PTE Registrations 2024
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer!
NCERT Solutions for miscellaneous exercise chapter 2 class 12 Inverse Trigonometric Functions are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise has a set of questions which are not introduced in earlier exercises. Class 12 Maths chapter 2 miscellaneous exercise basically deals with the questions related to proving of the inverse trigonometric functions equivalent. By using various methods and techniques, such equations are proved equal to each other. Students can easily find that many questions were asked from Class 12 Maths chapter 2 miscellaneous exercise in the board exams. Hence it is highly recommended to practice the NCERT solutions for Class 12 maths chapter 2 including miscellaneous exercise which is present in NCERT Class 12th book.
Miscellaneous exercise class 12 chapter 2 are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise enumerated in NCERT Book together using the link provided below.
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer!
Question:1 Find the value of the following:
Answer:
If then , which is principal value of .
So, we have
Therefore we have,
.
Question:2 Find the value of the following:
Answer:
We have given ;
so, as we know
So, here we have .
Therefore we can write as:
.
Question:3 Prove that
Answer:
To prove: ;
Assume that
then we have .
or
Therefore we have
Now,
We can write L.H.S as
as we know
L.H.S = R.H.S
Question:4 Prove that
Answer
Taking
then,
Therefore we have-
.............(1).
,
Then,
.............(2).
So, we have now,
L.H.S.
using equations (1) and (2) we get,
= R.H.S.
Question:5 Prove that
Answer:
Take and and
then we have,
Then we can write it as:
or
...............(1)
Now,
So, ...................(2)
Also we have similarly;
Then,
...........................(3)
Now, we have
L.H.S
so, using (1) and (2) we get,
or we can write it as;
= R.H.S.
Hence proved.
Question:6 Prove that
Answer:
Converting all terms in tan form;
Let , and .
now, converting all the terms:
or
We can write it in tan form as:
.
or ................(1)
or
We can write it in tan form as:
or ......................(2)
Similarly, for ;
we have .............(3)
Using (1) and (2) we have L.H.S
On applying
We have,
...........[Using (3)]
=R.H.S.
Hence proved.
Question:7 Prove that
Answer:
Taking R.H.S;
We have
Converting sin and cos terms in tan forms:
Let and
now, we have or
............(1)
Now,
................(2)
Now, Using (1) and (2) we get,
R.H.S.
as we know
so,
equal to L.H.S
Hence proved.
Question:8 Prove that
Answer:
Applying the formlua:
on two parts.
we will have,
Hence it s equal to R.H.S
Proved.
Question:9 Prove that
Answer:
By observing the square root we will first put
.
Then,
we have
or, R.H.S.
.
L.H.S.
hence L.H.S. = R.H.S proved.
Question:10 Prove that
Answer:
Given that
By observing we can rationalize the fraction
We get then,
Therefore we can write it as;
As L.H.S. = R.H.S.
Hence proved.
Question:11 Prove that
Answer:
By using the Hint we will put ;
we get then,
dividing numerator and denominator by ,
we get,
using the formula
As L.H.S = R.H.S
Hence proved
Question:12 Prove that
Answer:
We have to solve the given equation:
Take as common in L.H.S,
or from
Now, assume,
Then,
Therefore we have now,
So we have L.H.S then
That is equal to R.H.S.
Hence proved.
Question:13 Solve the following equations:
Answer:
Given equation ;
Using the formula:
We can write
So, we can equate;
that implies that .
or or
Hence we have solution .
Question:14 Solve the following equations:
Answer:
Given equation is
:
L.H.S can be written as;
Using the formula
So, we have
Hence the value of .
Question:16 then is equal to
Answer:
Given the equation:
we can migrate the term to the R.H.S.
then we have;
or ............................(1)
from
Take or .
So, we conclude that;
Therefore we can put the value of in equation (1) we get,
Putting x= sin y , in the above equation; we have then,
So, we have the solution;
Therefore we have .
When we have , we can see that :
So, it is not equal to the R.H.S.
Thus we have only one solution which is x = 0
Hence the correct answer is (C).
The NCERT Class 12 Maths chapter Inverse Trigonometric functions provided here is prepared by the experienced faculties. NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise covers the major syllabus of this chapter from exam perspective. As questions from this exercise are asked more than those of previous exercises. Therefore NCERT solutions for Class 12 Maths chapter 2 miscellaneous exercise becomes a must to do exercise for the examination.
Also Read| Inverse Trigonometric Functions NCERT Notes
NCERT Solutions Subject Wise
Happy learning!!!
As direct questions are asked in the exam from this exercise, it is important to practice miscellaneous exercise before the examination. For more questions students can use NCERT exemplar.
The topics which are Important are among the following
finding the inverse of sine, cos, tan etc. are important which are asked frequently in the exam
NCERT exercises are the favorite source of the Board examination. Hence it is advisable to go through the NCERT exercise.
Basic values of inverse trigonometric functions can be memorized, rest you will have to brainstorm in proof related questions.
Process in step by step manner keeping in mind the final question can help in proving the desired direction.
In NCERT Class 12 Maths chapter 2, there are a total of 3 exercises.
You can use them people also used problem
Hi,
The Medhavi National Scholarship Program, under the Human Resources & Development Mission (HRDM), offers financial assistance to meritorious students through a scholarship exam. To be eligible, candidates must be between 16 and 40 years old as of the last date of registration and have at least passed the 10th grade from a recognized board. Higher qualifications, such as 11th/12th grade, graduation, post-graduation, or a diploma, are also acceptable.
To apply, download the Medhavi App from the Google Play Store, sign up, and read the detailed notification about the scholarship exam. Complete the registration within the app, take the exam from home using the app, and receive your results within two days. Following this, upload the necessary documents and bank account details for verification. Upon successful verification, the scholarship amount will be directly transferred to your bank account.
The scholarships are categorized based on the marks obtained in the exam: Type A for those scoring 60% or above, Type B for scores between 50% and 60%, and Type C for scores between 40% and 50%. The cash scholarships range from Rs. 2,000 to Rs. 18,000 per month, depending on the exam and the marks obtained.
Since you already have a 12th-grade qualification with 84%, you meet the eligibility criteria and can apply for the Medhavi Scholarship exam. Preparing well for the exam can increase your chances of receiving a higher scholarship.
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Hello student,
If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:
Remember
, these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.
I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.
Good luck with your studies!
Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer!
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE