In the universe of trigonometry, inverse functions are the key to unlocking the angles when only the ratios are given. Suppose we know the distance from a building and the ratio of its height to distance, inverse trigonometric functions help us calculate the angle of elevation and determine the actual height. Inverse Trigonometric Functions Class 12 solutions deal with functions that help determine the angles of a right triangle when only the ratio of one of the two pairs of sides is given. These Solutions highlight that for every ratio, there exists a unique angle, just as every answer has a corresponding counter-question; similarly, every sine, cosine, or tangent has an inverse. The primary benefit of these NCERT Solutions for Class 12 Maths is that they provide clear explanations, making learning simpler and more effective.
Inverse trigonometric functions mainly focus on the restrictions on domains and ranges of trigonometric functions that ensure the existence of their inverses. Understanding inverse trigonometric functions also helps students build a strong foundation for higher-level calculus and analytical mathematics. Also, the learning from this chapter applies to various fields, including engineering, navigation, astronomy, architecture, and robotics. Experienced Careers360 experts prepared these NCERT Solutions for Class 12 following the latest NCERT guidelines, making them an important study resource. Students prefer NCERT Solutions as they make revision easier and more effective. Explore NCERT Books, Solutions, Syllabus, and Exemplar Problems with Solutions for complete syllabus coverage in this link: NCERT
This Story also Contains
Careers360 brings you NCERT Class 12 Maths Chapter 2 Inverse Trigonometric Functions Solutions, carefully prepared by subject experts to simplify your studies and help in exams. A downloadable PDF is available — click the link below to access it.
| Inverse Trigonometric Functions Class 12 Question Answers Exercise 2.1 Page number: 26-27 Total questions: 14 |
Question 1: Find the principal values of the following: $\sin^{-1}\left ( \frac{-1}{2} \right )$
Answer:
Let $x = \sin^{-1}\left ( \frac{-1}{2} \right )$
$\implies \sin x = \frac{-1}{2}= -\sin(\frac{\pi}{6}) = \sin(-\frac{\pi}{6})$
We know, principle value range of $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$
$\therefore$ The principal value of $\sin^{-1}\left ( \frac{-1}{2} \right )$ is $-\frac{\pi}{6},$
Question 2: Find the principal values of the following: $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$
Answer:
So, let us assume that $\cos^{-1}\left(\frac{\sqrt3}{2} \right ) = x$ then,
Taking the inverse of both sides, we get;
$\cos\ x = (\frac{\sqrt{3}}{2})$ , or $\cos (\frac{\pi}{6}) = (\frac{\sqrt{3}}{2})$
and as we know that the principal values of $\cos^{-1}$ is from [0, $\pi$ ],
Hence $\cos\ x = (\frac{\sqrt{3}}{2})$ when x = $\frac{\pi}{6}$ .
Therefore, the principal value for $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$ is $\frac{\pi}{6}$ .
Question 3: Find the principal values of the following: $\textup{cosec}^{-1}(2)$
Answer:
Let us assume that $\textup{cosec}^{-1}(2) = x$ , then we have;
$\textup{cosec}\ x = 2$ , or
$\textup{cosec}( \frac{\pi}{6}) = 2$ .
And we know the range of principal values is $[\frac{-\pi}{2},\frac{\pi}{2}] - \left \{ 0 \right \}.$
Therefore the principal value of $\textup{cosec}^{-1}(2)$ is $\frac{\pi}{6}$ .
Question 4: Find the principal values of the following: $\tan^{-1}(-\sqrt3)$
Answer:
Let us assume that $\tan^{-1}(-\sqrt3) = x$ , then we have;
$\tan x = (-\sqrt 3)$ or
$-\tan (\frac{\pi}{3}) = \tan \left ( \frac{-\pi}{3} \right ).$
and as we know that the principal value of $\tan^{-1}$ is $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .
Hence the only principal value of $\tan^{-1}(-\sqrt3)$ when $x = \frac{-\pi}{3}$ .
Question 5: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{2} \right )$
Answer:
Let us assume that $\cos^{-1}\left(-\frac{1}{2} \right ) =y$ then,
Easily we have; $\cos y = \left ( \frac{-1}{2} \right )$ or we can write it as:
$-\cos \left ( \frac{\pi}{3} \right ) = \cos \left ( \pi - \frac{\pi}{3} \right ) = \cos \left ( \frac{2\pi}{3} \right ).$
As we know, the range of the principal values of $\cos^{-1}$ is $\left [ 0,\pi \right ]$
Hence $\frac{2\pi}{3}$ lies in the range; it is a principal solution.
Question 6: Find the principal values of the following $\tan^{-1}(-1)$
Answer:
Given $\tan^{-1}(-1)$, we can assume it to be equal to 'z';
$\tan^{-1}(-1) =z$ ,
$\tan z = -1$
or
$-\tan (\frac{\pi}{4}) = \tan(\frac{-\pi}{4})= -1$
And as we know the range of principal values of $\tan^{-1}$ from $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .
As only one value z = $-\frac{\pi}{4}$ lies hence we have only one principal value that is $-\frac{\pi}{4}$ .
Question 7: Find the principal values of the following: $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$
Answer:
Let us assume that $\sec^{-1}\left (\frac{2}{\sqrt3}\right) = z$ then,
we can also write it as; $\sec z = \left (\frac{2}{\sqrt3}\right)$ .
Or $\sec (\frac{\pi}{6}) = \left (\frac{2}{\sqrt3}\right)$ and the principal values lies between $\left [ 0, \pi \right ] - \left \{ \frac{\pi}{2} \right \}$ .
Hence we get only one principal value of $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$ i.e., $\frac{\pi}{6}$ .
Question 8: Find the principal values of the following: $\cot^{-1}(\sqrt3)$
Answer:
Let us assume that $\cot^{-1}(\sqrt3) = x$ , then we can write in other way,
$\cot x = (\sqrt3)$ or
$\cot (\frac{\pi}{6}) = (\sqrt3)$ .
Hence when $x=\frac{\pi}{6}$ we have $\cot (\frac{\pi}{6}) = (\sqrt3)$ .
and the range of principal values of $\cot^{-1}$ lies in $\left ( 0, \pi \right )$ .
Then the principal value of $\cot^{-1}(\sqrt3)$ is $\frac{\pi}{6}$
Question 9: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{\sqrt2} \right )$
Answer:
Let us assume $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ ;
Then we have $\cos x = \left ( \frac{-1}{\sqrt 2} \right )$
or
$-\cos (\frac{\pi}{4}) = \left ( \frac{-1}{\sqrt 2} \right )$ ,
$\cos (\pi - \frac{\pi}{4}) = \cos (\frac{3\pi}{4})$ .
And we know the range of principal values of $\cos^{-1}$ is $[0,\pi]$.
So, the only principal value which satisfies $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ is $\frac{3\pi}{4}$ .
Question 10: Find the principal values of the following: $\textup{cosec}^{-1}(-\sqrt2)$
Answer:
Let us assume the value of $\textup{cosec}^{-1}(-\sqrt2) = y$ , then
we have $cosec\ y = (-\sqrt 2)$
or
$-cosec\ (\frac{\pi}{4}) = (-\sqrt 2) = cosec\ (\frac{-\pi}{4})$ .
and the range of the principal values of $\textup{cosec}^{-1}$ lies between $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ] - \left \{ 0 \right \}$ .
Hence the principal value of $\textup{cosec}^{-1}(-\sqrt2)$ is $\frac{-\pi}{4}$.
Question 11: Find the values of the following: $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2} \right ) + \sin^{-1}\left(-\frac{1}{2} \right )$
Answer:
To find the values, first we declare each term to some constant ;
$\tan^{-1}(1) = x$ , So we have $\tan x = 1$ ;
or $\tan (\frac{\pi}{4}) = 1$
Therefore, $x = \frac{\pi}{4}$
$\cos^{-1}(\frac{-1}{2}) = y$
So, we have
$\cos y = \left ( \frac{-1}{2} \right ) = -\cos \left ( \frac{\pi}{3} \right ) = \cos(\pi - \frac{\pi}{3}) = \cos \left ( \frac{2\pi}{3} \right )$ .
Therefore $y = \frac{2\pi}{3}$ ,
$\sin^{-1}(\frac{-1}{2}) = z$ ,
So we have;
$\sin z = \frac{-1}{2}$ or $-\sin (\frac{\pi}{6}) =\sin (\frac{-\pi}{6}) = \frac{-1}{2}$
Therefore $z = -\frac{\pi}{6}$
Hence, we can calculate the sum:
$= \frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$
$=\frac{3\pi + 8\pi -2\pi}{12} = \frac{9\pi}{12}=\frac{3\pi}{4}$ .
Question 12: Find the values of the following: $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$
Answer:
Here we have $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$
Let us assume that the value of
$\cos^{-1}\left ( \frac{1}{2} \right ) = x, \:and\:\sin^{-1}\left(\frac{1}{2} \right ) = y$ ;
Then we have to find out the value of +2y.
Calculation of x :
$\Rightarrow \cos^{-1}\left ( \frac{1}{2} \right ) = x$
$\Rightarrow \cos x = \frac{1}{2}$
$\Rightarrow \cos \frac{\pi}{3} = \frac{1}{2}$ ,
Hence $x = \frac{\pi}{3}$ .
Calculation of y :
$\Rightarrow \sin^{-1}\left(\frac{1}{2} \right ) = y$
$\Rightarrow \sin y = \frac{1}{2}$
$\Rightarrow \sin \frac{\pi}{6} = \frac{1}{2}$ .
Hence $y = \frac{\pi}{6}$ .
The required sum will be = $\frac{\pi}{3}+2(\frac{\pi}{6}) = \frac{2\pi}{3}$.
Question 13: If $\sin^{-1}x = y$ then
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
Answer:
Given that $\sin^{-1}x = y$, then,
As we know that the $\sin^{-1}$ can take values between $\left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ].$
Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ .
Hence, answer choice (B) is correct.
Question 14: $\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$ is equal to
Answer:
Let us assume the values of $\tan^{-1}(\sqrt3)$ be 'x' and $\sec^{-1}(-2)$ be 'y'.
Then we have;
$\tan^{-1}(\sqrt3) = x$ or $\tan x = \sqrt 3$ or $\tan \frac{\pi}{3} = \sqrt 3$ or
$x = \frac{\pi}{3}$ .
and $\sec^{-1}(-2) = y$
or $\sec y = -2$
or $-\sec (\frac{\pi}{3}) =\sec ({\pi - \frac{\pi}{3}}) = \sec{\frac{2\pi}{3}}$
$y = \frac{2\pi}{3}$
also, the ranges of the principal values of $\tan^{-1}$ and $\sec^{-1}$ are $(\frac{-\pi}{2},\frac{\pi}{2})$ . and
$[0,\pi] - \left \{ \frac{\pi}{2} \right \}$ respectively.
$\therefore$ we have then;
$\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$
$= \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$
| Inverse Trigonometric Functions Class 12 Question Answers Exercise 2.2 Page number: 29-30 Total questions: 15 |
Question 1: Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$
Answer:
Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$.
Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$
Take R.H.S value
$\sin^{-1}(3x - 4x^3)$
= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$
= $\sin^{-1}(\sin 3\theta)$
= $3\theta$
= $3\sin^{-1}x$ = L.H.S
Question 2: Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$
Answer:
Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .
Take $\cos^{-1}x = \theta$ or $\cos \theta = x$;
Then we have;
R.H.S.
$\cos^{-1}(4x^3 - 3x)$
= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$
= $\cos^{-1}(\cos3\theta)$
= $3\theta$
= $3\cos^{-1}x$ = L.H.S
Hence, Proved.
Question 3: Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$
Answer:
We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$
Take
$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$
$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$
$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$
$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$
$=\frac{1}{2}\tan^{-1}x$ is the simplified form.
Question 4: Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
Answer:
Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$
Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,
Then we have,
$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$
$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$
$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$
Hence the simplest form is $\frac{x}{2}$
Question 5: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$
Answer:
Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$
So,
$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$
Taking $\cos x$ common from the numerator and the denominator.
We get:
$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$
$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$
= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$
= $\frac{\pi}{4} - x$ is the simplest form.
Question 6: Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Answer:
Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Take $x = a\sin \theta$ or
$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;
$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$
$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$
$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$
$=\tan^{-1}\left ( \tan \theta \right )$
$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.
Question 7: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$
Answer:
Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$
Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$
So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$
$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;
$=\tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right ) = \tan^{-1}\left(\frac{3a^3\tan \theta -a^3\tan ^3 \theta}{a^3 - 3a^3\tan ^2 \theta} \right )$
and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;
$=3 \theta$
$=3 \tan^{-1}(\frac{x}{a})$
hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$.
Question 8: Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
Answer:
Given equation:
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$
Then we have,
$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$
Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$
$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .
Question 9: Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$
Answer:
Taking the value $x = \tan \Theta$or$\tan^{-1}x = \Theta$ and $y = \tan \Theta$or$\tan^{-1} y = \Theta$ then we have,
= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,
= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$
$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$
$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$
Then,
$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$
$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$
$=\frac{x+y}{1-xy}$
Question 10: If $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$ , then find the value of $x$ .
Answer:
Using the identity $\tan^{-1}x+\tan^{-1} y = \tan^{-1}{\frac{x+y}{1-xy}}$ ,
We can find the value of x.
So, $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$
on applying,
= $\tan^{-1}{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1- \left ( \frac{x-1}{x-2} \right )\left ( \frac{x+1}{x+2} \right )}}$
$=\tan^{-1}\frac{\frac{(x-1)(x+2)+(x-2)(x+1)}{x^2-4}}{1-\frac{x^2-1}{x^2-4}} = \tan^{-1} \left [ \frac{2x^2-4}{-3} \right ] = \frac{\pi}{4}$
$=\frac{2x^2-4}{-3} = \tan (\frac{\pi}{4})=1$
= $2x^2=1$ or $x = \pm \frac{1}{\sqrt{2}}$ ,
Hence, the possible values of x are $\pm \frac{1}{\sqrt{2}}$ .
Question 11: Find the values of each of the expressions$\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$
Answer:
Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;
We know that $\sin^{-1}(\sin x) = x$
If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .
Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$
We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:
= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$
= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$
$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$
Question 12: Find the values of each of the expressions $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$
Answer:
As we know $\tan^{-1}\left ( \tan x \right ) =x$
If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .
So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;
$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :
$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$
Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$
Question 13: Find the values of each of the expressions $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
Answer:
Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
we can take $\sin^{-1}\frac{3}{5} = x$ ,
then $\sin x = \frac{3}{5}$
or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$
$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$
$\Rightarrow \tan^{-1}\frac{3}{4}= x$
We have similarities
$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$
Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$
$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from $As, \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$
Question 14: $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to
Answer:
As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .
In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,
$\frac{7\pi}{6} \notin [0,\pi]$
hence we have then,
$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$
$\left [ \because \cos (2\pi + x) = \cos x \right ]$
$\therefore\ we\ have \cos^{-1}\left ( \cos \frac{7\pi}{6} \right ) = \cos^{-1}\left ( \cos \frac{5\pi}{6} \right ) = \frac{5\pi}{6}$
Hence the correct answer is $\frac{5\pi}{6}$ (B).
Question 15: $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to
Answer:
Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;
$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or
Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,
$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$
Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .
Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$
Hence, the correct answer is D.
Question 15: $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to
Answer:
We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;
finding the value of $\cot^{-1}(-\sqrt3)$ :
Assume $\cot^{-1}(-\sqrt3) =y$ then,
$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .
Hence, principal value is $\frac{5\pi}{6}$
Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$
and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$
So, we have now,
$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$
$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$
or, $= \frac{ -\pi}{2}$
Hence, the answer is option (B).
| Inverse Trigonometric Functions Class 12 Question Answers Miscellaneous Exercise Page number: 31-32 Total questions: 14 |
Question 1: Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
Answer:
If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .
So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$
$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$
$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$
$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$
$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$
Therefore, we have,
$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .
Question 2: Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$
Answer:
We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;
so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .
Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:
$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$
$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .
Question 3: Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$
Answer:
To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;
$L.H.S=2\sin^{-1}\frac{3}{5}$
Assume that $\sin^{-1}\frac{3}{5} = x$
then we have $\sin x = \frac{3}{5}$ .
or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$
Therefore we have
$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$
Now,
We can write L.H.S as
$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$
$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$
$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$
$=\tan^{-1} \frac{24}{7}=R.H.S$
L.H.S = R.H.S
Question 4: Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$
Answer:
Taking $\sin ^{-1} \frac{8}{17} = x$
then,
$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$
Therefore, we have-
$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$.............(1).
$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,
Then,
$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$.............(2).
So, we have now,
L.H.S.
$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$
Using equations (1) and (2), we get,
$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$
$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$
$[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$
$=\tan^{-1} (\frac{32+45}{60-24})$
$=\tan^{-1} (\frac{77}{36})$
= R.H.S.
Question 5: Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$
Answer:
Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$
Then we have,
$\cos x = \frac{4}{5}$
$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$
Then we can write it as:
$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$...............(1)
Now, $\cos^{-1}\frac{12}{13} = y$
$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$
$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$...................(2)
Also, we have similarities;
$\cos^{-1}\frac{33}{65} = z$
Then,
$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$...........................(3)
Now, we have
L.H.S
$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2), we get,
$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$
$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$
$\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$
$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;
$=\cos^{-1}\frac{33}{65}$
= R.H.S.
Hence proved.
Question 6: Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$
Answer:
Converting all terms in tan form;
Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .
Now, converting all the terms:
$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$
We can write it in tan form as:
$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .
$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)
$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$
We can write it in tan form as:
$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$
$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$
or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)
Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;
we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)
Using (1) and (2), we have L.H.S
$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$
$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$
On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$
We have,
$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$
$=\tan^{-1} (\frac{20+36}{48-15})$
$=\tan^{-1} (\frac{56}{33})$
$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]
=R.H.S.
Hence proved.
Question 7: Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Answer:
Taking R.H.S;
We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Converting sin and cos terms to tan forms:
Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$
now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$
$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$
$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$
$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$............(1)
Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$
$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$
$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$
$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$................(2)
Now, using (1) and (2), we get,
R.H.S.
$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$
so,
$= \tan^{-1} \frac{63}{16}$
equal to L.H.S
Hence proved.
Question 8: Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$
Answer:
By observing the square root, we will first put
$x= \tan^2 \theta$ .
Then,
we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$
or, R.H.S.
$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$
$= \frac{1}{2}\times 2\theta = \theta$ .
L.H.S.$\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$
hence L.H.S. = R.H.S proved.
Question 9: Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$
Answer:
Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
By observing, we can rationalise the fraction
$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
We get,
$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$
$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$
$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$
$= \cot \frac{x}{2}$
Therefore, we can write it as;
$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$
As L.H.S. = R.H.S.
Hence proved.
Question 10: Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$
[Hint: Put $x = \cos 2\theta$ ]
Answer:
By using the Hint, we will put $x = \cos 2\theta$ ;
We get,
$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$
$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,
We get,
$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$
$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$
As L.H.S = R.H.S
Hence proved
Question 11: Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$
Answer:
Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;
Using the formula:
$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$
We can write
$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$
$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$
So, we can equate;
$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$
$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$
that implies that $\cos x = \sin x$ .
or $\tan x =1$ or $x = \frac{\pi}{4}$
Hence we have solution $x = \frac{\pi}{4}$ .
Question 12: Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$
Answer:
Given equation is
$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :
L.H.S can be written as;
$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$
Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$
$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$
$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$
Hence the value of $x= \frac{1}{\sqrt3}$ .
Question 13: $\sin(\tan^{-1}x),\;|x|<1$ is equal to
Answer:
Let $\tan^{-1}x = y$ then we have;
$\tan y = x$ or
$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$
$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$
Hence, the correct answer is D.
Question 14: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to
Answer:
Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.
Then we have;
$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
or $- 2\sin^{-1}x =\cos^{-1}(1-x)$............................(1)
from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$
Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .
So, we conclude that;
$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$
Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,
$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$
Putting x = sin y in the above equation, we have then,
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow \cos(-2y) = 1-\sin y$
$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$
$\Rightarrow 1- 2\sin^2 y = 1-\sin y$
$\Rightarrow 2\sin^2 y - \sin y = 0$
$\Rightarrow \sin y(2 \sin y -1) = 0$
So, we have the solution;
$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .
When we have $x= \frac{1}{2}$ , we can see that :
$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$
So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$
Thus, we have only one solution, which is x = 0
Hence, the correct answer is (C).
Exercise-wise NCERT Solutions of Inverse Trigonometric Functions Class 12 Maths Chapter 2 are provided in the links below.
Question: If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then x equals to:
Solution:
Given That, $3 \tan ^{-1} x+\cot ^{-1} x=\pi$
$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\pi \\
& \Rightarrow 2 \tan ^{-1} x=\pi-\frac{\pi}{2}\left[\text { Since, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right] \\
& \Rightarrow \tan ^{-1} \frac{2 x}{1-x^2}=\frac{\pi}{2}\left[\text { Since, } 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^2}\right]
\end{aligned}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{\pi}{2}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{1}{0}
$
Cross multiplying
$
\begin{aligned}
& \Rightarrow 1-x^2=0 \\
& \Rightarrow x^2= \pm 1
\end{aligned}
$
Here, only $\mathrm{x}=1$ satisfies the given equation.
Note: By putting $x=-1$ in the given equation, we get:
$
\begin{aligned}
& 3 \tan ^{-1}(-1)+\cot ^{-1}(-1)=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{-\pi}{4}\right)\right]+\cot ^{-1}\left[\cot \left(\frac{-\pi}{4}\right)\right]=\pi \\
&⇒ 3 \tan ^{-1}\left[-\tan \left(\frac{\pi}{4}\right)\right]+\cot ^{-1}\left[-\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{\pi}{4}\right)\right]+\pi-\cot ^{-1}\left[\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
&⇒ -3 \times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi \\
&⇒ -\pi+\pi=\pi \\
&⇒ 0 \neq \pi
\end{aligned}
$
$\therefore$ x = -1 does not satisfy the given equation.
Hence, the correct answer is 1.
Here is the list of important topics that are covered in Class 12 Chapter 2 Inverse Trigonometric Functions:
The inverse of the sine function: sin-1(x) or arcsin(x) is defined on [-1, 1].
|
Function |
Domain |
Range |
|
y = sin-1(x) |
[-1, 1] |
[-π/2, π/2] |
|
y = cos-1(x) |
[-1, 1] |
[0, π] |
|
y = cosec-1(x) |
R - (-1, 1) |
[-π/2, π/2] - {0} |
|
y = sec-1(x) |
R - (-1, 1) |
[0, π] - {π/2} |
|
y = tan-1(x) |
R |
(-π/2, π/2) |
|
y = cot-1(x) |
R |
(0, π) |
1. $\sin ^{-1}(-x)=-\sin ^{-1}(x)$, for $x \in[-1,1]$
2. $\tan ^{-1}(-x)=-\tan ^{-1}(x)$, for $x \in \mathbb{R}$
3. $\operatorname{cosec} ^{-1}(-x)=-\operatorname{cosec} ^{-1}(x)$, for $|x| \geq 1$
4. $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$, for $x \in[-1,1]$
5. $\sec ^{-1}(-x)=\pi-\sec ^{-1}(x)$, for $|x| \geq 1$
6. $\cot ^{-1}(-x)=\pi-\cot ^{-1}(x)$, for $x \in \mathbb{R}$
1. $\sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2}$
2. $\tan ^{-1}(x)+\cot ^{-1}(x)=\frac{\pi}{2}$
3. $\operatorname{cosec} ^{-1}(x)+\sec ^{-1}(x)=\frac{\pi}{2}$
1. $\tan ^{-1}(x)+\tan ^{-1}(y)=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
2. $\tan ^{-1}(x)-\tan ^{-1}(y)=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
3. $\sin ^{-1}(x)+\sin ^{-1}(y)=\sin ^{-1}\left[x \sqrt{1-y^2}+y \sqrt{1-x^2}\right]$
4. $\sin ^{-1}(x)-\sin ^{-1}(y)=\sin ^{-1}\left[x \sqrt{1-y^2}-y \sqrt{1-x^2}\right]$
5. $\cos ^{-1}(x)+\cos ^{-1}(y)=\cos ^{-1}\left[x y-\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\right]$
6. $\cos ^{-1}(x)-\cos ^{-1}(y)=\cos ^{-1}\left[x y+\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\right]$
7. $\cot ^{-1}(x)+\cot ^{-1}(y)=\cot ^{-1}\left(\frac{x y-1}{x+y}\right)$
8. $\cot ^{-1}(x)-\cot ^{-1}(y)=\cot ^{-1}\left(\frac{x y+1}{y-x}\right)$
1. $2 \tan ^{-1}(x)=\sin ^{-1}\left(\frac{2 x}{1+x^2}\right)$
2. $2 \tan ^{-1}(x)=\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)$
3. $2 \tan ^{-1}(x)=\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$
4. $2 \sin ^{-1}(x)=\sin ^{-1}\left(2 x \sqrt{1+x^2}\right)$
5. $2 \cos ^{-1}(x)=\sin ^{-1}\left(2 x \sqrt{1-x^2}\right)$
1. $\sin ^{-1}(x)=\cos ^{-1}\left(\sqrt{1-x^2}\right)=\tan ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)=\cot ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$
2. $\cos ^{-1}(x)=\sin ^{-1}\left(\sqrt{1-x^2}\right)=\tan ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$
3. $\tan ^{-1}(x)=\sin ^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)=\cos ^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)=\sec ^{-1}\left(\sqrt{1+x^2}\right)=\operatorname{cosec}^{-1}\left(\frac{\sqrt{1+x^2}}{x}\right)$
Using these approaches, students can tackle the Inverse Trigonometric Functions Class 12 Chapter 2 Question Answers with greater confidence.
Here is a comparison list of the concepts in Inverse Trigonometric Functions that are covered in JEE and NCERT, to help students understand what extra they need to study beyond the NCERT for JEE:
Given below is the chapter-wise list of the NCERT Class 12 Maths solutions with their respective links:
Also read,
Given below are the links to class-wise NCERT solutions:
Here are the links to NCERT Books and NCERT Syllabus:
Frequently Asked Questions (FAQs)
Apply trigonometric identities to express inverse trigonometric functions in simpler forms. Also, use the principal values of the inverse trigonometric functions and convert them to algebraic form whenever necessary or use the substitution method to easily simplify inverse trigonometric expressions in Class 12 Maths.
The main applications of inverse trigonometric functions in real life are:
To prove standard properties of inverse trigonometric functions, you can use definitions of Inverse Trigonometric Functions, Algebraic manipulations, Trigonometric Identities, Right Triangle approach, Graphs (for Principal Values), and the Substitution method.
The important topics covered in the Inverse Trigonometric Functions Class 12 Chapter 2 are:
There are 3 exercises in the NCERT class 12 maths chapter 2, they are:
Many educational platforms, such as Careers360, offer free downloadable PDFs of Class 12 Inverse trigonometric functions Solutions. Students can download the PDF for free from this article itself.
These NCERT solutions explain the correct methods to solve questions and help students understand how to apply formulas and identities properly. Also, many solved examples are there to understand the solving style.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters