NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
In the universe of trigonometry, inverse functions are the keys to unlocking the angles when only the ratios are given. In the inverse trigonometric functions class 12 solutions, students will learn about functions that help to determine the angles of a right angle when only a specific ratio of the sides is given. NCERT solutions for class 12 Maths highlight that for every ratio, there exists a unique angle, just like every answer has a counter question, every sine, cosine, or tangent has an inverse.
Inverse trigonometric functions class 12 NCERT solutions mainly focus on the restrictions on domains and ranges of trigonometric functions that ensure the existence of their inverses. This chapter's learning applies to many fields, including engineering, navigation, astronomy, architecture, and robotics. Experienced Careers360 experts prepared these solutions using the NCERT, following the latest CBSE guidelines.
Students who wish to access the Class 12 Maths Chapter 2 NCERT Solutions can click on the link below to download the complete solution in PDF.
NCERT Inverse Trigonometric Functions Class 12 Solutions: Exercise 2.1 Page number: 26-27 Total questions: 14 |
Question 1: Find the principal values of the following: $\sin^{-1}\left ( \frac{-1}{2} \right )$
Answer:
Let $x = \sin^{-1}\left ( \frac{-1}{2} \right )$
$\implies \sin x = \frac{-1}{2}= -\sin(\frac{\pi}{6}) = \sin(-\frac{\pi}{6})$
We know, principle value range of $sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$
$\therefore$ The principal value of $\sin^{-1}\left ( \frac{-1}{2} \right )$ is $-\frac{\pi}{6},$
Question 2: Find the principal values of the following: $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$
Answer:
So, let us assume that $\cos^{-1}\left(\frac{\sqrt3}{2} \right ) = x$ then,
Taking the inverse of both sides, we get;
$cos\ x = (\frac{\sqrt{3}}{2})$ , or $cos (\frac{\pi}{6}) = (\frac{\sqrt{3}}{2})$
and as we know that the principal values of $cos^{-1}$ is from [0, $\pi$ ],
Hence $cos\ x = (\frac{\sqrt{3}}{2})$ when x = $\frac{\pi}{6}$ .
Therefore, the principal value for $\cos^{-1}\left(\frac{\sqrt3}{2} \right )$ is $\frac{\pi}{6}$ .
Question 3: Find the principal values of the following: $\textup{cosec}^{-1}(2)$
Answer:
Let us assume that $\textup{cosec}^{-1}(2) = x$ , then we have;
$Cosec\ x = 2$ , or
$Cosec( \frac{\pi}{6}) = 2$ .
And we know the range of principal values is $[\frac{-\pi}{2},\frac{\pi}{2}] - \left \{ 0 \right \}.$
Therefore the principal value of $\textup{cosec}^{-1}(2)$ is $\frac{\pi}{6}$ .
Question 4: Find the principal values of the following: $\tan^{-1}(-\sqrt3)$
Answer:
Let us assume that $\tan^{-1}(-\sqrt3) = x$ , then we have;
$\tan x = (-\sqrt 3)$ or
$-\tan (\frac{\pi}{3}) = \tan \left ( \frac{-\pi}{3} \right ).$
and as we know that the principal value of $\tan^{-1}$ is $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .
Hence the only principal value of $\tan^{-1}(-\sqrt3)$ when $x = \frac{-\pi}{3}$ .
Question 5: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{2} \right )$
Answer:
Let us assume that $\cos^{-1}\left(-\frac{1}{2} \right ) =y$ then,
Easily we have; $\cos y = \left ( \frac{-1}{2} \right )$ or we can write it as:
$-\cos \left ( \frac{\pi}{3} \right ) = \cos \left ( \pi - \frac{\pi}{3} \right ) = \cos \left ( \frac{2\pi}{3} \right ).$
As we know that the range of the principal values of $\cos^{-1}$ is $\left [ 0,\pi \right ]$
Hence $\frac{2\pi}{3}$ lies in the range; it is a principal solution.
Question 6: Find the principal values of the following $\tan^{-1}(-1)$
Answer:
Given $\tan^{-1}(-1)$, we can assume it to be equal to 'z';
$\tan^{-1}(-1) =z$ ,
$\tan z = -1$
or
$-\tan (\frac{\pi}{4}) = \tan(\frac{-\pi}{4})= -1$
And as we know the range of principal values of $\tan^{-1}$ from $\left ( \frac{-\pi}{2}, \frac{\pi}{2} \right )$ .
As only one value z = $-\frac{\pi}{4}$ lies hence we have only one principal value that is $-\frac{\pi}{4}$ .
Question 7: Find the principal values of the following: $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$
Answer:
Let us assume that $\sec^{-1}\left (\frac{2}{\sqrt3}\right) = z$ then,
we can also write it as; $\sec z = \left (\frac{2}{\sqrt3}\right)$ .
Or $\sec (\frac{\pi}{6}) = \left (\frac{2}{\sqrt3}\right)$ and the principal values lies between $\left [ 0, \pi \right ] - \left \{ \frac{\pi}{2} \right \}$ .
Hence we get only one principal value of $\sec^{-1}\left (\frac{2}{\sqrt3}\right)$ i.e., $\frac{\pi}{6}$ .
Question 8: Find the principal values of the following: $\cot^{-1}(\sqrt3)$
Answer:
Let us assume that $\cot^{-1}(\sqrt3) = x$ , then we can write in other way,
$\cot x = (\sqrt3)$ or
$\cot (\frac{\pi}{6}) = (\sqrt3)$ .
Hence when $x=\frac{\pi}{6}$ we have $\cot (\frac{\pi}{6}) = (\sqrt3)$ .
and the range of principal values of $\cot^{-1}$ lies in $\left ( 0, \pi \right )$ .
Then the principal value of $\cot^{-1}(\sqrt3)$ is $\frac{\pi}{6}$
Question 9: Find the principal values of the following: $\cos^{-1}\left(-\frac{1}{\sqrt2} \right )$
Answer:
Let us assume $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ ;
Then we have $\cos x = \left ( \frac{-1}{\sqrt 2} \right )$
or
$-\cos (\frac{\pi}{4}) = \left ( \frac{-1}{\sqrt 2} \right )$ ,
$\cos (\pi - \frac{\pi}{4}) = \cos (\frac{3\pi}{4})$ .
And we know the range of principal values of $\cos^{-1}$ is $[0,\pi]$.
So, the only principal value which satisfies $\cos^{-1}\left(-\frac{1}{\sqrt2} \right ) = x$ is $\frac{3\pi}{4}$ .
Question 10: Find the principal values of the following: $\textup{cosec}^{-1}(-\sqrt2)$
Answer:
Let us assume the value of $\textup{cosec}^{-1}(-\sqrt2) = y$ , then
we have $cosec\ y = (-\sqrt 2)$
or
$-cosec\ (\frac{\pi}{4}) = (-\sqrt 2) = cosec\ (\frac{-\pi}{4})$ .
and the range of the principal values of $\textup{cosec}^{-1}$ lies between $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ] - \left \{ 0 \right \}$ .
Hence the principal value of $\textup{cosec}^{-1}(-\sqrt2)$ is $\frac{-\pi}{4}$.
Question 11: Find the values of the following: $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2} \right ) + \sin^{-1}\left(-\frac{1}{2} \right )$
Answer:
To find the values, first we declare each term to some constant ;
$tan^{-1}(1) = x$ , So we have $\tan x = 1$ ;
or $\tan (\frac{\pi}{4}) = 1$
Therefore, $x = \frac{\pi}{4}$
$cos^{-1}(\frac{-1}{2}) = y$
So, we have
$\cos y = \left ( \frac{-1}{2} \right ) = -\cos \left ( \frac{\pi}{3} \right ) = \cos(\pi - \frac{\pi}{3}) = \cos \left ( \frac{2\pi}{3} \right )$ .
Therefore $y = \frac{2\pi}{3}$ ,
$\sin^{-1}(\frac{-1}{2}) = z$ ,
So we have;
$\sin z = \frac{-1}{2}$ or $-\sin (\frac{\pi}{6}) =\sin (\frac{-\pi}{6}) = \frac{-1}{2}$
Therefore $z = -\frac{\pi}{6}$
Hence, we can calculate the sum:
$= \frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$
$=\frac{3\pi + 8\pi -2\pi}{12} = \frac{9\pi}{12}=\frac{3\pi}{4}$ .
Question 12: Find the values of the following: $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$
Answer:
Here we have $\cos^{-1}\left(\frac{1}{2} \right ) + 2\sin^{-1}\left(\frac{1}{2} \right )$
Let us assume that the value of
$\cos^{-1}\left ( \frac{1}{2} \right ) = x, \:and\:\sin^{-1}\left(\frac{1}{2} \right ) = y$ ;
Then we have to find out the value of +2y.
Calculation of x :
$\Rightarrow \cos^{-1}\left ( \frac{1}{2} \right ) = x$
$\Rightarrow \cos x = \frac{1}{2}$
$\Rightarrow \cos \frac{\pi}{3} = \frac{1}{2}$ ,
Hence $x = \frac{\pi}{3}$ .
Calculation of y :
$\Rightarrow \sin^{-1}\left(\frac{1}{2} \right ) = y$
$\Rightarrow \sin y = \frac{1}{2}$
$\Rightarrow \sin \frac{\pi}{6} = \frac{1}{2}$ .
Hence $y = \frac{\pi}{6}$ .
The required sum will be = $\frac{\pi}{3}+2(\frac{\pi}{6}) = \frac{2\pi}{3}$.
Question 13: If $\sin^{-1}x = y$ then
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$
Answer:
Given if $\sin^{-1}x = y$ then,
As we know that the $\sin^{-1}$ can take values between $\left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ].$
Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ .
Hence, answer choice (B) is correct.
Question 14: $\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$ is equal to
Answer:
Let us assume the values of $\tan^{-1}(\sqrt3)$ be 'x' and $\sec^{-1}(-2)$ be 'y'.
Then we have;
$\tan^{-1}(\sqrt3) = x$ or $\tan x = \sqrt 3$ or $\tan \frac{\pi}{3} = \sqrt 3$ or
$x = \frac{\pi}{3}$ .
and $\sec^{-1}(-2) = y$
or $\sec y = -2$
or $-\sec (\frac{\pi}{3}) =\sec ({\pi - \frac{\pi}{3}}) = \sec{\frac{2\pi}{3}}$
$y = \frac{2\pi}{3}$
also, the ranges of the principal values of $\tan^{-1}$ and $\sec^{-1}$ are $(\frac{-\pi}{2},\frac{\pi}{2})$ . and
$[0,\pi] - \left \{ \frac{\pi}{2} \right \}$ respectively.
$\therefore$ we have then;
$\tan^{-1}(\sqrt3)-\sec^{-1}(-2)$
$= \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$
NCERT Inverse Trigonometric Functions Class 12 Solutions: Exercise 2.2 Page number: 29-30 Total questions: 15 |
Question 1: Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$
Answer:
Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$.
Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$
Take R.H.S value
$\sin^{-1}(3x - 4x^3)$
= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$
= $\sin^{-1}(\sin 3\theta)$
= $3\theta$
= $3\sin^{-1}x$ = L.H.S
Question 2: Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$
Answer:
Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .
Take $\cos^{-1}x = \theta$ or $\cos \theta = x$;
Then we have;
R.H.S.
$\cos^{-1}(4x^3 - 3x)$
= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$
= $\cos^{-1}(\cos3\theta)$
= $3\theta$
= $3\cos^{-1}x$ = L.H.S
Hence, Proved.
Question 3: Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$
Answer:
We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$
Take
$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$
$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$
$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$
$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$
$=\frac{1}{2}\tan^{-1}x$ is the simplified form.
Question 4: Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
Answer:
Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$
Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,
Then we have,
$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$
$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$
$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$
Hence the simplest form is $\frac{x}{2}$
Question 5: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$
Answer:
Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$
So,
$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$
Taking $\cos x$ common from the numerator and the denominator.
We get:
$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$
$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$
= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$
= $\frac{\pi}{4} - x$ is the simplest form.
Question 6: Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Answer:
Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Take $x = a\sin \theta$ or
$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;
$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$
$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$
$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$
$=\tan^{-1}\left ( \tan \theta \right )$
$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.
Question 7: Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$
Answer:
Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$
Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$
So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$
$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;
$=\tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right ) = \tan^{-1}\left(\frac{3a^3\tan \theta -a^3\tan ^3 \theta}{a^3 - 3a^3\tan ^2 \theta} \right )$
and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;
$=3 \theta$
$=3 \tan^{-1}(\frac{x}{a})$
hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$.
Question 8: Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
Answer:
Given equation:
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$
Then we have,
$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$
Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$
$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .
Question 9: Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$
Answer:
Taking the value $x = \tan \Theta$or$\tan^{-1}x = \Theta$ and $y = \tan \Theta$or$\tan^{-1} y = \Theta$ then we have,
= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,
= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$
$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$
$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$
Then,
$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$
$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$
$=\frac{x+y}{1-xy}$
Question 10: If $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$ , then find the value of $x$ .
Answer:
Using the identity $\tan^{-1}x+\tan^{-1} y = \tan^{-1}{\frac{x+y}{1-xy}}$ ,
We can find the value of x.
So, $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}$
on applying,
= $\tan^{-1}{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1- \left ( \frac{x-1}{x-2} \right )\left ( \frac{x+1}{x+2} \right )}}$
$=\tan^{-1}\frac{\frac{(x-1)(x+2)+(x-2)(x+1)}{x^2-4}}{1-\frac{x^2-1}{x^2-4}} = \tan^{-1} \left [ \frac{2x^2-4}{-3} \right ] = \frac{\pi}{4}$
$=\frac{2x^2-4}{-3} = \tan (\frac{\pi}{4})=1$
= $2x^2=1$ or $x = \pm \frac{1}{\sqrt{2}}$ ,
Hence, the possible values of x are $\pm \frac{1}{\sqrt{2}}$ .
Question 11: Find the values of each of the expressions$\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$
Answer:
Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;
We know that $\sin^{-1}(\sin x) = x$
If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .
Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$
We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:
= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$
= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$
$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$
Question 12: Find the values of each of the expressions $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$
Answer:
As we know $\tan^{-1}\left ( \tan x \right ) =x$
If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .
So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;
$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :
$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$
Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$
Question 13: Find the values of each of the expressions $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
Answer:
Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
we can take $\sin^{-1}\frac{3}{5} = x$ ,
then $\sin x = \frac{3}{5}$
or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$
$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$
$\Rightarrow \tan^{-1}\frac{3}{4}= x$
We have similarities
$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$
Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$
$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from $As, \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$
Question 14: $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to
Answer:
As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .
In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,
$\frac{7\pi}{6} \notin [0,\pi]$
hence we have then,
$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$
$\left [ \because \cos (2\pi + x) = \cos x \right ]$
$\therefore\ we\ have \cos^{-1}\left ( \cos \frac{7\pi}{6} \right ) = \cos^{-1}\left ( \cos \frac{5\pi}{6} \right ) = \frac{5\pi}{6}$
Hence the correct answer is $\frac{5\pi}{6}$ (B).
Question 15: $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to
Answer:
Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;
$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or
Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,
$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$
Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .
Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$
Hence, the correct answer is D.
Question 15: $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to
Answer:
We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;
finding the value of $\cot^{-1}(-\sqrt3)$ :
Assume $\cot^{-1}(-\sqrt3) =y$ then,
$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .
Hence, principal value is $\frac{5\pi}{6}$
Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$
and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$
So, we have now,
$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$
$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$
or, $= \frac{ -\pi}{2}$
Hence, the answer is option (B).
NCERT Inverse Trigonometric Functions Class 12 Solutions: Miscellaneous Exercise Page number: 31-32 Total questions: 14 |
Question 1: Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
Answer:
If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .
So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$
$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$
$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$
$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$
$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$
Therefore, we have,
$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .
Question 2: Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$
Answer:
We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;
so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .
Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:
$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$
$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .
Question 3: Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$
Answer:
To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;
$L.H.S=2\sin^{-1}\frac{3}{5}$
Assume that $\sin^{-1}\frac{3}{5} = x$
then we have $\sin x = \frac{3}{5}$ .
or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$
Therefore we have
$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$
Now,
We can write L.H.S as
$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$
$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$
$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$
$=\tan^{-1} \frac{24}{7}=R.H.S$
L.H.S = R.H.S
Question 4: Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$
Answer:
Taking $\sin ^{-1} \frac{8}{17} = x$
then,
$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$
Therefore, we have-
$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$.............(1).
$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,
Then,
$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$.............(2).
So, we have now,
L.H.S.
$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$
Using equations (1) and (2), we get,
$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$
$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$
$[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$
$=\tan^{-1} (\frac{32+45}{60-24})$
$=\tan^{-1} (\frac{77}{36})$
= R.H.S.
Question 5: Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$
Answer:
Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$
Then we have,
$\cos x = \frac{4}{5}$
$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$
Then we can write it as:
$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$...............(1)
Now, $\cos^{-1}\frac{12}{13} = y$
$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$
$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$...................(2)
Also, we have similarities;
$\cos^{-1}\frac{33}{65} = z$
Then,
$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$...........................(3)
Now, we have
L.H.S
$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2), we get,
$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$
$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$
$\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$
$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;
$=\cos^{-1}\frac{33}{65}$
= R.H.S.
Hence proved.
Question 6: Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$
Answer:
Converting all terms in tan form;
Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .
Now, converting all the terms:
$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$
We can write it in tan form as:
$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .
$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)
$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$
We can write it in tan form as:
$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$
$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$
or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)
Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;
we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)
Using (1) and (2), we have L.H.S
$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$
$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$
On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$
We have,
$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$
$=\tan^{-1} (\frac{20+36}{48-15})$
$=\tan^{-1} (\frac{56}{33})$
$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]
=R.H.S.
Hence proved.
Question 7: Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Answer:
Taking R.H.S;
We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Converting sin and cos terms to tan forms:
Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$
now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$
$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$
$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$
$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$............(1)
Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$
$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$
$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$
$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$................(2)
Now, using (1) and (2), we get,
R.H.S.
$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$
so,
$= \tan^{-1} \frac{63}{16}$
equal to L.H.S
Hence proved.
Question 8: Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$
Answer:
By observing the square root, we will first put
$x= \tan^2 \theta$ .
Then,
we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$
or, R.H.S.
$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$
$= \frac{1}{2}\times 2\theta = \theta$ .
L.H.S.$\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$
hence L.H.S. = R.H.S proved.
Question 9: Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$
Answer:
Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
By observing, we can rationalise the fraction
$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
We get then,
$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$
$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$
$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$
$= \cot \frac{x}{2}$
Therefore, we can write it as;
$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$
As L.H.S. = R.H.S.
Hence proved.
Question 10: Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$
[Hint: Put $x = \cos 2\theta$ ]
Answer:
By using the Hint, we will put $x = \cos 2\theta$ ;
We get then,
$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$
$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,
We get,
$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$
$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$
As L.H.S = R.H.S
Hence proved
Question 11: Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$
Answer:
Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;
Using the formula:
$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$
We can write
$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$
$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$
So, we can equate;
$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$
$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$
that implies that $\cos x = \sin x$ .
or $\tan x =1$ or $x = \frac{\pi}{4}$
Hence we have solution $x = \frac{\pi}{4}$ .
Question 12: Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$
Answer:
Given equation is
$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :
L.H.S can be written as;
$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$
Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$
$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$
$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$
Hence the value of $x= \frac{1}{\sqrt3}$ .
Question 13: $\sin(\tan^{-1}x),\;|x|<1$ is equal to
Answer:
Let $\tan^{-1}x = y$ then we have;
$\tan y = x$ or
$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$
$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$
Hence, the correct answer is D.
Question 14: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to
Answer:
Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.
Then we have;
$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
or $- 2\sin^{-1}x =\cos^{-1}(1-x)$............................(1)
from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$
Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .
So, we conclude that;
$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$
Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,
$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$
Putting x = sin y in the above equation, we have then,
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow \cos(-2y) = 1-\sin y$
$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$
$\Rightarrow 1- 2\sin^2 y = 1-\sin y$
$\Rightarrow 2\sin^2 y - \sin y = 0$
$\Rightarrow \sin y(2 \sin y -1) = 0$
So, we have the solution;
$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .
When we have $x= \frac{1}{2}$ , we can see that :
$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$
So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$
Thus, we have only one solution, which is x = 0
Hence, the correct answer is (C).
Also read,
Inverse Trigonometric Functions Class 12 Exercise 2.1
Inverse Trigonometric Functions Class 12 Exercise 2.2
Inverse Trigonometric Functions Class 12 Miscellaneous Exercise
Question: If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then x equals to:
Solution:
Given That, $3 \tan ^{-1} x+\cot ^{-1} x=\pi$
$
\begin{aligned}
& \Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\pi \\
& \Rightarrow 2 \tan ^{-1} x=\pi-\frac{\pi}{2}\left[\text { Since, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right] \\
& \Rightarrow \tan ^{-1} \frac{2 x}{1-x^2}=\frac{\pi}{2}\left[\text { Since, } 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^2}\right]
\end{aligned}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{\pi}{2}
$
$
\Rightarrow \frac{2 x}{1-x^2}=\tan \frac{1}{0}
$
Cross multiplying
$
\begin{aligned}
& \Rightarrow 1-x^2=0 \\
& \Rightarrow x^2= \pm 1
\end{aligned}
$
Here, only $\mathrm{x}=1$ satisfies the given equation.
Note: By putting $x=-1$ in the given equation, we get:
$
\begin{aligned}
& 3 \tan ^{-1}(-1)+\cot ^{-1}(-1)=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{-\pi}{4}\right)\right]+\cot ^{-1}\left[\cot \left(\frac{-\pi}{4}\right)\right]=\pi \\
&⇒ 3 \tan ^{-1}\left[-\tan \left(\frac{\pi}{4}\right)\right]+\cot ^{-1}\left[-\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
& ⇒3 \tan ^{-1}\left[\tan \left(\frac{\pi}{4}\right)\right]+\pi-\cot ^{-1}\left[\cot \left(\frac{\pi}{4}\right)\right]=\pi \\
&⇒ -3 \times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi \\
&⇒ -\pi+\pi=\pi \\
&⇒ 0 \neq \pi
\end{aligned}
$
$\therefore$ x = -1 does not satisfy the given equation.
Hence, the correct answer is 1.
Here is the list of important topics that are covered in Class 12 Chapter 2, Inverse Trigonometric Functions:
The inverse of the sine function: sin-1(x) or arcsin(x) is defined on [-1, 1].
Properties of Inverse Trigonometric Functions:
Function | Domain | Range |
y = sin-1(x) | [-1, 1] | [-π/2, π/2] |
y = cos-1(x) | [-1, 1] | [0, π] |
y = cosec-1(x) | R - (-1, 1) | [-π/2, π/2] - {0} |
y = sec-1(x) | R - (-1, 1) | [0, π] - {π/2} |
y = tan-1(x) | R | (-π/2, π/2) |
y = cot-1(x) | R | (0, π) |
Self-Adjusting Trigonometric Property:
sin(sin-1(x)) = x
sin-1(sin(x)) = x
cos(cos-1(x)) = x
cos-1(cos(x)) = x
tan(tan-1(x)) = x
tan-1(tan(x)) = x
sec(sec-1(x)) = x
sec-1(sec(x)) = x
cosec-1(cosec(x)) = x
cosec(cosec-1(x)) = x
cot-1(cot(x)) = x
cot(cot-1(x)) = x
Reciprocal Relations:
sin-1(1/x) = cosec-1(x), x ≥ 1 or x ≤ -1
cos-1(1/x) = sec-1(x), x ≥ 1 or x ≤ -1
tan-1(1/x) = cot-1(x), x > 0
Even and Odd Functions:
sin-1(-x) = -sin-1(x), x ∈ [-1, 1]
tan-1(-x) = -tan-1(x), x ∈ R
cosec-1(-x) = -cosec-1(x), |x| ≥ 1
cos-1(-x) = π - cos-1(x), x ∈ [-1, 1]
sec-11(-x) = π - sec-1(x), |x| ≥ 1
cot-1(-x) = π - cot-1(x), x ∈ R
Complementary Relations:
sin-1(x) + cos-1(x) = π/2
tan-1(x) + cot-1(x) = π/2
cosec-1(x) + sec-1(x) = π/2
Sum and Difference Formulas:
tan-1(x) + tan-1(y) = tan-1((x+y)/(1-xy))
tan-1(x) - tan-1(y) = tan-1((x-y)/(1+xy))
sin-1(x) + sin-1(y) = sin-1[x√(1-y2)+y√(1-x2)]
sin-1(x) - sin-1(y) = sin-1[x√(1-y2)-y√(1-x2)]
cos-1(x) + cos-1(y) = cos-1[xy-√(1-x2)√(1-y2)]
cos-1(x) - cos-1(y) = cos-1[xy+√(1-x2)√(1-y2)]
cot-1(x) + cot-1(y) = cot-1((xy-1)/(x+y))
cot-1(x) - cot-1(y) = cot-1((xy+1)/(y-x))
Double Angle Formula:
2 tan-1(x) = sin-1(2x/(1+x2))
2 tan-1(x) = cos-1((1-x2)/(1+x2))
2 tan-1(x) = tan-1(2x/(1-x2))
2 sin-1(x) = sin-1(2x√(1+x2))
2 cos-1(x) = sin-1(2x√(1-x2))
Conversion Properties:
sin-1(x) = cos-1(√(1-x2)) = tan-1(x/√(1-x2)) = cot-1(√(1-x2)/x)
cos-1(x) = sin-1(√(1-x2)) = tan-1(√(1-x2)/x) = cot-1(x/√(1-x2))
tan-1(x) = sin-1(x/√(1-x2)) = cos-1(x/√(1+x2)) = sec-1(√(1+x2)) = cosec-1(√(1+x2)/x)
Here are some approaches that students can follow to solve these problems smoothly.
Also read,
Given below are the links to class-wise NCERT solutions:
Here are the links to NCERT Books and NCERT Syllabus:
Apply trigonometric identities to express inverse trigonometric functions in simpler forms. Also, use the principal values of the inverse trigonometric functions and convert them to algebraic form whenever necessary or use the substitution method to easily simplify inverse trigonometric expressions in Class 12 Maths.
The main applications of inverse trigonometric functions in real life are:
To prove standard properties of inverse trigonometric functions, you can use definitions of Inverse Trigonometric Functions, Algebraic manipulations, Trigonometric Identities, Right Triangle approach, Graphs (for Principal Values), and the Substitution method.
The important topics covered in the NCERT Solutions for Class 12 Maths Chapter 2 are:
There are 3 exercises in NCERT class 12 maths chapter 2, they are:
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters