CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Imagine trying to find an unknown angle when only its sine or cosine value is given. Have you ever wondered how calculators determine the angles for trigonometric values? This is where inverse trigonometric functions come into play. They help us reverse the process of basic trigonometric functions like sine, cosine, and tangent, allowing us to find angles from given ratios. When the trigonometric values are known, the inverse trigonometric functions allow you to find the angles. These functions are very important when it comes to calculus, solving equations, and even putting them into practice in the real world, such as physics and engineering. We will go through all the NCERT Exemplar questions and solutions in this chapter, which are aimed at developing a solid understanding of this topic to help students understand what the author is trying to assess in the exam.
This Story also Contains
In NCERT Solutions for Class 12 Maths Chapter 2, students will understand how to find the ranges and domains of inverse trigonometric functions. Some other key concepts that students will learn are the behavior of the function, properties of inverse trigonometric functions, and more, all to be explained in a systematic way. The NCERT Exemplar Class 12 Maths Chapter 2 Solutions will provide step-by-step guidance to ensure a strong conceptual understanding for students.
| Class 12 Maths Chapter 2 exemplar solutions Exercise: 2.3 Page number: 35-41 Total questions: 55 |
Question:1
Answer:
we know that
$\tan^{-1}\left ( \tan x \right )=x; x \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$ and
$\cos^{-1}\left ( \cos x \right )=x; x \epsilon \left ( 0,\pi \right)$
$\therefore \tan^{-1} \left ( \tan \frac{5\pi}{6} \right )+\cos^{-1}\left ( \cos \frac{13\pi}{6} \right )$
$= \tan^{-1}\left [ \tan \left ( \pi-\frac{\pi}{6} \right ) \right ]+\cos^{-1}\left [ cos\left ( \pi +\frac{7\pi}{6} \right ) \right ]$
$= \tan^{-1}\left (-\tan \frac{\pi}{6} \right )+cos^{-1}\left (-\cos\frac{7\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\left [cos^{-1}\left (\cos\frac{7\pi}{6} \right ) \right ]$
$\left [ since \, \tan^{-1}\left ( -x \right )=- \tan 1 x , x\epsilon R \, and \, \cos^{-1}=\left ( -x \right )=\pi-\cos^{-1}\left ( x \right ), x\epsilon \left ( -1,1 \right ) \right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\cos^{-1}\left [\cos\left (\pi+\frac{\pi}{6} \right )\right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \cos ^{-1} \left (-\cos\frac{\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \pi +\cos ^{-1} \left (\cos\frac{\pi}{6} \right )$
$=-\frac{\pi}{6}+0+\frac{\pi}{6}$
$=0$
Question:2
Evaluate
$\cos\left [ \cos ^{-1} \left ( \frac{-\sqrt{3}}{2} \right ) +\frac{\pi}{6} \right]$
Answer:
We have
$\cos \left [ \cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right ) + \frac{\pi}{6}\right ]$
$\left [ Since,\cos\frac{5\pi}{6}= \frac{-\sqrt{3}}{2}\right ]$
$=\cos \left [ \cos^{-1} \left (\cos \frac{5\pi}{6} \right )+ \frac{\pi}{6}\right ]$
$=\cos\left ( \frac{5\pi}{6}+\frac{\pi}{6} \right )$
$\left [ since . \cos ^{-1}\left ( \cos x \right )=x;x\epsilon \left ( 0,\pi \right ) \right ]$
$= \cos \left ( \frac{6\pi}{6} \right )$
$= \cos \pi$
=-1
Question:3
Prove that $\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$
Answer:
We prove that
$\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$
$\Rightarrow \cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=\cot^{-1}7$
$\Rightarrow 2\cot^{-1}3=\frac{\pi}{4}-\cot^{-1}7$
$\Rightarrow 2\tan^{-1}\frac{1}{3}=\frac{\pi}{4}-\tan^{-1}\frac{1}{7}$
$\Rightarrow 2\tan^{-1}\frac{1}{3}+\tan^{1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , 2 \tan^{-1}(x)=2 tan^{-1}\frac{2x}{1-(x)^{2}} \right ]$
$\Rightarrow \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}}+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{2}{3}}{\frac{8}{9}} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{3}{4} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , \tan^{-1}x+ tan^{-1}y =\tan^{-1}\frac{x+y}{1-xy} \right ]$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4},\frac{1}{7}} \right )=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {\frac{\left (21+4 \right )}{28}}{\frac{\left ( 28-3 \right )}{28}}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {25}{25}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( 1 \right )=\frac{\pi}{4}$
$\Rightarrow 1=\tan\frac{\pi}{4}$
$\Rightarrow 1=1$
LHS=RHS
Hence Proved
Question:4
Answer:
We have
$\tan^{-1}\left ( -\frac{1}{\sqrt{3}} \right )+cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )+ tan^{-1}\left [ sin\left ( \frac{-\pi }{2} \right ) \right ]$
$=\tan^{-1}\left (tan \frac{5\pi}{6} \right )+cot^{-1}\left (cot \frac{\pi}{3} \right )+ tan^{-1}\left (-1 \right )$
$=\tan^{-1}\left [ tan\left ( \pi-\frac{5\pi}{6} \right ) \right ]+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ \tan\left ( \pi-\frac{\pi}{4} \right ) \right ]$
$\left [ since, \tan^{-1}\left ( \tan x \right )=x, x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right ); \cot^{-1}\left ( cot x \right )=x,x\epsilon \left ( 0,\pi \right ); and\: \tan^{-1}\left ( -x \right )=-\tan^{-1}x \right ]$
$=\tan^{-1}\left ( -\tan \frac{\pi}{6} \right )+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ -\tan\frac{\pi}{4} \right ]$
$=-\frac{\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4}$
$=\frac{-2\pi+4\pi-3\pi}{12}$
$=-\frac{\pi}{12}$
Question:5
find the value of $\tan^{-1}\left ( tan\frac{2\pi}{3} \right )$
Answer:
We have
$\tan^{-1}\left ( \tan\frac{2\pi}{3} \right )=\tan^{-1}\tan\left ( \pi-\frac{\pi}{3} \right )$
$=\tan^{-1}\left ( -\tan\frac{\pi}{3} \right )$
$\left [ Since, \tan^{-1}\left ( -x \right )=-\tan^{-1}x,x\epsilon R \right ]$
$=-\tan^{-1}tan\frac{\pi}{3}$
$\left [ Since, \tan^{-1}\left ( \tan x \right ) =x,x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )\right ]$
$=-\frac{\pi}{3}$
Question:6
show that $2\tan^{-1}\left ( -3 \right )=-\frac{\pi}{2}+\tan ^{-1}\left ( \frac{-4}{3} \right )$
Answer:
We have to prove ,
$2\tan^{-1}(-3)=-\frac{\pi}{2}+tan^{-1}\left ( \frac{-4}{3} \right )$
LHS=$2\tan^{-1}(-3)$ $\left [ Since, \tan^{-1}\left ( -x \right ) = -\tan^{-1}x,x\epsilon R\right ]$
$=-\left [ \cos^{-1}\frac{1-3^{2}}{1+3^{2}} \right ]$ $\left [ Since 2 \tan^{-1}x=\left [\cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ], x\geq 0\right ]$
$=-\left [ \cos^{-1}\left (\frac{-8}{10} \right ) \right ]$
$=-\left [ \cos^{-1}\left (\frac{-4}{5} \right )\right ]$
$=-\left [\pi- \cos^{-1}\left (\frac{4}{5} \right ) \right ]$ $=-\left [ since \cos^{-1}(-x)=\pi-\cos^{-1}x,x\epsilon \left [ -1,1 \right ] \right ]$
$=-\pi+\cos^{-1}\left ( \frac{4}{5} \right )$
$\left [ let \cos^{-1}\left ( \frac{4}{5} \right ) =0 \Rightarrow \cos \theta = \left ( \frac{4}{5} \right ) \Rightarrow \tan \theta = \left ( \frac{3}{4} \right ) \Rightarrow \theta = \tan^{-1} \left ( \frac{3}{4} \right )\right ]$
$=-\pi+\tan^{-1}\left (\frac{3}{4} \right )=-\pi+\left [ \frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right ) \right ]$
$=-\frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right )$
$\left [ Since, \tan^{-1}\left (-x \right )=-\tan^{-1}x \right ]$
$=-\frac{\pi}{2}+\tan^{-1}\left ( \frac{-4}{3} \right )$
$=-\frac{\pi}{2}+\tan^{-1}\left (- \frac{4}{3} \right )$
=RHS
Hence Proved.
Question:7
Answer:
We have , $\tan^{-1}\sqrt{x(x+1)}+\sin^{-1}\sqrt{x^{2}+x+1}=\frac{\pi}{2}.........(i)$
Let $\sin^{-1}\sqrt{x^{2}+x+1}=\theta$
$\Rightarrow \sin \theta =\sqrt{\frac{x^{2}+x+1}{1}}$
$\Rightarrow \tan \theta =\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}$ $\left [ Since, \tan\theta =\frac{\sin \theta }{\cos \theta } \right ]$
$\Rightarrow \theta =\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\sin^{-1}\sqrt{x^{2}+x+1}$
On Putting the value of $\theta$ in Eq. (i), We get
$\tan^{-1}\sqrt{x(x+1)}+\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\frac{\pi}{2}.........(ii)$
we know that,
$\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy},xy< 1$
So,(ii) becomes,
$\tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \frac{x^{2}+x+\sqrt{-\left ( x^{2}+x+1 \right )}}{\left [ 1-\sqrt{-\left ( x^{2}+x+1 \right ).\sqrt{\left ( x^{2}+x \right )}} \right ]}=\tan \frac{\pi}{2}=\frac{1}{0}$
$\Rightarrow \left [ 1-\sqrt{-\left ( x^{2}+x+1 \right )}.\sqrt{\left ( x^{2}+x \right )} \right ]=0$
$\Rightarrow -\left ( x^{2}+x+1 \right )=1\: or\: x^{2}+x=0$
$\Rightarrow x^{2}-x-1=1 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x^{2}+x+2=0 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x= \frac{-1\pm \sqrt{1-\left ( 4\times 2 \right )}}{2}\: or\: x=-1$
$\Rightarrow x= 0 \: or \: x=-1$
For real solution , we have x=0,-1.
Question:8
Answer:
We have $\sin \left (2 \tan^{-1}\frac{1}{3} \right )+\cos \left ( tan^{-1}2\sqrt{2} \right )$
$=\sin \left [\sin^{-1}\left \{ \frac{2\times \frac{1}{3}}{1+\left ( \frac{1}{3} \right )^{2}} \right \} \right ]+\cos\left ( \cos^{-1}\frac{1}{3} \right )$
$\left [ Since, \: \tan^{-1}x =\cos^{-1}\frac{1}{\sqrt{1+x^{2}}}; 2\tan^{-1}\left ( x \right )=2 \tan^{-1}\frac{2x}{1-\left (x \right )^{2}}, -1\leq x\leq 1 \: and \: \tan^{-1}2\sqrt{2}=\cos^{-1}\frac{1}{3}\right ]$
=$\sin\left [ \sin^{-1}\left \{ \frac{\frac{2}{3}}{1+\frac{1}{9}} \right \} \right ]+\frac{1}{3}$ $\left [ Since, \cos\left ( \cos^{-1}x \right ) = x, x\epsilon \left \{ -1,1 \right \}\right ]$
$= \sin \left [ \sin^{-1}\left ( \frac{2\times 9}{3\times 10} \right ) \right ]+\frac{1}{3}$
$= \sin \left [ \sin^{-1}\left ( \frac{3}{5} \right ) \right ]+\frac{1}{3}$
$= \frac{3}{5}+\frac{1}{3}\left [ Since, \sin\left ( \sin^{-1}x \right )=x \right ]$
$= \frac{14}{15}$
Question:9
Answer:
We have $2 \tan^{-1}\left ( \cos \theta \right )=\tan^{-1}\left ( cosec\, \theta \right )$
$\Rightarrow \tan^{-1}\left ( \frac{2 \cos \theta }{1-\cos^{2}\theta } \right )=\tan^{-1}\left ( 2\, cosec\, \theta \right )$ $\left [ Since \: 2 \tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{2 \cos \theta }{\sin^{2}\theta }=2 \, cosec\, \theta$
$\Rightarrow \cot \theta . 2\, cosec\, \theta =2\, cosec\, \theta$
$\Rightarrow \cot \theta =1$
$\Rightarrow \cot \theta =\cot\frac{\pi}{4}$
$\Rightarrow \theta =\frac{\pi}{4}$
Hence Proved
Question:10
Show that $\cos \left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4 \tan^{-1}\frac{1}{3} \right )$
Answer:
We have , $\cos\left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4\tan^{-1}\frac{1}{3} \right )$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{1-\left ( \frac{1}{7} \right )^{2}}{1+\left ( \frac{1}{7} \right )^{2}} \right ) \right ]=sin\left ( 2.2\tan^{-1}\frac{1}{3} \right )$
$\left [ Since, 2 \tan^{-1}x=\left [ \cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ] ,x\geq 0 \right ]$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{\frac{48}{49}}{\frac{50}{49}} \right ) \right ]=\sin\left [ 2\left ( \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}} \right ) \right ]$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( 2 \tan^{-1} \frac{3}{4} \right )$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( \sin^{-1}\frac{2\times \frac{3}{4}}{1+\frac{9}{16}} \right )$ $\left [ Since , 2\tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{24}{25}=\sin\left ( \sin^{-1}\frac{\frac{3}{2}}{\frac{25}{16}} \right )$
$\Rightarrow \frac{24}{25}=\frac{48}{50}$
$\Rightarrow \frac{24}{25}=\frac{24}{25}$
Since LHS=RHS
Hence Proved
Question:11
Answer:
We have $\cos \left ( \tan^{-1}x \right )=\sin\left ( \cot^{-1}\frac{3}{4} \right )$
$\Rightarrow \cos \left ( \cos^{-1}\frac{1}{\sqrt{x^{2}+2}} \right )=\sin\left ( \sin^{-1}\frac{4}{5} \right )........(i)$
Let $\tan^{-1}x=\theta _{1}\Rightarrow \tan\theta_{1}=\frac{x}{1}$
$\Rightarrow \cos \theta_{1}=\frac{1}{\sqrt{x^{2}+1}}.....(a)$
$\Rightarrow \theta_{1}=\cos^{-1}\frac{1}{\sqrt{x^{2}+1}}.....(c)$
And $\cot^{-1}=\theta_{2}\Rightarrow \cot^{-1}=\frac{3}{4}$
$\Rightarrow \sin \theta_{2}=\frac{4}{5}.......(b)$
$\Rightarrow \theta_{2}= \sin^{-1}\frac{4}{5}.......(d)$
From (c),(d);(i) becomes
$\Rightarrow \cos \theta_{1}= \sin\theta_{2}$
$\Rightarrow \frac{1}{\sqrt{x^{2}+1}}=\frac{4}{5}$ [From (a),(b)]
On squarinting both Sides, we get
$\Rightarrow 16\left (x^{2}+1 \right )=25$
$\Rightarrow 16x^{2}=9$
$\Rightarrow x^{2}=\left (\frac{3}{4} \right )^{2}$
$\Rightarrow x=\pm \frac{3}{4}$
$\therefore x=\frac{3}{4},-\frac{3}{4}.$
Question:12
Answer:
We have $\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )=\frac{\pi}{4}+\frac{1}{2}cos^{-1}x^{2}$
LHS=$\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )........(i)$
$\left [ x^{2}=\cos2\theta=\cos^{2}\theta+\sin^{2}\theta=1-2\sin^{2}\theta = 2\cos^{2}\theta-1 \right ]$
$\Rightarrow \cos^{-1}x^{2}=2\theta$
$\Rightarrow \theta=\frac{1}{2}\cos^{-1}x^{2}$
$\therefore \sqrt{1+x^{2}}=\sqrt{1+\cos2\theta}$
$\Rightarrow \sqrt{1+2\cos^{2}\theta-1}=\sqrt{2}\cos \theta$
And $\sqrt{1-x^{2}}=\sqrt{1-\cos2\theta}$
$\sqrt{1-1+2 \sin^{2}\theta}=\sqrt{2}\sin \theta$
$\therefore LHS = \tan^{-1}\left (\frac{ \sqrt{2}\cos \theta +\sqrt{2} \sin \theta}{ \sqrt{2}\cos \theta -\sqrt{2} \sin \theta}\right )$
$= \tan^{-1}\left (\frac{ \cos \theta + \sin \theta}{ \cos \theta - \sin \theta}\right )$
$= \tan^{-1}\left (\frac{1+\tan \theta}{ 1-\tan \theta}\right )$
$= \tan^{-1}\left \{\frac{\tan\left (\frac{\pi}{4} \right )+\tan \theta}{ \tan\left (\frac{\pi}{4} \right )-\tan \theta} \right \}$
$= \tan^{-1}\left [ \tan\left ( \frac{\pi}{4}+\theta \right ) \right ]$ $\left [ Since , \tan\left ( x+y \right )=\frac{\tan x+\tan y}{1-\tan x.\tan y} \right ]$
$=\frac{\pi}{4}+\theta$
$=\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^{2}$
=RHS
LHS=RHS
Hence Proved
Question:13
Answer:
Let $\cos y=\frac{3}{5}$
$\Rightarrow \sin y=\frac{4}{5}$
$\Rightarrow y=\cos^{-1}\frac{3}{5}=\sin^{-1}\frac{4}{5}=\tan^{-1}\frac{4}{3}$
$\therefore \cos^{-1}\left [ \cos y. \cos x+\sin y. \sin x \right ]$
$\left [ since, \cos\left ( A-B \right ) = \cos A.\cos B + \sin A. \sin B \right ]$
$=\cos^{-1}\left [ \cos\left ( y-x \right ) \right ]$
$\left [ scine, \cos \left ( \cos^{-1}x \right )=x,x\epsilon \left \{ -1,1 \right \} \right ]$
=y-x
$\left [ scine, y=\tan^{-1}\frac{4}{3} \right ]$
$=\tan^{-1}\frac{4}{3} -x$
Question:14
Prove that $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$
Answer:
we have $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$
$LHS=\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}$
$let \: \: \sin^{-1}\frac{8}{17}=\theta_{1}$
$\Rightarrow \sin \theta_{1}=\frac{8}{17}$
$\Rightarrow \tan \theta_{1}=\frac{8}{15}\Rightarrow \theta_{1}=\tan^{-1}\frac{8}{15}$
And, $\sin \frac{3}{5}=\theta_{2}\Rightarrow \sin^{-1}\frac{3}{5}$
$\Rightarrow \tan \theta_{2}=\frac{3}{4}\Rightarrow \theta_{2}=\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\frac{8}{15}+\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\left [ \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}} \right ]$ $\left [ Since , \tan^{-1}x+\tan^{-1} y=tan^{-1}\left ( \frac{x+y}{1-xy} \right ) \right ]$
$=\tan^{-1}\left [ \frac{\frac{77}{60}}{\frac{36}{60}} \right ]$
$=\tan^{-1}\left ( \frac{77}{36} \right )$
Let $=\theta _{3}=tan^{-1}\left ( \frac{77}{36} \right )\Rightarrow \tan \theta_{3}=\frac{77}{36}$
$\Rightarrow \sin \theta_{3}=\frac{77}{\sqrt{5929+1296}}=\frac{77}{85}$
$\therefore \theta _{3}=\sin^{-1}\left ( \frac{77}{85} \right )$
$= \sin^{-1}\left ( \frac{77}{85} \right )=RHS$
Hence proved
Question:15
Show that $\sin^{-1}\frac{5}{13}+\cos ^{-1}\frac{3}{5}=\tan^{-1}\frac{63}{16}$
Answer:
Solving LHS, $\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$
$Let \: \sin^{-1}\frac{5}{13}=x$
$\Rightarrow \sin x=\frac{5}{13}$
$And \, \cos^{2}x=1-\sin^{2}x$
$\Rightarrow 1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \cos x= \sqrt{\frac{144}{169}}=\frac{12}{13}$
$\therefore \tan x=\frac{\sin x}{\cos x}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}$
$\Rightarrow \tan x=\frac{5}{12}..........(i)$
Again , let $\cos^{-1}\frac{3}{5}=y$
$\Rightarrow \cos y=\frac{3}{5}$
$\therefore \sin y=\sqrt{1-\cos^{2}y}$
$\Rightarrow \sin y=\sqrt{1-\left (\frac{3}{5} \right )^{2}}$
$\Rightarrow \sin y=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\Rightarrow \tan y=\frac{\sin y}{\cos y}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}.........(ii)$
We know that, $\tan\left ( x+y \right )=\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12}\frac{4}{3}}$ [from (i),(ii)]
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{15+48}{36}}{\frac{36-20}{36}}$
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{63}{36}}{\frac{16}{36}}$
$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}$$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}=RHS$
Since , LHS=RHS
Hence Proved.
Question:16
Prove that , $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}=\sin^{-1}\frac{1}{\sqrt{5}}$
Answer:
Solving LHS, $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}$
Let $\tan^{-1}\frac{1}{4}=x$
$\Rightarrow \tan x=\frac{1}{4}$
Squaring both sides,
$\Rightarrow \tan^{2} x=\frac{1}{16}$
$\Rightarrow \sec^{2} x-1=\frac{1}{16}$
$\Rightarrow \sec^{2} x=\frac{17}{16}$
$\Rightarrow \frac{1}{\cos^{2}x}=\frac{17}{16}$
$\Rightarrow \cos^{2}x=\frac{16}{17}$
$\Rightarrow \cos x=\frac{4}{\sqrt{17}}$
$Since,\: \sin^{2}x=1-\cos^{2}x$
$\Rightarrow \sin^{2}x=1-\frac{16}{17}=\frac{1}{17}$
$\Rightarrow \sin x=\frac{1}{\sqrt{17}}$
Again,
Let $\tan^{-1}\frac{2}{9}=y$
$\Rightarrow \tan y=\frac{2}{9}$
Squaring both sides,
$\Rightarrow \tan^{2}y=\frac{4}{81}$
$\Rightarrow \sec^{2}y-1=\frac{4}{81}$
$\Rightarrow \sec^{2}y=\frac{85}{81}$
$\Rightarrow \frac{1}{\cos^{2}y}=\frac{85}{81}$
$\Rightarrow \cos^{2}y=\frac{81}{85}$
$\Rightarrow \cos y=\frac{9}{\sqrt{85}}$
Since, $\sin^{2}y=1-\cos^{2}y$
$\Rightarrow \sin^{2}=1-\frac{81}{85}=\frac{4}{85}$
$\Rightarrow \sin x=\frac{2}{\sqrt{85}}$
We know that, $\sin(x+y)=\sin x.\sin y+ \cos x.\sin y$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{17}}.\frac{9}{\sqrt{85}}+ \frac{4}{\sqrt{17}}.\frac{2}{\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{17}{\sqrt{17}.\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{\sqrt{17}}{\sqrt{17}.\sqrt{5}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{5}}$
$\Rightarrow x+y =\sin^{-1}\frac{1}{\sqrt{5}}=RHS$
Since , LHS=RHS
Hence Proved
Question:17
Find the value of $4 \tan^{-1}\frac{1}{5}-tan^{-1}\frac{1}{239}$
Answer:
We have, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}$
$=2 \times \left ( 2 \tan^{-1}\frac{1}{5} \right )-\tan^{-1}\frac{1}{239}$
$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{1-\left ( \frac{1}{5} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$
$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{ \frac{24}{25} } \right ]-\tan^{-1}\frac{1}{239}$
$=2 \tan^{-1}\frac{5}{12}-\tan^{-1}\frac{1}{239}$
$=\left [ \tan^{-1}\frac{\frac{5}{6}}{1-\left (\frac{5}{12} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$
$=\tan^{-1}\frac{\frac{5}{6}}{1-\frac{25}{144}}-\tan^{-1}\frac{1}{139}$
$=\tan^{-1}\left ( \frac{144 \times 5}{119 \times 6} \right )-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{120}{119}-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}.\frac{1}{239}}\left [ since, \tan^{-1} x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan^{-1}\left [\frac{28680-119}{28441+120} \right ]$
$=\tan^{-1}\frac{28561}{28561}$
$=\tan^{-1}\left ( 1 \right )$
$=\tan^{-1}\left ( \tan \frac{\pi}{4} \right )$
$=\frac{\pi}{4}$
Hence, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}=\frac{\pi}{4}$
Question:18
Answer:
Solving LHS,
$=\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4} \right )$
$Let \frac{1}{2} \sin^{-1}\frac{3}{4} =\theta$
$\Rightarrow \sin^{-1}\frac{3}{4} =2\theta$
$\Rightarrow \frac{3}{4} =\sin2\theta$
$\Rightarrow \sin2\theta= \frac{3}{4}$
$\Rightarrow \frac{2 \tan \theta}{1+\tan^{2}\theta}= \frac{3}{4}$
$\Rightarrow 3+3 \tan^{2}\theta = 8 \tan \theta$
$\Rightarrow 3 \tan^{2}\theta - 8 \tan \theta =3$
$Let \tan \theta=y$
$\therefore 3y^{2}+8y+3=0$
$\Rightarrow y= \frac{8\pm \sqrt{64-4\times 3\times 3}}{2\times 3}$$\Rightarrow = \frac{8\pm \sqrt{28}}{6}$
$\Rightarrow y=\frac{2\left ( 4\pm \sqrt{7} \right )}{2\times 3}$
$\Rightarrow \tan \theta=\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
$\Rightarrow \theta=\tan^{-1}\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
{ but as we can see , $\frac{ 4+ \sqrt{7} }{3}> 1$, since $max\left [ \tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) \right ]=1$}
$\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) =\frac{4-\sqrt{7}}{3}=RHS$
Note: Scince $-\frac{\pi}{2}\leq sin^{-1}\frac{3}{4}\leq \frac{\pi}{2}$
$\Rightarrow -\frac{\pi}{4}\leq \frac{1}{2}sin^{-1}\frac{3}{4}\leq \frac{\pi}{4}$
$\therefore \tan\left ( -\frac{\pi}{4} \right )\leq \tan\left ( \frac{1}{2}sin^{-1}\frac{3}{4} \right )\leq \tan\left ( \frac{\pi}{4} \right )$
$\Rightarrow -1\leq \tan\left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )\leq 1$
Question:19
Answer:
We have $a_{1}=a, a_{2}=a + d, a_{3}=a+2d.......$
And, $d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=......=a_{n}-a_{n-1}$
Given that,
$\tan\left [ \tan^{-1}\left (\frac{d}{1+a_{1}a_{2}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{2}a_{3}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{3}a_{4}}\right )+............+ \tan^{-1}\left (\frac{d}{1+a_{n-1}a_{n}}\right ) \right ]$
$=\tan^{-1}\left [ \tan^{-1}\left ( \frac{a_{2}-a_{1}}{1+a_{1}a_{2}} \right )+\tan^{-1}\left ( \frac{a_{3}-a_{2}}{1+a_{2}a_{3}} \right )+.........+\tan^{-1}\left ( \frac{a_{n}-a_{n-1}}{1+a_{n-1}a_{n}} \right ) \right ]$
$=\tan\left [ \left ( \tan^{-1}a_{2}-\tan^{-1}a_{1} \right ) +\left ( \tan^{-1}a_{3}-\tan^{-1}a_{2} \right ) +................+\left ( \tan^{-1}a_{n}-\tan^{-1}a_{n-1} \right ) \right ]$
$=\tan \left [ \tan^{-1}a_{n}-\tan^{-1}a_{1} \right ]$
$\left [ Scince , \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan\left [ \tan^{-1} \left ( \frac{a_{n}-a_{1}}{1+a_{1}a_{n}} \right )\right ]$
$\left [ scince, \tan\left ( \tan^{-1}x \right )=x \right ]$
$=\frac{a_{n}-a_{1}}{1+a_{1}a_{n}}$
Question:20
Which of the following in the principal value branch of $\cos^{-1}x$
A.$\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
B.$\left ( 0,-\pi \right )$
C.$\left [ 0,\pi \right ]$
D.$\left ( 0,\pi \right )-\frac{\pi}{2}$
Answer:
Answer : (c)
We know that the principal value branch of $\cos^{-1}$ is $\left [ 0,\pi \right ]$
Question:21
Which of the following in the principal value branch of $cosec^{-1} x$ .
$A.\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
$B.\left [ 0,\pi \right ]-\left \{\frac{\pi}{2} \right \}$
$C.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
$D.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}$
Answer:
Answer :(D)
We know that the principal value branch of $cosec^{-1}x$ is $\left [-\frac{\pi}{2} ,\frac{\pi}{2}\right ]-\left ( 0 \right )$
Question:22
If $3\tan^{-1}x+\cot^{-1}x=\pi$, then x equals to
A. 0
B. 1
C. -1
D. 1/2
Answer:
Answer : B
Given That, $3 \tan ^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x+\tan^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x=\pi-\frac{\pi}{2}$ $\left [ Scince, \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2} \right ]$
$\Rightarrow \tan^{-1}\frac{2x}{1-x^{2}}=\frac{\pi}{2}$ $\left [ Scince, 2tan^{-1}x=\tan^{-1}\frac{2x}{1-x^{2}} \right ]$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{\pi}{2}$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{1}{0}$
Cross multiplying
$\Rightarrow 1-x^{2}=0$
$\Rightarrow x^{2}=\pm 1$
Here only x=1 satifies the given equation.
Note:- Here ,Putting x=-1 in the given equation we get,
$3 \tan^{-1}(-1)+cot^{-1}(-1)=\pi$
$3 \tan^{-1} \left [ \tan\left (\frac{-\pi}{4} \right )\right ]+cot^{-1} \left [ \cot \left (\frac{-\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [- \tan\left (\frac{\pi}{4} \right )\right ]+cot^{-1} \left [- \cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [\tan\left (\frac{\pi}{4} \right )\right ]+\pi-cot^{-1} \left [\cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$-3\times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi$
$-\pi+\pi=\pi$
$0\neq \pi$
Hence , x=-1 does not satisfy the given equation.
Question:23
The value of $\sin^{-1}\left [ cos\left ( \frac{33\pi}{5} \right ) \right ]$ is
$A. \frac{3\pi}{5}$
$B. \frac{-7\pi}{5}$
$C. \frac{\pi}{10}$
$D. \frac{-\pi}{10}$
Answer:
Answer :(D)
We have
$\sin^{-1}\left [ \cos\left ( \frac{33\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( 6\pi+ \frac{3\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( \frac{3\pi}{5} \right ) \right ]$ $\left [ Since , \cos\left ( 2n \pi+\theta \right ) = \cos\theta \right ]$
$=\sin^{-1}\left [ \cos \left ( \frac{\pi}{2}+\frac{\pi}{10} \right ) \right ]$
$=\sin^{-1}\left [ \sin \left (- \frac{\pi}{10} \right ) \right ]\left [ Since, \sin^{-1}\left ( x \right )=-\sin^{-1}x \right ]$
$=- \frac{\pi}{10} \left [ Since, \sin^{-1}\left ( \sin x \right )=-x, x\epsilon \left ( -\frac{\pi}{2} ,\frac{\pi}{2} \right ) \right ]$
Question:24
The domain of the function $\cos^{-1}\left ( 2x-1 \right )$ is
A.[0,1]
B.[-1,1]
C.(-1,1)
D.[0,$\pi$]
Answer:
Answer:(A)
We Have $f(x)=cos^{-1}\left ( 2x-1 \right )$
Scince $-1\leq 2x-1\leq 1$
$\Rightarrow 0\leq 2x\leq 2$
$\Rightarrow 0\leq x\leq 1$
$\therefore x\epsilon \left [ 0,1 \right ]$
Question:25
The domain of the function defined by $f(x)=\sin^{-1}\sqrt{x-1}$ is
A.[1,2]
B.[-1,1]
C.[0,1]
D. None of these
Answer:
Answer: (A)
$f(x)=\sin^{-1}\sqrt{x-1}$
$\Rightarrow 0\leq x-1\leq 1\left [ Since ,\sqrt{x-1}\geq 0 \, and\, -1\leq \sqrt{x-1} \leq 1\right ]$
$\Rightarrow 1\leq x\leq 2$
$\therefore x\epsilon \left [ 1,2 \right ]$
Question:26
If $\cos\left ( sin^{-1}\frac{2}{5} + cos^{-1}x \right )=0,$ then x is equal to
$A. \frac{1}{5}$
$B. \frac{2}{5}$
C.0
D.1
Answer:
Answer: (B)
Given, $\cos\left ( Sin^{-1}\frac{2}{5}+cos^{-1}x \right )=0$
Let $Sin^{-1}\frac{2}{5}+cos^{-1}x =\theta$
So $\cos \theta =0.......(1)$
Principal value $\cos^{-1} x$ is $\left [ 0,\pi \right ]$.......(2)
Also , we know that $\cos\frac{\pi}{2}=0......(3)$
From (1) ,,(2), and (3) we have
$\theta =\frac{\pi}{2}$
But $\theta =\sin^{-1}\frac{2}{5}+\cos^{-1}x$
So,
$\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
We know that $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2} for\: all \: x\epsilon \left [ -1 ,1\right ]$
As $\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
so $x=\frac{2}{5}$
Question:27
The value of sin (2tan–1 (.75)) is equal to
A. 0.75
B. 1.5
C. 0.96
D. sin 1.5
Answer:
Answer :(c)
sin (2tan–1 (.75))
Let, tan–1 (.75) = θ
$\Rightarrow \tan^{-1}\left (\frac{3}{4} \right )=\theta$
$\Rightarrow \tan \theta =\frac{3}{4}$
As, $\tan \theta =\frac{3}{4}$ so
$\sin \theta =\frac{3}{5}, \cos \theta =\frac{4}{5}......(1)$
Now,
sin (2tan–1 (.75)) = sin 2θ
= 2 sin θ cos θ
$=2\left (\frac{3}{5} \right )\left (\frac{4}{5} \right )$
$=\frac{24}{25}$
So, sin (2tan–1 (.75)) = 0.96.
Question:28
The Value of $\cos^{-1} \cos \frac{3\pi}{2}$ is equal to
$A. \frac{\pi}{2}$
$B. \frac{3\pi}{2}$
$C. \frac{5\pi}{2}$
$D. \frac{7\pi}{2}$
Answer:
We have $\cos^{-1}\cos\frac{3\pi}{2}$
We know that,
$\cos\frac{3\pi}{2}=0$
So, $\cos^{-1}\cos\frac{3\pi}{2}=\cos^{-1}0$
Let $\cos^{-1}0=\theta$
⇒ cos θ = 0
Principal value of cos-1 x is [0, π]
For, cos θ = 0
so,$\theta=\frac{\pi}{2}$
Question:29
The value of the expression $2 \sec^{-1}2+\sin^{-1}\left ( \frac{1}{2} \right )$ is
$A.\frac{\pi}{6}$
$B.\frac{5\pi}{6}$
$C.\frac{7\pi}{6}$
D.1
Answer:
Answer :(B)
We have,
Principal value of sin-1 x is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Principal value of sec-1 x is [0, π]$-\left \{ \frac{\pi}{2} \right \}$
Let $\sin^{-1}\frac{1}{2}=A$
$\Rightarrow \sin A =\frac{1}{2}$
$\Rightarrow A =\frac{\pi}{6}$
So, $\Rightarrow \sin^{-1}\frac{1}{2}=\frac{\pi}{6}$ … (1)
Let sec-1 2 = B
⇒ sec B = 2
$\Rightarrow B=\frac{\pi}{3}$
So, 2 sec-1 2 = 2B
$\Rightarrow 2\sec^{-1}2=\frac{2\pi}{3}$...(2)
So, the value of $2\sec^{-1}2+\sin^{-1}\frac{1}{2}$ from (1) and (2) is
$2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{2\pi}{3}+\frac{\pi}{6}$
$=\frac{4\pi}{6}+\frac{\pi}{6}$
$=\frac{5\pi}{6}$
So, $2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{5\pi}{6}$
Question:30
If tan–1 x + tan–1 y = 4π/5, then cot–1x + cot–1 y equals
$A. \frac{\pi}{5}$
$B. \frac{2\pi}{5}$
$C. \frac{3\pi}{5}$
$D. \pi$
Answer:
Answer :(A)
We know that,
$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
We have,
tan–1 x + tan–1 y = 4π/5 … (1)
Let, cot–1x + cot–1 y = k … (2)
Adding (1) and (2) –
$\tan^{-1}x+\tan^{-1}y+\cot^{-1}x+\cot^{-1}y=\frac{4\pi}{5}+k$...(3)
Now, tan–1 A + cot–1 A = π/2 for all real numbers.
So, (tan–1 x + cot–1 x) + (tan–1y + cot–1 y) = π … (4)
From (3) and (4), we get,
$\frac{4\pi}{5}+k=\pi$
$\Rightarrow k=\pi-\frac{4\pi}{5}$
$\Rightarrow k=\frac{\pi}{5}$
Question:31
If $\sin^{-1}\frac{2a}{1+a^{2}}+\cos ^{-1}\frac{1-a^{2}}{1+a^{2}}=tan^{-1}\frac{2x}{1-x^{2}}$ where a, $x\epsilon \left [ 0,1 \right ]$ then the value of x is
A. 0
B. a/2
C. a
D. $\frac{2a}{1-a^{2}}$
Answer:
Answer:(D)
We have
$sin^{-1}\frac{2a}{1+a^{2}}+cos^{-1}\frac{1-a^{2}}{1+a^{2}}=\tan^{-1}\frac{2x}{1-x^{2}}$
we know that
$2 \tan ^{-1}p=\sin^{-1}\frac{2p}{1+p^{2}}.........(1)$
$Also,2 \tan^{-1}p=\cos^{-1}\frac{1-p^{2}}{1+p^{2}}.........(2)$
$Also,2 \tan^{-1}p=\tan^{-1}\frac{2p}{1-p^{2}}.........(3)$
From (1) and (2) we have,
L.H.S-
$\sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=2\tan^{-1}a+2\tan^{-1}a$
$\Rightarrow \sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=4\tan^{-1}a$
From (3) R.H.S
$\tan^{-1}\frac{2x}{1-x^{2}}=2\tan^{-1}x$
So, we have 4 tan-1 a = 2 tan-1 x
⇒ 2 tan-1 a = tan-1 x
But from (3) $2\tan^{-1}a= \tan^{-1}\frac{2a}{1-a^{2}}$
So $\tan^{-1}\frac{2a}{1-a^{2}}=\tan^{-1}x$
$x=\frac{2a}{1-a^{2}}$
Question:32
The value of $\cot \cos^{-1}\frac{7}{25} is$
A. 25/24
B.25/7
C.24/25
D.7/24
Answer:
Answer :(d)
We have to find $\cot \cos^{-1}\frac{7}{25}$
Let $\cos^{-1}\frac{7}{25}=A$
$\Rightarrow \cos^{-1}=\frac{7}{25}$
Also, $\cot A=\cot \cos^{-1}\frac{7}{25}$
As, $\sin A=\sqrt{1-\cos^{2}A}$
So $\sin A=\sqrt{1-\left (\frac{7}{5} \right )^{2}}$
$\Rightarrow \sin A=\sqrt{1-\frac{49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{625-49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{576}{625} }$
$\Rightarrow \sin A={\frac{24}{25} }$
We need to find cot A
$\cot A=\frac{\cos A}{\sin A}$
$\Rightarrow \cot A=\frac{\frac{7}{25}}{\frac{24}{25}}$
$\Rightarrow \cot A=\frac{7}{24}$
So $\cot \cos^{-1}\frac{7}{25}=\frac{7}{24}$
Question:33
The value of the expression $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$ is $\left [ Hint: \tan\frac{\theta}{2} =\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right ]$
$A. 2+ \sqrt{5}$
$B.\sqrt{5}-2$
$C.\frac{2+\sqrt{5}}{2}$
$D. \sqrt{5}+2$
Answer:
Answer:(B)
We need to find , $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$
Let, $\cos^{-1}\frac{2}{\sqrt{5}}=A$
$\Rightarrow \cos A=\frac{2}{\sqrt{5}}$
Also we need to find $\tan\frac{A}{2}$
We know that $\tan\frac{\theta}{2}=\sqrt{\frac{\left ( 1-\cos \theta \right )}{1+\cos \theta}}$
so, $\tan^{-1}\frac{A}{2}=\sqrt{\frac{\left ( 1-\cos A \right )}{1+\cos A}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1-\frac{2}{\sqrt{5}}}{1+\frac{2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\frac{\sqrt{5}-2}{\sqrt{5}}}{\frac{\sqrt{5}+2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}$
on rationalizing,
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5}-2 \right )\left ( \sqrt{5}+2 \right )}{\left (\sqrt{5}+2 \right )\left ( \sqrt{5}+2 \right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5} \right )^{2}-2^{2}}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{5-4}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1}{\sqrt{5} +2}$
Again rationalizing
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1\left ( \sqrt{5}-1 \right )}{\left (\sqrt{5} +2 \right )\left ( \sqrt{5}-2 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (\sqrt{5}^{2} -2^{2} \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (5-4 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{5}-2$
Question:34
If |x| ≤ 1, then $2\tan ^{2}x+\sin^{-1}\frac{2x}{1+x^{2}}$ is equal to
A. 4 tan–1 x
B. 0
C. $\frac{\pi}{2}$
D. π
Answer:
Answer(A)
We need to find, $2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
So,
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=$4 \tan^{1}x$
Question:35
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β (γ + α) + γ (α + β) equals
A. 0
B. 1
C. 6
D. 12
Answer:
Answer :(C)
Given, cos–1α + cos–1β + cos–1γ = 3π … (1)
Principal value of cos-1 x is [0, π]
So, maximum value which cos-1 x can have is π.
So, if (1) is correct then all the three terms i.e,
cos–1α, cos–1β, cos–1γ should be equal to π
So, cos–1α = π
cos–1β = π
cos–1γ = π
So, α = β = γ = -1
So, α(β + γ) + β (γ + α) + γ (α + β)
= (-1)(-1-1) + (-1)(-1-1) + (-1)(-1-1)
= 3(-1)(-2)
= 6
Question:36
The number of real solutions of equarion $\sqrt{1+\cos x}=\sqrt{2}\cos^{-1}\left ( \cos x \right ) in \left [ \frac{\pi}{2},\pi \right ]$ is
A. 0
B. 1
C. 2
D. Infinite
Answer:
Answer:(A)
We have , $\sqrt{1+\cos 2x}=\sqrt{2}\cos^{-1}\left ( \cos x \right )$, x is in $\left [ \frac{\pi}{2}, \pi \right ]$
R.H.S
$\sqrt{2}\cos^{-1}\left ( \cos x \right )=\sqrt{2}x$
So, $\sqrt{1+\cos 2x}=\sqrt{2}x$
Squaring both side , we get,
$\left ( 1+\cos 2 x \right )=2x^{2}$
$\Rightarrow \cos 2x=2x^{2}-1$
Now plotting cos 2x and 2x2-1, we get,

As , there is no point of intersection in $\left [ \frac{\pi}{2},\pi \right ]$, so therre is no
solution of the given equation in $\left [ \frac{\pi}{2},\pi \right ]$
Question:37
If $\cos^{-1}x> \sin^{-1}x$ , then
$A. \frac{1}{\sqrt{2}}< x\leq 1$
$B. 0\leq x< \frac{1}{\sqrt{2}}$
$C.-1\leq x< \frac{1}{\sqrt{2}}$
D.x>0
Answer:
Answer :(C)
Plotting cos-1 x and sin-1 x, we get,

As, graph of cos-1 x is above graph of sin-1 x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$.
So, cos–1x > sin–1 x for all x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$ .
Question:38
Fill in the blanks The principle value of $\cos ^{-1}\left ( -\frac{1}{2} \right )$ is ___________.
Answer:
The principal value of $\cos^{-1}\left ( -\frac{1}{2} \right )$ is $\frac{2\pi}{3}$.
Principal value cos-1 x is [0,$\pi$]
Let, $\cos^{-1}\left ( -1 \right )=\theta$
$\Rightarrow \cos \theta=-\frac{1}{2}$
As, $\cos \frac{2\pi}{3} =-\frac{1}{2}$
So, $\theta= \frac{2\pi}{3}$
Question:39
Fill in the blanks The value of $sin^{-1}\left ( sin \frac{3\pi}{5} \right )$ is_______.
Answer:
The value of $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ is $\frac{2\pi}{5}$
Principal value of $\sin^{-1}$ is $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
now, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ should be in the given range
$\frac{3\pi}{5}$ is outside the range $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
As, sin (π – x) = sin x
So, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )=\sin^{-1}\left ( \sin \left ( \pi-\frac{3\pi}{5} \right ) \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )=\frac{2\pi}{5}$
Question:40
Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.
Answer:
$\begin{aligned} &\text { If } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0, \text { then value of } x \text { is } \sqrt{3} \text { . }\\ &\text { Given, } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0\\ &\Rightarrow \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\frac{\pi}{2}\\ &\text { We know that, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\\ &\text { So, } x=\sqrt{3} \end{aligned}$
Question:40
Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.
Answer:
If cos (tan–1x + cot–1 √3) = 0, then value of x is $\sqrt{3}$
Given, cos (tan–1x + cot–1$\sqrt{3}$) = 0
$\Rightarrow \tan^{-1}x+\cot^{-1}\sqrt{3}=\frac{\pi}{2}$
we know that, $\Rightarrow \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
so, x=$\sqrt{3}$
Question:41
fill in blanks the set of value of $\sec^{-1}\left (\frac{1}{2} \right )$ is______________.
Answer:
Fill in the blanks the set of value of $\sec^{-1}\left ( \frac{1}{2} \right )$ is $\phi$
Domain of sec-1 x is R – (-1,1).
As, $-\frac{1}{2}$ is outside domain of sec-1 x.
Which means there is no set of value of $\sec^{-1}\frac{1}{2}$
So, the solution set of $\sec^{-1}\frac{1}{2}$ is null set or $\phi$
Question:42
Fill in the blanks
The principal value of tan–1 √3 is _________.
Answer:
The Principal value of $\tan^{-1} \sqrt{3}$ is $\frac{\pi}{3}$
Principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
Let, $\tan^{-1}\left ( \sqrt{3} \right )=\theta$
$\Rightarrow \tan \theta=\sqrt{3}$
As $\Rightarrow \tan \frac{\pi}{3}=\sqrt{3}$
so, $\Rightarrow \theta=\sqrt{3}$
Question:43
The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$
Answer:
The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$ is $\frac{2\pi}{3}$
We needd, $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$
Principal value of cos-1 x is [0,π]
Also, cos (2nπ + θ) = cos θ for all n ? N
$\cos \frac{14\pi}{3}=\cos \left ( 4\pi+\frac{2\pi}{3} \right )$
$\Rightarrow \cos \frac{14\pi}{3}=\cos \frac{2\pi}{3}$
$So, \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\cos^{-1}\left (\cos \frac{2\pi}{3} \right )$
$\Rightarrow \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\frac{2\pi}{3}$
Question:44
Fill in the blanks
The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is ________.
Answer:
The value of cos (sin–1 x + cos–1 x) for |x| ≤ 1 is 0.
cos (sin–1 x + cos–1 x), |x| ≤ 1
We know that, (sin–1 x + cos–1 x), |x| ≤ 1 is $\frac{\pi}{2}$
So, $\cos\left ( \sin^{-1}x+\cos^{-1}x \right )=\cos\frac{\pi}{2}$
= 0
Question:45
Answer:
The value of expression $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$ is 1
$\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$
We know that, (sin–1 x + cos–1 x) for all |x| ≤ 1 is $\frac{\pi}{2}$
As, $x=\frac{\sqrt{3}}{2}$ lies in domain
So $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$=$\tan \frac{\pi}{4}$
=1
Question:46
Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then ______<y<_____.
Answer:
Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then $-2\pi< y< 2\pi$
$y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that,
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
so
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=4 tan-1 x
So, y = 4 tan-1 x
As, principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
So, $4 \tan^{-1}x\epsilon \left ( -2\pi,2\pi \right )$
Hence, -2π < y < 2π
Question:47
Answer:
The result $\tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right )$ is true when value of xy is > -1.
We have,
$\tan^{-1}x-\tan^{-1}=\tan^{-1} \frac{x-y}{1+xy}$
Principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Let tan-1x = A and tan-1y = B … (1)
So, A,B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
We know that, $\tan\left ( A-B \right )=\frac{\tan A - \tan B}{1-\tan A \tan B }$ … (2)
From (1) and (2), we get,
Applying, tan-1 both sides, we get,
$\tan^{-1}\tan\left ( A-B \right )=\tan^{-1}\frac{x-y}{1-xy}$
As, principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, for tan-1tan(A-B) to be equal to A-B,
A-B must lie in $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$– (3)
Now, if both A,B < 0, then A, B $\epsilon \left ( -\frac{\pi}{2},0\right )$
∴ A $\epsilon \left ( -\frac{\pi}{2},0\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if both A,B > 0, then A, B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( -\frac{\pi}{2},0\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan{-1}x-\tan{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if A > 0 and B < 0,
Then, A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon$ (0,π)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
$A-B< \frac{\pi}{2}$
$A< \frac{\pi}{2} +B$
Applying tan on both sides,
$\tan A< \tan\left ( \frac{\pi}{2} +B \right )$
As, $\tan\left ( \frac{\pi}{2} +\alpha \right )=-\cot \alpha$
So, tan A < - cot B
Again, $\cot \alpha=\frac{1}{\tan \alpha}$
So, $\tan A< \frac{1}{\tan B}$
⇒ tan A tan B < -1
As, tan B < 0
xy > -1
Now, if A < 0 and B > 0,
Then, A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
∴ A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and -B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
So, A – B $\epsilon$ (-π,0)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,\frac{\pi}{2}\right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
$\Rightarrow A-B> -\frac{\pi}{2}$
$\Rightarrow A>B -\frac{\pi}{2}$
Applying tan on both sides,
$\tan A>\tan\left (B -\frac{\pi}{2} \right )$
As, $\tan\left (\alpha -\frac{\pi}{2} \right )=-\cot \alpha$
So, tan B > - cot A
Again, $\cot \alpha\frac{1}{\tan \alpha}$
So, $\tan B >-\frac{1}{\tan A}$
⇒ tan A tan B > -1
⇒xy > -1
Question:48
Fill in the blanks
The value of cot–1(–x) for all x ? R in terms of cot–1 x is _______.
Answer:
The value of cot–1(–x) for all x ? R in terms of cot–1 x is
π – cot-1 x.
Let cot–1(–x) = A
⇒ cot A = -x
⇒ -cot A = x
⇒ cot (π – A) = x
⇒ (π – A) = cot-1 x
⇒ A = π – cot-1 x
So, cot–1(–x) = π – cot-1 x
Question:49
Answer:
True.
It is well known that all trigonometric functions have inverse over their respective domains.
Question:50
State True or False for the statement
The value of the expression (cos–1x)2 is equal to sec2 x.
Answer:
As, cos-1 x is not equal to sec x. So, (cos–1x)2 is not equal to sec2 x.
Question:51
Answer:
As, all trigonometric and their corresponding inverse functions are periodic so, we can obtain the inverse of a trigonometric ratio in any branch in which it is one-one and onto.
Question:52
Answer:
True
We know that the smallest value, either positive or negative of angle θ is called principal value of the inverse trigonometric function
Question:53
Answer:
True.
Graph of any inverse function can be obtained by interchanging x and y-axis in the graph of the corresponding function. If (p, q) are two points on f(x) then (q, p) will be on f-1(x).
Question:54
Answer:
false
$\tan ^{-1}\frac{n}{\pi}>\frac{\pi}{4}$
As , tan is an increasing function so applying tan on both side
we get,
$\tan\left (\tan ^{-1}\frac{n}{\pi} \right )>\tan \frac{\pi}{4}$
As, $\tan\left (\tan ^{-1}\frac{n}{\pi} \right )=\frac{n}{\pi}$ and $\tan\frac{\pi}{4}=1$
so $\frac{n}{\pi}>1$
⇒ n > π
⇒ n > 3.14
As, n is a natural number, so least value of n is 4.
Question:55
Answer:
True
Principal value of sin-1 x is $\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
Principal value of cos-1 x is [0, π]
We have, $\sin^{-1}\left [ \cos \left [ \sin^{-1}\left (\frac{1}{2} \right ) \right ] \right ]$
As, $\sin\frac{\pi}{6}=\frac{1}{2}$ so
$\sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos\left [ \sin^{-1}\left (\sin \frac{\pi}{6} \right ) \right ] \right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos \left [ \frac{\pi}{6} \right ]\right ]$
As, $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$ so,
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \sin \left [ \frac{\pi}{3} \right ]\right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\frac{\pi}{3}$
The sub-topics that are covered in this chapter of inverse trigonometric functions are:
Class 12 Math NCERT Exemplar solutions chapter 2, students will get detailed answers to the questions in the NCERT book after every topic. Understanding and grasping this chapter can help one aim for a better score in their school exams, boards and their entrance exams.
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the subject-wise NCERT Notes of class 12 :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Frequently Asked Questions (FAQs)
Introduction to Inverse Trigonometric Functions, The Basic Concepts of Inverse Trigonometric Functions and Properties of Inverse Trigonometric Functions are important topics of this chapter.
Yes, the NCERT exemplar Class 12 Maths chapter 2 solutions are helpful for you to prepare for board exams.
There is only 1 exercise in this chapter with 55 problem solving questions.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters