CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26
In advanced mathematics, inverse trigonometric functions play a major role, mainly in calculus and coordinate geometry. In the NCERT class 12 Maths chapter 2, the miscellaneous exercise combines different concepts from the chapter to help the students get an overall competency of the whole chapter. The students will be able to enhance their understanding of the chapter and get better at problem-solving. In this article of the NCERT Solutions for the Miscellaneous exercise of chapter 2 in class 12 maths, we will provide clear and step-by-step solutions for the exercise problems and help the students build their confidence in mathematics, so that they can prepare for various examinations. The latest guidelines of NCERT have been followed in this article.
This Story also Contains
Question:1 Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
Answer:
If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .
So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$
$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$
$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$
$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$
$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$
Therefore we have,
$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .
Question:2 Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$
Answer:
We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;
so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .
Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:
$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$
$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .
Question:3 Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$
Answer:
To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;
$L.H.S=2\sin^{-1}\frac{3}{5}$
Assume that $\sin^{-1}\frac{3}{5} = x$
then we have $\sin x = \frac{3}{5}$ .
or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$
Therefore we have
$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$
Now,
We can write L.H.S as
$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$
$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$
$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$
$=\tan^{-1} \frac{24}{7}=R.H.S$
L.H.S = R.H.S
Question:4 Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$
Answer
Taking $\sin ^{-1} \frac{8}{17} = x$
then,
$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$
Therefore we have-
$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$ .............(1).
$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,
Then,
$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$ .............(2).
So, we have now,
L.H.S.
$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$
using equations (1) and (2) we get,
$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$
$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$ $[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$
$=\tan^{-1} (\frac{32+45}{60-24})$
$=\tan^{-1} (\frac{77}{36})$
= R.H.S.
Question:5 Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$
Answer:
Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$
then we have,
$\cos x = \frac{4}{5}$
$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$
Then we can write it as:
$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$ ...............(1)
Now, $\cos^{-1}\frac{12}{13} = y$
$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$
$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ...................(2)
Also we have similarly;
$\cos^{-1}\frac{33}{65} = z$
Then,
$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$ ...........................(3)
Now, we have
L.H.S
$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2) we get,
$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$
$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$ $\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$
$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;
$=\cos^{-1}\frac{33}{65}$
= R.H.S.
Hence proved.
Question:6 Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$
Answer:
Converting all terms in tan form;
Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .
now, converting all the terms:
$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$
We can write it in tan form as:
$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .
$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)
$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$
We can write it in tan form as:
$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$
$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$
or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)
Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;
we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)
Using (1) and (2) we have L.H.S
$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$
$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$
On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$
We have,
$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$
$=\tan^{-1} (\frac{20+36}{48-15})$
$=\tan^{-1} (\frac{56}{33})$
$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]
=R.H.S.
Hence proved.
Question:7 Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Answer:
Taking R.H.S;
We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Converting sin and cos terms in tan forms:
Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$
now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$
$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$
$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$
$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$ ............(1)
Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$
$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$
$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$
$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$ ................(2)
Now, Using (1) and (2) we get,
R.H.S.
$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$
so,
$= \tan^{-1} \frac{63}{16}$
equal to L.H.S
Hence proved.
Question:8 Prove that $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} +\tan^{-1}\frac{1}{3} +\tan^{-1}\frac{1}{8} = \frac{\pi}{4}$
Answer:
Applying the formlua:
$\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$ on two parts.
we will have,
$=\tan^{-1}\left (\frac{\frac{1}{5}+ \frac{1}{7}}{1- \frac{1}{5}\times \frac{1}{7}} \right ) + \tan^{-1}\left (\frac{\frac{1}{3}+ \frac{1}{8}}{1- \frac{1}{3}\times \frac{1}{8}} \right )$
$= \tan^{-1} \left ( \frac{7+5}{35-1} \right ) + \tan^{-1} \left ( \frac{8+3}{24-1} \right )$
$= \tan^{-1} \left ( \frac{12}{34} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$
$= \tan^{-1} \left ( \frac{6}{17} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$
$= \tan^{-1}\left [ \frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17}\times\frac{11}{23}} \right ]$
$= \tan^{-1}\left [ \frac{325}{325} \right ] = \tan^{-1} 1$
$=\frac{\pi}{4}$
Hence it s equal to R.H.S
Proved.
Question:9 Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$
Answer:
By observing the square root we will first put
$x= \tan^2 \theta$ .
Then,
we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$
or, R.H.S.
$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$
$= \frac{1}{2}\times 2\theta = \theta$ .
L.H.S. $\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$
hence L.H.S. = R.H.S proved.
Question:10 Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$
Answer:
Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
By observing we can rationalize the fraction
$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
We get then,
$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$
$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$
$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$
$= \cot \frac{x}{2}$
Therefore we can write it as;
$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$
As L.H.S. = R.H.S.
Hence proved.
Question:11 Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$
[Hint: Put $x = \cos 2\theta$ ]
Answer:
By using the Hint we will put $x = \cos 2\theta$ ;
we get then,
$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$
$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,
we get,
$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$
$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$
As L.H.S = R.H.S
Hence proved
Question:12 Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$
Answer:
We have to solve the given equation:
$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$
Take $\frac{9}{4}$ as common in L.H.S,
$=\frac{9}{4}\left [ \frac{\pi}{2}- \sin^{-1}\frac{1}{3} \right ]$
or $=\frac{9}{4}\left [ \cos^{-1}\frac{1}{3} \right ]$ from $\left [ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right ]$
Now, assume,
$\left [ \cos^{-1}\frac{1}{3} \right ] = y$
Then,
$\cos y = \frac{1}{3} \Rightarrow \sin y = \sqrt{1-(\frac{1}{3})^2} = \frac{2.\sqrt2}{3}$
Therefore we have now,
$y = \sin^{-1} \frac{2.\sqrt2}{3}$
So we have L.H.S then $= \frac{9}{4}\sin^{-1} \frac{2.\sqrt2}{3}$
That is equal to R.H.S.
Hence proved.
Question:13 Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$
Answer:
Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;
Using the formula:
$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$
We can write
$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$
$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$
So, we can equate;
$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$
$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$
that implies that $\cos x = \sin x$ .
or $\tan x =1$ or $x = \frac{\pi}{4}$
Hence we have solution $x = \frac{\pi}{4}$ .
Question:14 Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$
Answer:
Given equation is
$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :
L.H.S can be written as;
$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$
Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$
$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$
$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$
Hence the value of $x= \frac{1}{\sqrt3}$ .
Question:15 $\sin(\tan^{-1}x),\;|x|<1$ is equal to
Answer:
Let $\tan^{-1}x = y$ then we have;
$\tan y = x$ or
$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$
$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$
Hence the correct answer is D.
Question:16 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to
Answer:
Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.
then we have;
$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
or $- 2\sin^{-1}x =\cos^{-1}(1-x)$ ............................(1)
from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$
Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .
So, we conclude that;
$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$
Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,
$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$
Putting x= sin y , in the above equation; we have then,
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow \cos(-2y) = 1-\sin y$
$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$
$\Rightarrow 1- 2\sin^2 y = 1-\sin y$
$\Rightarrow 2\sin^2 y - \sin y = 0$
$\Rightarrow \sin y(2 \sin y -1) = 0$
So, we have the solution;
$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .
When we have $x= \frac{1}{2}$ , we can see that :
$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$
So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$
Thus we have only one solution which is x = 0
Hence the correct answer is (C).
Question:17 $\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1}\frac{x-y}{x+y}$ is equal to
Answer:
Applying formula: $\left [ \tan^{-1} x - \tan^{-1}y = \tan^{-1} \left ( \frac{x-y}{1+xy} \right ) \right ]$ .
We get,
$\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1} \left ( \frac{x-y}{x+y} \right ) = \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ]$
$= \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ] = \tan^{-1} \left [ \frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}} \right ]$
$= \tan^{-1}\left ( \frac{x^2+xy - xy + y^2}{xy + y^2 + x^2 - xy} \right )$
$= \tan^{-1}\left ( \frac{x^2 + y^2}{ y^2 + x^2 } \right ) = \tan^{-1} 1 = \frac{\pi}{4}$
Hence, the correct answer is C.
Also Read,
The main topics covered in Chapter 2 of inverse trigonometric functions, miscellaneous exercises are:
$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Basic values of inverse trigonometric functions can be memorized, rest you will have to brainstorm in proof related questions.
Process in step by step manner keeping in mind the final question can help in proving the desired direction.
In NCERT Class 12 Maths chapter 2, there are a total of 3 exercises.
As direct questions are asked in the exam from this exercise, it is important to practice miscellaneous exercise before the examination. For more questions students can use NCERT exemplar.
The topics which are Important are among the following
finding the inverse of sine, cos, tan etc. are important which are asked frequently in the exam
NCERT exercises are the favorite source of the Board examination. Hence it is advisable to go through the NCERT exercise.
On Question asked by student community
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.
LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters