NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
Throughout our everyday encounters, we relate objects, people, or ideas together. For example, a student relates to his or her school, a country relates to its capital, or a person relates to the date he or she was born. Those are what we call relations in math. A relation is a way of relating elements of one set to elements of another and is a subset of the Cartesian product of two sets. A function is a relation in which each element of the first set (domain) relates to one element of the second set (codomain). Functions have various applications in real life, thereby allowing us to forecast weather patterns, design computer programs, and many other applications.
It is easy to understand relations and functions through NCERT Class 12 solutions. The solutions provide precise step-by-step solutions for various kinds of relations such as reflexive, symmetric, transitive, and equivalence, and functions, function composition, and inverse functions. Practicing NCERT problems on a daily basis will not just improve your concept clarity but will also increase your logical reasoning and problem-solving ability. Practice problems in NCERT textbooks form a great base for board and competitive examinations. So, step into the world of relations and functions through NCERT solutions and learn how mathematical relationships are involved in numerous aspects of life and education.
Class 12 Maths Chapter 1 exemplar solutions Exercise: 1.3 Page number: 11-17 Total questions: 62 |
Question:1
Let A = {a, b, c} and the relation R be defined on A as follows:
Then, write the minimum number of ordered pairs to be added in R to make R reflexive and transitive.
Answer:
Here, R = {(a, a), (b, c), (a, b)}
The minimum number of ordered pairs to be added to make R as reflexive is (b, b) and (c, c) to R. Whereas, to make R transitive, the minimum number of ordered pairs to be added is (a, c) to R.
Therefore, we need 3 ordered pairs to add to R to make it reflexive and transitive.
Question:2
Let D be the domain of the real-valued function f defined by
Answer:
Therefore, the function can be defined as:
Therefore, the given function has a domain of [-5, 5].
Question:3
Let f, g:
Answer:
Here,
f(x) = 2x + 1
Therefore,
Question:7
Is
Answer:
Here,
Here, each and every element of a domain has a unique image. Therefore, g is a function.
Also,
Therefore,
Similarly,
By solving (1) and (2), we get
Therefore,
Question:8
Answer:
(i)Here,
Therefore, each person (x) has only one biological mother.
Hence, the given set of ordered pairs makes a function.
Therefore, there are more than one person who may have the same mother. Hence, the function is many-one and surjective.
(ii) Here,
It’s seen that any person ‘a’ has more than one ancestor.
Therefore, it is not a function.
Question:9
If the mappings f and g are given by
Answer:
Here,
Therefore,
So, we can write that:
Question:10
Answer:
Here,
If we assume
Then,
Similarly, for
Therefore, it is clear that f(z) is many-one.
So,
However, in the question R is the co-domain given.
Hence, f(z) is not onto. So, f(z) is neither one-one nor onto.
Question:11
Let the function
Answer:
It is given that,
So, we can write:
Hence,
It is understandable that for any value of
Therefore, f(x) is a many one function.
We know the range of cos x is [-1, 1] and it is a subset of the given co-domain R.
Hence, the given function is not onto.
Question:12
Let
(i)
(ii)
(iii)
(iv)
Answer:
Here,
Therefore,
(i)
Here, f(1) = 4 and again f(1) = 5.
Therefore, f is not a function here.
As a result, there is no unique of pre- image ‘1’.
(ii)
We can clearly see that g is a function. Here in g, each element of the given domain has a unique image at the given range
(iii)
It’s clear that h is a function of each pre-image that has a unique image.
Again, h(2) = h(3) = 5
Therefore, the function h is also many-one.
(iv)
Here, ‘3’ does not have any image under the mapping. Therefore, k is not a function.
Question:13
If functions
Answer:
Here, it is given:
It’s clear here that the function ‘g’ is inverse of ‘f’.
So, ‘f’ has to be both one-one as well as onto.
As a result, ‘g’ is both one-one and onto.
Question:14
Let
Answer:
Here,
Let’s say,
As the range of cos x is,
Therefore,
Hence, the range of the given function is [1/3, 1].
Question:15
Answer:
Here, we have to a relation R in Z as follows:
Here, aRa
Therefore, R is reflective.
For aRb,
or, - (b - a) is divisible by n.
or, (b - a) is divisible by n
Hence, we can write it as bRa.
Therefore, R is symmetric.
For aRb , (a - b) is divisible by n.
For bRc, (b - c) is divisible by n.
Hence, (a - b) + (b-c) is divisible by n.
Or, (a-c) is divisible by n. This can be expressed as aRc.
Therefore, R is transitive.
So, R is an equivalence relation.
Question:16
If A = {1, 2, 3 }, define relations on A which have properties of being:
(a) reflexive, transitive but not symmetric
(b) symmetric but neither reflexive nor transitive
(c) reflexive, symmetric, and transitive.
Answer:
Here,
(i) Assume
Here, (1, 1), (2, 2) and (3, 3)
. Hence,
Now,
Therefore,
(ii) Let say,
So,
Therefore,
(iii) Let
Therefore,
Question:17
Answer:
Here,
So, the domain
And the Range
Here,
Again,
Again,
Therefore, R is neither reflexive nor symmetric and nor transitive.
Question:18
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(a) an injective mapping from A to B
(b) a mapping from A to B which is not injective
(c) a mapping from B to A.
Answer:
Here,
(i) Assume,
Then,
(ii) Again assume,
(iii) Again assume, h:
Question:19
(i) which is one-one but not onto
(ii) which is not one-one but onto
(iii) which is neither one-one nor onto.
Answer:
(i) Say,
If,
Then,
So,
However, ‘f’ is not onto, as for
(ii) Let
Then, we can conclude that f(x) is not a one-one as f(2) and f(-2) are the same here.
But
Therefore, f(x) is onto.
(iii) Assume,
Then we can say that f(x) is not one-one as f(1) and f (-1) are the same.
The range of f(x) is
Therefore, f (x) is neither one-one nor onto.
Question:20
Let
Answer:
Here,
Hence,
Say
So, f (x) is an injective function.
So, f (x) is onto or subjective.
Therefore, f(x) is a bijective function.
Question:21
Answer:
Here, A = [-1, 1]
(i)
If,
So, f(x) is one-one.
Also,
Hence, the range is a subset of co-domain A
So, f(x) is not onto.
Therefore, f (x) is not bijective.
(ii)
So, g(x) is not one-one.
Also,
Hence, the range is [0, 1], which is subset of co-domain ‘A’
So, f(x) is not onto.
Therefore, f(x) is not bijective.
(iii)
Hence, f(x) is one-one.
Hence, the range is [-1, 1].
So, h(x) is onto.
Therefore, h(x) is bijective.
(iv)
Therefore, k(x) is not one-one.
Question:22
Answer:
(i)Here, x is greater than y;
If
Therefore, R is not reflexive.
Say,
Hence, R is not symmetric.
Again, xRy and yRz
Hence, R is transitive.
(ii) x + y = 10;
Thus,
Therefore,
So, R is not reflexive.
Again,
Therefore, R is symmetric.
And,
Therefore, R is not transitive.
(iii)Here, xy is square of an integer
So,
For any
Thus, R is reflexive.
If
So, R is symmetric.
Again, if xy and yz both are square of an integer.
Then,
Therefore, R is transitive.
(iv) x + 4y = 10;
Hence, R is not symmetric.
Therefore, R is not transitive.
Question:23
Answer:
This must be true for any
Hence, R is reflexive.
Say, (a, b) R (c, d)
Then,
Therefore, R is symmetric.
Let
So, R is transitive.
Therefore, R is an equivalence relation.
Question:24
Answer:
Say,
If,
Then
In this case, we have two images ‘a and b’ for one pre-image ‘p’. This is because the inverse function is not defined here.
However, to be one-one, f must be invertible.
Say,
There is no pre-image for the image r, which will have no image in set A.
And, f must be onto to be invertible.
Thus, to be both one-one and onto f must be invertible
If f is a bijective function, then
Question:25
Functions
(i) fog (ii) gof (iii) fof (iv) gog
Answer:
Here,
Question:26
Answer:
Here,
(i)
Hence,
(ii)
Therefore,
(iii)
Therefore,
(iv)
Therefore,
Question:27
Let
(i) commutative but not associative
(ii) associative but not commutative
(iii) neither commutative nor associative
(iv) both commutative and associative
Answer:
(i) Here,
So,
Therefore,
Hence,
Therefore,
Question:28
Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to
(A) reflexive but not transitive (B) transitive but not symmetric
(C) equivalence (D) none of these
Answer:
(C) equivalence
Here aRb, if a is congruent to b,
So, in aRa, a is congruent to a. This must always be true.
Therefore, R is reflexive.
Say,
Therefore, R is symmetric.
Say, aRb and bRc
Therefore, R is transitive.
Therefore, R is an equivalence relation.
Question:29
(A) symmetric but not transitive (B) transitive but not symmetric
(C) neither symmetric nor transitive (D) both symmetric and transitive
Answer:
(B) transitive but not symmetric
If, aRb means a is brother of b.
Then, it does not mean b is also a brother of a. Because, b can be a sister of a too.
Therefore, R is not symmetric.
If, aRb implies that a is the brother of b.
and bRc implies that b is the brother of c.
Therefore, a must be the brother of c.
Hence, R is transitive.
Question:30
The maximum number of equivalence relations on the set A = {1, 2, 3} are
(A) 1 (B) 2
(C) 3 (D) 5
Answer:
(D) 5
Given, set
Now, the number of equivalence relations as follows
Thus, the maximum number of equivalence relations is ‘5’.
Question:31
If a relation R on the set {1, 2, 3} be defined by R = {(1, 2)}, then R is
(A) reflexive (B) transitive
(C) symmetric (D) none of these
Answer:
(D) none of these
If, R be defined on the set {1, 2, 3} by R = {(1, 2)}
Then, we can say that R is not reflexive, transitive, and symmetric.
Question:32
Let us define a relation R in R as aRb if
(a) an equivalence relation (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric.
Answer:
(b).
The defined relation R in R as aRb if
Similarly, aRa implies
Therefore, it is reflexive.
Let
Therefore, we can’t write it as Rba
Hence, R is not symmetric.
Now,
Therefore, R is transitive.
Question:33
(a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive.
Answer:
(a)
Given, R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}
Therefore, it can be written as: 1R1, 2R2 and 3R3.
Therefore, R is reflexive.
Here, 1R2 is not the same as 2R1 and 2R3 is not the same as 3R2.
Therefore, R is not symmetric.
Again, 1R1 and
Therefore, R is transitive.
Question:34
The identity element for the binary operation * defined on Q ~ {0} as a * b = 2 ab a, b Q ~ {0} is
(a) 1 (b) 0 (c) 2 (d) None of these
Answer:
(c)
Here:
Assume ‘e’ as the identity element.
Therefore,
Question:35
(a) 720 (b) 120 (c) 0 (d) None of these
Answer:
Let, the number of elements in A and B set are m and n respectively. Therefore, one-one and onto mapping
from A to B is n! when m = n
and, 0 if m ≠ n
It is given that, m = 5 and n = 6.
As,5 ≠ 6 So, from A to B mapping = 0
Question:36
Let
(a)
(b)
(c)
(d) None of these
Answer:
(d)
It is given that,
Say, the number of elements in set A and B are m and n respectively.
Therefore,
Given, m=2.
Therefore, the number of surjections from A to B
Question:37
Let
(a) one-one (b) onto (c) bijective (d) f is not defined
Answer:
(d)
Here, f(x) = 1/x
Say, x = 0. Then f(x) = 1/0 = undefined
Hence, f(x) is not defined.
Question:39
Which of the following functions from Z to Z are bijections?
Answer:
(b)
Given that
Say,
For,
or,
Therefore, the function f(x) is one-one.
Say, y = x + 2
or,
Hence, f(x) is onto.
Therefore, the function f(x) is bijective.
Question:43
f(x) = { x, if is rational
{ 1-x , if is irrational
Then (fof)x is
(a) constant
(b) 1 + x
(c) x
(d) None of these
Answer:
(c)
Here,
Question:45
Let
Answer:
(d)
Given that,
Therefore,
Hence,
Question:48
Let the relation R be defined in N by aRb if 2a + 3b = 30. Then R = ............
Answer:
Here, aRb : 2a + 3b = 30
Or, 3b = 30 – 2a
Or, b = (30 - 2a)/ 3
for a = 3, b = 8
a = 6, b = 6
a = 9, b = 4
a = 12, b = 2
Therefore, R = {(3, 8), (6, 6), (9, 4), (12, 2)}
Question:53
Answer:
False Here in the question, R = {(3,1), (1,3), (3,3)} which is defined on the set A = {1, 2, 3}
As (1 ,1) R, R is not a reflexive one.
As (3, 1) R and (1, 3) belongs to R, then R is symmetric.
Again, (1, 3) R, (3, 1) R. However (1, 1) does not belong to R. Then R is not transitive.
Question:54
Let f: R→R be the function defined by
Answer:
False
Here,
Again,
Hence, the function is not invertible.
Question:55
Every relation which is symmetric and transitive is also reflexive.
Answer:
False
Assume, a relation R : R= {(1,2), (2,1), (2,2)} on the set A = {1,2}
Therefore, it is clear that (1,1) ∉ R. Hence, it is not reflexive.
Question:56
Answer:
False.
Here, the given relation in the question is reflexive and transitive. However, it is not symmetric
Question:57
Let
Answer:
True
Here,
Therefore, the range of f is
Hence,
Question:58
The relation R on the set A = {1, 2, 3} defined as R = {(1,1), (1,2), (2,1), (3,3)}
Answer:
False
As,
Therefore,
Hence, R is not reflexive.
Question:62
A binary operation on a set always has an identity element.
Answer:
False
‘+’ is a binary operation on the set N but it has no identity element.
This chapter is divided into various sub-topics that are related to relations and functions and its operations. They are mentioned below:
NCERT Exemplar solutions for Class 12 Maths chapter 1, students will learn about the basic concept of functions and relations.
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the subject-wise NCERT Notes of class 12 :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Yes, NCERT exemplar solutions for Class 12 Maths chapter 1 are designed well to prepare you for board examinations.
The important topics of this NCERT Exemplar Class 12 Maths solutions chapter 1 include Types of Relations, Types of Functions, Binary Operations and Composition of Functions and Invertible Function.
The best ways to remember formulae is to keep revising them and solving related problems. Other methods include reading them on a daily basis. You can also prepare charts to stick near your study table or bed to go through in your leisure time.
There are a total 70 questions in NCERT Exemplar Class 12 Maths solutions chapter 1 based on different concepts.
Admit Card Date:06 May,2025 - 20 May,2025
Admit Card Date:06 May,2025 - 20 May,2025
Application Date:07 May,2025 - 17 May,2025
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters