NCERT Solutions for Miscellaneous Exercise Chapter 2 Class 12 - Inverse Trigonometric Functions

NCERT Solutions for Miscellaneous Exercise Chapter 2 Class 12 - Inverse Trigonometric Functions

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Ramraj SainiUpdated on 23 Apr 2025, 08:43 AM IST

In advanced mathematics, inverse trigonometric functions play a major role, mainly in calculus and coordinate geometry. In the NCERT class 12 Maths chapter 2, the miscellaneous exercise combines different concepts from the chapter to help the students get an overall competency of the whole chapter. The students will be able to enhance their understanding of the chapter and get better at problem-solving. In this article of the NCERT Solutions for the Miscellaneous exercise of chapter 2 in class 12 maths, we will provide clear and step-by-step solutions for the exercise problems and help the students build their confidence in mathematics, so that they can prepare for various examinations. The latest guidelines of NCERT have been followed in this article.

This Story also Contains

  1. Class 12 Maths Chapter 2 Miscellaneous Exercise Solutions: Download PDF
  2. NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Miscellaneous Exercise
  3. Topics covered in Chapter 2, Inverse Trigonometric Functions: Miscellaneous Exercise
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 2 Miscellaneous Exercise Solutions: Download PDF

Download PDF

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Miscellaneous Exercise

Question:1 Find the value of the following: $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$

Answer:

If $x \epsilon [0,\pi]$ then $\cos^{-1}(\cos x) = x$ , which is principal value of $\cos^{-1} x$ .

So, we have $\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right )$

$where \:\frac{13\pi}{6} \notin \left [ 0, \pi \right ].$

$Hence\: we \:can\: write\: \cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) \:as$

$=\cos^{-1}\left (\cos\left(2\pi+\frac{\pi}{6} \right ) \right )$

$=\cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right )$

$\frac{\pi}{6}\ \epsilon \left [ 0, \pi \right ]$

Therefore we have,

$\cos^{-1}\left (\cos\left(\frac{13\pi}{6} \right ) \right ) = \cos^{-1}\left (\cos\left(\frac{\pi}{6} \right ) \right ) = \frac{\pi}{6}$ .

Question:2 Find the value of the following: $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$

Answer:

We have given $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ ;

so, as we know $\tan^{-1}\left(\tan x \right ) =x \:\:if\:\:x\epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

So, here we have $\frac{7\pi}{6} \notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$ .

Therefore we can write $\tan^{-1}\left(\tan\frac{7\pi}{6} \right )$ as:

$=\tan^{-1}\left(\tan \left (2\pi - \frac{5\pi}{6} \right ) \right )$ $\left [ \because \tan(2\pi - x) = -\tan x \right ]$

$=\tan^{-1}\left[-\tan \left ( \frac{5\pi}{6} \right ) \right ]$

$=\tan^{-1}\left[\tan \left (\pi- \frac{5\pi}{6} \right ) \right ]$

$=\tan^{-1}\left[\tan \left (\frac{\pi}{6} \right ) \right ]\:\:where\:\:\frac{\pi}{6} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

$\therefore \tan^{-1} \left ( \tan \frac{7\pi}{6} \right ) = \tan^{-1} \left ( \tan \frac{\pi}{6} \right ) = \frac{\pi}{6}$ .

Question:3 Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$

Answer:

To prove: $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$ ;

$L.H.S=2\sin^{-1}\frac{3}{5}$

Assume that $\sin^{-1}\frac{3}{5} = x$

then we have $\sin x = \frac{3}{5}$ .

or $\cos x = \sqrt{1-\left (\frac{3}{5} \right )^2} = \frac{4}{5}$

Therefore we have

$\tan x = \frac{3}{4}\:\:or\:\:x = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$

Now,

We can write L.H.S as

$2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$

$=\tan^{-1} \left [\frac{2\times\frac{3}{4}}{1- \left ( \frac{3}{4} \right )^2} \right ]$ as we know $\left [2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2} \right ]$

$=\tan^{-1} \left [\frac{\frac{3}{2}}{\left ( \frac{16-9}{16} \right )} \right ] = \tan^{-1}\left ( \frac{3}{2}\times \frac{16}{7} \right )$

$=\tan^{-1} \frac{24}{7}=R.H.S$

L.H.S = R.H.S

Question:4 Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} =\tan^{-1}\frac{77}{36}$

Answer

Taking $\sin ^{-1} \frac{8}{17} = x$

then,

$\sin x = \frac{8}{17} \Rightarrow \cos x = \sqrt{1- \left ( \frac{8}{17} \right )^2} = \sqrt {\frac{225}{289}} = \frac{15}{17}.$

Therefore we have-

$\tan^{-1} x = \frac{8}{15} \Rightarrow x = \tan^{-1} \frac{8}{15}$

$\therefore \sin ^{-1} \frac{8}{17} = \tan ^{-1} \frac{8}{15}$ .............(1).

$Now, let\:\sin ^{-1} \frac{3}{5} = y$ ,

Then,

$\sin ^{-1} \frac{3}{5} = \tan ^{-1} \frac{3}{4}$ .............(2).

So, we have now,

L.H.S.

$\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$

using equations (1) and (2) we get,

$=\tan ^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$

$=\tan^{-1} \frac{\frac{8}{15}+ \frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}}$ $[\because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1 - xy}]$

$=\tan^{-1} (\frac{32+45}{60-24})$

$=\tan^{-1} (\frac{77}{36})$

= R.H.S.

Question:5 Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$

Answer:

Take $\cos^{-1}\frac{4}{5} = x$ and $\cos^{-1}\frac{12}{13} = y$ and $\cos^{-1}\frac{33}{65} = z$

then we have,

$\cos x = \frac{4}{5}$

$\sin x = \sqrt {1- \left ( \frac {4}{5} \right )^2} = \frac {3}{5}$

Then we can write it as:

$\tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$ or $x= \tan^{-1} \frac{3}{4}$

$\therefore \cos ^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$ ...............(1)

Now, $\cos^{-1}\frac{12}{13} = y$

$\cos y = \frac{12}{13} \Rightarrow$ $\sin y =\frac{5}{13}$

$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$

So, $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ...................(2)

Also we have similarly;

$\cos^{-1}\frac{33}{65} = z$

Then,

$\cos^{-1}\frac{33}{65} = \tan^{-1} \frac{56}{33}$ ...........................(3)

Now, we have

L.H.S

$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}$ so, using (1) and (2) we get,

$=\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{5}{12}$

$=\tan^{-1}\left ( \frac{\frac{3}{4}+ \frac{5}{12}}{1-\left ( \frac{3}{4}\times \frac{5}{12} \right )} \right )$ $\because \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]$

$=\tan^{-1}\left ( \frac{36+20}{48-15} \right )$

$=\tan^{-1}\left ( \frac{56}{33} \right )$ or we can write it as;

$=\cos^{-1}\frac{33}{65}$

= R.H.S.

Hence proved.

Question:6 Prove that $\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$

Answer:

Converting all terms in tan form;

Let $\cos^{-1}\frac{12}{13} = x$ , $\sin^{-1}\frac{3}{5} = y$ and $\sin^{-1}\frac{56}{65} = z$ .

now, converting all the terms:

$\cos^{-1}\frac{12}{13} = x$ or $\cos x = \frac{12}{13}$

We can write it in tan form as:

$\cos x = \frac{12}{13} \Rightarrow$ $\sin x = \frac{5}{13}$ .

$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$

or $\cos^{-1}\frac{12}{13} = \tan^{-1} \frac{5}{12}$ ................(1)

$\sin^{-1}\frac{3}{5} = y$ or $\sin y = \frac{3}{5}$

We can write it in tan form as:

$\sin y = \frac{3}{5} \Rightarrow$ $\cos y = \frac{4}{5}$

$\therefore \tan y =\frac{3}{4} \Rightarrow y = \tan^{-1} \frac{3}{4}$

or $\sin^{-1}\frac{3}{5} = \tan^{-1} \frac{3}{4}$ ......................(2)

Similarly, for $\sin^{-1}\frac{56}{65} = z$ ;

we have $\sin^{-1}\frac{56}{65} = \tan^{-1} \frac{56}{33}$ .............(3)

Using (1) and (2) we have L.H.S

$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5}$

$= \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$

On applying $\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$

We have,

$=\tan^{-1} \frac{\frac{5}{12}+\frac{3}{4}}{1-(\frac{5}{12}.\frac{3}{4})}$

$=\tan^{-1} (\frac{20+36}{48-15})$

$=\tan^{-1} (\frac{56}{33})$

$=\sin^{-1} (\frac{56}{65})$ ...........[Using (3)]

=R.H.S.

Hence proved.

Question:7 Prove that $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$

Answer:

Taking R.H.S;

We have $\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$

Converting sin and cos terms in tan forms:

Let $\sin^{-1}\frac{5}{13} = x$ and $\cos^{-1}\frac{3}{5} = y$

now, we have $\sin^{-1}\frac{5}{13} = x$ or $\sin x = \frac{5}{13}$

$\sin x = \frac{5}{13} \:or\: \cos x =\frac{12}{13}\:or\:\tan x = \frac{5}{12}$

$\tan x = \frac{5}{12} \Rightarrow x =\tan^{-1} \frac{5}{12}$

$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$ ............(1)

Now, $\cos^{-1}\frac{3}{5} = y\Rightarrow \cos y = \frac{3}{5}$

$\cos y = \frac{3}{5} \:or\: \sin y = \frac{4}{5}\:or\:\tan y = \frac{4}{3}$

$\tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$

$\therefore \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{4}{5}$ ................(2)

Now, Using (1) and (2) we get,

R.H.S.

$\sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$

$=\tan^{-1}\left ( \frac{\frac{5}{12}+\frac{4}{3}}{1- \frac{5}{12}\times \frac{4}{3}} \right )$ as we know $\left [ \tan^{-1} x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy} \right ]$

so,

$= \tan^{-1} \frac{63}{16}$

equal to L.H.S

Hence proved.

Question:8 Prove that $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} +\tan^{-1}\frac{1}{3} +\tan^{-1}\frac{1}{8} = \frac{\pi}{4}$

Answer:

Applying the formlua:

$\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1-xy}$ on two parts.

we will have,

$=\tan^{-1}\left (\frac{\frac{1}{5}+ \frac{1}{7}}{1- \frac{1}{5}\times \frac{1}{7}} \right ) + \tan^{-1}\left (\frac{\frac{1}{3}+ \frac{1}{8}}{1- \frac{1}{3}\times \frac{1}{8}} \right )$

$= \tan^{-1} \left ( \frac{7+5}{35-1} \right ) + \tan^{-1} \left ( \frac{8+3}{24-1} \right )$

$= \tan^{-1} \left ( \frac{12}{34} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$

$= \tan^{-1} \left ( \frac{6}{17} \right ) + \tan^{-1} \left ( \frac{11}{23} \right )$

$= \tan^{-1}\left [ \frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17}\times\frac{11}{23}} \right ]$

$= \tan^{-1}\left [ \frac{325}{325} \right ] = \tan^{-1} 1$

$=\frac{\pi}{4}$

Hence it s equal to R.H.S

Proved.

Question:9 Prove that $\tan^{-1} \sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x},\;\;x\in [0,1]$

Answer:

By observing the square root we will first put

$x= \tan^2 \theta$ .

Then,

we have $\tan^{-1} \sqrt{\tan^2 \theta} = \frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta}$

or, R.H.S.

$\frac{1}{2}\cos^{-1}\frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \frac{1}{2}\cos^{-1}(cos2 \theta)$

$= \frac{1}{2}\times 2\theta = \theta$ .

L.H.S. $\tan^{-1} \sqrt{\tan^2 \theta} = \tan^{-1}(\tan \theta) = \theta$

hence L.H.S. = R.H.S proved.

Question:10 Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \frac{x}{2},\;\;x\in\left(0,\frac{\pi}{4} \right )$

Answer:

Given that $\cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$

By observing we can rationalize the fraction

$\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right )$

We get then,

$=\left(\frac{\sqrt{1+\sin x} + \sqrt{1 - \sin x}}{\sqrt{1+\sin x} - \sqrt{1 - \sin x}} \right ) = \left(\frac{(\sqrt{1+\sin x} + \sqrt{1 - \sin x})^2}{{1+\sin x} - {1 + \sin x}} \right )$

$= \left(\frac{{1+\sin x} +{1 - \sin x} + 2\sqrt{(1+\sin x)(1-\sin x)} }{{1+\sin x} - {1 + \sin x}} \right )$

$= \frac{2(1+\sqrt{1-\sin^2 x})}{2\sin x} = \frac{1+\cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$

$= \cot \frac{x}{2}$

Therefore we can write it as;

$\cot^{-1}\left ( \cot \frac{x}{2} \right ) = \frac{x}{2}$

As L.H.S. = R.H.S.

Hence proved.

Question:11 Prove that $\tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right ) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x,\;\;-\frac{1}{\sqrt2}\leq x\leq 1$

[Hint: Put $x = \cos 2\theta$ ]

Answer:

By using the Hint we will put $x = \cos 2\theta$ ;

we get then,

$=\tan^{-1}\left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right )$

$=\tan^{-1}\left(\frac{\sqrt{2\cos^2 \theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2 \theta} + \sqrt{2\sin^2\theta}} \right )$

$=\tan^{-1}\left(\frac{\sqrt2{\cos \theta} - \sqrt2{\sin\theta}}{\sqrt2{\cos \theta} + \sqrt2{\sin\theta}} \right )$

$=\tan^{-1}\left(\frac{{\cos \theta} - {\sin\theta}}{{\cos \theta} + {\sin\theta}} \right )$ dividing numerator and denominator by $\cos \theta$ ,

we get,

$= \tan^{-1}\left ( \frac{1-\tan \theta}{1+\tan \theta} \right )$

$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$ using the formula $\left [ \tan^{-1}x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} \right ]$

$= \frac{\pi}{4} - \theta = \frac{\pi}{4}- \frac{1}{2}\cos^{-1}x$

As L.H.S = R.H.S

Hence proved

Question:12 Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$

Answer:

We have to solve the given equation:

$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt2}{3}$

Take $\frac{9}{4}$ as common in L.H.S,

$=\frac{9}{4}\left [ \frac{\pi}{2}- \sin^{-1}\frac{1}{3} \right ]$

or $=\frac{9}{4}\left [ \cos^{-1}\frac{1}{3} \right ]$ from $\left [ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \right ]$

Now, assume,

$\left [ \cos^{-1}\frac{1}{3} \right ] = y$

Then,

$\cos y = \frac{1}{3} \Rightarrow \sin y = \sqrt{1-(\frac{1}{3})^2} = \frac{2.\sqrt2}{3}$

Therefore we have now,

$y = \sin^{-1} \frac{2.\sqrt2}{3}$

So we have L.H.S then $= \frac{9}{4}\sin^{-1} \frac{2.\sqrt2}{3}$

That is equal to R.H.S.

Hence proved.

Question:13 Solve the following equations: $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$

Answer:

Given equation $2\tan^{-1}(\cos x) = \tan^{-1}(2\textup{cosec}x)$ ;

Using the formula:

$\left [ 2\tan^{-1}z = \tan^{-1} \frac{2z}{1-z^2} \right ]$

We can write

$2\tan^{-1}(\cos x) = \tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ]$

$\tan^{-1}\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \tan^{-1}\left [2cosec x \right ]$

So, we can equate;

$=\left [ \frac{2\cos x}{1- (\cos x )^2 }\right ] = \left [2cosec x \right ]$

$=\left [ \frac{2\cos x}{\sin^2 x }\right ] = \left [ \frac{2}{sinx } \right ]$

that implies that $\cos x = \sin x$ .

or $\tan x =1$ or $x = \frac{\pi}{4}$

Hence we have solution $x = \frac{\pi}{4}$ .

Question:14 Solve the following equations: $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x,\;(x>0)$

Answer:

Given equation is

$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$ :

L.H.S can be written as;

$\tan^{-1} \frac{1-x}{1+x} = \tan^{-1}1 - \tan^{-1}x$

Using the formula $\left [ \tan^{-1}x -\tan^{-1}y = \tan^{-1} \frac{x-y}{1+xy} \right ]$

So, we have $\tan^{-1}1 - \tan^{-1}x = \frac{1}{2} \tan^{-1}x$

$\Rightarrow \tan^{-1}1= \frac{3}{2} \tan^{-1}x$

$\Rightarrow\frac{\pi}{4}= \frac{3}{2} \tan^{-1}x$

$\Rightarrow \tan^{-1}x = \frac{\pi}{6}$

$\Rightarrow x= \tan \frac{\pi}{6} = \frac{1}{\sqrt3}$

Hence the value of $x= \frac{1}{\sqrt3}$ .

Question:15 $\sin(\tan^{-1}x),\;|x|<1$ is equal to

(A) $\frac{x}{\sqrt{1-x^2}}$

(B) $\frac{1}{\sqrt{1-x^2}}$

(C) $\frac{1}{\sqrt{1+x^2}}$

(D) $\frac{x}{\sqrt{1+x^2}}$

Answer:

Let $\tan^{-1}x = y$ then we have;

$\tan y = x$ or

$y=\sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right ) \Rightarrow \tan^{-1} x = \sin^{-1} \left ( \frac{x}{\sqrt{1+x^2}} \right)$

$\Rightarrow \sin \left ( \tan^{-1} x \right ) = \sin\left ( \sin^{-1}\left ( \frac{x}{\sqrt{1+x^2}} \right ) \right ) = \frac{x}{\sqrt {1+x^2}}$

Hence the correct answer is D.

Question:16 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then $x$ is equal to

(A) $0,\frac{1}{2}$

(B) $1,\frac{1}{2}$

(C) 0

(D) $\frac{1}{2}$

Answer:

Given the equation: $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$

we can migrate the $\sin^{-1}(1-x)$ term to the R.H.S.

then we have;

$- 2\sin^{-1}x = \frac{\pi}{2} - \sin^{-1}(1-x)$

or $- 2\sin^{-1}x =\cos^{-1}(1-x)$ ............................(1)

from $\left [\because \cos^{-1}(1-x) + \sin^{-1}(1-x) = \frac{\pi}{2} \right ]$

Take $\sin^{-1}x = \Theta$ $\Rightarrow \sin \Theta = x$ or $\cos \Theta = \sqrt{1-x^2}$ .

So, we conclude that;

$\sin^{-1}x = \cos^{-1}\left ( \sqrt{1-x^2} \right )$

Therefore we can put the value of $\sin^{-1}x$ in equation (1) we get,

$- 2\cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cos^{-1}(1-x)$

Putting x= sin y , in the above equation; we have then,

$\Rightarrow - 2\cos^{-1}\left ( \sqrt{1-(\sin y)^2} \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow - 2\cos^{-1}\left ( \sqrt{\cos^2 y} \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow - 2\cos^{-1}\left ( \cos y \right ) =\cos^{-1}(1-\sin y )$

$\Rightarrow \cos(-2y) = 1-\sin y$

$\Rightarrow - 2y=\cos^{-1}(1-\sin y )$

$\Rightarrow 1- 2\sin^2 y = 1-\sin y$

$\Rightarrow 2\sin^2 y - \sin y = 0$

$\Rightarrow \sin y(2 \sin y -1) = 0$

So, we have the solution;

$\sin y = 0\ or\ \frac{1}{2}$ Therefore we have $x = 0\ or\ x= \frac{1}{2}$ .

When we have $x= \frac{1}{2}$ , we can see that :

$L.H.S. = \sin ^{-1}\left ( 1 - \frac{1}{2} \right ) - 2\sin^{-1}\frac{1}{2} = - \sin^{-1}\frac{1}{2} = -\frac{\pi}{6}$

So, it is not equal to the R.H.S. $-\frac{\pi}{6} \neq \frac{\pi}{2}$

Thus we have only one solution which is x = 0

Hence the correct answer is (C).

Question:17 $\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1}\frac{x-y}{x+y}$ is equal to

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{3}$

(C) $\frac{\pi}{4}$

(D) $\frac{3\pi}{4}$

Answer:

Applying formula: $\left [ \tan^{-1} x - \tan^{-1}y = \tan^{-1} \left ( \frac{x-y}{1+xy} \right ) \right ]$ .

We get,

$\tan^{-1}\left (\frac{x}{y} \right )-\tan^{-1} \left ( \frac{x-y}{x+y} \right ) = \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ]$

$= \tan^{-1} \left [\frac{ \frac{x}{y} - \frac{x-y}{x+y}}{1+\left ( \frac{x}{y} \right ) \left ( \frac{x-y}{x+y} \right ) } \right ] = \tan^{-1} \left [ \frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y) + x(x-y)}{y(x+y)}} \right ]$

$= \tan^{-1}\left ( \frac{x^2+xy - xy + y^2}{xy + y^2 + x^2 - xy} \right )$

$= \tan^{-1}\left ( \frac{x^2 + y^2}{ y^2 + x^2 } \right ) = \tan^{-1} 1 = \frac{\pi}{4}$

Hence, the correct answer is C.

Also Read,

Topics covered in Chapter 2, Inverse Trigonometric Functions: Miscellaneous Exercise

The main topics covered in Chapter 2 of inverse trigonometric functions, miscellaneous exercises are:

  • Proper applications of the properties of the inverse trigonometric functions.
  • Simplifications of the expressions involving inverse trigonometric functions.
  • Use of some basic formulas of inverse trigonometric functions, like:
    $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2}$

$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What is the importance of miscellaneous exercise from exam perspective?
A:

As direct questions are asked in the exam from this exercise, it is important to practice miscellaneous exercise before the examination. For more questions students can use NCERT exemplar.

Q: List out the important topics of NCERT text book Class 12 Maths chapter 2?
A:

The topics which are Important are among the following 

  • finding the inverse of sine, cos, tan etc. are important which are asked frequently in the exam

Q: What is the overall importance of NCERT exercise in board examination ?
A:

NCERT exercises are the favorite source of the Board examination. Hence it is advisable to go through the NCERT exercise. 

Q: Does memorization help in solving proof related questions?
A:

Basic values of inverse trigonometric functions can be memorized, rest you will have to brainstorm in proof related questions.  

Q: What can be a basic approach to solve proof related questions ?
A:

Process in step by step manner keeping in mind the final question can help in proving the desired direction. 

Q: How many total exercises are there in Class 12 Maths chapter 2 ?
A:

In NCERT Class 12 Maths chapter 2, there are a total of 3 exercises.

Articles
|
Upcoming School Exams
Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.

I hope it will clear your query!!