NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Edited By Komal Miglani | Updated on Jun 17, 2025 08:11 AM IST | #CBSE Class 12th
Ongoing Event
CBSE Class 12th  Application Date : 30 May' 2025 - 17 Jun' 2025

In the universe of trigonometry, inverse functions are the keys to unlocking the angles when only the ratios are given. In the inverse trigonometric functions class 12 solutions, students will learn about functions that help to determine the angles of a right angle when only a specific ratio of the sides is given. NCERT solutions for class 12 Maths highlight that for every ratio, there exists a unique angle, just like every answer has a counter question, every sine, cosine, or tangent has an inverse.

This Story also Contains
  1. NCERT Solution for Class 12 Maths Chapter 2 Solutions: Download PDF
  2. NCERT Solutions for Class 12 Maths Chapter 2: Exercise Questions
  3. Class 12 Maths NCERT Chapter 2: Extra Question
  4. Inverse Trigonometric Functions Class 12 Chapter 2: Topics
  5. Inverse Trigonometric Functions Class 12 NCERT Solutions - Important Formulae
  6. Approach to Solve Questions of Inverse Trigonometric Functions Class 12
  7. What Extra Should Students Study Beyond the NCERT for JEE?
  8. NCERT Solutions for Class 12 Maths: Chapter Wise
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions

Inverse trigonometric functions class 12 NCERT solutions mainly focus on the restrictions on domains and ranges of trigonometric functions that ensure the existence of their inverses. This chapter's learning applies to many fields, including engineering, navigation, astronomy, architecture, and robotics. Experienced Careers360 experts prepared these solutions using the NCERT, following the latest CBSE guidelines.

NCERT Solution for Class 12 Maths Chapter 2 Solutions: Download PDF

Students who wish to access the Class 12 Maths Chapter 2 NCERT Solutions can click on the link below to download the complete solution in PDF.

Download PDF

NCERT Solutions for Class 12 Maths Chapter 2: Exercise Questions

NCERT Inverse Trigonometric Functions Class 12 Solutions: Exercise 2.1
Page number: 26-27
Total questions: 14
NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main Important Mathematics Formulas

As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

Question 1: Find the principal values of the following: $\sin^{-1}\left ( \frac{-1}{2} \right )$

Answer:

Let $x = \sin^{-1}\left ( \frac{-1}{2} \right )$

$\implies \sin x = \frac{-1}{2}= -\sin(\frac{\pi}{6}) = \sin(-\frac{\pi}{6})$
We know, principle value range of $sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$

$\therefore$ The principal value of $\sin^{-1}\left ( \frac{-1}{2} \right )$ is $-\frac{\pi}{6},$

Question 2: Find the principal values of the following: $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$

Answer:

So, let us assume that $\cos^{-1}\left(\frac{\sqrt3}{2} \right ) = x$ then,

Taking the inverse of both sides, we get;

$cos\ x = (\frac{\sqrt{3}}{2})$ , or $cos (\frac{\pi}{6}) = (\frac{\sqrt{3}}{2})$

and as we know that the principal values of $cos^{-1}$ is from [0, $\pi$ ],

Hence $cos\ x = (\frac{\sqrt{3}}{2})$ when x = $\frac{\pi}{6}$ .

Therefore, the principal value for $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$ is $\frac{\pi}{6}$ .

Question 3: Find the principal values of the following: $\textup{cosec}^{-1}(2)$

Answer:

Let us assume that $\textup{cosec}^{-1}(2) = x$ , then we have;

$Cosec\ x = 2$ , or

$Cosec( \frac{\pi}{6}) = 2$ .

And we know the range of principal values is $[\frac{-\pi}{2},\frac{\pi}{2}] - \left \{ 0 \right \}.$

Therefore the principal value of $\textup{cosec}^{-1}(2)$ is $\frac{\pi}{6}$ .

Question 4: Find the principal values of the following: $\tan^{-1}(-\sqrt3)$

Answer:

Let us assume that $\tan^{-1}(-\sqrt3) = x$ , then we have;

$\tan x = (-\sqrt 3)$ or

$-\tan (\frac{\pi}{3}) = \tan \left ( \frac{-\pi}{3} \right ).$

and as we know that the principal value of $\tan^{-1}$ is $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .

Hence the only principal value of $\tan^{-1}(-\sqrt3)$ when $x = \frac{-\pi}{3}$ .

Question 5: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{2} \right )$

Answer:

Let us assume that $\cos^{-1}\left(-\frac{1}{2} \right ) =y$ then,

Easily we have; $\cos y = \left ( \frac{-1}{2} \right )$ or we can write it as:

$-\cos \left ( \frac{\pi}{3} \right ) = \cos \left ( \pi - \frac{\pi}{3} \right ) = \cos \left ( \frac{2\pi}{3} \right ).$

As we know that the range of the principal values of $\cos^{-1}$ is $\left [ 0,\pi \right ]$

Hence $\frac{2\pi}{3}$ lies in the range; it is a principal solution.

Question 6: Find the principal values of the following $\tan^{-1}(-1)$

Answer:

Given $\tan^{-1}(-1)$, we can assume it to be equal to 'z';

$\tan^{-1}(-1) =z$ ,

$\tan z = -1$

or

$-\tan (\frac{\pi}{4}) = \tan(\frac{-\pi}{4})= -1$

And as we know the range of principal values of $\tan^{-1}$ from $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .

As only one value z = $-\frac{\pi}{4}$ lies hence we have only one principal value that is $-\frac{\pi}{4}$ .

Question 7: Find the principal values of the following: $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$

Answer:

Let us assume that $\sec^{-1}\left (\frac{2}{\sqrt3}\right) = z$ then,

we can also write it as; $\sec z = \left (\frac{2}{\sqrt3}\right)$ .

Or $\sec (\frac{\pi}{6}) = \left (\frac{2}{\sqrt3}\right)$ and the principal values lies between $\left [ 0, \pi \right ] - \left \{ \frac{\pi}{2} \right \}$ .

Hence we get only one principal value of $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$ i.e., $\frac{\pi}{6}$ .

Question 8: Find the principal values of the following: $\cot^{-1}(\sqrt3)$

Answer:

Let us assume that $\cot^{-1}(\sqrt3) = x$ , then we can write in other way,

$\cot x = (\sqrt3)$ or

$\cot (\frac{\pi}{6}) = (\sqrt3)$ .

Hence when $x=\frac{\pi}{6}$ we have $\cot (\frac{\pi}{6}) = (\sqrt3)$ .

and the range of principal values of $\cot^{-1}$ lies in $\left ( 0, \pi \right )$ .

Then the principal value of $\cot^{-1}(\sqrt3)$ is $\frac{\pi}{6}$

Question 9: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{\sqrt2} \right )$

Answer:

Let us assume $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ ;

Then we have $\cos x = \left ( \frac{-1}{\sqrt 2} \right )$

or

$-\cos (\frac{\pi}{4}) = \left ( \frac{-1}{\sqrt 2} \right )$ ,

$\cos (\pi - \frac{\pi}{4}) = \cos (\frac{3\pi}{4})$ .

And we know the range of principal values of $\cos^{-1}$ is $[0,\pi]$.

So, the only principal value which satisfies $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ is $\frac{3\pi}{4}$ .

Question 10: Find the principal values of the following: $\textup{cosec}^{-1}(-\sqrt2)$

Answer:

Let us assume the value of $\textup{cosec}^{-1}(-\sqrt2) = y$ , then

we have $cosec\ y = (-\sqrt 2)$
or

$-cosec\ (\frac{\pi}{4}) = (-\sqrt 2) = cosec\ (\frac{-\pi}{4})$ .

and the range of the principal values of $\textup{cosec}^{-1}$ lies between $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ] - \left \{ 0 \right \}$ .

Hence the principal value of $\textup{cosec}^{-1}(-\sqrt2)$ is $\frac{-\pi}{4}$.

Question 11: Find the values of the following: $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2} \right ) + \sin^{-1}\left(-\frac{1}{2} \right )$

Answer:

To find the values, first we declare each term to some constant ;

$tan^{-1}(1) = x$ , So we have $\tan x = 1$ ;

or $\tan (\frac{\pi}{4}) = 1$

Therefore, $x = \frac{\pi}{4}$

$cos^{-1}(\frac{-1}{2}) = y$

So, we have

$\cos y = \left ( \frac{-1}{2} \right ) = -\cos \left ( \frac{\pi}{3} \right ) = \cos(\pi - \frac{\pi}{3}) = \cos \left ( \frac{2\pi}{3} \right )$ .

Therefore $y = \frac{2\pi}{3}$ ,

$\sin^{-1}(\frac{-1}{2}) = z$ ,

So we have;

$\sin z = \frac{-1}{2}$ or $-\sin (\frac{\pi}{6}) =\sin (\frac{-\pi}{6}) = \frac{-1}{2}$

Therefore $z = -\frac{\pi}{6}$

Hence, we can calculate the sum:

$= \frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$

$=\frac{3\pi + 8\pi -2\pi}{12} = \frac{9\pi}{12}=\frac{3\pi}{4}$ .

Question 12: Find the values of the following: $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$

Answer:

Here we have $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$

Let us assume that the value of

$\cos^{-1}\left ( \frac{1}{2} \right ) = x, \:and\:\sin^{-1}\left(\frac{1}{2} \right ) = y$ ;

Then we have to find out the value of +2y.

Calculation of x :

$\Rightarrow \cos^{-1}\left ( \frac{1}{2} \right ) = x$

$\Rightarrow \cos x = \frac{1}{2}$

$\Rightarrow \cos \frac{\pi}{3} = \frac{1}{2}$ ,

Hence $x = \frac{\pi}{3}$ .

Calculation of y :

$\Rightarrow \sin^{-1}\left(\frac{1}{2} \right ) = y$

$\Rightarrow \sin y = \frac{1}{2}$

$\Rightarrow \sin \frac{\pi}{6} = \frac{1}{2}$ .

Hence $y = \frac{\pi}{6}$ .

The required sum will be = $\frac{\pi}{3}+2(\frac{\pi}{6}) = \frac{2\pi}{3}$.

Question 13: If $\sin^{-1}x = y$ then

(A) $0\leq y \leq \pi$

(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

(C) $0 < y < \pi$

(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer:

Given if $\sin^{-1}x = y$ then,

As we know that the $\sin^{-1}$ can take values between $\left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ].$

Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ .

Hence, answer choice (B) is correct.

Question 14: $\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$ is equal to

(A) $\pi$

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

(D) $\frac{2\pi}{3}$

Answer:

Let us assume the values of $\tan^{-1}(\sqrt3)$ be 'x' and $\sec^{-1}(-2)$ be 'y'.

Then we have;

$\tan^{-1}(\sqrt3) = x$ or $\tan x = \sqrt 3$ or $\tan \frac{\pi}{3} = \sqrt 3$ or

$x = \frac{\pi}{3}$ .

and $\sec^{-1}(-2) = y$
or $\sec y = -2$

or $-\sec (\frac{\pi}{3}) =\sec ({\pi - \frac{\pi}{3}}) = \sec{\frac{2\pi}{3}}$

$y = \frac{2\pi}{3}$

also, the ranges of the principal values of $\tan^{-1}$ and $\sec^{-1}$ are $(\frac{-\pi}{2},\frac{\pi}{2})$ . and

$[0,\pi] - \left \{ \frac{\pi}{2} \right \}$ respectively.

$\therefore$ we have then;

$\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$

$= \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$


NCERT Inverse Trigonometric Functions Class 12 Solutions: Exercise 2.2
Page number: 29-30
Total questions: 15

Question 1: Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$

Answer:

Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$

where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$.

Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$

Take R.H.S value

$\sin^{-1}(3x - 4x^3)$

= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$

= $\sin^{-1}(\sin 3\theta)$

= $3\theta$

= $3\sin^{-1}x$ = L.H.S

Question 2: Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$

Answer:

Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .

Take $\cos^{-1}x = \theta$ or $\cos \theta = x$;

Then we have;

R.H.S.

$\cos^{-1}(4x^3 - 3x)$

= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$

= $\cos^{-1}(\cos3\theta)$

= $3\theta$

= $3\cos^{-1}x$ = L.H.S

Hence, Proved.

Question 3: Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$

Answer:

We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$

Take

$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$

$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$

$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$

$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$

$=\frac{1}{2}\tan^{-1}x$ is the simplified form.

Question 4: Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

Answer:

Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$

Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,

Then we have,

$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$

$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$

$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$

Hence the simplest form is $\frac{x}{2}$

Question 5: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$

Answer:

Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$

So,

$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$

Taking $\cos x$ common from the numerator and the denominator.

We get:

$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$

$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$

= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$

= $\frac{\pi}{4} - x$ is the simplest form.

Question 6: Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Answer:

Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Take $x = a\sin \theta$ or

$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;

$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$

$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$

$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$

$=\tan^{-1}\left ( \tan \theta \right )$

$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.

Question 7: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$

Answer:

Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$

Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$

So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$

$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;

$=\tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right ) = \tan^{-1}\left(\frac{3a^3\tan \theta -a^3\tan ^3 \theta}{a^3 - 3a^3\tan ^2 \theta} \right )$

and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;

$=3 \theta$

$=3 \tan^{-1}(\frac{x}{a})$

hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$.

Question 8: Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

Answer:

Given equation:

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$

Then we have,

$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$

Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$

$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .

Question 9: Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$

Answer:

Taking the value $x = \tan \Theta$or$\tan^{-1}x = \Theta$ and $y = \tan \Theta$or$\tan^{-1} y = \Theta$ then we have,

= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,

= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$

$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$

$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$

Then,

$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$

$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$

$=\frac{x+y}{1-xy}$

Question 10: If $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$ , then find the value of $x$ .

Answer:

Using the identity $\tan^{-1}x+\tan^{-1} y = \tan^{-1}{\frac{x+y}{1-xy}}$ ,

We can find the value of x.

So, $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$

on applying,

= $\tan^{-1}{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1- \left ( \frac{x-1}{x-2} \right )\left ( \frac{x+1}{x+2} \right )}}$

$=\tan^{-1}\frac{\frac{(x-1)(x+2)+(x-2)(x+1)}{x^2-4}}{1-\frac{x^2-1}{x^2-4}} = \tan^{-1} \left [ \frac{2x^2-4}{-3} \right ] = \frac{\pi}{4}$

$=\frac{2x^2-4}{-3} = \tan (\frac{\pi}{4})=1$

= $2x^2=1$ or $x = \pm \frac{1}{\sqrt{2}}$ ,

Hence, the possible values of x are $\pm \frac{1}{\sqrt{2}}$ .

Question 11: Find the values of each of the expressions$\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$

Answer:

Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;

We know that $\sin^{-1}(\sin x) = x$

If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .

Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$

We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:

= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$

= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$

$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$

Question 12: Find the values of each of the expressions $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$

Answer:

As we know $\tan^{-1}\left ( \tan x \right ) =x$

If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .

So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;

$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :

$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$

Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$

Question 13: Find the values of each of the expressions $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

Answer:

Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

we can take $\sin^{-1}\frac{3}{5} = x$ ,

then $\sin x = \frac{3}{5}$

or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$

$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$

$\Rightarrow \tan^{-1}\frac{3}{4}= x$

We have similarities

$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$

Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$

$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from $As, \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$

$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$

Question 14: $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to

(A) $\frac{7\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{6}$

Answer:

As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .

In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,

$\frac{7\pi}{6} \notin [0,\pi]$

hence we have then,

$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$

$\left [ \because \cos (2\pi + x) = \cos x \right ]$

$\therefore\ we\ have \cos^{-1}\left ( \cos \frac{7\pi}{6} \right ) = \cos^{-1}\left ( \cos \frac{5\pi}{6} \right ) = \frac{5\pi}{6}$

Hence the correct answer is $\frac{5\pi}{6}$ (B).

Question 15: $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to

(A) $\frac{1}{2}$

(B)$-\frac{\pi}{2}$

(C) $\frac{1}{4}$

(D) $1$

Answer:

Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;

$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or

Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,

$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$

Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .

Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$

Hence, the correct answer is D.

Question 15: $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to

(A) $\pi$

(B) $-\frac{\pi}{2}$

(C) 0

(D) $2\sqrt3$

Answer:

We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;

finding the value of $\cot^{-1}(-\sqrt3)$ :

Assume $\cot^{-1}(-\sqrt3) =y$ then,

$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .

Hence, principal value is $\frac{5\pi}{6}$

Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$

and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$

So, we have now,

$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$

$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$

or, $= \frac{ -\pi}{2}$

Hence, the answer is option (B).

NCERT Inverse Trigonometric Functions Class 12 Solutions: Miscellaneous Exercise
Page number: 31-32
Total questions: 14

Question 1: Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$

Answer:

If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .

So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$

$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$

$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$

$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$

$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$

$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$

Therefore, we have,

$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .

Question 2: Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$

Answer:

We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;

so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .

Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:

$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$

$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$

$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$

$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .

Question 3: Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$

Answer:

To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;

$L.H.S=2\sin^{-1}\frac{3}{5}$

Assume that $\sin^{-1}\frac{3}{5} = x$

then we have $\sin x = \frac{3}{5}$ .

or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$

Therefore we have

$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$

Now,

We can write L.H.S as

$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$

$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$

$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$

$=\tan^{-1} \frac{24}{7}=R.H.S$

L.H.S = R.H.S

Question 4: Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$

Answer:

Taking $\sin ^{-1} \frac{8}{17} = x$

then,

$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$

Therefore, we have-

$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$

$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$.............(1).

$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,

Then,

$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$.............(2).

So, we have now,

L.H.S.

$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$

Using equations (1) and (2), we get,

$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$

$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$
$[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$

$=\tan^{-1} (\frac{32+45}{60-24})$

$=\tan^{-1} (\frac{77}{36})$

= R.H.S.

Question 5: Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Answer:

Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$

Then we have,

$\cos x = \frac{4}{5}$

$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$

Then we can write it as:

$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$

$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$...............(1)

Now, $\cos^{-1}\frac{12}{13} = y$

$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$

$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$

So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$...................(2)

Also, we have similarities;

$\cos^{-1}\frac{33}{65} = z$

Then,

$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$...........................(3)

Now, we have

L.H.S

$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2), we get,

$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$

$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$
$\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$

$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$

$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;

$=\cos^{-1}\frac{33}{65}$

= R.H.S.

Hence proved.

Question 6: Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$

Answer:

Converting all terms in tan form;

Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .

Now, converting all the terms:

$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$

We can write it in tan form as:

$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .

$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$

or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)

$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$

We can write it in tan form as:

$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$

$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$

or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)

Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;

we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)

Using (1) and (2), we have L.H.S

$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$

$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$

On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$

We have,

$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$

$=\tan^{-1} (\frac{20+36}{48-15})$

$=\tan^{-1} (\frac{56}{33})$

$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]

=R.H.S.

Hence proved.

Question 7: Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$

Answer:

Taking R.H.S;

We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$

Converting sin and cos terms to tan forms:

Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$

now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$

$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$

$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$

$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$............(1)

Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$

$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$

$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$

$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$................(2)

Now, using (1) and (2), we get,

R.H.S.

$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$

$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$

so,

$= \tan^{-1} \frac{63}{16}$

equal to L.H.S

Hence proved.

Question 8: Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$

Answer:

By observing the square root, we will first put

$x= \tan^2 \theta$ .

Then,

we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$

or, R.H.S.

$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$

$= \frac{1}{2}\times 2\theta = \theta$ .

L.H.S.$\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$

hence L.H.S. = R.H.S proved.

Question 9: Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$

Answer:

Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$

By observing, we can rationalise the fraction

$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$

We get then,

$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$

$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$

$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$

$= \cot \frac{x}{2}$

Therefore, we can write it as;

$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$

As L.H.S. = R.H.S.

Hence proved.

Question 10: Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$

[Hint: Put $x = \cos 2\theta$ ]

Answer:

By using the Hint, we will put $x = \cos 2\theta$ ;

We get then,

$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$

$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$

$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$

$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,

We get,

$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$

$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$

$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$

As L.H.S = R.H.S

Hence proved

Question 11: Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$

Answer:

Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;

Using the formula:

$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$

We can write

$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$

$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$

So, we can equate;

$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$

$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$

that implies that $\cos x = \sin x$ .

or $\tan x =1$ or $x = \frac{\pi}{4}$

Hence we have solution $x = \frac{\pi}{4}$ .

Question 12: Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$

Answer:

Given equation is

$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :

L.H.S can be written as;

$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$

Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$

So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$

$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$

$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$

$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$

$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$

Hence the value of $x= \frac{1}{\sqrt3}$ .

Question 13: $\sin(\tan^{-1}x),\;|x|<1$ is equal to

(A) $\frac{x}{\sqrt{1-x^2}}$

(B) $\frac{1}{\sqrt{1-x^2}}$

(C) $\frac{1}{\sqrt{1+x^2}}$

(D) $\frac{x}{\sqrt{1+x^2}}$

Answer:

Let $\tan^{-1}x = y$ then we have;

$\tan y = x$ or

$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$

$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$

Hence, the correct answer is D.

Question 14: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to

(A) $0,\frac{1}{2}$

(B) $1,\frac{1}{2}$

(C) 0

(D) $\frac{1}{2}$

Answer:

Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$

we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.

Then we have;

$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$

or $- 2\sin^{-1}x =\cos^{-1}(1-x)$............................(1)

from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$

Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .

So, we conclude that;

$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$

Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,

$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$

Putting x = sin y in the above equation, we have then,

$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow \cos(-2y) = 1-\sin y$

$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$

$\Rightarrow 1- 2\sin^2 y = 1-\sin y$

$\Rightarrow 2\sin^2 y - \sin y = 0$

$\Rightarrow \sin y(2 \sin y -1) = 0$

So, we have the solution;

$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .

When we have $x= \frac{1}{2}$ , we can see that :

$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$

So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$

Thus, we have only one solution, which is x = 0

Hence, the correct answer is (C).

Also read,

Inverse Trigonometric Functions Class 12 Exercise 2.1

Inverse Trigonometric Functions Class 12 Exercise 2.2

Inverse Trigonometric Functions Class 12 Miscellaneous Exercise

Class 12 Maths NCERT Chapter 2: Extra Question

Question: If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then x equals to:

Solution:
Given That, $3 \tan ^{-1} x+\cot ^{-1} x=\pi$
$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\pi \\
& \Rightarrow 2 \tan ^{-1} x=\pi-\frac{\pi}{2}\left[\text { Since, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right] \\
& \Rightarrow \tan ^{-1} \frac{2 x}{1-x^2}=\frac{\pi}{2}\left[\text { Since, } 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^2}\right]
\end{aligned}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{\pi}{2}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{1}{0}
$
Cross multiplying

$
\begin{aligned}
& \Rightarrow 1-x^2=0 \\
& \Rightarrow x^2= \pm 1
\end{aligned}
$
Here, only $\mathrm{x}=1$ satisfies the given equation.
Note: By putting $x=-1$ in the given equation, we get:

$
\begin{aligned}
& 3 \tan ^{-1}(-1)+\cot ^{-1}(-1)=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{-\pi}{4}\right)\right]+\cot ^{-1}\left[\cot \left(\frac{-\pi}{4}\right)\right]=\pi \\
&⇒ 3 \tan ^{-1}\left[-\tan \left(\frac{\pi}{4}\right)\right]+\cot ^{-1}\left[-\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{\pi}{4}\right)\right]+\pi-\cot ^{-1}\left[\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
&⇒ -3 \times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi \\
&⇒ -\pi+\pi=\pi \\
&⇒ 0 \neq \pi
\end{aligned}
$
$\therefore$ x = -1 does not satisfy the given equation.

Hence, the correct answer is 1.

Inverse Trigonometric Functions Class 12 Chapter 2: Topics

Here is the list of important topics that are covered in Class 12 Chapter 2, Inverse Trigonometric Functions:

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Inverse Trigonometric Functions Class 12 NCERT Solutions - Important Formulae

The inverse of the sine function: sin-1(x) or arcsin(x) is defined on [-1, 1].

Properties of Inverse Trigonometric Functions:

Function

Domain

Range

y = sin-1(x)

[-1, 1]

[-π/2, π/2]

y = cos-1(x)

[-1, 1]

[0, π]

y = cosec-1(x)

R - (-1, 1)

[-π/2, π/2] - {0}

y = sec-1(x)

R - (-1, 1)

[0, π] - {π/2}

y = tan-1(x)

R

(-π/2, π/2)

y = cot-1(x)

R

(0, π)

Self-Adjusting Trigonometric Property:

sin(sin-1(x)) = x

sin-1(sin(x)) = x

cos(cos-1(x)) = x

cos-1(cos(x)) = x

tan(tan-1(x)) = x

tan-1(tan(x)) = x

sec(sec-1(x)) = x

sec-1(sec(x)) = x

cosec-1(cosec(x)) = x

cosec(cosec-1(x)) = x

cot-1(cot(x)) = x

cot(cot-1(x)) = x

Reciprocal Relations:

sin-1(1/x) = cosec-1(x), x ≥ 1 or x ≤ -1

cos-1(1/x) = sec-1(x), x ≥ 1 or x ≤ -1

tan-1(1/x) = cot-1(x), x > 0

Even and Odd Functions:

sin-1(-x) = -sin-1(x), x ∈ [-1, 1]

tan-1(-x) = -tan-1(x), x ∈ R

cosec-1(-x) = -cosec-1(x), |x| ≥ 1

cos-1(-x) = π - cos-1(x), x ∈ [-1, 1]

sec-11(-x) = π - sec-1(x), |x| ≥ 1

cot-1(-x) = π - cot-1(x), x ∈ R

Complementary Relations:

sin-1(x) + cos-1(x) = π/2

tan-1(x) + cot-1(x) = π/2

cosec-1(x) + sec-1(x) = π/2

Sum and Difference Formulas:

tan-1(x) + tan-1(y) = tan-1((x+y)/(1-xy))

tan-1(x) - tan-1(y) = tan-1((x-y)/(1+xy))

sin-1(x) + sin-1(y) = sin-1[x√(1-y2)+y√(1-x2)]

sin-1(x) - sin-1(y) = sin-1[x√(1-y2)-y√(1-x2)]

cos-1(x) + cos-1(y) = cos-1[xy-√(1-x2)√(1-y2)]

cos-1(x) - cos-1(y) = cos-1[xy+√(1-x2)√(1-y2)]

cot-1(x) + cot-1(y) = cot-1((xy-1)/(x+y))

cot-1(x) - cot-1(y) = cot-1((xy+1)/(y-x))

Double Angle Formula:

2 tan-1(x) = sin-1(2x/(1+x2))

2 tan-1(x) = cos-1((1-x2)/(1+x2))

2 tan-1(x) = tan-1(2x/(1-x2))

2 sin-1(x) = sin-1(2x√(1+x2))

2 cos-1(x) = sin-1(2x√(1-x2))

Conversion Properties:

sin-1(x) = cos-1(√(1-x2)) = tan-1(x/√(1-x2)) = cot-1(√(1-x2)/x)

cos-1(x) = sin-1(√(1-x2)) = tan-1(√(1-x2)/x) = cot-1(x/√(1-x2))

tan-1(x) = sin-1(x/√(1-x2)) = cos-1(x/√(1+x2)) = sec-1(√(1+x2)) = cosec-1(√(1+x2)/x)

Approach to Solve Questions of Inverse Trigonometric Functions Class 12

Here are some approaches that students can follow to solve these problems smoothly.

  • Understand the domain and range: Learn the domain and range (Principal value branches) of inverse trigonometric functions efficiently to solve problems.
  • Graphical representation: Draw graphs of inverse trigonometric functions whenever you get stuck to visualise domains and ranges. It also helps to understand the behaviour of the function.
  • Focus on equations: Whenever you get an equation like $\sin ^{-1}(x)=\theta$, convert to $x=\sin (\theta)$ to find exact values.
  • For identity based questions: Use basic identities such as $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$, to solve composite expressions.
  • Avoid confusion about inverses: Do not confuse $\sin ^{-1} x$ with $(\sin x)^{-1}$. $(\sin x)^{-1}=\frac{1}{\sin x}$, which has a whole different meaning. Similarly, for other trigonometric functions, avoid the same confusion.
  • Shortcut tricks: For MCQ-based questions, put values like $x=\frac12,1,0$ into options to check the answer and cancel out extreme options.

What Extra Should Students Study Beyond the NCERT for JEE?

NCERT Solutions for Class 12 Maths: Chapter Wise

Also read,

NCERT Solutions class-wise

Given below are the links to class-wise NCERT solutions:

NCERT Books and NCERT Syllabus

Here are the links to NCERT Books and NCERT Syllabus:

Frequently Asked Questions (FAQs)

1. How to simplify inverse trigonometric expressions in Class 12 Maths?

Apply trigonometric identities to express inverse trigonometric functions in simpler forms. Also, use the principal values of the inverse trigonometric functions and convert them to algebraic form whenever necessary or use the substitution method to easily simplify inverse trigonometric expressions in Class 12 Maths.

2. What are the applications of inverse trigonometric functions in real life?

The main applications of inverse trigonometric functions in real life are:

  • Navigation: Inverse trigonometric functions are used in calculating angles of elevation and depression, as well as directions.
  • Engineering: Used in signal processing, wave analysis, and electrical engineering.
  • Physics: To calculate angles in problems involving vectors, motion, and forces.
  • Architecture: Helps in designing structures by calculating angles and slopes.
3. How to prove standard properties of inverse trigonometric functions?

To prove standard properties of inverse trigonometric functions, you can use definitions of Inverse Trigonometric Functions, Algebraic manipulations, Trigonometric Identities, Right Triangle approach, Graphs (for Principal Values), and the Substitution method.

4. What are the important topics covered in NCERT Solutions for Class 12 Maths Chapter 2?

The important topics covered in the NCERT Solutions for Class 12 Maths Chapter 2 are:

  • Domain and Range: The domain and range for each inverse trigonometric function are explained to help students understand the constraints on values
  • Graphical Representation: How to sketch the graphs of inverse trigonometric functions for better visual understanding.
  • Solving Equations: Techniques to solve equations involving inverse trigonometric functions.
  • Applications: Problems involving real-life applications, including trigonometric equations and angle calculations.
5. How many exercises are there in NCERT Class 12 Maths Chapter 2

Articles

Upcoming School Exams

View All School Exams

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top