P\left(E_2\right)-2 P\left(E_1\right) \cdot P\left(E_2\right) \\ & =P\left(E_1\right)+P\left(E_2\right)-2 P\left(E_1 \cap E_2\right) \\ & =P\left(E_1 \cup E_2\right)-2 P\left(E_1 \cap E_2\right)\end{aligned}$
So, either $E_1$ or $E_2$ occurs but not both.
Question 10
Answer:
i) $\begin{aligned} & \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}}=1 \\ & \Rightarrow \mathrm{k}+\mathrm{k}^2+2 \mathrm{k}^2+\mathrm{k}=1 \\ & \Rightarrow 3 \mathrm{k} 2+2 \mathrm{k}-1=0 \\ & \Rightarrow 3 \mathrm{k}^2+3 \mathrm{k}-\mathrm{k}-1=0 \\ & \Rightarrow 3 \mathrm{k}(\mathrm{k}+1)-1(\mathrm{k}+1)=0 \\ & \Rightarrow(3 \mathrm{k}-1)(\mathrm{k}+1)=0 \\ & \therefore \mathrm{k}=\frac{1}{3} \text { and } \mathrm{k}=-1\end{aligned}$
But $\mathrm{k} \geq 0$
$\therefore \mathrm{k}=\frac{1}{3}$
ii) For a probability distribution, we know that if $\mathrm{P}_{\mathrm{i}} \geq 0$
Mean of the distribution
$\begin{aligned} & \mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}} \\ & =0.5 \mathrm{k}+1 . \mathrm{k}^2+1.5\left(2 \mathrm{k}^2\right)+2 \mathrm{k} \\ & =\frac{\mathrm{k}}{2}+\mathrm{k}^2+3 \mathrm{k}^2+2 \mathrm{k} \\ & =4 \mathrm{k}^2+\frac{5}{2} \mathrm{k} \\ & =4\left(\frac{1}{3}\right)^2+\frac{5}{2}\left(\frac{1}{3}\right) \\ & =\frac{4}{9}+\frac{5}{6} \\ & =\frac{23}{18}\end{aligned}$
Question 11
Answer:
i) To prove, $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$
$\begin{aligned} & \text { R.H.S. }=P(A \cap B)+P(A \cap \bar{B}) \\ & =P(A) \cdot P(B)+P(A) \cdot P(\bar{B}) \\ & =P(A)[P(B)+P(\bar{B})] \\ & =P(A) \cdot 1 \\ & =P(A) \\ & =\text { L.H.S. }\end{aligned}$
ii) To prove, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})+\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})$
$\begin{aligned} & \text { R.H.S. }=P(A) \cdot P(B)+P(A) \cdot P(\overline{\mathrm{~B}})+\mathrm{P}(\overline{\mathrm{A}}) \cdot \mathrm{P}(\mathrm{B}) \\ & =\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A})[1-\mathrm{P}(\mathrm{B})]+[1-\mathrm{P}(\mathrm{A})] \cdot \mathrm{P}(\mathrm{B}) \\ & =\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B}) \\ & =\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & =\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \\ & =\text { L.H.S. }\end{aligned}$
Question 12
If X is the number of tails in three tosses of a coin, determine the standard deviation of X.
Answer:
Given-
Random variable X is the member of tails in three tosses of a coin
Therefore, X= 0,1,2,3
$\\ \Rightarrow \mathrm{P}(\mathrm{X}=\mathrm{x})=^\mathrm{n}C_{\mathrm{x}}(\mathrm{p})^{\mathrm{n}} \mathrm{q}^{\mathrm{n}-\mathrm{x}} \\ \text { Where } \mathrm{n}=3, \mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{1}{2} \text { and } \mathrm{x}=0,1,2,3$
$\begin{array}{|l|c|c|l|l|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\ \hline \mathrm{XP}(\mathrm{X}) & 0 & \frac{3}{8} & \frac{3}{4} & \frac{3}{8} \\ \hline \mathrm{X}^{2} \mathrm{P}(\mathrm{X}) & 0 & \frac{3}{8} & \frac{3}{2} & \frac{9}{8} \\ \hline \end{array}$
$\begin{aligned} &\text { As we know, Var }(X)=E\left(X^{2}\right)-[E(X)]^{2} \ldots \ldots \text { (i) }\\ &\text { Where, } E\left(X^{2}\right)=\sum_{i=1}^{n} x_{i}^{2} P(x) \text { and } E(X)=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)\\ &\therefore\left[\mathrm{E}\left(\mathrm{X}^{2}\right)\right]=\sum_{i=1}^{\mathrm{n}} \mathrm{x}_{i}^{2} \mathrm{P}\left(\mathrm{X}_{i}\right)\\ &=0+\frac{3}{8}+\frac{3}{2}+\frac{9}{8}=\frac{24}{8}\\ &=3\\ &\text { And }[\mathrm{E}(\mathrm{X})]^{2}=\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{i} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)\right]^{2} \end{aligned}$
We know that $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^2\right)-[\mathrm{E}(\mathrm{X})]^2$
$\begin{aligned} & =3-\left(\frac{3}{2}\right)^2 \\ & =3-\frac{9}{4} \\ & =\frac{3}{4}\end{aligned}$
$\therefore$ Standard deviation $=\sqrt{\operatorname{Var}(\mathrm{X})}$
$\begin{aligned} & =\sqrt{\frac{3}{4}} \\ & =\frac{\sqrt{3}}{2} .\end{aligned}$
Question 13
Answer:
Let X = the random variable of profit per throw
The probability of getting any number on dice is $\frac{1}{6}$.
Since, she loses Rs 1 on getting any of 2, 4 or 5.
Therefore, at X= -1,
P(X) = P (2) +P(4) +P(5)
$\\P(X)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}$
$=\frac{3}{6}$
$=\frac{1}{2}$
In the same way, = 1 if the ice shows other 1 or 6.
$\mathrm{P}(\mathrm{X})=\mathrm{P}(1)+\mathrm{P}(6)$
$P(X)=\frac{1}{6}+\frac{1}{6}$
$P(X)=\frac{1}{3}$
and at X=4 if die shows a 3
$\mathrm{P}(\mathrm{X})=\mathrm{P}(3)$
$\mathrm{P}(\mathrm{X})=\frac{1}{6}$
$
\begin{aligned}
&\begin{array}{|l|c|l|l|}
\hline \mathrm{X} & -1 & 1 & 4 \\
\hline \mathrm{P}(\mathrm{X}) & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\
\hline
\end{array}\\
&\text { ∴ } \text { Player's expected profit }=E(X)=X P(X)\\
&\begin{aligned}
& =-1 \times \frac{1}{2}+1 \times \frac{1}{3}+4 \times \frac{1}{6} \\
& =\frac{-3+2+4}{6} \\
& =\frac{3}{6} \\
& =\frac{1}{2}=\text { Rs } 0.50
\end{aligned}
\end{aligned}
$
Question 14
Answer:
Since three dice are thrown at the same time, the sample space is [n(S)] = 6 3 = 216.
Let E 1 be the event when the sum of numbers on the dice was six and
E 2 be the event when three twos occur.
$ \Rightarrow E_{1}=\{(1,1,4),(1,2,3),(1,3,2),(1,4,1),(2,1,3),$
$(2,2,2,),(2,3,1),(3,1,2),(3,2,1),(4,1,1)\}$
$ \Rightarrow n\left(E_{1}\right)=10 \text { and } E_{2}\{2,2,2\} $
$ \Rightarrow n\left(E_{2}\right)=1 $
$ \text { And }\left(E_{1} \cap E_{2}\right)=1 $
$ P\left(E_{1}\right)=\frac{10}{216}$
$ P\left(E_{1} \cap E_{2}\right)=\frac{1}{216} $
$ \therefore P\left(E_{2} \mid E_{1}\right)$
$=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)} $
$ \frac{\frac{1}{216}}{\frac{10}{216}}=\frac{1}{10}$
Question 15
Answer:
Let X be the variable for the prize
The possibility is of winning nothing, Rs 500, Rs 2000 and Rs 3000.
So, X will take these values.
Since there are 3 third prizes of 500, the probability of winning the third prize is $\frac{3}{10000}$.
1 first prize of 3000, so the probability of winning the third prize is $\frac{1}{10000}$.
1 second prize of 2000, so the probability of winning the third prize is $\frac{1}{10000}$.
$\begin{aligned} &\begin{array}{|l|l|l|l|l|} \hline \mathrm{X} & 0 & 500 & 2000 & 3000 \\ \hline \mathrm{P}(\mathrm{X}) & \frac{9995}{10000} & \frac{3}{10000} & \frac{1}{10000} & \frac{1}{10000} \\ \hline \end{array}\\ &\text { since, } E(X)=X(P X)\\ &\text { Therefore, }\\ &\mathrm{E}(\mathrm{X})=0 \times \frac{9995}{10000}+\frac{1500}{10000}+\frac{2000}{10000}+\frac{3000}{10000}\\ &=\frac{1500+2000+3000}{10000}\\ &=\frac{6500}{10000}\\ &=\frac{13}{20}=\mathrm{Rs} 0.65 \end{aligned}$
Question 16
Answer:
Given-
$W_1$= [4 white balls] and $B_1$= [5 black balls]
$W_2$= [9 white balls] and $B_2$= [7 black balls]
Let $E_1$ be the event that the ball transferred from the first bag is white and
$E_2$ be the event that the ball transferred from the bag is black.
E is the event that the ball drawn from the second bag is white.
$\begin{aligned} &\therefore \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)=\frac{0}{17}, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)=\frac{9}{17}\\ &\text { And }\\ &\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{4}{9} \text { and } \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{5}{9}\\ &\therefore P(E)=P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right)\\ &=\frac{4}{9} \times \frac{10}{17}+\frac{5}{9} \times \frac{9}{17}\\ &=\frac{40+45}{153}\\ &=\frac{85}{153}\\ &=\frac{5}{9} \end{aligned}$
Question 17
Answer:
Given-
Bag I= [3Black, 2White], Bag II= [2 black, 4 white]
Let E 1 be the event that bag I is selected
E 2 be the event that bag II is selected
E 3 be the event that a black ball is selected
Therefore,
$\\ \Rightarrow P(E 1)=P(E 2)=\frac{1}{2} $
$ P\left(E \mid E_{2}\right)=\frac{3}{5} $
$ P\left(E \mid E_{2}\right)=\frac{2}{6}=\frac{1}{3}$
$ \therefore P(E)=P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right)$
$=\frac{1}{2} \times \frac{3}{5}+\frac{1}{2} \times \frac{2}{6} $
$ =\frac{3}{10}+\frac{2}{12} \\ =\frac{18+10}{60} \\ =\frac{28}{60} \\ =\frac{7}{15}$
Question 18
Answer:
Given-
The box has 5 blue and 4 red balls.
Let E 1 be the event that the first ball drawn is blue
E 2 be the event that the first ball drawn is red and
E be the event that the second ball drawn is blue.
$\\ P\left(E_{1}\right)=\frac{5}{9}$
$ P\left(E_{2}\right)=\frac{4}{9}$
$ P\left(E \mid E_{1}\right)=\frac{4}{8} \\ P\left(E \mid E_{2}\right)=\frac{5}{8} $
$\therefore P(E)=P\left(E_{1}\right) . P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right) $
$=\frac{5}{9} \times \frac{4}{8}+\frac{4}{9} \times \frac{5}{8} \\ =2\left(\frac{20}{72}\right) \\ =\frac{40}{72} \\ =\frac{5}{9}$
Question 19
Answer:
Let $E_1, E_2, E_3$ and $E_4$ be the events tthe hat first, second, third and fourth card is King respectively.
$\begin{aligned} & \therefore P\left(E_1 \cap E_2 \cap E_3 \cap E_4\right) \\ & =P\left(E_1\right) \cdot P\left(\frac{E_2}{E_1}\right) \cdot P\left[\frac{E_3}{\left(\mathrm{E}_1 \cap \mathrm{E}_2\right)}\right] \cdot \mathrm{P}\left[\frac{\mathrm{E}_4}{\left(\mathrm{E}_1 \cap \mathrm{E}_2 \cap \mathrm{E}_3 \cap \mathrm{E}_4\right)}\right] \\ & =\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{1}{49} \\ & =\frac{24}{52 \cdot 51 \cdot 50 \cdot 49} \\ & =\frac{1}{13 \cdot 17 \cdot 25 \cdot 49} \\ & =\frac{1}{27075}\end{aligned}$
Hence, the required probability is $\frac{1}{27075}$.
Question 20
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
Answer:
Given-
n=5, Odd numbers = 1,3,5
Here, $p=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}$
$\mathrm{q}=1-\frac{1}{2}=\frac{1}{2}$
$\begin{aligned} & \therefore \mathrm{P}(\mathrm{x}=\mathrm{r})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}} \\ & ={ }^5 \mathrm{C}_3\left(\frac{1}{3}\right)^3\left(\frac{1}{2}\right)^{5-3} \\ & =\frac{5!}{3!2!} \cdot\left(\frac{1}{2}\right)^3 \cdot\left(\frac{1}{2}\right)^2 \\ & =10 \cdot \frac{1}{8} \cdot \frac{1}{4} \\ & =\frac{5}{16}\end{aligned}$
Hence, the required probability is $\frac{5}{16}$.
Question 21
Ten coins are tossed. What is the probability of getting at least 8 heads?
Answer:
Let X = the random variable for getting ahead.
Here, n=10, r≥8
r=8,9,10
$\begin{aligned} &\mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{1}{2}\\ &\text { It is known to us that, }\\ &\mathrm{P}(\mathrm{X}=\mathrm{r})=\mathrm{n}_{\mathrm{c}_{\mathrm{r}}}(\mathrm{p})^{\mathrm{r}} \mathrm{q}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}}\\ &\therefore P(X=r)=P(r=8)+P(r=9) + P(r=10)\\ &=^{10}C_{8}\left(\frac{1}{2}\right)^{10} (\frac{1}{2})^{10-8}+^{10}{c_{9}}\left(\frac{1}{2}\right)^{9}\left(\frac{1}{2}\right)^{10-9}+^{10}c_{10}\left(\frac{1}{2}\right)^{10} \frac{1}{2}^{10-10}\\ &=\frac{10 !}{8 ! 2 !}\left(\frac{1}{2}\right)^{10}+\frac{10 !}{9 ! 1 !}\left(\frac{1}{2}\right)^{10}+\frac{10 !}{0 ! 10 !}\left(\frac{1}{2}\right)^{10}\\ &=\left(\frac{1}{2}\right)^{10}\left[\frac{10 \times 9}{2}+10+1\right]\\ &=\left(\frac{1}{2}\right)^{10} \times 56=\frac{1}{2^{7} \times 2^{3}} \times 56\\ &=\frac{7}{128} \end{aligned}$
Question 22
Answer:
Here $\mathrm{n}=7$
$\mathrm{p}=0.25=\frac{25}{100}=\frac{1}{4}$
And $\mathrm{q}=1-\frac{1}{4}=\frac{3}{4}$
$\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 2)=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)] \\ & =1-\left[{ }^7 \mathrm{C}_0\left(\frac{1}{4}\right)^0\left(\frac{3}{4}\right)^7+{ }^7 \mathrm{C}_1\left(\frac{1}{4}\right)^1\left(\frac{3}{4}\right)^6\right] \\ & =1-\left[\left(\frac{3}{4}\right)^7+\frac{7}{4}\left(\frac{3}{4}\right)^6\right] \\ & =1-\left(\frac{3}{4}\right)^6\left(\frac{3}{4}+\frac{7}{4}\right) \\ & =1-\left(\frac{3}{4}\right)^6\left(\frac{10}{4}\right) \\ & =1-\frac{729}{4096} \times \frac{10}{4} \\ & =1-\frac{7290}{16384} \\ & =\frac{16384-7290}{16384} \\ & =\frac{9094}{16384}\end{aligned}$
$=\frac{4547}{8192}$
Hence, the required probability is $\frac{4547}{8192}$.
Question 23
Answer:
Probability of defective watch out of 100 watches $=\frac{10}{100}=\frac{1}{10}$. Here, $\mathrm{n}=8$
$\begin{aligned} & p=\frac{1}{10} \\ & q=1-\frac{1}{10}=\frac{9}{10}\end{aligned}$
And $r \geq 1$
$\begin{aligned} & \mathrm{P}(\mathrm{X} \geq 1)=1-\mathrm{P}(\mathrm{x}=0) \\ & =1-{ }^8 \mathrm{C}_0\left(\frac{1}{10}\right)^0\left(\frac{9}{10}\right)^{8-0} \\ & =1-\left(\frac{9}{10}\right)^8\end{aligned}$
Question 24
Answer:
Given-
$\begin{aligned} &\begin{array}{|l|l|l|l|l|l|} \hline \mathrm{X} & 0 & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}) & 0.1 & 0.25 & 0.3 & 0.2 & 0.15 \\ \hline \mathrm{XP}(\mathrm{X}) & 0 & 0.25 & 0.6 & 0.6 & 0.60 \\ \hline \mathrm{X}^{2} \mathrm{P}(\mathrm{X}) & 0 & 0.25 & 1.2 & 1.8 & 2.40 \\ \hline \end{array}\\ &\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right) \cdot-[\mathrm{E}(\mathrm{X})]^{2}\\ &\text { Where, }\\ &E(X)=\mu=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right) \end{aligned}$
$\begin{aligned} &\mathrm{E}(\mathrm{X})^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)\\ &\therefore E(x)=0+0.25+0.6+0.6+0.60=2.05\\ &\text { And } E(X)^{2}=0+0.25+1.2+1.8+2.40=5.65\\ &\text { (i) } V\left[\frac{x}{2}\right]\\ &\text { It is known that } \operatorname{Var}(a x)=a^{2} \operatorname{yar}(x)\\ &\Rightarrow \mathrm{V}\left[\frac{\mathrm{X}}{2}\right]=\frac{1}{4} \mathrm{~V}(\mathrm{X})\\ &=\frac{1}{4}\left[5.65-(2.05)^{2}\right] \end{aligned}$
$\begin{aligned} &=\frac{1}{4}[5.65-4.2025]\\ &=\frac{1}{4} \times 1.4475\\ &=0.361875\\ &\text { (ii) } \mathrm{V}(\mathrm{X})\\ &\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}\\ &=5.65-(2.05)^{2}\\ &=5.65-4.2025\\ &=1.4475 \end{aligned}$
Question 25
Answer:
Given-
$\begin{array}{|l|l|l|l|l|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}) & \mathrm{K} & \frac{\mathrm{k}}{2} & \frac{\mathrm{k}}{4} & \frac{\mathrm{k}}{8} \\ \hline \end{array}$
i) We know that $\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)=1$
$\begin{aligned} & \Rightarrow \mathrm{k}+\frac{\mathrm{k}}{2}+\frac{\mathrm{k}}{4}+\frac{\mathrm{k}}{8}=1 \\ & \Rightarrow \frac{8 \mathrm{k}+4 \mathrm{k}+2 \mathrm{k}+\mathrm{k}}{8}=1 \\ & \Rightarrow 15 \mathrm{k}=8 \\ & \therefore \mathrm{k}=\frac{8}{15}\end{aligned}$
ii) $\begin{aligned} & \mathrm{P}(\mathrm{X} \leq 2)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\ & =\mathrm{k}+\frac{\mathrm{k}}{2}+\frac{\mathrm{k}}{4} \\ & =\frac{7 \mathrm{k}}{4} \\ & =\frac{7}{4} \times \frac{8}{15} \\ & =\frac{14}{15}\end{aligned}$
And $\mathrm{P}(\mathrm{X}>2)=\mathrm{P}(\mathrm{X}=3)$
$\begin{aligned} & =\frac{\mathrm{k}}{8} \\ & =\frac{1}{8} \times \frac{8}{15} \\ & =\frac{1}{15}\end{aligned}$
iii) $\begin{aligned} & P(X \leq 2)+P(X>2)=\frac{14}{15}+\frac{1}{15} \\ & =\frac{14+1}{15} \\ & =\frac{15}{15} \\ & =1\end{aligned}$
Question 26
Answer:
Given-
$\begin{aligned} &\begin{array}{|l|l|l|l|} \hline \mathrm{X} & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}) & 0.2 & 0.5 & 0.3 \\ \hline \mathrm{XP}(\mathrm{X}) & 0.4 & 1.5 & 1.2 \\ \hline \mathrm{X}^{2} \mathrm{P}(\mathrm{X}) & (4 \times 0.2) & (9 \times 0.5) & 16 \times 0.3 \\ & =0.8 & =4.5 & =4.8 \\ \hline \end{array}\\ &\text { It is known that standard deviation of }\\ &\mathrm{X}=\sqrt{\operatorname{VarX}}\\ &\text { Where, Var }=E\left(X^{2}\right)-[E(X)]^{2}\\ &=\sum_{i=1}^{n} x_{i}^{2} P\left(x_{i}\right)-\left[\sum_{i=1}^{n} x_{i} P_{i}\right]^{2} \end{aligned}$
$\begin{aligned} &\therefore \operatorname{Var} \mathrm{X}=[0.8+4.5+4.8]-[0.5+1.5+1.2]^{2}\\ &=10.1-(3.1)^{2}\\ &=10.1-9.61\\ &=0.49\\ &\text { Hence, standard deviation of }\\ &\mathrm{X}=\sqrt{\operatorname{Var} \mathrm{X}}=\sqrt{0.49}=0.7 \end{aligned}$
Question 27
Answer:
Given-
X= number of four seen
On tossing to die, X=0,1,2
$\mathrm{P}_{4}=\frac{1}{10}\ \ , \mathrm{P}_{\mathrm{not} 4}=\frac{9}{10}$
Therefore, $\mathrm{P}(\mathrm{X}=0)=\mathrm{P}_{\mathrm{not} 4} \cdot \mathrm{P}_{\mathrm{not} 4}=\frac{9}{10} \times \frac{9}{10}=\frac{81}{100}$
$ \mathrm{P}(\mathrm{X}=1)=\mathrm{P}_{\mathrm{not} 4} \cdot \mathrm{p}_{4} +P_4\cdot \mathrm{P}_{\mathrm{not} 4}=\frac{9}{10} \times \frac{1}{10}+\frac{1}{10} \times \frac{9}{10}=\frac{18}{100}$
$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}_{4} \cdot \mathrm{P}_{4} =\frac{1}{10} \times \frac{1}{10}=\frac{1}{100}$
Thus, the table is derived
$\begin{aligned} &\begin{array}{|l|l|l|l|} \hline \mathrm{X} & 0 & 1 & 2 \\ \hline \mathrm{P}(\mathrm{X}) & \frac{81}{100} & \frac{18}{100} & \frac{1}{100} \\ \hline \mathrm{XP}(\mathrm{X}) & 0 & \frac{18}{100} & \frac{2}{100} \\ \hline \mathrm{X}^{2} \mathrm{p}(\mathrm{x}) & 0 & \frac{18}{100} & \frac{4}{100} \\ \hline \end{array}\\ &\therefore \operatorname{Var}(\mathrm{X})=\mathrm{E}(\mathrm{X})^{2}-\left[\mathrm{E}(\mathrm{X})^{2}\right]=\mathrm{X}^{2} \mathrm{P}(\mathrm{x})-[\mathrm{XP}(\mathrm{X})]^{2}\\ &\Rightarrow\left[0+\frac{18}{100}+\frac{4}{100}\right]-\left[0+\frac{18}{100}+\frac{2}{100}\right]^{2}\\ &=\frac{22}{100}-\left(\frac{20}{100}\right)^{2}=\frac{11}{50}-\frac{1}{25}\\ &=\frac{11-2}{50}=\frac{9}{50}=\frac{18}{100}=0.18 \end{aligned}$
Question 28
A die is thrown three times. Let X be ‘the number of twos seen’. Find the expectation of X.
Answer:
Given-
X= no. of twos seen
Therefore, on throwing a die three times, we will have X=0,1,2,3
$\begin{aligned} &\therefore P(X=0)=P_{n o t 2} \cdot P_{n o t2} \cdot P_{n o t 2}=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}=\frac{125}{216}\\ &P(X=1)=\left(\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\right)+\left(\frac{5}{6} \times \frac{1}{6} \times \frac{5}{6}\right)+\left(\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}\right)\\ &=\frac{25}{36} \times \frac{3}{6}\\ &=\frac{25}{72}\\\end{aligned}$
$\\P(X=2) =\left(\frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}\right)+\left(\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6}\right)+\left(\frac{1}{6} \times \frac{5}{6} \times \frac{1}{6}\right) $
$ =3\left(\frac{5}{6} \times \frac{1}{6} \times \frac{1}{6}\right)$
$=\frac{5}{72} $
$ P(X=3)=P_{2} \cdot P_{2} \cdot P_{2} $
$ =\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} $
$ =\frac{1}{216}$
$\begin{aligned} &\text { As it is known that, }\\ &\mathrm{E}(\mathrm{X})=\Sigma \mathrm{XP}(\mathrm{X})=0 \times \frac{125}{216}+1 \times \frac{25}{72}+2 \times \frac{15}{216}+3 \times \frac{1}{216}\\ &=\frac{75+30+3}{216}\\ &=\frac{108}{216}\\ &=\frac{1}{2} \end{aligned}$
Question 29
Answer:
Given that: for the first die, $\mathrm{P}(6)=\frac{1}{2}$ And $P(\overline{6})=1-\frac{1}{2}=\frac{1}{2}$
$\Rightarrow \mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(5)=\frac{1}{2}$
But $\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)$
$\begin{aligned} & \therefore 5 . P(1)=\frac{1}{2} \\ & \Rightarrow P(1)=\frac{1}{10} \text { and } P(\overline{1})=1-\frac{1}{10}=\frac{9}{10}\end{aligned}$
For the second die, $\mathrm{P}(1)=\frac{2}{5}$ and $\mathrm{P}(\overline{1})=1-\frac{2}{5}=\frac{3}{5}$
Let X be the number of one's seen
$\begin{aligned} & \therefore \mathrm{X}=0,1,2 \\ & \Rightarrow \mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\overline{1}) \cdot \mathrm{P}(\overline{1}) \\ & =\frac{9}{10} \cdot \frac{3}{5} \\ & =\frac{27}{50} \\ & =0.54\end{aligned}$
$\begin{aligned} & \mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\overline{1}) \cdot \mathrm{P}(1)+\mathrm{P}(1) \cdot \mathrm{P}(\overline{1}) \\ & =\frac{9}{10} \cdot \frac{2}{5}+\frac{1}{10} \cdot \frac{3}{5} \\ & =\frac{18+3}{50} \\ & =\frac{21}{50} \\ & =0.42 \\ & \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(1)_{\mathrm{I}} \cdot \mathrm{P}(1)_{\mathrm{II}} \\ & =\frac{1}{10} \cdot \frac{2}{5} \\ & =\frac{2}{50} \\ & =0.04\end{aligned}$
Hence, the required probability distribution is
$
\begin{array}{|c|c|c|c|}
\hline \mathrm{X} & 0 & 1 & 2 \\
\hline \mathrm{P}(\mathrm{X}) & 0.54 & 0.42 & 0.04 \\
\hline
\end{array}
$
Question 30
Answer:
We know that, $\mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=11}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$
$\begin{aligned} & \Rightarrow \mathrm{E}(\mathrm{X})=0 \cdot \frac{1}{5}+1 \cdot \frac{2}{5}+2 \cdot \frac{1}{5}+3 \cdot \frac{1}{5} \\ & =0+\frac{2}{5}+\frac{2}{5}+\frac{3}{5} \\ & =\frac{7}{5}\end{aligned}$
$\begin{aligned} & \mathrm{E}\left(\mathrm{Y}^2\right)=0 \cdot \frac{1}{5}+1 \cdot \frac{3}{10}+4 \cdot \frac{2}{5}+9 \cdot \frac{1}{10} \\ & =0+\frac{3}{10}+\frac{8}{5}+\frac{9}{10} \\ & =\frac{28}{10} \\ & =\frac{14}{5}\end{aligned}$
Now $E\left(Y^2\right)=\frac{14}{5}$ and $2 E(X)=2 \cdot \frac{7}{5}=\frac{14}{5}$ Hence, $\mathrm{E}\left(\mathrm{Y}^2\right)=2 \mathrm{E}(\mathrm{X})$.
Question 31
Answer:
Let X be the random variable which denotes that the bulb is defective.
And $n=10, p=\frac{1}{50}$ and $P(X=r)=n_{c_{r}}(p)^{r} q^{n-r}$
(j) None of the bulbs is defective i.e., r=0
$\therefore P(X=r)=P_{0}=10_{c_{0}}\left(\frac{1}{50}\right)^{0}\left(\frac{49}{50}\right)^{10-0}=\left(\frac{49}{50}\right)^{10}$
(ii)Exactly two bulbs are defective i.e., r=2
$\mathrm{P}(\mathrm{X}=\mathrm{r})=\mathrm{P}_{2}=10 \mathrm{c}_{2}\left(\frac{1}{50}\right)^{2}\left(\frac{49}{50}\right)^{10-2}$
$\begin{aligned} &=\frac{10 !}{8 ! 2 !}\left(\frac{1}{50}\right)^{2} \cdot\left(\frac{49}{50}\right)^{8}\\ &=45 \times\left(\frac{1}{50}\right)^{10} \times(49)^{8}\\ &\text { (iii)More than } 8 \text { bulbs work properly i.e., there are less than } 2 \text { bulbs that are defective. }\\ &\text { Therefore, } r<2 \Rightarrow r=0,1\\ &\therefore P(X=r)=P(r<2)=P(0)+P(1)\\ &=10_{c_{0}}\left(\frac{1}{50}\right)^{0}\left(\frac{49}{50}\right)^{10-0}+10_{c_{1}}\left(\frac{1}{50}\right)^{1}\left(\frac{49}{50}\right)^{10-1}\\&=\left(\frac{49}{50}\right)^{10}+\frac{1}{5} \times\left(\frac{49}{50}\right)^{9}\\ &=\left(\frac{49}{50}+\frac{10}{50}\right)\left(\frac{49}{50}\right)^{9}\\ &=\frac{59(49)^{9}}{(50)^{10}} \end{aligned}$
Question 32
Answer:
Let E 1 be the event that a fair coin is drawn
E 2 be the event that a two-headed coin is drawn
E be the event that tossed coin gets ahead
$\begin{aligned} & \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)=\frac{1}{2}, \text { And } \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)=1\\ &\text { Using Bayes' theorem, we have }\\ &\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}\right)=\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \cdot \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \cdot \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)}\\ &=\frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times 1}\\ &=\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{2}}\\ &=\frac{\frac{1}{4}}{\frac{3}{4}}\\ &=\frac{1}{3} \end{aligned}$
Question 33
Answer:
Given-
$\begin{array}{|l|l|l|} \hline & \begin{array}{l} \text { Blood group } \\ \text { 'O } \end{array} & \begin{array}{l} \text { Other than } \\ \text { blood group } \\ \text { 'O' } \end{array} \\ \hline \begin{array}{l} \text { I. Number of } \\ \text { people } \end{array} & 30 \% & 70 \% \\ \hline \begin{array}{l} \text { II. Percentage } \\ \text { of left-handed } \\ \text { people } \end{array} & 6 \% & 10 \% \\ \hline \end{array}$
Let E 1 be the event that the person selected is of group O
E 2 be the event that the person selected is of other than blood group O
And E 3 be the event that the person selected is left-handed
∴P(E 1 ) =0.30, P(E 2 ) =0.70
P(E 3 |E 1 ) = 0.060 And P(E 3 |E 2 ) =0.10
Using Bayes theorem, we have:
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{E}_1}{\mathrm{H}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{H}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{H}{\mathrm{E}_2}\right)} \\ & =\frac{0.30 \times 0.06}{0.30 \times 0.06+0.70 \times 0.10} \\ & =\frac{0.018}{0.018+0.070} \\ & =\frac{0.018}{0.088} \\ & =\frac{9}{44}\end{aligned}$
Hence, the required probability is $\frac{9}{44}$.
Question 34
Answer:
Given that: $\mathrm{S}=\{1,2,3, \ldots, \mathrm{n}\}$
$\begin{aligned} & \therefore P(r \leq p \mid s \leq p)=\frac{P(P \cap S)}{P(S)} \\ & =\frac{p-1}{n} \times \frac{n}{n-1} \\ & =\frac{p-1}{n-1}\end{aligned}$
Hence, the required probability is $\frac{\mathrm{p}-1}{\mathrm{n}-1}$.
Question 35
Answer:
Let X be the random variable score when a die is thrown twice.
X=1,2,3,4,5,6
And $S=\{(1,1),(1,2),(2,1),(2,2),(1,3),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5), \ldots,(6,6)\}$
So, $\mathrm{P}(\mathrm{X}=1)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}$
$\begin{aligned} & \mathrm{P}(\mathrm{X}=2)=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}=\frac{3}{36} \\ & \mathrm{P}(\mathrm{X}=3)=\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}+\frac{1}{6} \cdot \frac{1}{6}=\frac{5}{36}\end{aligned}$
Similarly $\mathrm{P}(\mathrm{X}=4)=\frac{7}{36}$
$\begin{aligned} & \mathrm{P}(\mathrm{X}=5)=\frac{9}{36} \\ & \text { And } \mathrm{P}(\mathrm{X}=6)=\frac{11}{36}\end{aligned}$
Now, the mean $\mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} x_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$
$\begin{aligned} & =1 \times \frac{1}{36}+2 \times \frac{3}{36}+3 \times \frac{5}{36}+4 \times \frac{7}{36}+5 \times \frac{9}{36}+6 \times \frac{11}{36} \\ & =\frac{1}{36}+\frac{6}{36}+\frac{15}{36}+\frac{28}{36}+\frac{45}{36}+\frac{66}{36} \\ & =\frac{161}{36}\end{aligned}$
Hence, the required mean $=\frac{161}{36}$.
Question 36
Answer:
Given that: $\mathrm{X}=0,1,2$
And $P(X)$ at $X=0$ and 1 is $p$.
Let $\mathrm{P}(\mathrm{X})$ at $\mathrm{X}=2$ is x
$\begin{aligned} & \Rightarrow \mathrm{p}+\mathrm{p}+\mathrm{x}=1 \\ & \Rightarrow \mathrm{x}=1-2 \mathrm{p}\end{aligned}$
$\begin{aligned} & \therefore \mathrm{E}(\mathrm{X})=0 \cdot \mathrm{p}+1 \cdot \mathrm{p}+2(1-2 \mathrm{p}) \\ & =\mathrm{p}+2-4 \mathrm{p} \\ & =2-3 \mathrm{p}\end{aligned}$
And $E\left(X^2\right)=0 \cdot p+1 \cdot p+4(1-2 p)$
$\begin{aligned} & =p+4-8 p \\ & =4-7 p\end{aligned}$
Given that: $\mathrm{E}\left(\mathrm{X}^2\right)=\mathrm{E}(\mathrm{X})$
$\begin{aligned} & \therefore 4-7 p=2-3 p \\ & \Rightarrow 4 p=2 \\ & \Rightarrow p=\frac{1}{2}\end{aligned}$
Hence, the required value of p is $\frac{1}{2}$.
Question 37
Answer:
We know that, Variance $(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^2\right)-[\mathrm{E}(\mathrm{X})]^2$
$\begin{aligned} & \mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} x_{\mathrm{i}} \\ & =0 \times \frac{1}{6}+1 \times \frac{5}{18}+2 \times \frac{2}{9}+3 \times \frac{1}{6}+4 \times \frac{1}{9}+5 \times \frac{1}{18} \\ & =0+\frac{5}{18}+\frac{4}{9}+\frac{3}{6}+\frac{4}{9}+\frac{5}{118} \\ & =\frac{5+8+9+8+5}{18} \\ & =\frac{35}{18} \\ & \mathrm{E}(\mathrm{X})^2=0 \times \frac{1}{6}+1 \times \frac{5}{18}+4 \times \frac{2}{9}+9 \times \frac{1}{6}+16 \times \frac{1}{9}+25 \times \frac{1}{18} \\ & =\frac{5}{18}+\frac{8}{9}+\frac{9}{6}+\frac{16}{9}+\frac{25}{18} \\ & =\frac{5+16+27+32+25}{18} \\ & =\frac{105}{18}\end{aligned}$
$\begin{aligned} & \therefore \operatorname{Var}(\mathrm{x})=\frac{105}{18}-\frac{35}{18} \times \frac{35}{18} \\ & =\frac{1890-1225}{324} \\ & =\frac{665}{324}\end{aligned}$
Hence, the required variance is $\frac{665}{324}$.
Question 38
Answer:
Given-
A and B throw a pair of dice alternately.
A wins if he gets a total of 6
And B wins if she gets a total of 7
Therefore,
A = {(2,4), (1,5), (5,1), (4,2), (3,3)} and
B = {(2,5), (1,6), (6,1), (5,2), (3,4), (4,3)}
Let P(B) be the probability that A wins in a throw $\Rightarrow P(A)=\frac{5}{36}$
And P(B) be the probability that B wins in a throw $\Rightarrow P(B)=\frac{1}{6}$
$\therefore$ The probability of A winning the game in the third row
$\rightarrow$ $P(\bar{A}) \cdot P(\bar{B}) \cdot P(A)=\frac{31}{36} \times \frac{5}{6} \times \frac{5}{36}=\frac{775}{216 \times 36}$
$=\frac{775}{7776}$
Question 39
Answer:
Given-
A= {(x, y):x+y=11}
And B= {(x, y): x≠5}
∴ A = {(5,6), (6,5)}
B= {(1,1), (1,2), (1,3), (1,4), ((1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}
$\begin{aligned} &\Rightarrow \mathrm{n}(\mathrm{A})=2, \mathrm{n}(\mathrm{B})=30, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=1\\ &P(A)=\frac{2}{36}=\frac{1}{18} \text { And } \mathrm{P}(\mathrm{B})=\frac{30}{36}=\frac{5}{6}\\ &\Rightarrow P(A) \cdot P(B)=\frac{5}{108} \text { And } P(A \cap B)=\frac{1}{18} \neq P(A) \cdot P(B)\\ &\text { Hence, } \mathrm{A} \text { and } \mathrm{B} \text { are not independent. } \end{aligned}$
Question 40
Answer:
Let A be the event having m white and n black balls
$\mathrm{E}_1=\{$ first ball drawn of white colour $\}$
$\mathrm{E}_2=\{$ first ball drawn of black colour $\}$
$E_3=\{$ second ball drawn of white colour $\}$
$\begin{aligned} & \therefore P\left(E_1\right)=\frac{m}{m+n} \text { and } P\left(E_2\right)=\frac{n}{m+n} \\ & P\left(\frac{E_3}{E_1}\right)=\frac{m+k}{m+n+k} \text { and } P\left(\frac{E_3}{E_2}\right)=\frac{m}{m+n+k}\end{aligned}$
$\operatorname{Now} P\left(E_3\right)=P\left(E_1\right) \cdot P\left(\frac{E_3}{E_1}\right)+P\left(E_2\right)\left(\frac{E_3}{E_2}\right)$
$\begin{aligned} & =\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}} \times \frac{\mathrm{m}+\mathrm{k}}{\mathrm{m}+\mathrm{n}+\mathrm{k}}+\frac{\mathrm{n}}{\mathrm{m}+\mathrm{n}} \times \frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}+\mathrm{k}} \\ & =\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}+\mathrm{k}}\left[\frac{\mathrm{m}+\mathrm{k}}{\mathrm{m}+\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{m}+\mathrm{n}}\right] \\ & =\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}+\mathrm{k}}\left[\frac{\mathrm{m}+\mathrm{n}+\mathrm{k}}{\mathrm{m}+\mathrm{n}}\right] \\ & =\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}}\end{aligned}$
Hence, the probability of drawing a white ball does not depend upon k.
Question 41
Answer:
Given that,
Bag I: 3 red balls and no white ball
Bag II: 2 red balls and 1 white ball
Bag III: no red ball and 3 white balls
Let $E_1, E_2$ and $E_3$ be the events of choosing Bag I, Bag II and Bag III respectively and a ball is drawn from it.
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_1\right)=\frac{1}{6} \\ & \mathrm{P}\left(\mathrm{E}_2\right)=\frac{2}{6}\end{aligned}$
And $P\left(E_3\right)=\frac{3}{6}$
i) $\begin{aligned} & \therefore \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{E}_2}\right)+\mathrm{P}\left(\mathrm{E}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{E}_3}\right) \\ & =\frac{1}{6} \cdot \frac{3}{3}+\frac{2}{6} \cdot \frac{2}{3}+\frac{3}{6} \cdot 0 \\ & =\frac{3}{18}+\frac{4}{18} \\ & =\frac{7}{18}\end{aligned}$
ii) Let F be the event that a white ball is selected
$\begin{aligned} & \therefore \mathrm{P}(\mathrm{F})=1-\mathrm{P}(\mathrm{E}) \quad \ldots \ldots[\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})=1] \\ & =1-\frac{7}{18} \\ & =\frac{11}{18}\end{aligned}$
Question 42
Answer:
i) $\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{E}_2}{\mathrm{~F}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_2}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_2}\right)+\mathrm{P}\left(\mathrm{E}_3\right) \cdot \mathrm{p}\left(\frac{\mathrm{F}}{\mathrm{E}_3}\right)} \\ & =\frac{\frac{2}{6} \cdot \frac{1}{3}}{\frac{1}{6} \cdot 0+\frac{2}{6} \cdot \frac{1}{3}+\frac{3}{6} \cdot 1} \\ & =\frac{\frac{2}{18}}{\frac{2}{18}+\frac{3}{6}} \\ & =\frac{2}{11}\end{aligned}$
ii) $\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{E}_3}{\mathrm{~F}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_3}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_2}\right)+\mathrm{P}\left(\mathrm{E}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{F}}{\mathrm{E}_3}\right)} \\ & =\frac{\frac{3}{6} \cdot 1}{\frac{1}{6} \cdot 0+\frac{2}{6} \cdot \frac{1}{3}+\frac{3}{6} \cdot 1} \\ & =\frac{\frac{3}{6}}{\frac{2}{18}+\frac{3}{6}} \\ & =\frac{3}{6} \times \frac{18}{11} \\ & =\frac{9}{11}\end{aligned}$
Question 43
i) $\begin{aligned} & \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{A}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_1}\right)+\mathrm{P}\left(\mathrm{A}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_2}\right)+\mathrm{P}\left(\mathrm{A}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_3}\right) \\ & =\frac{4}{10} \cdot \frac{45}{100}+\frac{4}{10} \cdot \frac{60}{100}+\frac{2}{10} \cdot \frac{35}{100} \\ & =\frac{180}{1000}+\frac{240}{1000}+\frac{70}{1000} \\ & =\frac{490}{1000} \\ & =0.49\end{aligned}$
ii) $\begin{aligned} & P\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_3}\right)=1-\mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_3}\right) \\ & =1-\frac{35}{1000} \\ & =\frac{65}{100} \\ & =0.65\end{aligned}$
iii) Given that $\mathrm{A}_1: \mathrm{A}_2: \mathrm{A}_3=4: 4: 2$
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{A}_1\right)=\frac{4}{10} \\ & \mathrm{P}\left(\mathrm{A}_2\right)=\frac{4}{10}\end{aligned}$
And $\mathrm{P}\left(\mathrm{A}_3\right)=\frac{2}{10}$
Where $A_1, A_2$ and $A_3$ are the three types of seeds.
Let E be the event that seed germinates and $\overline{\mathrm{E}}$ be the event that a seed does not germinate
$\therefore \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_1}\right)=\frac{45}{100} \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_2}\right)=\frac{60}{100}$ and $\mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{A}_3}\right)=\frac{35}{100}$
And $\mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_1}\right)=\frac{55}{100}, \mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_2}\right)=\frac{40}{100}$ and $\mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_3}\right)=\frac{65}{100}$
Using Bayes' Theorem, we get
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{A}_2}{\overline{\mathrm{E}}}\right)=\frac{\mathrm{P}\left(\mathrm{A}_2\right) \cdot \mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_2}\right)}{\mathrm{P}\left(\mathrm{A}_1\right) \cdot \mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_1}\right)+\mathrm{P}\left(\mathrm{A}_2\right) \cdot \mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_2}\right)+\mathrm{P}\left(\mathrm{A}_3\right) \cdot \mathrm{P}\left(\frac{\overline{\mathrm{E}}}{\mathrm{A}_3}\right)} \\ & =\frac{\frac{4}{10} \cdot \frac{40}{100}}{\frac{4}{10} \cdot \frac{55}{100}+\frac{4}{10} \cdot \frac{40}{100}+\frac{2}{10} \cdot \frac{65}{100}} \\ & =\frac{\frac{160}{1000}}{\frac{220}{1000}+\frac{160}{1000}+\frac{130}{1000}} \\ & =\frac{160}{220+160+130} \\ & =\frac{160}{510} \\ & =\frac{16}{51} \\ & =0.314\end{aligned}$
Hence, the required probability is $\frac{16}{51}$ or 0.314
Question 44
Answer:
Let events E1, and E2 be the following events-
E1 be the event that the letter is from TATA NAGAR and E2 be the event that the letter is from CALCUTTA
Let E be the event that on the letter, two consecutive letters TA are visible.
Since the letter has come either from CALCUTTA or TATA NAGAR
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{2}=\mathrm{P}\left(\mathrm{E}_{2}\right)$
We get the following set of possible consecutive letters when two consecutive letters are visible in the case of TATA NAGAR
{.TA, AT, TA, AN, NA, AG, GA, AR}
We get the following set of possible consecutive letters in the case of CALCUTTA,
{CA, AL, LC, CU, UT, TT, TA}
Therefore, P(E|E1) is the probability that two consecutive letters are visible when the letter comes from TATA NAGAR
P(E|E2) is the probability that two consecutive letters are visible when the letter comes from CALCUTTA
$\therefore P\left(E \mid E_{1}\right)=\frac{2}{8}, P\left(E \mid E_{2}\right)=\frac{1}{7}$
To find- the probability that the letter came from TATA NAGAR.
Using Bayes’ theorem to find the probability of occurrence of an event A when event B has already occurred.
$\begin{aligned} &\underset{\therefore}{\mathbf{P}}(\mathbf{A} \mid \mathbf{B})=\frac{P(A) P(B \mid A)}{P(B)}\\ &\mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right) \text { is the probability that the letter came from TATA NAGAR }\\ &\therefore P\left(E \mid E_{1}\right)=\frac{P\left(E_{1}\right) \times P\left(E \mid E_{1}\right)}{P\left(E_{1}\right) \times P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \times P\left(E \mid E_{2}\right)}\\ &=\frac{\frac{1}{2} \times \frac{2}{8}}{\frac{1}{2} \times \frac{2}{8}+\frac{1}{2} \times \frac{1}{7}}\\ &=\frac{\frac{1}{8}}{\frac{1}{8}+\frac{1}{14}}\\ &=\frac{\frac{1}{8}}{\frac{7+4}{56}}=\frac{1}{8} \times \frac{56}{11}=\frac{7}{11} \end{aligned}$
Question 45
Answer:
Let $\mathrm{E}_1$ be the event of selecting Bag I
And $E_2$ be the event of selecting Bag II
Let $E_3$ be the event that the black ball is selected
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_1\right)=\frac{2}{6}=\frac{1}{3} \text { and } \mathrm{P}\left(\mathrm{E}_2\right)=1-\frac{1}{3}=\frac{2}{3} \\ & \mathrm{P}\left(\frac{\mathrm{E}_3}{\mathrm{E}_1}\right)=\frac{3}{7} \text { and } \mathrm{P}\left(\frac{\mathrm{E}_3}{\mathrm{E}_2}\right)=\frac{4}{7} \\ & \therefore \mathrm{P}\left(\mathrm{E}_3\right)=\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}_3}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{E}_3}{\mathrm{E}_2}\right) \\ & =\frac{1}{3} \cdot \frac{3}{7}+\frac{2}{3} \cdot \frac{4}{7} \\ & =\frac{3+8}{21} \\ & =\frac{11}{21}\end{aligned}$
Hence, the required probability is $\frac{11}{21}$.
Question 46
Answer:
We have 3 urns:
$\therefore$ Probabilities of choosing either of the urns are
$\mathrm{P}\left(\mathrm{U}_1\right)=\mathrm{P}\left(\mathrm{U}_2\right)=\mathrm{P}\left(\mathrm{U}_3\right)=\frac{1}{3}$
Let H be the event of drawing a white ball from the chosen urn.
$\begin{aligned} & \therefore \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_1}\right)=\frac{2}{5} \\ & \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_2}\right)=\frac{3}{5}\end{aligned}$
And $\mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_3}\right)=\frac{4}{5}$
$\begin{aligned} & \therefore \mathrm{P}\left(\frac{\mathrm{U}_2}{\mathrm{H}}\right)=\frac{\mathrm{P}\left(\mathrm{U}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_2}\right)}{\mathrm{P}\left(\mathrm{U}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_1}\right)+\mathrm{P}\left(\mathrm{U}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_2}\right)+\mathrm{P}\left(\mathrm{U}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{U}_3}\right)} \\ & =\frac{\frac{1}{3} \cdot \frac{3}{5}}{\frac{1}{3} \cdot \frac{2}{5}+\frac{1}{3} \cdot \frac{3}{5}+\frac{1}{3} \cdot \frac{4}{5}} \\ & =\frac{\frac{3}{5}}{\frac{2}{5}+\frac{3}{5}+\frac{4}{5}} \\ & =\frac{3}{9} \\ & =\frac{1}{3}\end{aligned}$
Hence, the required probability is $\frac{1}{3}$.
Question 47
Answer:
Let $\mathbf{E}_{\mathbf{1}}$ : Event that a person has TB
$\mathbf{E}_{\mathbf{2}}$ : Event that a person does not have TB
And $\mathbf{H}$: Event that the person is diagnosed to have TB.
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_1\right)=\frac{1}{1000}=0.001 \\ & \mathrm{P}\left(\mathrm{E}_2\right)=1-\frac{1}{1000}=\frac{999}{1000}=0.999 \\ & \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)=0.99 \\ & \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)=0.001\end{aligned}$
$\begin{aligned} & \therefore \mathrm{P}\left(\frac{\mathrm{E}_1}{\mathrm{H}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)} \\ & =\frac{0.001 \times 0.99}{0.001 \times 0.99+0.999 \times 0.001} \\ & =\frac{0.99}{00.99+0.999} \\ & =\frac{0.990}{0.990+0.999} \\ & =\frac{990}{1989} \\ & =\frac{110}{221}\end{aligned}$
Hence, the required probability is $\frac{110}{221}$.
Question 48
Answer:
Let $\mathbf{E}_{\mathbf{1}}$ : The event that the item is manufactured on machine A
$\mathbf{E}_{\mathbf{2}}$ : The event that the item is manufactured on machine B
$\mathbf{E}_{\mathbf{3}}$ : The event that the item is manufactured on machine C
Let H be the event that the selected item is defective.
$\therefore$ Using Bayes' Theorem,
$\begin{aligned} & \mathrm{P}\left(\mathrm{E}_1\right)=\frac{50}{100} \\ & \mathrm{P}\left(\mathrm{E}_2\right)=\frac{30}{100} \\ & \mathrm{P}\left(\mathrm{E}_3\right)=\frac{20}{100}\end{aligned}$
$\mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)=\frac{2}{100}$
$\mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)=\frac{30}{100}$
And $P\left(\frac{H}{E_3}\right)=\frac{3}{100}$
$\begin{aligned} & \therefore \mathrm{P}\left(\frac{\mathrm{E}_1}{\mathrm{H}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)+\mathrm{P}\left(\mathrm{E}_3\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_3}\right)} \\ & =\frac{\frac{50}{100} \times \frac{2}{100}}{\frac{50}{100} \times \frac{2}{100}+\frac{30}{100} \times \frac{2}{100}+\frac{20}{100} \times \frac{3}{100}} \\ & =\frac{100}{100+60+60} \\ & =\frac{100}{220} \\ & =\frac{10}{22} \\ & =\frac{5}{11}\end{aligned}$
Hence, the required probability is $\frac{5}{11}$.
Question 49
Answer:
i) Here, $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{k}(\mathrm{x}+1)$ for $\mathrm{x}=1,2,3,4$
So, $\mathrm{P}(\mathrm{X}=1)=\mathrm{k}(1+1)=2 \mathrm{k}$
$\begin{aligned} & \mathrm{P}(\mathrm{X}=2)=\mathrm{k}(2+1)=3 \mathrm{k} \\ & \mathrm{P}(\mathrm{X}=3)=\mathrm{k}(3+1)=4 \mathrm{k} \\ & \mathrm{P}(\mathrm{X}=4)=\mathrm{k}(4+1)=5 \mathrm{k}\end{aligned}$
Also, $\mathrm{P}(\mathrm{X}=\mathrm{x})=2 \mathrm{kx}$ for $\mathrm{x}=5,6,7$
$\begin{aligned} & \mathrm{P}(\mathrm{X}=5)=2(5) \mathrm{k}=10 \mathrm{k} \\ & \mathrm{P}(\mathrm{X}=6)=2(6) \mathrm{k}=12 \mathrm{k} \\ & \mathrm{P}(\mathrm{X}=7)=2(7) \mathrm{k}=14 \mathrm{k}\end{aligned}$
We know that $\sum_{i=1}^n P\left(X_i\right)=1$
So, $2 \mathrm{k}+3 \mathrm{k}+4 \mathrm{k}+5 \mathrm{k}+10 \mathrm{k}+12 \mathrm{k}+14 \mathrm{k}=1$
$\begin{aligned} & \Rightarrow 50 \mathrm{k}=1 \\ & \Rightarrow \mathrm{k}=\frac{1}{50}\end{aligned}$
Hence, the value of k is $\frac{1}{50}$
ii) $\begin{aligned} & \mathrm{E}(\mathrm{X})=1 \times \frac{2}{50}+2 \times \frac{3}{50}+3 \times \frac{4}{50}+4 \times \frac{5}{50}+5 \times \frac{10}{50}+6 \times \frac{12}{50}+7 \times \frac{14}{50} \\ & =\frac{2}{50}+\frac{6}{50}+\frac{12}{50}+\frac{50}{50}+\frac{72}{50}+\frac{98}{50} \\ & =\frac{260}{50} \\ & =\frac{26}{5} \\ & ={ }^` 5.2\end{aligned}$
iii) $\begin{aligned} & \text { Variance }=\mathrm{E}\left(\mathrm{X}^2\right)-[\mathrm{E}(\mathrm{X})]^2 \\ & \mathrm{E}\left(\mathrm{X}^2\right)=1 \times \frac{2}{50}+4 \times \frac{3}{50}+9 \times \frac{4}{50}+16 \times \frac{5}{50}+25 \times \frac{10}{50}+36 \times \frac{12}{50}+49 \times \frac{14}{50} \\ & =\frac{2}{50}+\frac{12}{50}+\frac{36}{50}+\frac{80}{50}+\frac{250}{50}+\frac{432}{50}+\frac{686}{50} \\ & =\frac{1498}{50} \\ & \therefore \text { Variance }(\mathrm{X})=\frac{1498}{50}-\left(\frac{26}{5}\right)^2 \\ & =\frac{1498}{50}-\frac{676}{25} \\ & =\frac{1498-1352}{50} \\ & =\frac{146}{50} \\ & =2.92\end{aligned}$
$\begin{aligned} & \therefore \mathrm{S} . \mathrm{D}=\sqrt{2.92} \\ & =1.7 \quad \ldots . .(\text { Approx })\end{aligned}$
Question 50
Answer:
i ) Given-
E(X) = 2.94
It is known to us that μ = E(X)
$\\ \because E(X)=\sum_{i=1}^{n} x_{i} p_{i} $
$=1 \times \frac{1}{2}+2 \times \frac{1}{5}+4 \times \frac{3}{25}+2 A \times \frac{1}{10}+3 A \times \frac{1}{25}+5 A \times \frac{1}{25}$
$ =\frac{1}{2}+\frac{2}{5}+\frac{12}{25}+\frac{A}{5}+\frac{3 A}{25}+\frac{A}{5}$
$ =\frac{25+20+24+10 A+6 A+10 A}{50} $
$ =\frac{69+26 A}{50} $
$ =2.94=\frac{69+26 A}{50} \quad \text { [given: } \left.E(X)=2.94\right] $
$ \Rightarrow 2.94 \times 50=69+26 A $
$ \Rightarrow 147-69=26 A $
$ \Rightarrow \quad 78=26 A$
$ \Rightarrow A=\frac{78}{26} ×1$
$\begin{aligned} &\Rightarrow A=3\\ &\text { (ii) As we know that, }\\ &\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}\\ &=\Sigma X^{2} P(X)-[\Sigma\{X P(X)\}]^{2}\\ &=\Sigma X^{2} P(X)-(2.94)^{2}\\ &\begin{array}{l} \text { We first find } \Sigma X^{2} P(X) \\ =1^{2} \times \frac{1}{2}+2^{2} \times \frac{1}{5}+4^{2} \times \frac{3}{25}+(2 A)^{2} \times \frac{1}{10}+(3 A)^{2} \times \frac{1}{25}+(5 A)^{2} \times \frac{1}{25} \end{array}\\ &=\frac{1}{2}+\frac{4}{5}+\frac{48}{25}+\frac{36}{10}+\frac{81}{25}+\frac{225}{25}\\ &=\frac{25+40+96+180+162+450}{50}\\ &=\frac{953}{50}\\ &=19.06\\ &\operatorname{Var}(X)=19.06-(2.94)^{2}\\ &=19.06-8.6436\\ &=10.4164 \end{aligned}$
Question 51
Answer:
Given-
i) Given that: $\mathrm{P}(\mathrm{X}=\mathrm{x})= \begin{cases}\mathrm{k} x^2 & \text { for } x=1,2,3 \\ 2 \mathrm{k} x & \text { for } x=4,5,6 \\ 0 & \text { otherwise }\end{cases}$
We know that $\sum_{i=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)=1$
$\begin{aligned} & \therefore \mathrm{k}+4 \mathrm{k}+9 \mathrm{k}+8 \mathrm{k}+10 \mathrm{k}+12 \mathrm{k}=1 \\ & \Rightarrow 44 \mathrm{k}=1 \\ & \Rightarrow \mathrm{k}=\frac{1}{44} \\ & \mathrm{E}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} \\ & =1 \times \mathrm{k}+2 \times 4 \mathrm{k}+3 \times 9 \mathrm{k}+4 \times 8 \mathrm{k}+5 \times 10 \mathrm{k}+6 \times 12 \mathrm{k} \\ & =\mathrm{k}+8 \mathrm{k}+27 \mathrm{k}+32 \mathrm{k}+50 \mathrm{k}+72 \mathrm{k} \\ & =190 \mathrm{k} \\ & =190 \times \frac{1}{44} \\ & =\frac{95}{22} \\ & =4.32 \ldots \ldots .(\text { Approx })\end{aligned}$
ii) Given that: $\mathrm{P}(\mathrm{X}=\mathrm{x})= \begin{cases}\mathrm{k} x^2 & \text { for } x=1,2,3 \\ 2 \mathrm{k} x & \text { for } x=4,5,6 \\ 0 & \text { otherwise }\end{cases}$
We know that $\sum_{i=1}^n P\left(X_i\right)=1$
$\begin{aligned} & \therefore \mathrm{k}+4 \mathrm{k}+9 \mathrm{k}+8 \mathrm{k}+10 \mathrm{k}+12 \mathrm{k}=1 \\ & \Rightarrow 44 \mathrm{k}=1 \\ & \Rightarrow \mathrm{k}=\frac{1}{44} \\ & \mathrm{E}\left(3 \mathrm{X}^2\right)=3[\mathrm{k}+4 \times 4 \mathrm{k}+9 \times 9 \mathrm{k}+16 \times 8 \mathrm{k}+25 \times 10 \mathrm{k}+36 \times 12 \mathrm{k}] \\ & =3[\mathrm{k}+16 \mathrm{k}+81 \mathrm{k}+128 \mathrm{k}+250 \mathrm{k}+432 \mathrm{k}] \\ & =3[908 \mathrm{k}] \\ & =3 \times 908 \times \frac{1}{44} \\ & =\frac{2724}{44} \\ & =61.9 \ldots . . .(\text { Approx })\end{aligned}$
iii) Given that: $\mathrm{P}(\mathrm{X}=\mathrm{x})= \begin{cases}\mathrm{k} x^2 & \text { for } x=1,2,3 \\ 2 \mathrm{k} x & \text { for } x=4,5,6 \\ 0 & \text { otherwise }\end{cases}$
We know that $\sum_{i=1}^n P\left(X_i\right)=1$
$\begin{aligned} & \therefore \mathrm{k}+4 \mathrm{k}+9 \mathrm{k}+8 \mathrm{k}+10 \mathrm{k}+12 \mathrm{k}=1 \\ & \Rightarrow 44 \mathrm{k}=1 \\ & \Rightarrow \mathrm{k}=\frac{1}{44} \\ & \mathrm{P}(\mathrm{X} \geq 4)=\mathrm{P}(\mathrm{X}=4)+\mathrm{P}(\mathrm{X}=5)+\mathrm{P}(\mathrm{X}=6) \\ & =8 \mathrm{k}+10 \mathrm{k}+12 \mathrm{k}=30 \mathrm{k} \\ & =30 \times \frac{1}{44} \\ & =\frac{15}{22}\end{aligned}$
Question 52
Answer:
Given-
n coins have a head on both sides and (n + 1) coins are fair coins
Therefore, Total coins = 2n + 1
Let E1, and E2 be the following events:
E1 = Event that an unfair coin is selected
E2 = Event that a fair coin is selected
$\therefore P\left(E_{1}\right)=\frac{n}{2 n+1} \text { and } P\left(E_{2}\right)=\frac{n+1}{2 n+1}$
The Law of Total Probability:
In a sample space S, let E1, E2, E3…….Enaree n mutually exclusive and exhaustive events associated with a random experiment. If A is any event which occurs with E1, E2, E3…….En, then
P(A) = P(E1)P(A/E1)+ P(E2)P(A/E2)+ …… P(En)P(A/En)
Let “E” be the event that the toss result is a head
P(E|E1) is the probability of getting a head when an unfair coin is tossed
P(E|E2) is the probability of getting a head when a fair coin is tossed
Therefore,
$\begin{aligned} &P\left(E \mid E_{1}\right)=1 \text { and } P\left(E \mid E_{2}\right)=\frac{1}{2}\\ &\text { Erom the law of total probability, }\\ &\mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E}_{1}\right) \times \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \times \mathrm{P}\left(\mathrm{E} \mid \mathrm{E}_{2}\right)\\ &\Rightarrow \frac{31}{42}=\frac{n}{2 n+1} \times 1+\frac{n+1}{2 n+1} \times \frac{1}{2} \text { (Given) } \end{aligned}$
$\begin{aligned} &\Rightarrow \frac{31}{42}=\frac{2 n+n+1}{2(2 n+1)}\\ &\Rightarrow 31 \times 2(2 n+1)=42 \times(3 n+1)\\ &\Rightarrow 124 n+62=126 n+42\\ &\Rightarrow 2 n=20\\ &\Rightarrow \mathrm{n}=10\\ &\text { Hence, the value of } \mathrm{n} \text { is } 10 \text { . } \end{aligned}$
Question 53
Answer:
Let X be the random variable such that $\mathrm{X}=0,1,2$
And $\mathrm{E}=$ The event of drawing an ace
And $\mathrm{F}=$ The event of drawing non-ace.
$\therefore \mathrm{P}(\mathrm{E})=\frac{4}{52}$ and $\mathrm{P}(\overline{\mathrm{E}})=\frac{48}{52}$
Now $P(X=0)=P(\overline{\mathrm{E}}) \cdot P(\overline{\mathrm{E}})$
$\begin{aligned} & =\frac{48}{52} \cdot \frac{47}{51} \\ & =\frac{188}{221} \\ & \mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\overline{\mathrm{E}})+\mathrm{P}(\overline{\mathrm{E}}) \cdot \mathrm{P}(\mathrm{E}) \\ & =\frac{4}{52} \times \frac{48}{51} \times \frac{48}{52} \times \frac{4}{51} \\ & =\frac{32}{221} \\ & \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{E}) \\ & =\frac{4}{52} \cdot \frac{3}{51} \\ & =\frac{1}{221}\end{aligned}$
Now, Mean $\mathrm{E}(\mathrm{X})=0 \times \frac{188}{221}+1 \times \frac{32}{221}+2 \times \frac{1}{221}$
$\begin{aligned} & =\frac{32}{221}+\frac{2}{221} \\ & =\frac{34}{221} \\ & =\frac{2}{13} \\ & \mathrm{E}\left(\mathrm{X}^2\right)=0 \times \frac{188}{221}+1 \times \frac{32}{221}+4 \times \frac{1}{221} \\ & =\frac{32}{221}+\frac{4}{221} \\ & =\frac{36}{221}\end{aligned}$
$\begin{aligned} & \therefore \text { Variance }=\mathrm{E}\left(\mathrm{X}^2\right)-[\mathrm{E}(\mathrm{X})]^2 \\ & =\frac{36}{221}-\left(\frac{2}{13}\right)^2 \\ & =\frac{36}{221}-\frac{4}{169} \\ & =\frac{468-68}{13 \times 221} \\ & =\frac{400}{2873} \\ & \text { Standard deviation }=\sqrt{\frac{400}{2873}}\end{aligned}$
= 0.377...(Approx)
Question 54
Answer:
Let X be the random variable for a ‘success’ for getting an even number on a toss.
∴ X = 0, 1, 2
n = 2
Even number on dice = 2, 4, 6
∴ Total possibility of getting an even number = 3
Total number on dice = 6
p = probability of getting an even number on a toss
$\begin{aligned} &=\frac{3}{6}\\ &=\frac{1}{2}\\ &q=1-p\\ &=1-\frac{1}{2}\\ &=\frac{1}{2}\\ &\text { The probability of x successes in n-Bernoulli trials is }{ }^{n} \mathrm{C}_{r} \mathrm{p}^{r} \mathrm{q}^{\text {n-r }}\\ &P(x=0)=^2C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{2-0}=1 \times 1 \times \frac{1}{4}=\frac{1}{4}\\ &P(x=1)=^2C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{2-1}=2 \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{2}\\ &P(x=2)=^2C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2-2}=1 \times \frac{1}{4} \times 1=\frac{1}{4} \end{aligned}$
$\begin{aligned} &\begin{array}{|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 \\ \hline \mathrm{P}(\mathrm{X}) & 1 / 4 & 1 / 2 & 1 / 4 \\ \hline \end{array}\\ &E(X)=\Sigma X P(X)=0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{4}\\ &=\frac{1}{2}+\frac{1}{2}\\ &=1\\ &\text { And, } \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-[\mathrm{E}(\mathrm{X})]^{2}\\ &=\Sigma X^{2} P(X)-[E(X)]^{2} \end{aligned}$
$\\ =\left[0 \times \frac{1}{4}+1^{2} \times \frac{1}{2}+2^{2} \times \frac{1}{4}\right]-(1)^{2} \\ =\left[\frac{1}{2}+1\right]-1 \\ =\frac{3}{2}-1 \\ =1.5-1 \\ =0.5$
Question 55
Answer:
The sample space is
S = { (1,2),(1,3),(1,4),(1,5)
(2,1),(2,3),(2,4),(2,5)
(3,1),(3,2),(3,4),(3,5)
(4,1),(4,2),(4,3),(4,5)
(5,1),(5,2),(5,3),(5,4)}
Total Sample Space, n(S) = 20
Let the random variable be X which denotes the sum of the numbers on the cards drawn.
∴ X = 3, 4, 5, 6, 7, 8, 9
At X = 3
The cards whose sum is 3 are (1,2), (2,1)
$P(X)=\frac{2}{20}=\frac{1}{10}$
At x=4
The cards whose sum is 4 are (1,3),(3,1)
$P(X)=\frac{2}{20}=\frac{1}{10}$
At X=5
The cards whose sum is 5 are (1,4),(2,3),(3,2),(4,1)
$P(X)=\frac{4}{20}=\frac{1}{5}$
At X=6
The cards whose sum is 6 are (1,5),(2,4),(4,2),(5,1)
$P(X)=\frac{4}{20}=\frac{1}{5}$
At x=7
The cards whose sum is 7 are (2,5),(3,4),(4,3),(5,2)
$P(X)=\frac{4}{20}=\frac{1}{5}$
At X = 8
The cards whose sum is 8 are (3,5), (5,3)
$P(X)=\frac{2}{20}=\frac{1}{10}$
At X = 9
The cards whose sum is 9 are (4,5), (5,4)
$\begin{aligned} &\begin{array}{l} P(X)=\frac{2}{20}=\frac{1}{10} \\ \therefore \text { Mean, } E(X)=\Sigma \times P(X) \\ =3 \times \frac{1}{10}+4 \times \frac{1}{10}+5 \times \frac{1}{5}+6 \times \frac{1}{5}+7 \times \frac{1}{5}+8 \times \frac{1}{10}+9 \times \frac{1}{10} \\ =\frac{3}{10}+\frac{2}{5}+1+\frac{6}{5}+\frac{7}{5}+\frac{4}{5}+\frac{9}{10} \\ =\frac{3+4+10+12+14+8+9}{10} \\ =\frac{60}{10} \\ =6 \end{array}\\ &\text { And, }\\ &\Sigma X^{2} P(X)=3^{2} \times \frac{1}{10}+4^{2} \times \frac{1}{10}+5^{2} \times \frac{1}{5}+6^{2} \times \frac{1}{5}+7^{2} \times \frac{1}{5}+8^{2} \times \frac{1}{10}\\ &+9^{2} \times \frac{1}{10} \end{aligned}$
$\begin{aligned} &=\frac{9}{10}+\frac{16}{10}+5+\frac{36}{5}+\frac{49}{5}+\frac{64}{10}+\frac{81}{10}\\ &=\frac{9+16+50+72+98+64+81}{10}\\ &=\frac{390}{10}\\ &=39\\ &\text { Therefore, }\\ &\operatorname{Var} \mathrm{X}=\Sigma \mathrm{X}^{2} \mathrm{P}(\mathrm{X})-[\Sigma \mathrm{XP}(\mathrm{X})]^{2}\\ &=39-36\\ &=3 \end{aligned}$
Question 56
If $P(A)=\frac{4}{5}$ , and $P(A \cap B)=\frac{7}{10}$ , then P(B | A) is equal to
A. $\frac{1}{10}$ B. $\frac{1}{8}$ C. $\frac{7}{8}$ D. $\frac{17}{20}$
Answer:
Given- $P(A)=\frac{4}{5}$ , and $P(A \cap B)=\frac{7}{10}$
$\begin{aligned} &\text { As we know, }\\ &\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \times \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \quad[\text { Property of Conditional Probability] }\\ &P(B \mid A) \times \frac{4}{5}=\frac{7}{10}\\ &P(B \mid A)=\frac{7}{10} \times \frac{5}{4}\\ &P(B \mid A)=\frac{7}{8} \end{aligned}$
Hence, the answer is option (C).
Question 57
If P(A ∩ B) = $\frac{7}{10}$ and P(B) = $\frac{17}{20}$, then P(A|B) equals
A. $\frac{14}{17}$ B. $\frac{17}{20}$ C. $\frac{7}{8}$ D. $\frac{1}{8}$
Answer:
Given-
$\begin{aligned} &P(B)=\frac{17}{20}\\ &P(A \cap B)=\frac{7}{10}\\ &\text { As we know, }\\ &\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \text { [Property of Conditional Probability] }\\ &P(A \mid B) \times \frac{17}{20}=\frac{7}{10}\\ &P(B \mid A)=\frac{7}{10} \times \frac{20}{17}\\ &P(B \mid A)=\frac{14}{17} \end{aligned}$
Hence, the answer is option (A).
Question 58
If $\begin{aligned} &P(A)=\frac{3}{10}, P(B)=\frac{2}{5} \text { and } P(A \cup B)=\frac{3}{5}\\ \end{aligned}$, then P(B|A) + P(A|B) equals
A. $\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{5}{12}$ D. $\frac{7}{2}$
Answer:
Given-
$\begin{aligned} &P(A)=\frac{3}{10}, P(B)=\frac{2}{5} \text { and } P(A \cup B)=\frac{3}{5}\\ &\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \text { [Additive Law of Probability] }\\ &\therefore \frac{3}{5}=\frac{3}{10}+\frac{2}{5}-P(A \cap B)\\ &\Rightarrow P(A \cap B)=\frac{3}{10}-\frac{1}{5}\\ &\Rightarrow P(A \cap B)=\frac{3-2}{10}\\ &\Rightarrow P(A \cap B)=\frac{1}{10}\\ &\text { As we know the Property of Conditional Probability: }\\ &\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})\\ &\Rightarrow P(A \mid B)=\frac{P(A \cap B)}{P(B)} \end{aligned}$
$\begin{aligned} &\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \times \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B} \cap \mathrm{A})\\ &\Rightarrow P(B \mid A)=\frac{P(B \cap A)}{P(A)}\\ &\text { Multiplying eq. (i) and (ii), we get }\\ &\therefore P(B \mid A)+P(A \mid B)=\frac{P(B \cap A)}{P(A)}+\frac{P(A \cap B)}{P(B)}\\ &=\frac{\frac{1}{10}}{\frac{3}{10}}+\frac{\frac{1}{10}}{\frac{2}{5}}\\ &=\frac{1}{3}+\frac{1}{10} \times \frac{5}{2}\\ &=\frac{4+3}{12}\\ &=\frac{7}{12} \end{aligned}$
Hence, the answer is option (D).
Question 59
If $P(A)=\frac{2}{5}, P(B)=\frac{3}{10} \text { and } P(A \cap B)=\frac{1}{5}$, the P(A′|B′).P(B′|A′) is equal to
A. $\frac{5}{6}$ B. $\frac{5}{7}$ C. $\frac{25}{42}$ D. $1$
Answer:
Given-
$\begin{aligned} &P(A)=\frac{2}{5}, P(B)=\frac{3}{10} \text { and } P(A \cap B)=\frac{1}{5}\\ &\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right) \times \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)\\ &\Rightarrow P\left(A^{\prime} \mid B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}\\ &\mathrm{P}\left(\mathrm{B}^{\prime} \mid \mathrm{A}^{\prime}\right) \times \mathrm{P}\left(\mathrm{A}^{\prime}\right)=\mathrm{P}\left(\mathrm{B}^{\prime} \cap \mathrm{A}^{\prime}\right)\\ &\Rightarrow P\left(B^{\prime} \mid A^{\prime}\right)=\frac{P\left(B^{\prime} \cap A^{\prime}\right)}{P\left(A^{\prime}\right)}\\ &\text { Multiplying eq. (i) and (ii), we get }\\ \end{aligned}$
$\begin{aligned} &P\left(A^{\prime} \mid B^{\prime}\right) \times P\left(B^{\prime} \mid A^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)} \times \frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(A^{\prime}\right)}\\ &=\frac{1-P(A \cup B)}{P\left(B^{\prime}\right)} \times \frac{1-P(A \cup B)}{P\left(A^{\prime}\right)}\\ &\left[\because P\left(A^{\prime} \cap B^{\prime}\right)=P\left[(A \cup B)^{\prime}\right]=1-P(A \cup B)\right]\\ &=\frac{(1-P(A \cup B))^{2}}{(1-P(B)) \times(1-P(A))}\end{aligned}$
$\\ =\frac{\left(1-(P(A)+P(B)-P(A \cap B))^{2}\right.}{\left(1-\frac{3}{10}\right)\left(1-\frac{2}{5}\right)} \\ =\frac{\left[1-\left(\frac{2}{5}+\frac{3}{10}-\frac{1}{5}\right)\right]^{2}}{\left(\frac{10-3}{10}\right)\left(\frac{5-2}{5}\right)} \\ =\frac{\left[1-\left(\frac{4+3-2}{10}\right)\right]^{2}}{\frac{7}{10} \times \frac{3}{5}}$
$\\ =\frac{\left[1-\left(\frac{5}{10}\right)\right]^{2}}{\frac{7}{10} \times \frac{3}{5}} \\ =\frac{\left[1-\frac{1}{2}\right]^{2}}{\frac{7}{10} \times \frac{3}{5}} \\ =\frac{\left[\frac{1}{2}\right]^{2}}{\frac{7}{10} \times \frac{3}{5}} \\ =\frac{1}{4} \times \frac{50}{21} \\ =\frac{25}{42}$
Hence, the answer is the option (C).
Question 60
If A and B are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{1}{3}, \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{1}{4}$ , the P(A′ ∩ B′) equals
A. $\frac{1}{12}$ B. $\frac{3}{4}$ C. $\frac{1}{4}$ D. $\frac{3}{16}$
Answer:
Given that: $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{1}{3}$ and $\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{1}{4}$
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ & \frac{1}{4}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\frac{1}{3}} \\ & \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12}\end{aligned}$
Now $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$\begin{aligned} & =1-[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})] \\ & =1-\left[\frac{1}{2}+\frac{1}{3}-\frac{1}{12}\right] \\ & =1-\left[\frac{5}{6}-\frac{1}{12}\right] \\ & =1-\frac{9}{12} \\ & =\frac{3}{12} \\ & =\frac{1}{4}\end{aligned}$
Hence, the answer is the option (C).
Question 61
If P(A) = 0.4, P(B) = 0.8 and P(B | A) = 0.6, then P(A ∪ B) is equal to
A. 0.24 B. 0.3 C. 0.48 D. 0.96
Answer:
Given that: $\mathrm{P}(\mathrm{A})=0.4$
$\mathrm{P}(\mathrm{B})=0.8$
And $P\left(\frac{B}{A}\right)=0.6$
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})} \\ & \Rightarrow 0.6=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{0.4} \\ & \therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.6 \times 0.4=0.24 \\ & \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & =0.4+0.8-0.24 \\ & =1.20-0.24 \\ & =0.96\end{aligned}$
Hence, the answer is the option (D).
Question 62
If A and B are two events and A ≠ θ, B ≠ θ, then
A. P(A | B) = P(A). P(B)
B. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
C. P(A | B) .P(B | A)=1
D. P(A | B) = P(A) | P(B)
Answer:
Given that: $\mathrm{A} \neq \Phi$ and $\mathrm{B} \neq \Phi$
Then $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
Hence, the answer is the option (B).
Question 63
Answer:
Given that: $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.5$
$\begin{aligned} & \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & 0.5=0.4+0.3-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.4+0.3-0.5=0.2 \\ & \therefore \mathrm{P}\left(\mathrm{B}^{\prime} \cap \mathrm{A}\right)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & =0.4-0.2 \\ & =0.2 \\ & =\frac{1}{5}\end{aligned}$
Hence, the answer is option (D).
Question 64
You are given that A and B are two events such that P(B)= 3|5, P(A | B) = 1|2, and P(A ∪ B) = 4|5, then P(A) equals
A. $\frac{3}{10}$ B. $\frac{1}{5}$ C. $\frac{1}{2}$ D. $\frac{3}{5}$
Answer:
Given
$\begin{aligned} &P(B)=\frac{3}{5}, P(A \mid B)=\frac{1}{2} \text { and } P(A \cup B)=\frac{4}{5}\\ &\text { As we know, }\\ &\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \text { [Property of conditional Probability] }\\ &\Rightarrow \frac{1}{2} \times \frac{3}{5}=P(A \cap B)\\ &\Rightarrow P(A \cap B)=\frac{3}{10}\\ &\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})[\text { Additive Law of Probability }]\\ &\therefore \frac{4}{5}=P(A)+\frac{3}{5}-\frac{3}{10}\\ &\Rightarrow P(A)=\frac{4}{5}-\frac{3}{5}+\frac{3}{10}\\ &\Rightarrow P(A)=\frac{1}{5}+\frac{3}{10}\\ &\Rightarrow P(A)=\frac{2+3}{10}\\ &\Rightarrow P(A)=\frac{5}{10}=\frac{1}{2} \end{aligned}$
Hence, the answer is option (C).
Question 65
In Exercise 64 above, P(B | A′) is equal to
A. $\frac{1}{5}$ B. $\frac{3}{10}$ C. $\frac{1}{2}$ D. $\frac{3}{5}$
Answer:
Referring to the above solution,
$\\ P\left(B \mid A^{\prime}\right)=\frac{P\left(B \cap A^{\prime}\right)}{P\left(A^{\prime}\right)} \\ =\frac{P(B)-P(B \cap A)}{1-P(A)} \\ =\frac{\frac{3}{5}-\frac{3}{10}}{1-\frac{1}{2}}$
$\\ =\frac{\frac{6-3}{10}}{\frac{1}{2}} \\ =\frac{\frac{3}{10}}{\frac{1}{2}} \\ =\frac{3}{5}$
Hence, the answer is option (D).
Question 66
If P(B) = 3|5, P(A|B) = 1|2 and P(A ∪ B) = 4|5, then P(A ∪ B)′ + P(A′ ∪ B) =
A. $\frac{1}{5}$ B. $\frac{4}{5}$ C. $\frac{1}{2}$ D. 1
Answer:
Given-
$\begin{aligned} &P(B)=\frac{3}{5}, P(A \mid B)=\frac{1}{2} \text { and } P(A \cup B)=\frac{4}{5}\\ &\text { As we know, }\\ &\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \text { [Property of Conditional Probability] }\\ &\Rightarrow \frac{1}{2} \times \frac{3}{5}=P(A \cap B)\\ &\Rightarrow P(A \cap B)=\frac{3}{10}\\ &\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \text { [Additive Law of Probability] }\\ &\therefore \frac{4}{5}=P(A)+\frac{3}{5}-\frac{3}{10}\\ &\Rightarrow P(A)=\frac{4}{5}-\frac{3}{5}+\frac{3}{10}\\ &\Rightarrow P(A)=\frac{1}{5}+\frac{3}{10}\\ &\Rightarrow P(A)=\frac{2+3}{10} \end{aligned}$
$\\ \Rightarrow P(A)=\frac{5}{10}=\frac{1}{2}$
$ \therefore P(A \cup B)^{\prime}=P\left[A^{\prime} \cap B^{\prime}\right] $
$ =1-P(A \cup B) \\ =1-\frac{4}{5} \\ =\frac{1}{5}$
$\text { and } P\left(A^{\prime} \cup B\right)=1-P\left(A^{\prime} \cap B\right) \\ =1-[P(A)-P(A \cap B)]$
$\\ =1-\left(\frac{1}{2}-\frac{3}{10}\right) \\ =1-\left(\frac{5-3}{10}\right) \\ =1-\frac{2}{10} \\ =\frac{10-2}{10} \\ =\frac{4}{5} $
$ \Rightarrow P(A \cup B)^{\prime}+P\left(A^{\prime} \cup B\right)=\frac{1}{5}+\frac{4}{5} \\ =1$
Hence, the answer is option (D).
Question 67
Let P(A) = 7/13, P(B) = 9/13 and P(A ∩ B) = 4/13. Then P(A′|B) is equal to
A. 6/13 B. 4/13 C. 4/9 D. 5/9
Answer:
Given-
P(A) = 7/13, P(B) = 9/13 and P(A ∩ B) = 4/13
$\begin{aligned} &P\left(A^{\prime} \mid B\right)=\frac{P\left(A^{\prime} \cap B\right)}{P(B)}\\ &\text { From the above Venn diagram, }\\ &\frac{\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}\\ &\Rightarrow \frac{\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{9}{13}-\frac{4}{13}}{\frac{9}{13}}\\ &\Rightarrow \frac{5}{13} \times \frac{13}{9}\\ &\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}\right)=\frac{5}{9}\\ &\text { Hence, } \mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}\right)=\frac{5}{9} \end{aligned}$
Hence, the answer is option (D).
Question 68
If A and B such events that P(A) > 0 and P(B) ≠ 1, then P(A’|B’) equals
A. 1 – P(A|B)
B. 1 – P (A’|B)
C. $\frac{1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})}{\mathrm{P}\left(\mathrm{B}^{\prime}\right)}$
D. P(A’) | P(B’)
Answer:
Given that: $\mathrm{P}(\mathrm{A})>0$ and $\mathrm{P}(\mathrm{B}) \neq 1$
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}^{\prime}\right)=\frac{\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)}{\mathrm{P}\left(\mathrm{B}^{\prime}\right)} \\ & =\frac{1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})}{\mathrm{P}\left(\mathrm{B}^{\prime}\right)}\end{aligned}$
Hence, the answer is the option (C).
Question 69
If A and B are two independent events with P(A) = 3/5 and P(B) = 4/9, then P (A′ ∩ B′) equals
A.4/15 B. 8/45 C. 1/3 D. 2/9
Answer:
$\begin{aligned} &\text { As } A \text { and } B \text { are independent } A^{\prime} \text { and } B^{\prime} \text { are also independent. }\\ &P\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right) \cdot P\left(B^{\prime}\right)\\ &\text { As we know, } \mathrm{P}\left(\mathrm{A}^{\prime}\right)=(1-\mathrm{P}(\mathrm{A})) \text { and } \mathrm{P}\left(\mathrm{B}^{\prime}\right)=(1-\mathrm{P}(\mathrm{B})\\ &\Rightarrow(1-\mathrm{P}(\mathrm{A})) \cdot(1-\mathrm{P}(\mathrm{B}))=\left(1-\frac{3}{5}\right)\left(1-\frac{4}{9}\right)\\ &=\left(\frac{2}{5}\right)\left(\frac{5}{9}\right)\\ &\Rightarrow\left(P\left(A^{\prime} \cap B^{\prime}\right)=\frac{2}{9}\right. \end{aligned}$
Hence, the answer is option (D).
Question 70
If two events are independent, then
A. they must be mutually exclusive
B. The sum of their probabilities must be equal to 1
C. (A) and (B) both are correct
D. None of the above is correct
Answer:
Events that cannot happen at the same time are known as mutually exclusive events. For example: when tossing a coin, the result can either be heads or tails but cannot be both.
Events are independent if the occurrence of one event does not influence (and is not influenced by) the occurrence of the other(s).
Eg: Rolling a die and flipping a coin. The probability of getting any number on the die will not affect the probability of getting a head or tail in the coin.
Therefore, if A and B events are independent, any information about A cannot tell anything about B while if they are mutually exclusive then we know if A occurs B does not occur.
Therefore, independent events cannot be mutually exclusive.
To test if the probability of independent events is 1 or not:
Let A be the event of obtaining a head.
P(A) = 1/2
Let B be the event of obtaining 5 on a die.
P(B) = 1/6
Now A and B are independent events.
$\begin{aligned} &\text { Therefore, } \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\frac{1}{2}+\frac{1}{6}\\ &=\frac{3+1}{12}=\frac{4}{12}\\ &=\frac{1}{3}\\ &\text { Hence } P(A)+P(B) \neq 1\\ &\text { It is true in every case when two events are independent. } \end{aligned}$
Hence, the answer is option (D).
Question 71
Answer:
Given that: $\mathrm{P}(\mathrm{A})=\frac{3}{8}, \mathrm{P}(\mathrm{B})=\frac{5}{8}$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}$
$\begin{aligned} & \therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & \frac{3}{4}=\frac{3}{8}+\frac{5}{8}-\mathrm{P}(\mathrm{A} \cap \mathrm{B})\end{aligned}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{8}+\frac{5}{8}-\frac{3}{4}=\frac{1}{4}$
$\begin{aligned} & \text { Now } P\left(\frac{A}{B}\right) \cdot P\left(\frac{A^{\prime}}{B}\right)=\frac{P(A \cap B)}{P(B)} \cdot \frac{P\left(A^{\prime} \cap B\right)}{P(B)} \\ & =\frac{P(A \cap B)}{P(B)} \cdot \frac{P(B)-P(A \cap B)}{P(B)}\end{aligned}$
$\begin{aligned} & =\frac{\frac{1}{4}}{\frac{5}{8}} \cdot \frac{\left(\frac{5}{8}-\frac{1}{4}\right)}{\frac{5}{8}} \\ & =\frac{2}{5} \cdot \frac{3}{5} \\ & =\frac{6}{25}\end{aligned}$
Hence, the answer is option (D).
Question 72
If the events A and B are independent, then P(A ∩ B) is equal to
A. P (A) + P
B. (B) P(A) – P(B)
C. P (A) . P(B)
D. P(A) | P(B)
Answer:
If the events A and B are independent, then $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ is equal to $\underline{\mathbf{P}}(\underline{\mathbf{A}}) \cdot \mathbf{P}(\underline{\mathbf{B}})$.
Since $A$ and $B$ are two independent events
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
Hence, the answer is option (C).
Question 73
Two events E and F are independent. If P(E) = 0.3, P(E ∪ F) = 0.5, then P(E | F)–P(F | E) equals
A. 2/7
B. 3/25
C. 1/70
D. 1/7
Answer:
Given-
P(E) = 0.3, P(E ∪ F) = 0.5
Also, E and F are independent, therefore,
P (E ∩ F)=P(E).P(F)
As we know , P(E ∪ F)=P(E)+P(F)- P(E ∩ F)
P(E ∪ F)=P(E)+P(F)- [P(E) P(F)]
$0.5=0.3+P(F)-0.3 P(F) $
$0.5-0.3=(1-0.3) P(F) $
$P(F)=\frac{2}{7}$
$P(E \mid F)-P(F \mid E)=\frac{P(E \cap F)}{P(F)}-\frac{P(F \cap E)}{P(E)} $
$P(E \mid F)-P(F \mid E)=\frac{P(E \cap F) \cdot[P(E)-P(F)]}{P(E \cap F)} $
$P(E \mid F)-P(F \mid E)=P(E)-P(F) $
$ P(F \mid F)-P(F \mid E)=\frac{3}{10} -\frac{2}{7}= \frac{21-20}{70} =\frac{1}{70}$
Hence, the answer is option (C).
Question 74
A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability of getting exactly one red ball is
A. 45/196 B. 135/392 C. 15/56 D. 15/29
Answer:
The Probability of getting exactly one red ball is
P(R).P(B).P(B) + P(B).P(R).P(B) + P(B).P(B).P(R)
$\\ =\frac{5}{8} \cdot \frac{3}{7} \cdot \frac{2}{6}+\frac{3}{8} \cdot \frac{5}{7} \cdot \frac{2}{6}+\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6} \\ =\frac{15}{56}$
Hence, the answer is option (C).
Question 75
Refer to Question 74 above. The probability that exactly two of the three balls were red, the first ball is red, is
A. 1/3 B. 4/7 C. 15/28 D. 5/28
Answer:
Given-
A bag contains 5 red and 3 blue balls
Therefore, Total Balls in a Bag = 8
For exactly 1 red ball probability should be
3 Balls are drawn randomly the possibility of getting 1 red ball
P(E)=P(R).P(B)+P(B).P(R)
$\\ \mathrm{P}(\mathrm{E})=\frac{4}{7} \times \frac{3}{6}+\frac{3}{6} \times \frac{4}{7} \\ \text { Hence, } \mathrm{P}(\mathrm{E})=4 / 7$
Hence, the answer is option (B).
Question 76
Three persons, A, B and C, fire at a target in turn, starting with A. Their probability of hitting the target ais0.4, 0.3 and 0.2 respectively. The probability of two hits is
A. 0.024 B. 0.188 C. 0.336 D. 0.452
Answer:
Given-
$\begin{aligned} & \mathrm{P}(\mathrm{A})=0.4 \mathrm{P}(\mathrm{B})=0.3 \text { and } \mathrm{P}(\mathrm{C})=0.2 \\ & \text { Therefore }, \mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})=[1-0.4]=0.6 \\ & \mathrm{P}\left(\mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{B})=[1-0.3]=0.7 \\ & \mathrm{P}\left(\mathrm{C}^{\prime}\right)=1-\mathrm{P}(\mathrm{C})=[1-0.2]=0.8 \\ & \mathrm{P}(\mathrm{E})=\left[\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \times \mathrm{P}\left(\mathrm{C}^{\prime}\right)\right]+\left[\mathrm{P}(\mathrm{A}) \times \mathrm{P}\left(\mathrm{B}^{\prime}\right) \times \mathrm{P}(\mathrm{C})\right]+\left[\mathrm{P}\left(\mathrm{A}^{\prime}\right) \times \mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{C})\right] \\ & =(0.4 \times 0.3 \times 0.8)+(0.4 \times 0.7 \times 0.2)+(0.6 \times 0.3 \times 0.2) \\ & =0.96+0.056+0.036 \\ & =0.188\end{aligned}$
Hence, the answer is option (B).
Question 77
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
A. 1/2 B. 1/3 C. 2/3 D. 4/7
Answer:
The statement can be arranged in a set as S={(B,B,B),(G,G,G),(B,G,G),(G,B,G),(G,G,B),(G,B,B),(B,G,B),(B,B,G)}
Let A be Event that a family has at least one girl, therefore,
A={(G,B,B),(B,G,B),(B,B,G),(G,G,B),(B,G,G)(G,B,G),(G,G,G)
Let B be Event that the eldest child is a girl then, therefore,
B={(G,B,B)(G,G,B),(G,B,G),(G,G,G)
(A ∩ B)={(G,B,B),(G,G,B),(G,B,G,)(G,G,G)
since, $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}$
$P(A \mid B)=\frac{\frac{4}{8}}{\frac{7}{8}}=\frac{4}{7}$
Hence, $\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{E}_{1}\right)=\frac{4}{7}$
Hence, the answer is option (D).
Question 78
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number on the die and a spade card is
A. 1/2 B. 1/4 C. 1/8 D. 3/4
Answer:
Let A be Event for getting number on dice and B be Event that a spade card is selected
Therefore,
A={2,4,6}
B={13}
$\begin{aligned} &\text { since, } P(A)=\frac{3}{6}=\frac{1}{2}\\ &\mathrm{P}(\mathrm{B})=\frac{13}{52}=\frac{1}{4}\\ &\text { As we know, If } \mathrm{E} \text { and } \mathrm{F} \text { are two independent events then, } \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})\\ &\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}\\ &\text { Hence, } \mathrm{P}\left(\mathrm{E}_{1} \cap \mathrm{E}_{2}\right)=\frac{1}{8} \end{aligned}$
Hence, the answer is option (C).
Question 79
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
$\\A. \frac{3}{28}$ \B. $\frac{2}{21}$ \C.$\frac{1}{28}$ \D.$\frac{167}{168}$
Answer:
Given-
There are a total of 8 balls in the box.
Therefore, P(G)$=\frac{3}{8}$ , Probability of green ball
P(B)$=\frac{2}{8}$ , Probability of blue ball
The probability of drawing 2 green balls and one blue ball is
P(E)=P(G).P(G).P(B)+P(B).P(G).P(G)+P(G).P(B).P(G)
$\\ P(E)=\left(\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}\right)+\left(\frac{2}{8} \times \frac{3}{7} \times \frac{2}{6}\right)+\left(\frac{3}{8} \times \frac{2}{7} \times \frac{2}{6}\right) $
$ P(E)=\frac{1}{28}+\frac{1}{28}+\frac{1}{28} \\ P(E)=\frac{3}{28}$
Hence, $\quad P(E)=\frac{3}{28}$
Hence, the answer is the option (A).
Question 80
A flashlight has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, the probability that both are dead is A.
$\frac{33}{56}$ B. $\frac{9}{64}$ C. $\frac{1}{14}$ D. $\frac{3}{28}$
Answer:
Given-
Total number of batteries: n= 8
The number of dead batteries is = 3
Therefore, Probability of dead batteries is $\frac{3}{8}$
If two batteries are selected without replacement and tested
Then, Probability of second battery without replacement is $\frac{2}{7}$
Required probability = $\frac{3}{8}\times \frac{2}{7}= \frac{3}{28}$
Hence, the answer is option (D).
Question 81
Eight coins are tossed together. The probability of getting exactly 3 heads is
A.$\frac{1}{256}$ B.$\frac{7}{32}$ C.$\frac{5}{32}$ D.$\frac{3}{32}$
Answer:
Given-
probability distribution $\mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{p})^{r} \mathrm{ q}^{\mathrm{n}-\mathrm{r}}$
The total number of coin tossed, n=8
The probability of getting head, $\mathrm{p}=\frac 12$
The probability of getting tail,$\mathrm{q}=\frac12$
The Required probability
$\\={ }^{8} \mathrm{C}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{8-3}\\$ =$\frac{8 \times 7 \times 6}{3 \times 2} \times \frac{1}{2^{8}}=\frac{7}{32}$
Hence, the answer is option (B).
Question 82
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is
A.$\frac{1}{18}$ B.$\frac{5}{18}$ C.$\frac{1}{5}$ D.$\frac{2}{5}$
Answer:
Let A be the event that the sum of numbers on the dice was less than 6
And B be the event that the sum of numbers on the dice is 3
Therefore,
A={(1,4)(4,1)(2,3)(3,2)(2,2)(1,3)(3,1)(1,2)(2,1)(1,1)
n(A)=10
B={(1,2)(2,1)
n(B)=2
Required probability = $\frac{nB}{nA}$
Required probability = $\frac{2}{10}$
Hence, the probability is $\frac{1}{5}$
Hence, the answer is option (C).
Question 83
Answer:
In the binomial distribution, there are 2 outcomes for each trial and there is a fixed number of trials and the probability of success must be the same for all trials.
Hence, the answer is option (C).
Question 84
Two cards are drawn from a well-shuffled deck of 52 playing cards with replacements. The probability, that both cards are queens, is
A. $\frac{1}{13} \times \frac{1}{13}$ B. $\frac{1}{13} + \frac{1}{13}$ C. $\frac{1}{13} \times \frac{1}{17}$ D. $\frac{1}{13} \times \frac{4}{51}$
Answer:
We know that
Number of cards = 52
Number of queens = 4
Therefore, Probability of queen out of 52 cards = $\frac{4}{52}$
According to the question,
If a deck of cards is shuffled again with replacement, then
Probability of getting queen is , $\frac{4}{52}$
Therefore, the probability, that both cards are queens, $\left [\frac{4}{52} \times\frac{4}{52} \right ]$
Hence, Probability is $\left [\frac{1}{13} \times \frac{1}{13} \right ]$
Hence, the answer is option (A).
Question 85
The probability of guessing correctly at least 8 out of 10 answers on a true-false type examination is
A.$\frac{7}{64}$ B.$\frac{7}{128}$ C.$\frac{45}{1024}$ D.$\frac{7}{41}$
Answer:
Here, $\mathrm{n}=10$
$\mathrm{p}=\frac{1}{2}$ and $\mathrm{q}=\frac{1}{2} \quad \ldots$. (For true/false questions)
And $r \geq 8$ i.e. $8,9,10$
$\begin{aligned} & \therefore \mathrm{P}(\mathrm{X} \geq 8)=\mathrm{P}(\mathrm{x}=8)+\mathrm{P}(\mathrm{x}=9)+\mathrm{P}(\mathrm{x}=10) \\ & ={ }^{10} \mathrm{C}_8\left(\frac{1}{2}\right)^8\left(\frac{1}{2}\right)^2+{ }^{10} \mathrm{C}_9\left(\frac{1}{2}\right)^9\left(\frac{1}{2}\right)+{ }^{10} \mathrm{C}_{10}\left(\frac{1}{2}\right)^{10}\left(\frac{1}{2}\right)^0 \\ & =45 \cdot\left(\frac{1}{2}\right)^{10}+10 \cdot\left(\frac{1}{2}\right)^{10}+\left(\frac{1}{2}\right)^{10}+\left(\frac{1}{2}\right)^{10} \\ & =\left(\frac{1}{2}\right)^{10}(45+10+1) \\ & =56 \times \frac{1}{1024} \\ & =\frac{7}{128}\end{aligned}$
Hence, the answer is option (B).
Question 86
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
A. ${ }^{5} \mathrm{C}_{4}(0.7)^{4}(0.3)$
B. ${ }^{5} C_{1}(0.7)(0.3)^{4}$
C. ${ }^{5} \mathrm{C}_{4}(0.7)(0.3)^{4}$
D.$(0.7)^{4}(0.3)$
Answer:
Given that: $\overline{\mathrm{P}}=0.3$
$\begin{aligned} & \therefore \mathrm{p}=0.7 \text { and } \mathrm{q}=1-0.7=0.3 \\ & \mathrm{n}=5 \text { and } \mathrm{r}=4\end{aligned}$
We know that
$\begin{aligned} & \mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{p})^{\mathrm{r}} \cdot(\mathrm{q})^{\mathrm{n}-\mathrm{r}} \\ & \therefore \mathrm{P}(\mathrm{x}=4)={ }^5 \mathrm{C}_4(0.7)^4(0.3)^{5-4} \\ & ={ }^5 \mathrm{C}_4(0.7)^4(0.3)\end{aligned}$
Hence, the answer is option (A).
Question 87
Answer:
Given- Probability distribution table
As we know $\sum_{i=1}^{n} P_{i}=1$
$\Rightarrow \sum P_{i}=\left[\frac{5}{k}+\frac{7}{k}+\frac{9}{k}+\frac{11}{k}\right]=1$
$\Rightarrow\left[\frac{32}{\mathrm{k}}\right]=1$
$⇒\mathrm{K}=32$
Hence, the value of k is 32
Hence, the answer is option (C).
Question 88
For the following probability distribution: $\begin{array}{|l|l|l|l|l|l|} \hline \mathrm{X} & -4 & -3 & -2 & -1 & 0 \\ \hline \mathrm{P}(\mathrm{X}) & 0.1 & 0.2 & 0.3 & 0.2 & 0.2 \\ \hline \end{array}$ E(X) is equal to:
A. 0 B. –1 C. –2 D. –1.8
Answer:
Given-
Probability distribution table
$\\ \mathrm{E}(\mathrm{X})=\sum \mathrm{X.P}(\mathrm{X}) $
$ \mathrm{E}(\mathrm{X})=[(-4) \times(0.1)+(-3) \times(0.2)+(-2) \times(0.3)+(-1) \times(0.2)+(0 \times 0.2)] $
$\mathrm{E}(\mathrm{X})=[-0.4-0.6-0.6-0.2+0] $
$ \mathrm{E}(\mathrm{X})=[-1.8] \\ \text { Hence, } \mathrm{E}(\mathrm{X})=-1.8$
Hence, the answer is option (D).
Question 89
For the following probability distribution $\begin{array}{|l|l|l|l|l|} \hline \mathrm{X} & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}) & 1 / 10 & 1 / 5 & 3 / 10 & 2 / 5 \\ \hline \end{array}$ $E(X^2)$ is equal to
A. 3 B. 5 C. 7 D. 10
Answer:
Given-
Probability distribution table
$\\ \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum \mathrm{X}^{2} \cdot \mathrm{P}(\mathrm{X}) $
$ \mathrm{E}\left(\mathrm{X}^{2}\right)=\left[1^{2} \times \frac{1}{10}+2^{2} \times \frac{1}{5}+3^{2} \times \frac{3}{10}+4^{2} \times \frac{2}{5}\right] $
$ \mathrm{E}\left(\mathrm{X}^{2}\right)=\left[\frac{1}{10}+\frac{4}{5}+\frac{27}{10}+\frac{32}{5}\right] $
$ \mathrm{E}\left(\mathrm{X}^{2}\right)=\left[\frac{1+8+27+64}{10}\right] $
$ \mathrm{E}\left(\mathrm{X}^{2}\right)=\left[\frac{100}{10}\right] \\ \text { Hence, } \mathrm{E}\left(\mathrm{X}^{2}\right)=10$
Hence, the answer is option (D).
Question 90
Answer:
$\begin{aligned} &\text { As we know that in binomial distribution } \mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{n} \mathrm{C}_{r}(\mathrm{p})^{\mathrm{r}}(\mathrm{q})^{\mathrm{n}-\mathrm{r}}\\ &\mathrm{P}(\mathrm{x}=\mathrm{r})=\frac{\mathrm{n} !}{(\mathrm{n}-\mathrm{r}) ! \mathrm{r} !}(\mathrm{p})^{\mathrm{r}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{r}} \text { where } \mathrm{q}=1-\mathrm{p}\\ &\text { Therefore, }\\ &\frac{\mathrm{P}(\mathrm{x}=\mathrm{r})}{\mathrm{P}(\mathrm{x}=\mathrm{n}-\mathrm{r})}=\frac{(\mathrm{p})^{\mathrm{r}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{r}}}{(\mathrm{p})^{\mathrm{n}-\mathrm{r}}(1-\mathrm{p})^{\mathrm{r}}}{}\\ &\text { since, }{ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}\\ &\frac{P(x=r)}{P(x=n-r)}=\left(\frac{1-p}{p}\right)^{n-2 r} \end{aligned}$
According to the question, this expression is independent of n and r if
$\frac{1-p}{p}=1 \Rightarrow p=\frac{1}{2}$
Hence $p=\frac{1}{2}$
Hence, the answer is option (A).
Question 91
In a college, 30% of students fail in physics, 25% fail in mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in physics if she has failed in mathematics is
A.$\frac{1}{10}$ B.$\frac{2}{5}$ C.$\frac{9}{20}$ D.$\frac{1}{3}$
Answer:
Let $\mathrm{E}_1$ be the event that the student fails in Physics and $\mathrm{E}_2$ be the event that she fails in Mathematics.
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_1\right)=\frac{30}{100} \\ & \mathrm{P}\left(\mathrm{E}_2\right)=\frac{25}{100}\end{aligned}$
And $P\left(E_1 \cap E_2\right)=\frac{10}{100}$
$\begin{aligned} & \therefore \mathrm{P}\left(\frac{\mathrm{E}_1}{\mathrm{E}_2}\right)=\frac{\mathrm{P}\left(\mathrm{E}_1 \cap \mathrm{E}_2\right)}{\mathrm{P}\left(\mathrm{E}_2\right)} \\ & =\frac{\frac{10}{100}}{\frac{25}{100}} \\ & =\frac{2}{5}\end{aligned}$
Question 92
A and B are two students. Their chances of solving a problem correctly are 1/3 and 1/4, respectively. If the probability of their making a common error is, 1/20 and they obtain the same answer, then the probability of their answer to be correct is
A.$\frac{1}{12}$ B.$\frac{1}{40}$ C.$\frac{13}{120}$ D.$\frac{10}{13}$
Answer:
Let $\mathrm{E}_1$ be the event that both of them solve the problem.
$\therefore \mathrm{P}\left(\mathrm{E}_1\right)=\frac{1}{3} \times \frac{1}{4}=\frac{1}{12}$
And $E_2$ be the event that both of them incorrectly the problem.
$\begin{aligned} & \therefore \mathrm{P}\left(\mathrm{E}_2\right)=\left(1-\frac{1}{3}\right) \times\left(1-\frac{1}{4}\right) \\ & =\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}\end{aligned}$
Let H be the event that both of them get the same answer. Here, $\mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)=1$
$\begin{aligned} & \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)=\frac{1}{20} \\ & \therefore \mathrm{P}\left(\frac{\mathrm{E}_1}{\mathrm{H}}\right)=\frac{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)}{\mathrm{P}\left(\mathrm{E}_1\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_1}\right)+\mathrm{P}\left(\mathrm{E}_2\right) \cdot \mathrm{P}\left(\frac{\mathrm{H}}{\mathrm{E}_2}\right)} \\ & =\frac{\frac{1}{12} \times 1}{\frac{1}{12} \times 1+\frac{1}{2} \times \frac{1}{20}} \\ & =\frac{\frac{1}{12}}{\frac{1}{12}+\frac{1}{40}} \\ & =\frac{\frac{1}{12}}{\frac{10+3}{120}} \\ & =\frac{\frac{1}{12}}{\frac{13}{120}} \\ & =\frac{10}{13}\end{aligned}$
Hence, the answer is option (D).
Question 93
A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
$\\A. \left(\frac{9}{10}\right)^{5}$ \\B.$\frac{1}{2}\left(\frac{9}{10}\right)^{4}$ \\C.. $\frac{1}{2}\left(\frac{9}{10}\right)^{5}$ \\D. $\left(\frac{9}{10}\right)^{5}+\frac{1}{2}\left(\frac{9}{10}\right)^{4}$
Answer:
We can solve this using Bernoulli trials.
Here n = 5 (as we are drawing 5 pens only)
Success is defined as when we get a defective pen.
Let p be the probability of success and q probability of failure.
∴ p = 10/100 = 0.1
And q = 1 – 0.1 = 0.9
To find- the probability of getting at most 1 defective pen.
Let X be a random variable denoting the probability of getting r defective pens.
∴ P (drawing almost 1 defective pen) = P(X = 0) + P(X = 1)
The binomial distribution formula is:
$\mathrm{P}(\mathrm{x})=^{n} \mathrm{C}_{x} \mathrm{p}^{\mathrm{x}}(1-\mathrm{P})^{\mathrm{n}-\mathrm{x}}$
Where:
x = total number of “successes.”
P = probability of success on an individual trial
n = number of trials
$\Rightarrow P(X=0)+P(X=1)=5_{C_{0}} p^{0} q^{5}+{ }^{5} C_{1} p^{1} q^{4}$
$\mathrm{P}($ drawing at most 1 defective pen $)=\left(\frac{9}{10}\right)^{5}+5\left(\frac{1}{10}\right)\left(\frac{9}{10}\right)^{4}$
$\Rightarrow \mathrm{P}($ drawing at most 1 defective pen $) = \left ( \frac{9}{10} \right )^5+\frac{1}{2}\left ( \frac{9}{10} \right )^4$
Our answer matches with option D.
Hence, the answer is option (D).
Question 94
Answer:
Events are mutually exclusive when–
P(A∪B) = P(A) + P(B)
But as per the conditions in question, they don't need to meet the condition because it might be possible.
P(A ∩ B) ≠ 0
Events are independent when–
P(A ∩ B) = P(A)P(B)
Again P(A) > 0 and P(B)> 0 are not sufficient conditions to validate them.
Hence, the statement is false.
Question 95
Answer:
As A and B are independent
$\begin{aligned} &\Rightarrow P({A} \cap {B})=P(A) P(B)\\ &\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}({\mathrm{A}} \underline{\cup} \underline{\mathrm{B}})^{\prime}\{\text { using De morgan's law }\}\\ &P(A \cup B)^{\prime}=1-P(A \cup B)\\ &\text { We know } P(A \cup B)=P(A)+P(B)-P(A \cap B)\\ &\Rightarrow P(A \cup B)^{\prime}=1-[P(A)+P(B)-P(A \cap B)]\\ &\Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \text { as } \mathrm{A} \& \mathrm{~B} \text { are independent }\}\\ &=[1-\mathrm{P}(\mathrm{A})]-\mathrm{P}(\mathrm{B})(1-\mathrm{P}(\mathrm{A})]\\ &\Rightarrow P\left(A^{\prime} \cap B^{\prime}\right)=(1-P(A))(1-P(B))\\ &=\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right) \end{aligned}$
Hence, the statement is true.
Question 96
Answer:
If A and B are mutually exclusive, that means
P(A∪B) = P(A) + P(B)
From this equation, it cannot be proved that
P(A ∩ B)= P(A)P(B).
Hence, the statement is false.
Question 97
Answer:
If A and B are independent events, it means that
P(A ∩ B) = P(A)P(B)
From the equation, it cannot be proved that
P(A∪B) = P(A) + P(B)
It is only possible if either P(A) or P(B) = 0, which is not given in question.
Hence, the statement is false.
Question 98
Answer:
If A and B are independent events it means that
P(A ∩ B) = P(A)P(B)
Thus, from the definition of independent event, we say that the statement is true.
Hence, the statement is true.
Question 99
Answer:
Mean gives the average of values and if it is related with probability or variable it is called the led expected value.
Hence, the statement is true.
Question 100
Answer:
If A and B are independent events, it means that
P(A ∩ B) = P(A)P(B)
P(A′ ∪ B) = P(A’) + P(B) – P(A’ ∩ B)
and P(A′ ∪ B) represents the probability of event ‘only B’ excluding common points.
$\\ \therefore P\left(A^{\prime} \cap B\right)=P(B)-P(A \cap B) $
$\Rightarrow P\left(A^{\prime} \cup B\right)=P\left(A^{\prime}\right)+P(B)-P(B)+P(A \cap B) $
$ \Rightarrow P\left(A^{\prime} \cup B\right)=1-P(A)+P(A) P(B)\{\text { independent events }\} $
$ \Rightarrow P\left(A^{\prime} \cup B\right)=1-P(A)\{1-P(B)\} $
$ \Rightarrow P\left(A^{\prime} \cup B\right)=1-P(A) P\left(B^{\prime}\right)$
Hence, the statement is true.
Question 101
Answer:
Exactly one of A and B occurs.
This means if occurs B does not occur and if B occurs A does not occur.
$\therefore$ Required probability $=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)$
$=\mathrm{P}(\mathrm{A}) \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}(\mathrm{B})$
Since $A$ and $B$ are independent the $n A^{\prime}$ and $B^{\prime}, A$ and $B^{\prime}$ are also independent
Hence, the statement is true.
Question 102
Answer:
$\begin{aligned} & \because \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})} \\ & =\frac{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cup \mathrm{B})}{\mathrm{P}(\mathrm{A})}>\frac{1-\mathrm{P}(\mathrm{A} \cup B)}{\mathrm{P}(\mathrm{A})}\end{aligned}$
Hence, the statement is false.
Question 103
Answer:
Since $P$ (at least two of A, B and C occur)
$\begin{aligned} & =p \times p \times(1-p)+(1-p) \cdot p \cdot p+p(1-p) \cdot p+p \cdot p \cdot p \\ & =3 p^2(1-p)+p^3 \\ & =3 p^2-3 p^3+p^3 \\ & =3 p^2-2 p^3\end{aligned}$
Hence, the statement is true.
Question 104
Answer:
Given that, $\mathrm{P}(\mathrm{A})=\mathrm{p}$
$P(B)=\frac{1}{3}$
And $P(A \cup B)=\frac{5}{9}$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\mathrm{p}$
$\Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{p}$
$\begin{aligned} & \mathrm{P}(\mathrm{B})=\mathrm{p} \cdot \frac{1}{3} \text { and } \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \\ & \frac{5}{9}=\mathrm{p}+\frac{1}{3}-\frac{\mathrm{p}}{3} \\ & \Rightarrow \frac{5}{9}-\frac{1}{3}=\frac{2 \mathrm{p}}{3} \\ & \Rightarrow \frac{2}{9}=\frac{2 \mathrm{p}}{3} \\ & \Rightarrow \mathrm{p}=\frac{1}{3}\end{aligned}$
Question 105
Answer:
$\begin{aligned} & \mathrm{P}\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)=\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime}\right)-\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)\{\text { using union of two sets }\} \\ & \Rightarrow P\left(A^{\prime}\right)+P\left(B^{\prime}\right)=P\left(A^{\prime} \cup B^{\prime}\right)+P\left(A^{\prime} \cap B^{\prime}\right) \\ & \because \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}(\mathrm{A} \cup \mathrm{B})^{\prime}\{\text { using De Morgan's law }\} \\ & \Rightarrow \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-5 / 9=4 / 9 \\ & \therefore P\left(A^{\prime}\right)+P\left(B^{\prime}\right)=2 / 3+4 / 9=10 / 9\end{aligned}$
Question 106
Answer:
Given that: $\mathrm{P}(\mathrm{X}=2)=9 \mathrm{P}(\mathrm{X}=3)$
$\begin{aligned} & \Rightarrow{ }^5 \mathrm{C}_2 \mathrm{p}^2 \mathrm{q}^3=9 .{ }^5 \mathrm{C}_3 \mathrm{p}^3 \mathrm{q}^2 \\ & \Rightarrow \frac{1}{9}=\frac{{ }^5 \mathrm{C}_3 \mathrm{p}^2 \mathrm{q}^2}{{ }^5 \mathrm{C}_2 \mathrm{p}^2 \mathrm{q}^3} \\ & \Rightarrow \frac{1}{9}=\frac{\mathrm{p}}{\mathrm{q}} \ldots \ldots . .\left[\because{ }^5 \mathrm{C}_3={ }^5 \mathrm{C}_2\right] \\ & \Rightarrow 9 \mathrm{p}=\mathrm{q} \\ & \Rightarrow 9 \mathrm{p}=1-\mathrm{p} \\ & \Rightarrow 9 \mathrm{p}+\mathrm{p}=1 \\ & \Rightarrow 10 \mathrm{p}=1 \\ & \therefore \mathrm{p}=\frac{1}{10}\end{aligned}$
Question 107
Fill in the blanks in the following Question
Let X be a random variable taking values x 1 , x 2 ,..., x n with probabilities p 1 , p 2 , ..., p n , respectively. Then var (X) =
Answer:
$\begin{aligned} & \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^2\right)-[\mathrm{E}(\mathrm{X})]^2 \\ & =\sum \mathrm{X}^2 \mathrm{P}(\mathrm{X})-\left[\sum \mathrm{X} \cdot \mathrm{P}(\mathrm{X})\right]^2 \\ & =\sum \mathrm{p}_{\mathrm{i}} x_{\mathrm{i}}^2-\left(\sum \mathrm{p}_{\mathrm{i}} x_{\mathrm{i}}\right)^2\end{aligned}$
Question 108
Answer:
$\begin{aligned} & \because \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ & \Rightarrow \mathrm{P}(\mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})} \\ & \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})\end{aligned}$
$\therefore \mathrm{A}$ is independent of $\mathrm{B}$.
Careers360 offers all NCERT Class 12 Maths Exemplar Solutions in one place for students. Just click the links below to see them.
For the convenience of students, Careers360 provides complete NCERT Class 12 Maths Solutions together in one location. Simply click the links below to access.
Here are the subject-wise links for the NCERT Solutions of Class 12:
Given below are the subject-wise NCERT Notes of Class 12 :
To plan studies effectively, students should review the latest syllabus before the academic year starts. Find the updated syllabus links and recommended reference books below.
Given below are the subject-wise Exemplar Solutions of Class 12 NCERT:
Frequently Asked Questions (FAQs)
Independent events are events where the outcome of one does not affect the outcome of the other. In probability, two events A and B are independent if the occurrence of A does not change the probability of B occurring, and vice versa. Mathematically, events A and B are independent if:
P(A n B)=P(A) P(B)
To find the probability of the union of two events A and B (denoted as P(A ∪ B)), use the formula:
P(A ∪ B) = P(A) + P(B) – P(A ∩ B).
This formula accounts for the overlap between the two events so that it is not counted twice. If A and B are mutually exclusive (cannot happen together), then P(A ∩ B) = 0, and the formula becomes P(A ∪ B) = P(A) + P(B).
Two random variables X and Y are independent if the occurrence or value of one does not influence the other. Mathematically, they are independent if their joint probability distribution equals the product of their individual (marginal) distributions:
P(X = x, Y = y) = P(X = x) × P(Y = y) for all values x and y.
For continuous variables, independence is determined using probability density functions:
f(x, y) = f(x) × f(y).
If this condition holds for all possible values, then X and Y are independent. Otherwise, they are dependent. Independence implies no correlation, but not vice versa.
Mutually exclusive events are events that cannot occur at the same time. If one event happens, the other cannot. Mathematically, for events A and B:
P(A ∩ B) = 0.
Exhaustive events are a set of events that cover all possible outcomes of an experiment. This means at least one of the events must occur.
Example: In tossing a coin, events A = "heads" and B = "tails" are mutually exclusive (can’t happen together) and exhaustive (one must happen).
If events are both mutually exclusive and exhaustive, their total probability sums to 1:
P(A) + P(B) = 1.
The probability of a complementary event is calculated by subtracting the probability of the event from 1. If A is an event, its complement (denoted A' or not A) includes all outcomes where A does not occur. The formula is:
P(A') = 1 – P(A).
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters