CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
In advanced mathematics, inverse trigonometric functions play a major role, mainly in calculus and coordinate geometry. In the NCERT class 12 Maths chapter 2, the miscellaneous exercise combines different concepts from the chapter to help the students get an overall competency of the whole chapter. The students will be able to enhance their understanding of the chapter and get better at problem-solving. In this article of the NCERT Solutions for the Miscellaneous exercise of chapter 2 in class 12 maths, we will provide clear and step-by-step solutions for the exercise problems and help the students build their confidence in mathematics, so that they can prepare for various examinations. The latest guidelines of NCERT have been followed in this article.
This Story also Contains
Question:1 Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
Answer:
If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .
So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$
$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$
$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$
$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$
$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$
$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$
Therefore we have,
$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .
Question:2 Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$
Answer:
We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;
so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .
Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:
$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$
$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$
$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .
Question:3 Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$
Answer:
To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;
$L.H.S=2\sin^{-1}\frac{3}{5}$
Assume that $\sin^{-1}\frac{3}{5} = x$
then we have $\sin x = \frac{3}{5}$ .
or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$
Therefore we have
$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$
Now,
We can write L.H.S as
$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$
$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$
$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$
$=\tan^{-1} \frac{24}{7}=R.H.S$
L.H.S = R.H.S
Question:4 Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$
Answer
Taking $\sin ^{-1} \frac{8}{17} = x$
then,
$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$
Therefore we have-
$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$
$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$ .............(1).
$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,
Then,
$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$ .............(2).
So, we have now,
L.H.S.
$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$
using equations (1) and (2) we get,
$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$
$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$ $[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$
$=\tan^{-1} (\frac{32+45}{60-24})$
$=\tan^{-1} (\frac{77}{36})$
= R.H.S.
Question:5 Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$
Answer:
Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$
then we have,
$\cos x = \frac{4}{5}$
$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$
Then we can write it as:
$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$
$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$ ...............(1)
Now, $\cos^{-1}\frac{12}{13} = y$
$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$
$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$
So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ...................(2)
Also we have similarly;
$\cos^{-1}\frac{33}{65} = z$
Then,
$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$ ...........................(3)
Now, we have
L.H.S
$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2) we get,
$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$
$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$ $\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$
$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$
$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;
$=\cos^{-1}\frac{33}{65}$
= R.H.S.
Hence proved.
Question:6 Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$
Answer:
Converting all terms in tan form;
Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .
now, converting all the terms:
$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$
We can write it in tan form as:
$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .
$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$
or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)
$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$
We can write it in tan form as:
$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$
$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$
or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)
Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;
we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)
Using (1) and (2) we have L.H.S
$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$
$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$
On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$
We have,
$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$
$=\tan^{-1} (\frac{20+36}{48-15})$
$=\tan^{-1} (\frac{56}{33})$
$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]
=R.H.S.
Hence proved.
Question:7 Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Answer:
Taking R.H.S;
We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$
Converting sin and cos terms in tan forms:
Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$
now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$
$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$
$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$
$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$ ............(1)
Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$
$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$
$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$
$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$ ................(2)
Now, Using (1) and (2) we get,
R.H.S.
$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$
so,
$= \tan^{-1} \frac{63}{16}$
equal to L.H.S
Hence proved.
Question:8 Prove that $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} +\tan^{-1}\frac{1}{3} +\tan^{-1}\frac{1}{8} = \frac{\pi}{4}$
Answer:
Applying the formlua:
$\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$ on two parts.
we will have,
$=\tan^{-1}\left (\frac{\frac{1}{5}+ \frac{1}{7}}{1- \frac{1}{5}\times \frac{1}{7}} \right ) + \tan^{-1}\left (\frac{\frac{1}{3}+ \frac{1}{8}}{1- \frac{1}{3}\times \frac{1}{8}} \right )$
$= \tan^{-1} \left ( \frac{7+5}{35-1} \right ) + \tan^{-1} \left ( \frac{8+3}{24-1} \right )$
$= \tan^{-1} \left ( \frac{12}{34} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$
$= \tan^{-1} \left ( \frac{6}{17} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$
$= \tan^{-1}\left [ \frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17}\times\frac{11}{23}} \right ]$
$= \tan^{-1}\left [ \frac{325}{325} \right ] = \tan^{-1} 1$
$=\frac{\pi}{4}$
Hence it s equal to R.H.S
Proved.
Question:9 Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$
Answer:
By observing the square root we will first put
$x= \tan^2 \theta$ .
Then,
we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$
or, R.H.S.
$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$
$= \frac{1}{2}\times 2\theta = \theta$ .
L.H.S. $\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$
hence L.H.S. = R.H.S proved.
Question:10 Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$
Answer:
Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
By observing we can rationalize the fraction
$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$
We get then,
$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$
$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$
$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$
$= \cot \frac{x}{2}$
Therefore we can write it as;
$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$
As L.H.S. = R.H.S.
Hence proved.
Question:11 Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$
[Hint: Put $x = \cos 2\theta$ ]
Answer:
By using the Hint we will put $x = \cos 2\theta$ ;
we get then,
$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$
$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$
$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,
we get,
$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$
$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$
As L.H.S = R.H.S
Hence proved
Question:12 Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$
Answer:
We have to solve the given equation:
$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$
Take $\frac{9}{4}$ as common in L.H.S,
$=\frac{9}{4}\left [ \frac{\pi}{2}- \sin^{-1}\frac{1}{3} \right ]$
or $=\frac{9}{4}\left [ \cos^{-1}\frac{1}{3} \right ]$ from $\left [ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right ]$
Now, assume,
$\left [ \cos^{-1}\frac{1}{3} \right ] = y$
Then,
$\cos y = \frac{1}{3} \Rightarrow \sin y = \sqrt{1-(\frac{1}{3})^2} = \frac{2.\sqrt2}{3}$
Therefore we have now,
$y = \sin^{-1} \frac{2.\sqrt2}{3}$
So we have L.H.S then $= \frac{9}{4}\sin^{-1} \frac{2.\sqrt2}{3}$
That is equal to R.H.S.
Hence proved.
Question:13 Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$
Answer:
Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;
Using the formula:
$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$
We can write
$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$
$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$
So, we can equate;
$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$
$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$
that implies that $\cos x = \sin x$ .
or $\tan x =1$ or $x = \frac{\pi}{4}$
Hence we have solution $x = \frac{\pi}{4}$ .
Question:14 Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$
Answer:
Given equation is
$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :
L.H.S can be written as;
$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$
Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$
So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$
$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$
$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$
$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$
Hence the value of $x= \frac{1}{\sqrt3}$ .
Question:15 $\sin(\tan^{-1}x),\;|x|<1$ is equal to
Answer:
Let $\tan^{-1}x = y$ then we have;
$\tan y = x$ or
$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$
$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$
Hence the correct answer is D.
Question:16 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to
Answer:
Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$
we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.
then we have;
$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$
or $- 2\sin^{-1}x =\cos^{-1}(1-x)$ ............................(1)
from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$
Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .
So, we conclude that;
$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$
Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,
$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$
Putting x= sin y , in the above equation; we have then,
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$
$\Rightarrow \cos(-2y) = 1-\sin y$
$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$
$\Rightarrow 1- 2\sin^2 y = 1-\sin y$
$\Rightarrow 2\sin^2 y - \sin y = 0$
$\Rightarrow \sin y(2 \sin y -1) = 0$
So, we have the solution;
$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .
When we have $x= \frac{1}{2}$ , we can see that :
$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$
So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$
Thus we have only one solution which is x = 0
Hence the correct answer is (C).
Question:17 $\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1}\frac{x-y}{x+y}$ is equal to
Answer:
Applying formula: $\left [ \tan^{-1} x - \tan^{-1}y = \tan^{-1} \left ( \frac{x-y}{1+xy} \right ) \right ]$ .
We get,
$\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1} \left ( \frac{x-y}{x+y} \right ) = \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ]$
$= \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ] = \tan^{-1} \left [ \frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}} \right ]$
$= \tan^{-1}\left ( \frac{x^2+xy - xy + y^2}{xy + y^2 + x^2 - xy} \right )$
$= \tan^{-1}\left ( \frac{x^2 + y^2}{ y^2 + x^2 } \right ) = \tan^{-1} 1 = \frac{\pi}{4}$
Hence, the correct answer is C.
Also Read,
The main topics covered in Chapter 2 of inverse trigonometric functions, miscellaneous exercises are:
$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
As direct questions are asked in the exam from this exercise, it is important to practice miscellaneous exercise before the examination. For more questions students can use NCERT exemplar.
The topics which are Important are among the following
finding the inverse of sine, cos, tan etc. are important which are asked frequently in the exam
NCERT exercises are the favorite source of the Board examination. Hence it is advisable to go through the NCERT exercise.
Basic values of inverse trigonometric functions can be memorized, rest you will have to brainstorm in proof related questions.
Process in step by step manner keeping in mind the final question can help in proving the desired direction.
In NCERT Class 12 Maths chapter 2, there are a total of 3 exercises.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters