Imagine trying to find an unknown angle when only its sine or cosine value is given. Have you ever wondered how calculators determine the angles for trigonometric values? This is where inverse trigonometric functions come into play. They help us reverse the process of basic trigonometric functions like sine, cosine, and tangent, allowing us to find angles from given ratios. When the trigonometric values are known, the inverse trigonometric functions allow you to find the angles. These functions are very important when it comes to calculus, solving equations, and even putting them into practice in the real world, such as physics and engineering. We will go through all the NCERT Exemplar questions and Solutions in this Chapter, which are aimed at developing a solid understanding of this topic to help students understand what the author is trying to assess in the exam.
This Story also Contains
In the NCERT Solutions for Class 12 Maths Chapter 2, students will understand how to find the ranges and domains of inverse trigonometric functions. Some other key concepts that students will learn are the behaviour of the function, properties of inverse trigonometric functions, and more, all to be explained in a systematic way. The NCERT Exemplar Class 12 Maths Chapter 2 Solutions will provide step-by-step guidance to ensure a strong conceptual understanding for students.
Also, read,
| Class 12 Maths Chapter 2 Exemplar Solutions Exercise: 2.3 Page number: 35-41 Total questions: 55 |
Question 1
Answer:
we know that
$\tan^{-1}\left ( \tan x \right )=x; x \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$ and
$\cos^{-1}\left ( \cos x \right )=x; x \epsilon \left ( 0,\pi \right)$
$\therefore \tan^{-1} \left ( \tan \frac{5\pi}{6} \right )+\cos^{-1}\left ( \cos \frac{13\pi}{6} \right )$
$= \tan^{-1}\left [ \tan \left ( \pi-\frac{\pi}{6} \right ) \right ]+\cos^{-1}\left [ cos\left ( \pi +\frac{7\pi}{6} \right ) \right ]$
$= \tan^{-1}\left (-\tan \frac{\pi}{6} \right )+cos^{-1}\left (-\cos\frac{7\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\left [cos^{-1}\left (\cos\frac{7\pi}{6} \right ) \right ]$
$\left [ since \, \tan^{-1}\left ( -x \right )=- \tan 1 x , x\epsilon R \, and \, \cos^{-1}=\left ( -x \right )=\pi-\cos^{-1}\left ( x \right ), x\epsilon \left ( -1,1 \right ) \right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\cos^{-1}\left [\cos\left (\pi+\frac{\pi}{6} \right )\right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \cos ^{-1} \left (-\cos\frac{\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \pi +\cos ^{-1} \left (\cos\frac{\pi}{6} \right )$
$=-\frac{\pi}{6}+0+\frac{\pi}{6}$
$=0$
Question 2
Evaluate
$\cos\left [ \cos ^{-1} \left ( \frac{-\sqrt{3}}{2} \right ) +\frac{\pi}{6} \right]$
Answer:
We have
$\cos \left [ \cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right ) + \frac{\pi}{6}\right ]$
$\left [ Since,\cos\frac{5\pi}{6}= \frac{-\sqrt{3}}{2}\right ]$
$=\cos \left [ \cos^{-1} \left (\cos \frac{5\pi}{6} \right )+ \frac{\pi}{6}\right ]$
$=\cos\left ( \frac{5\pi}{6}+\frac{\pi}{6} \right )$
$\left [ since . \cos ^{-1}\left ( \cos x \right )=x;x\epsilon \left ( 0,\pi \right ) \right ]$
$= \cos \left ( \frac{6\pi}{6} \right )$
$= \cos \pi$
=-1
Question 3
Prove that $\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$
Answer:
We prove that
$\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$
$\Rightarrow \cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=\cot^{-1}7$
$\Rightarrow 2\cot^{-1}3=\frac{\pi}{4}-\cot^{-1}7$
$\Rightarrow 2\tan^{-1}\frac{1}{3}=\frac{\pi}{4}-\tan^{-1}\frac{1}{7}$
$\Rightarrow 2\tan^{-1}\frac{1}{3}+\tan^{1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , 2 \tan^{-1}(x)=2 tan^{-1}\frac{2x}{1-(x)^{2}} \right ]$
$\Rightarrow \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}}+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{2}{3}}{\frac{8}{9}} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{3}{4} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , \tan^{-1}x+ tan^{-1}y =\tan^{-1}\frac{x+y}{1-xy} \right ]$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4},\frac{1}{7}} \right )=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {\frac{\left (21+4 \right )}{28}}{\frac{\left ( 28-3 \right )}{28}}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {25}{25}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( 1 \right )=\frac{\pi}{4}$
$\Rightarrow 1=\tan\frac{\pi}{4}$
$\Rightarrow 1=1$
LHS=RHS
Hence Proved
Question 4
Answer:
We have
$\tan^{-1}\left ( -\frac{1}{\sqrt{3}} \right )+cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )+ tan^{-1}\left [ sin\left ( \frac{-\pi }{2} \right ) \right ]$
$=\tan^{-1}\left (tan \frac{5\pi}{6} \right )+cot^{-1}\left (cot \frac{\pi}{3} \right )+ tan^{-1}\left (-1 \right )$
$=\tan^{-1}\left [ tan\left ( \pi-\frac{5\pi}{6} \right ) \right ]+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ \tan\left ( \pi-\frac{\pi}{4} \right ) \right ]$
$\left [ since, \tan^{-1}\left ( \tan x \right )=x, x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right ); \cot^{-1}\left ( cot x \right )=x,x\epsilon \left ( 0,\pi \right ); and\: \tan^{-1}\left ( -x \right )=-\tan^{-1}x \right ]$
$=\tan^{-1}\left ( -\tan \frac{\pi}{6} \right )+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ -\tan\frac{\pi}{4} \right ]$
$=-\frac{\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4}$
$=\frac{-2\pi+4\pi-3\pi}{12}$
$=-\frac{\pi}{12}$
Question 5
find the value of $\tan^{-1}\left ( tan\frac{2\pi}{3} \right )$
Answer:
We have
$\tan^{-1}\left ( \tan\frac{2\pi}{3} \right )=\tan^{-1}\tan\left ( \pi-\frac{\pi}{3} \right )$
$=\tan^{-1}\left ( -\tan\frac{\pi}{3} \right )$
$\left [ Since, \tan^{-1}\left ( -x \right )=-\tan^{-1}x,x\epsilon R \right ]$
$=-\tan^{-1}tan\frac{\pi}{3}$
$\left [ Since, \tan^{-1}\left ( \tan x \right ) =x,x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )\right ]$
$=-\frac{\pi}{3}$
Question 6
show that $2\tan^{-1}\left ( -3 \right )=-\frac{\pi}{2}+\tan ^{-1}\left ( \frac{-4}{3} \right )$
Answer:
We have to prove ,
$2\tan^{-1}(-3)=-\frac{\pi}{2}+tan^{-1}\left ( \frac{-4}{3} \right )$
LHS=$2\tan^{-1}(-3)$ $\left [ Since, \tan^{-1}\left ( -x \right ) = -\tan^{-1}x,x\epsilon R\right ]$
$=-\left [ \cos^{-1}\frac{1-3^{2}}{1+3^{2}} \right ]$ $\left [ Since 2 \tan^{-1}x=\left [\cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ], x\geq 0\right ]$
$=-\left [ \cos^{-1}\left (\frac{-8}{10} \right ) \right ]$
$=-\left [ \cos^{-1}\left (\frac{-4}{5} \right )\right ]$
$=-\left [\pi- \cos^{-1}\left (\frac{4}{5} \right ) \right ]$ $=-\left [ since \cos^{-1}(-x)=\pi-\cos^{-1}x,x\epsilon \left [ -1,1 \right ] \right ]$
$=-\pi+\cos^{-1}\left ( \frac{4}{5} \right )$
$\left [ let \cos^{-1}\left ( \frac{4}{5} \right ) =0 \Rightarrow \cos \theta = \left ( \frac{4}{5} \right ) \Rightarrow \tan \theta = \left ( \frac{3}{4} \right ) \Rightarrow \theta = \tan^{-1} \left ( \frac{3}{4} \right )\right ]$
$=-\pi+\tan^{-1}\left (\frac{3}{4} \right )=-\pi+\left [ \frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right ) \right ]$
$=-\frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right )$
$\left [ Since, \tan^{-1}\left (-x \right )=-\tan^{-1}x \right ]$
$=-\frac{\pi}{2}+\tan^{-1}\left ( \frac{-4}{3} \right )$
$=-\frac{\pi}{2}+\tan^{-1}\left (- \frac{4}{3} \right )$
=RHS
Hence Proved.
Question 7
Answer:
We have , $\tan^{-1}\sqrt{x(x+1)}+\sin^{-1}\sqrt{x^{2}+x+1}=\frac{\pi}{2}.........(i)$
Let $\sin^{-1}\sqrt{x^{2}+x+1}=\theta$
$\Rightarrow \sin \theta =\sqrt{\frac{x^{2}+x+1}{1}}$
$\Rightarrow \tan \theta =\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}$ $\left [ Since, \tan\theta =\frac{\sin \theta }{\cos \theta } \right ]$
$\Rightarrow \theta =\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\sin^{-1}\sqrt{x^{2}+x+1}$
On Putting the value of $\theta$ in Eq. (i), We get
$\tan^{-1}\sqrt{x(x+1)}+\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\frac{\pi}{2}.........(ii)$
we know that,
$\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy},xy< 1$
So,(ii) becomes,
$\tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \frac{x^{2}+x+\sqrt{-\left ( x^{2}+x+1 \right )}}{\left [ 1-\sqrt{-\left ( x^{2}+x+1 \right ).\sqrt{\left ( x^{2}+x \right )}} \right ]}=\tan \frac{\pi}{2}=\frac{1}{0}$
$\Rightarrow \left [ 1-\sqrt{-\left ( x^{2}+x+1 \right )}.\sqrt{\left ( x^{2}+x \right )} \right ]=0$
$\Rightarrow -\left ( x^{2}+x+1 \right )=1\: or\: x^{2}+x=0$
$\Rightarrow x^{2}-x-1=1 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x^{2}+x+2=0 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x= \frac{-1\pm \sqrt{1-\left ( 4\times 2 \right )}}{2}\: or\: x=-1$
$\Rightarrow x= 0 \: or \: x=-1$
For real solution , we have x=0,-1.
Question 8
Answer:
We have $\sin \left (2 \tan^{-1}\frac{1}{3} \right )+\cos \left ( tan^{-1}2\sqrt{2} \right )$
$=\sin \left [\sin^{-1}\left \{ \frac{2\times \frac{1}{3}}{1+\left ( \frac{1}{3} \right )^{2}} \right \} \right ]+\cos\left ( \cos^{-1}\frac{1}{3} \right )$
$\left [ Since, \: \tan^{-1}x =\cos^{-1}\frac{1}{\sqrt{1+x^{2}}}; 2\tan^{-1}\left ( x \right )=2 \tan^{-1}\frac{2x}{1-\left (x \right )^{2}}, -1\leq x\leq 1 \: and \: \tan^{-1}2\sqrt{2}=\cos^{-1}\frac{1}{3}\right ]$
=$\sin\left [ \sin^{-1}\left \{ \frac{\frac{2}{3}}{1+\frac{1}{9}} \right \} \right ]+\frac{1}{3}$ $\left [ Since, \cos\left ( \cos^{-1}x \right ) = x, x\epsilon \left \{ -1,1 \right \}\right ]$
$= \sin \left [ \sin^{-1}\left ( \frac{2\times 9}{3\times 10} \right ) \right ]+\frac{1}{3}$
$= \sin \left [ \sin^{-1}\left ( \frac{3}{5} \right ) \right ]+\frac{1}{3}$
$= \frac{3}{5}+\frac{1}{3}\left [ Since, \sin\left ( \sin^{-1}x \right )=x \right ]$
$= \frac{14}{15}$
Question 9
Answer:
We have $2 \tan^{-1}\left ( \cos \theta \right )=\tan^{-1}\left ( cosec\, \theta \right )$
$\Rightarrow \tan^{-1}\left ( \frac{2 \cos \theta }{1-\cos^{2}\theta } \right )=\tan^{-1}\left ( 2\, cosec\, \theta \right )$ $\left [ Since \: 2 \tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{2 \cos \theta }{\sin^{2}\theta }=2 \, cosec\, \theta$
$\Rightarrow \cot \theta . 2\, cosec\, \theta =2\, cosec\, \theta$
$\Rightarrow \cot \theta =1$
$\Rightarrow \cot \theta =\cot\frac{\pi}{4}$
$\Rightarrow \theta =\frac{\pi}{4}$
Hence Proved
Question 10
Show that $\cos \left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4 \tan^{-1}\frac{1}{3} \right )$
Answer:
We have , $\cos\left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4\tan^{-1}\frac{1}{3} \right )$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{1-\left ( \frac{1}{7} \right )^{2}}{1+\left ( \frac{1}{7} \right )^{2}} \right ) \right ]=sin\left ( 2.2\tan^{-1}\frac{1}{3} \right )$
$\left [ Since, 2 \tan^{-1}x=\left [ \cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ] ,x\geq 0 \right ]$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{\frac{48}{49}}{\frac{50}{49}} \right ) \right ]=\sin\left [ 2\left ( \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}} \right ) \right ]$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( 2 \tan^{-1} \frac{3}{4} \right )$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( \sin^{-1}\frac{2\times \frac{3}{4}}{1+\frac{9}{16}} \right )$ $\left [ Since , 2\tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{24}{25}=\sin\left ( \sin^{-1}\frac{\frac{3}{2}}{\frac{25}{16}} \right )$
$\Rightarrow \frac{24}{25}=\frac{48}{50}$
$\Rightarrow \frac{24}{25}=\frac{24}{25}$
Since LHS=RHS
Hence Proved
Question 11
Answer:
We have $\cos \left ( \tan^{-1}x \right )=\sin\left ( \cot^{-1}\frac{3}{4} \right )$
$\Rightarrow \cos \left ( \cos^{-1}\frac{1}{\sqrt{x^{2}+2}} \right )=\sin\left ( \sin^{-1}\frac{4}{5} \right )........(i)$
Let $\tan^{-1}x=\theta _{1}\Rightarrow \tan\theta_{1}=\frac{x}{1}$
$\Rightarrow \cos \theta_{1}=\frac{1}{\sqrt{x^{2}+1}}.....(a)$
$\Rightarrow \theta_{1}=\cos^{-1}\frac{1}{\sqrt{x^{2}+1}}.....(c)$
And $\cot^{-1}=\theta_{2}\Rightarrow \cot^{-1}=\frac{3}{4}$
$\Rightarrow \sin \theta_{2}=\frac{4}{5}.......(b)$
$\Rightarrow \theta_{2}= \sin^{-1}\frac{4}{5}.......(d)$
From (c),(d);(i) becomes
$\Rightarrow \cos \theta_{1}= \sin\theta_{2}$
$\Rightarrow \frac{1}{\sqrt{x^{2}+1}}=\frac{4}{5}$ [From (a),(b)]
On squarinting both Sides, we get
$\Rightarrow 16\left (x^{2}+1 \right )=25$
$\Rightarrow 16x^{2}=9$
$\Rightarrow x^{2}=\left (\frac{3}{4} \right )^{2}$
$\Rightarrow x=\pm \frac{3}{4}$
$\therefore x=\frac{3}{4},-\frac{3}{4}.$
Question 12
Answer:
We have $\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )=\frac{\pi}{4}+\frac{1}{2}cos^{-1}x^{2}$
LHS=$\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )........(i)$
$\left [ x^{2}=\cos2\theta=\cos^{2}\theta+\sin^{2}\theta=1-2\sin^{2}\theta = 2\cos^{2}\theta-1 \right ]$
$\Rightarrow \cos^{-1}x^{2}=2\theta$
$\Rightarrow \theta=\frac{1}{2}\cos^{-1}x^{2}$
$\therefore \sqrt{1+x^{2}}=\sqrt{1+\cos2\theta}$
$\Rightarrow \sqrt{1+2\cos^{2}\theta-1}=\sqrt{2}\cos \theta$
And $\sqrt{1-x^{2}}=\sqrt{1-\cos2\theta}$
$\sqrt{1-1+2 \sin^{2}\theta}=\sqrt{2}\sin \theta$
$\therefore LHS = \tan^{-1}\left (\frac{ \sqrt{2}\cos \theta +\sqrt{2} \sin \theta}{ \sqrt{2}\cos \theta -\sqrt{2} \sin \theta}\right )$
$= \tan^{-1}\left (\frac{ \cos \theta + \sin \theta}{ \cos \theta - \sin \theta}\right )$
$= \tan^{-1}\left (\frac{1+\tan \theta}{ 1-\tan \theta}\right )$
$= \tan^{-1}\left \{\frac{\tan\left (\frac{\pi}{4} \right )+\tan \theta}{ \tan\left (\frac{\pi}{4} \right )-\tan \theta} \right \}$
$= \tan^{-1}\left [ \tan\left ( \frac{\pi}{4}+\theta \right ) \right ]$ $\left [ Since , \tan\left ( x+y \right )=\frac{\tan x+\tan y}{1-\tan x.\tan y} \right ]$
$=\frac{\pi}{4}+\theta$
$=\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^{2}$
=RHS
LHS=RHS
Hence Proved
Question 13
Answer:
Let $\cos y=\frac{3}{5}$
$\Rightarrow \sin y=\frac{4}{5}$
$\Rightarrow y=\cos^{-1}\frac{3}{5}=\sin^{-1}\frac{4}{5}=\tan^{-1}\frac{4}{3}$
$\therefore \cos^{-1}\left [ \cos y. \cos x+\sin y. \sin x \right ]$
$\left [ since, \cos\left ( A-B \right ) = \cos A.\cos B + \sin A. \sin B \right ]$
$=\cos^{-1}\left [ \cos\left ( y-x \right ) \right ]$
$\left [ scine, \cos \left ( \cos^{-1}x \right )=x,x\epsilon \left \{ -1,1 \right \} \right ]$
=y-x
$\left [ scine, y=\tan^{-1}\frac{4}{3} \right ]$
$=\tan^{-1}\frac{4}{3} -x$
Question 14
Prove that $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$
Answer:
we have $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$
$LHS=\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}$
$let \: \: \sin^{-1}\frac{8}{17}=\theta_{1}$
$\Rightarrow \sin \theta_{1}=\frac{8}{17}$
$\Rightarrow \tan \theta_{1}=\frac{8}{15}\Rightarrow \theta_{1}=\tan^{-1}\frac{8}{15}$
And, $\sin \frac{3}{5}=\theta_{2}\Rightarrow \sin^{-1}\frac{3}{5}$
$\Rightarrow \tan \theta_{2}=\frac{3}{4}\Rightarrow \theta_{2}=\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\frac{8}{15}+\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\left [ \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}} \right ]$ $\left [ Since , \tan^{-1}x+\tan^{-1} y=tan^{-1}\left ( \frac{x+y}{1-xy} \right ) \right ]$
$=\tan^{-1}\left [ \frac{\frac{77}{60}}{\frac{36}{60}} \right ]$
$=\tan^{-1}\left ( \frac{77}{36} \right )$
Let $=\theta _{3}=tan^{-1}\left ( \frac{77}{36} \right )\Rightarrow \tan \theta_{3}=\frac{77}{36}$
$\Rightarrow \sin \theta_{3}=\frac{77}{\sqrt{5929+1296}}=\frac{77}{85}$
$\therefore \theta _{3}=\sin^{-1}\left ( \frac{77}{85} \right )$
$= \sin^{-1}\left ( \frac{77}{85} \right )=RHS$
Hence proved
Question 15
Show that $\sin^{-1}\frac{5}{13}+\cos ^{-1}\frac{3}{5}=\tan^{-1}\frac{63}{16}$
Answer:
Solving LHS, $\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$
$Let \: \sin^{-1}\frac{5}{13}=x$
$\Rightarrow \sin x=\frac{5}{13}$
$And \, \cos^{2}x=1-\sin^{2}x$
$\Rightarrow 1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \cos x= \sqrt{\frac{144}{169}}=\frac{12}{13}$
$\therefore \tan x=\frac{\sin x}{\cos x}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}$
$\Rightarrow \tan x=\frac{5}{12}..........(i)$
Again , let $\cos^{-1}\frac{3}{5}=y$
$\Rightarrow \cos y=\frac{3}{5}$
$\therefore \sin y=\sqrt{1-\cos^{2}y}$
$\Rightarrow \sin y=\sqrt{1-\left (\frac{3}{5} \right )^{2}}$
$\Rightarrow \sin y=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\Rightarrow \tan y=\frac{\sin y}{\cos y}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}.........(ii)$
We know that, $\tan\left ( x+y \right )=\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12}\frac{4}{3}}$ [from (i),(ii)]
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{15+48}{36}}{\frac{36-20}{36}}$
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{63}{36}}{\frac{16}{36}}$
$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}$$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}=RHS$
Since , LHS=RHS
Hence Proved.
Question 16
Prove that , $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}=\sin^{-1}\frac{1}{\sqrt{5}}$
Answer:
Solving LHS, $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}$
Let $\tan^{-1}\frac{1}{4}=x$
$\Rightarrow \tan x=\frac{1}{4}$
Squaring both sides,
$\Rightarrow \tan^{2} x=\frac{1}{16}$
$\Rightarrow \sec^{2} x-1=\frac{1}{16}$
$\Rightarrow \sec^{2} x=\frac{17}{16}$
$\Rightarrow \frac{1}{\cos^{2}x}=\frac{17}{16}$
$\Rightarrow \cos^{2}x=\frac{16}{17}$
$\Rightarrow \cos x=\frac{4}{\sqrt{17}}$
$Since,\: \sin^{2}x=1-\cos^{2}x$
$\Rightarrow \sin^{2}x=1-\frac{16}{17}=\frac{1}{17}$
$\Rightarrow \sin x=\frac{1}{\sqrt{17}}$
Again,
Let $\tan^{-1}\frac{2}{9}=y$
$\Rightarrow \tan y=\frac{2}{9}$
Squaring both sides,
$\Rightarrow \tan^{2}y=\frac{4}{81}$
$\Rightarrow \sec^{2}y-1=\frac{4}{81}$
$\Rightarrow \sec^{2}y=\frac{85}{81}$
$\Rightarrow \frac{1}{\cos^{2}y}=\frac{85}{81}$
$\Rightarrow \cos^{2}y=\frac{81}{85}$
$\Rightarrow \cos y=\frac{9}{\sqrt{85}}$
Since, $\sin^{2}y=1-\cos^{2}y$
$\Rightarrow \sin^{2}=1-\frac{81}{85}=\frac{4}{85}$
$\Rightarrow \sin x=\frac{2}{\sqrt{85}}$
We know that, $\sin(x+y)=\sin x.\sin y+ \cos x.\sin y$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{17}}.\frac{9}{\sqrt{85}}+ \frac{4}{\sqrt{17}}.\frac{2}{\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{17}{\sqrt{17}.\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{\sqrt{17}}{\sqrt{17}.\sqrt{5}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{5}}$
$\Rightarrow x+y =\sin^{-1}\frac{1}{\sqrt{5}}=RHS$
Since , LHS=RHS
Hence Proved
Question 17
Find the value of $4 \tan^{-1}\frac{1}{5}-tan^{-1}\frac{1}{239}$
Answer:
We have, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}$
$=2 \times \left ( 2 \tan^{-1}\frac{1}{5} \right )-\tan^{-1}\frac{1}{239}$
$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{1-\left ( \frac{1}{5} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$
$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{ \frac{24}{25} } \right ]-\tan^{-1}\frac{1}{239}$
$=2 \tan^{-1}\frac{5}{12}-\tan^{-1}\frac{1}{239}$
$=\left [ \tan^{-1}\frac{\frac{5}{6}}{1-\left (\frac{5}{12} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$
$=\tan^{-1}\frac{\frac{5}{6}}{1-\frac{25}{144}}-\tan^{-1}\frac{1}{139}$
$=\tan^{-1}\left ( \frac{144 \times 5}{119 \times 6} \right )-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{120}{119}-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}.\frac{1}{239}}\left [ since, \tan^{-1} x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan^{-1}\left [\frac{28680-119}{28441+120} \right ]$
$=\tan^{-1}\frac{28561}{28561}$
$=\tan^{-1}\left ( 1 \right )$
$=\tan^{-1}\left ( \tan \frac{\pi}{4} \right )$
$=\frac{\pi}{4}$
Hence, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}=\frac{\pi}{4}$
Question 18
Answer:
Solving LHS,
$=\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4} \right )$
$Let \frac{1}{2} \sin^{-1}\frac{3}{4} =\theta$
$\Rightarrow \sin^{-1}\frac{3}{4} =2\theta$
$\Rightarrow \frac{3}{4} =\sin2\theta$
$\Rightarrow \sin2\theta= \frac{3}{4}$
$\Rightarrow \frac{2 \tan \theta}{1+\tan^{2}\theta}= \frac{3}{4}$
$\Rightarrow 3+3 \tan^{2}\theta = 8 \tan \theta$
$\Rightarrow 3 \tan^{2}\theta - 8 \tan \theta =3$
$Let \tan \theta=y$
$\therefore 3y^{2}+8y+3=0$
$\Rightarrow y= \frac{8\pm \sqrt{64-4\times 3\times 3}}{2\times 3}$$\Rightarrow = \frac{8\pm \sqrt{28}}{6}$
$\Rightarrow y=\frac{2\left ( 4\pm \sqrt{7} \right )}{2\times 3}$
$\Rightarrow \tan \theta=\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
$\Rightarrow \theta=\tan^{-1}\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
{ but as we can see , $\frac{ 4+ \sqrt{7} }{3}> 1$, since $max\left [ \tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) \right ]=1$}
$\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) =\frac{4-\sqrt{7}}{3}=RHS$
Note: Scince $-\frac{\pi}{2}\leq sin^{-1}\frac{3}{4}\leq \frac{\pi}{2}$
$\Rightarrow -\frac{\pi}{4}\leq \frac{1}{2}sin^{-1}\frac{3}{4}\leq \frac{\pi}{4}$
$\therefore \tan\left ( -\frac{\pi}{4} \right )\leq \tan\left ( \frac{1}{2}sin^{-1}\frac{3}{4} \right )\leq \tan\left ( \frac{\pi}{4} \right )$
$\Rightarrow -1\leq \tan\left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )\leq 1$
Question 19
Answer:
We have $a_{1}=a, a_{2}=a + d, a_{3}=a+2d.......$
And, $d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=......=a_{n}-a_{n-1}$
Given that,
$\tan\left [ \tan^{-1}\left (\frac{d}{1+a_{1}a_{2}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{2}a_{3}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{3}a_{4}}\right )+............+ \tan^{-1}\left (\frac{d}{1+a_{n-1}a_{n}}\right ) \right ]$
$=\tan^{-1}\left [ \tan^{-1}\left ( \frac{a_{2}-a_{1}}{1+a_{1}a_{2}} \right )+\tan^{-1}\left ( \frac{a_{3}-a_{2}}{1+a_{2}a_{3}} \right )+.........+\tan^{-1}\left ( \frac{a_{n}-a_{n-1}}{1+a_{n-1}a_{n}} \right ) \right ]$
$=\tan\left [ \left ( \tan^{-1}a_{2}-\tan^{-1}a_{1} \right ) +\left ( \tan^{-1}a_{3}-\tan^{-1}a_{2} \right ) +................+\left ( \tan^{-1}a_{n}-\tan^{-1}a_{n-1} \right ) \right ]$
$=\tan \left [ \tan^{-1}a_{n}-\tan^{-1}a_{1} \right ]$
$\left [ Scince , \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan\left [ \tan^{-1} \left ( \frac{a_{n}-a_{1}}{1+a_{1}a_{n}} \right )\right ]$
$\left [ scince, \tan\left ( \tan^{-1}x \right )=x \right ]$
$=\frac{a_{n}-a_{1}}{1+a_{1}a_{n}}$
Question 20
Which of the following in the principal value branch of $\cos^{-1}x$
A.$\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
B.$\left ( 0,-\pi \right )$
C.$\left [ 0,\pi \right ]$
D.$\left ( 0,\pi \right )-\frac{\pi}{2}$
Answer:
Answer : (c)
We know that the principal value branch of $\cos^{-1}$ is $\left [ 0,\pi \right ]$
Question 21
Which of the following in the principal value branch of $cosec^{-1} x$ .
$A.\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
$B.\left [ 0,\pi \right ]-\left \{\frac{\pi}{2} \right \}$
$C.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
$D.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}$
Answer:
Answer :(D)
We know that the principal value branch of $cosec^{-1}x$ is $\left [-\frac{\pi}{2} ,\frac{\pi}{2}\right ]-\left ( 0 \right )$
Question 22
If $3\tan^{-1}x+\cot^{-1}x=\pi$, then x equals to
A. 0
B. 1
C. -1
D. 1/2
Answer:
Answer : B
Given That, $3 \tan ^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x+\tan^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x=\pi-\frac{\pi}{2}$ $\left [ Scince, \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2} \right ]$
$\Rightarrow \tan^{-1}\frac{2x}{1-x^{2}}=\frac{\pi}{2}$ $\left [ Scince, 2tan^{-1}x=\tan^{-1}\frac{2x}{1-x^{2}} \right ]$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{\pi}{2}$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{1}{0}$
Cross multiplying
$\Rightarrow 1-x^{2}=0$
$\Rightarrow x^{2}=\pm 1$
Here only x=1 satifies the given equation.
Note:- Here ,Putting x=-1 in the given equation we get,
$3 \tan^{-1}(-1)+cot^{-1}(-1)=\pi$
$3 \tan^{-1} \left [ \tan\left (\frac{-\pi}{4} \right )\right ]+cot^{-1} \left [ \cot \left (\frac{-\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [- \tan\left (\frac{\pi}{4} \right )\right ]+cot^{-1} \left [- \cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [\tan\left (\frac{\pi}{4} \right )\right ]+\pi-cot^{-1} \left [\cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$-3\times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi$
$-\pi+\pi=\pi$
$0\neq \pi$
Hence , x=-1 does not satisfy the given equation.
Question 23
The value of $\sin^{-1}\left [ cos\left ( \frac{33\pi}{5} \right ) \right ]$ is
$A. \frac{3\pi}{5}$
$B. \frac{-7\pi}{5}$
$C. \frac{\pi}{10}$
$D. \frac{-\pi}{10}$
Answer:
Answer :(D)
We have
$\sin^{-1}\left [ \cos\left ( \frac{33\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( 6\pi+ \frac{3\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( \frac{3\pi}{5} \right ) \right ]$ $\left [ Since , \cos\left ( 2n \pi+\theta \right ) = \cos\theta \right ]$
$=\sin^{-1}\left [ \cos \left ( \frac{\pi}{2}+\frac{\pi}{10} \right ) \right ]$
$=\sin^{-1}\left [ \sin \left (- \frac{\pi}{10} \right ) \right ]\left [ Since, \sin^{-1}\left ( x \right )=-\sin^{-1}x \right ]$
$=- \frac{\pi}{10} \left [ Since, \sin^{-1}\left ( \sin x \right )=-x, x\epsilon \left ( -\frac{\pi}{2} ,\frac{\pi}{2} \right ) \right ]$
Question 24
The domain of the function $\cos^{-1}\left ( 2x-1 \right )$ is
A.[0,1]
B.[-1,1]
C.(-1,1)
D.[0,$\pi$]
Answer:
Answer:(A)
We Have $f(x)=cos^{-1}\left ( 2x-1 \right )$
Scince $-1\leq 2x-1\leq 1$
$\Rightarrow 0\leq 2x\leq 2$
$\Rightarrow 0\leq x\leq 1$
$\therefore x\epsilon \left [ 0,1 \right ]$
Question 25
The domain of the function defined by $f(x)=\sin^{-1}\sqrt{x-1}$ is
A.[1,2]
B.[-1,1]
C.[0,1]
D. None of these
Answer:
Answer: (A)
$f(x)=\sin^{-1}\sqrt{x-1}$
$\Rightarrow 0\leq x-1\leq 1\left [ Since ,\sqrt{x-1}\geq 0 \, and\, -1\leq \sqrt{x-1} \leq 1\right ]$
$\Rightarrow 1\leq x\leq 2$
$\therefore x\epsilon \left [ 1,2 \right ]$
Question 26
If $\cos\left ( sin^{-1}\frac{2}{5} + cos^{-1}x \right )=0,$ then x is equal to
$A. \frac{1}{5}$
$B. \frac{2}{5}$
C.0
D.1
Answer:
Answer: (B)
Given, $\cos\left ( Sin^{-1}\frac{2}{5}+cos^{-1}x \right )=0$
Let $Sin^{-1}\frac{2}{5}+cos^{-1}x =\theta$
So $\cos \theta =0.......(1)$
Principal value $\cos^{-1} x$ is $\left [ 0,\pi \right ]$.......(2)
Also , we know that $\cos\frac{\pi}{2}=0......(3)$
From (1) ,,(2), and (3) we have
$\theta =\frac{\pi}{2}$
But $\theta =\sin^{-1}\frac{2}{5}+\cos^{-1}x$
So,
$\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
We know that $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2} for\: all \: x\epsilon \left [ -1 ,1\right ]$
As $\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
so $x=\frac{2}{5}$
Question 27
The value of $\sin \left(2 \tan ^{-1}(.75)\right)$ is equal to
A. 0.75
B. 1.5
C. 0.96
D. sin 1.5
Answer:
Answer :(c)
$\sin \left(2 \tan ^{-1}(.75)\right)$
Let, $\tan ^{-1}(.75)=\theta$
$\Rightarrow \tan^{-1}\left (\frac{3}{4} \right )=\theta$
$\Rightarrow \tan \theta =\frac{3}{4}$
As, $\tan \theta =\frac{3}{4}$ so
$\sin \theta =\frac{3}{5}, \cos \theta =\frac{4}{5}......(1)$
Now,
$\begin{aligned} & \sin \left(2 \tan ^{-1}(.75)\right)=\sin 2 \theta \\ & =2 \sin \theta \cos \theta\end{aligned}$
$=2\left (\frac{3}{5} \right )\left (\frac{4}{5} \right )$
$=\frac{24}{25}$
So, $\sin \left(2 \tan ^{-1}(.75)\right)=0.96$.
Question 28
The Value of $\cos^{-1} \cos \frac{3\pi}{2}$ is equal to
$A. \frac{\pi}{2}$
$B. \frac{3\pi}{2}$
$C. \frac{5\pi}{2}$
$D. \frac{7\pi}{2}$
Answer:
We have $\cos^{-1}\cos\frac{3\pi}{2}$
We know that,
$\cos\frac{3\pi}{2}=0$
So, $\cos^{-1}\cos\frac{3\pi}{2}=\cos^{-1}0$
Let $\cos^{-1}0=\theta$
$\Rightarrow \cos \theta=0$
Principal value of $\cos ^{-1} x$ is $[0, \pi]$
For, $\cos \theta=0$
so,$\theta=\frac{\pi}{2}$
Question 29
The value of the expression $2 \sec^{-1}2+\sin^{-1}\left ( \frac{1}{2} \right )$ is
$A.\frac{\pi}{6}$
$B.\frac{5\pi}{6}$
$C.\frac{7\pi}{6}$
D.1
Answer:
Answer :(B)
We have,
Principal value of sin-1 x is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Principal value of sec-1 x is [0, π]$-\left \{ \frac{\pi}{2} \right \}$
Let $\sin^{-1}\frac{1}{2}=A$
$\Rightarrow \sin A =\frac{1}{2}$
$\Rightarrow A =\frac{\pi}{6}$
So, $\Rightarrow \sin^{-1}\frac{1}{2}=\frac{\pi}{6}$ … (1)
Let sec-1 2 = B
⇒ sec B = 2
$\Rightarrow B=\frac{\pi}{3}$
So, 2 sec-1 2 = 2B
$\Rightarrow 2\sec^{-1}2=\frac{2\pi}{3}$...(2)
So, the value of $2\sec^{-1}2+\sin^{-1}\frac{1}{2}$ from (1) and (2) is
$2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{2\pi}{3}+\frac{\pi}{6}$
$=\frac{4\pi}{6}+\frac{\pi}{6}$
$=\frac{5\pi}{6}$
So, $2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{5\pi}{6}$
Question 30
If tan–1 x + tan–1 y = 4π/5, then cot–1x + cot–1 y equals
$A. \frac{\pi}{5}$
$B. \frac{2\pi}{5}$
$C. \frac{3\pi}{5}$
$D. \pi$
Answer:
Answer :(A)
We know that,
$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
We have,
tan–1 x + tan–1 y = 4π/5 … (1)
Let, cot–1x + cot–1 y = k … (2)
Adding (1) and (2) –
$\tan^{-1}x+\tan^{-1}y+\cot^{-1}x+\cot^{-1}y=\frac{4\pi}{5}+k$...(3)
Now, tan–1 A + cot–1 A = π/2 for all real numbers.
So, (tan–1 x + cot–1 x) + (tan–1y + cot–1 y) = π … (4)
From (3) and (4), we get,
$\frac{4\pi}{5}+k=\pi$
$\Rightarrow k=\pi-\frac{4\pi}{5}$
$\Rightarrow k=\frac{\pi}{5}$
Question 31
If $\sin^{-1}\frac{2a}{1+a^{2}}+\cos ^{-1}\frac{1-a^{2}}{1+a^{2}}=tan^{-1}\frac{2x}{1-x^{2}}$ where a, $x\epsilon \left [ 0,1 \right ]$ then the value of x is
A. 0
B. a/2
C. a
D. $\frac{2a}{1-a^{2}}$
Answer:
Answer:(D)
We have
$sin^{-1}\frac{2a}{1+a^{2}}+cos^{-1}\frac{1-a^{2}}{1+a^{2}}=\tan^{-1}\frac{2x}{1-x^{2}}$
we know that
$2 \tan ^{-1}p=\sin^{-1}\frac{2p}{1+p^{2}}.........(1)$
$Also,2 \tan^{-1}p=\cos^{-1}\frac{1-p^{2}}{1+p^{2}}.........(2)$
$Also,2 \tan^{-1}p=\tan^{-1}\frac{2p}{1-p^{2}}.........(3)$
From (1) and (2) we have,
L.H.S-
$\sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=2\tan^{-1}a+2\tan^{-1}a$
$\Rightarrow \sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=4\tan^{-1}a$
From (3) R.H.S
$\tan^{-1}\frac{2x}{1-x^{2}}=2\tan^{-1}x$
So, we have 4 tan-1 a = 2 tan-1 x
⇒ 2 tan-1 a = tan-1 x
But from (3) $2\tan^{-1}a= \tan^{-1}\frac{2a}{1-a^{2}}$
So $\tan^{-1}\frac{2a}{1-a^{2}}=\tan^{-1}x$
$x=\frac{2a}{1-a^{2}}$
Question 32
The value of $\cot \cos^{-1}\frac{7}{25} is$
A. 25/24
B.25/7
C.24/25
D.7/24
Answer:
Answer :(d)
We have to find $\cot \cos^{-1}\frac{7}{25}$
Let $\cos^{-1}\frac{7}{25}=A$
$\Rightarrow \cos^{-1}=\frac{7}{25}$
Also, $\cot A=\cot \cos^{-1}\frac{7}{25}$
As, $\sin A=\sqrt{1-\cos^{2}A}$
So $\sin A=\sqrt{1-\left (\frac{7}{5} \right )^{2}}$
$\Rightarrow \sin A=\sqrt{1-\frac{49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{625-49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{576}{625} }$
$\Rightarrow \sin A={\frac{24}{25} }$
We need to find cot A
$\cot A=\frac{\cos A}{\sin A}$
$\Rightarrow \cot A=\frac{\frac{7}{25}}{\frac{24}{25}}$
$\Rightarrow \cot A=\frac{7}{24}$
So $\cot \cos^{-1}\frac{7}{25}=\frac{7}{24}$
Question 33
The value of the expression $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$ is $\left [ Hint: \tan\frac{\theta}{2} =\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right ]$
$A. 2+ \sqrt{5}$
$B.\sqrt{5}-2$
$C.\frac{2+\sqrt{5}}{2}$
$D. \sqrt{5}+2$
Answer:
Answer:(B)
We need to find , $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$
Let, $\cos^{-1}\frac{2}{\sqrt{5}}=A$
$\Rightarrow \cos A=\frac{2}{\sqrt{5}}$
Also we need to find $\tan\frac{A}{2}$
We know that $\tan\frac{\theta}{2}=\sqrt{\frac{\left ( 1-\cos \theta \right )}{1+\cos \theta}}$
so, $\tan^{-1}\frac{A}{2}=\sqrt{\frac{\left ( 1-\cos A \right )}{1+\cos A}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1-\frac{2}{\sqrt{5}}}{1+\frac{2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\frac{\sqrt{5}-2}{\sqrt{5}}}{\frac{\sqrt{5}+2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}$
on rationalizing,
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5}-2 \right )\left ( \sqrt{5}+2 \right )}{\left (\sqrt{5}+2 \right )\left ( \sqrt{5}+2 \right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5} \right )^{2}-2^{2}}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{5-4}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1}{\sqrt{5} +2}$
Again rationalizing
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1\left ( \sqrt{5}-1 \right )}{\left (\sqrt{5} +2 \right )\left ( \sqrt{5}-2 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (\sqrt{5}^{2} -2^{2} \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (5-4 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{5}-2$
Question 34
If |x| ≤ 1, then $2\tan ^{2}x+\sin^{-1}\frac{2x}{1+x^{2}}$ is equal to
A. 4 tan–1 x
B. 0
C. $\frac{\pi}{2}$
D. π
Answer:
Answer(A)
We need to find, $2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
So,
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=$4 \tan^{1}x$
Question 35
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β (γ + α) + γ (α + β) equals
A. 0
B. 1
C. 6
D. 12
Answer:
Answer :(C)
Given, cos–1α + cos–1β + cos–1γ = 3π … (1)
Principal value of cos-1 x is [0, π]
So, maximum value which cos-1 x can have is π.
So, if (1) is correct then all the three terms i.e,
cos–1α, cos–1β, cos–1γ should be equal to π
So, cos–1α = π
cos–1β = π
cos–1γ = π
So, α = β = γ = -1
So, α(β + γ) + β (γ + α) + γ (α + β)
= (-1)(-1-1) + (-1)(-1-1) + (-1)(-1-1)
= 3(-1)(-2)
= 6
Question 36
The number of real Solutions of equarion $\sqrt{1+\cos x}=\sqrt{2}\cos^{-1}\left ( \cos x \right ) in \left [ \frac{\pi}{2},\pi \right ]$ is
A. 0
B. 1
C. 2
D. Infinite
Answer:
Answer:(A)
We have , $\sqrt{1+\cos 2x}=\sqrt{2}\cos^{-1}\left ( \cos x \right )$, x is in $\left [ \frac{\pi}{2}, \pi \right ]$
R.H.S
$\sqrt{2}\cos^{-1}\left ( \cos x \right )=\sqrt{2}x$
So, $\sqrt{1+\cos 2x}=\sqrt{2}x$
Squaring both side , we get,
$\left ( 1+\cos 2 x \right )=2x^{2}$
$\Rightarrow \cos 2x=2x^{2}-1$
Now plotting cos 2x and 2x2-1, we get,

As , there is no point of intersection in $\left [ \frac{\pi}{2},\pi \right ]$, so therre is no
solution of the given equation in $\left [ \frac{\pi}{2},\pi \right ]$
Question 37
If $\cos^{-1}x> \sin^{-1}x$ , then
$A. \frac{1}{\sqrt{2}}< x\leq 1$
$B. 0\leq x< \frac{1}{\sqrt{2}}$
$C.-1\leq x< \frac{1}{\sqrt{2}}$
D.x>0
Answer:
Answer :(C)
Plotting cos-1 x and sin-1 x, we get,

As, graph of cos-1 x is above graph of sin-1 x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$.
So, cos–1x > sin–1 x for all x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$ .
Question 38
Fill in the blanks The principle value of $\cos ^{-1}\left ( -\frac{1}{2} \right )$ is ___________.
Answer:
The principal value of $\cos^{-1}\left ( -\frac{1}{2} \right )$ is $\frac{2\pi}{3}$.
Principal value cos-1 x is [0,$\pi$]
Let, $\cos^{-1}\left ( -1 \right )=\theta$
$\Rightarrow \cos \theta=-\frac{1}{2}$
As, $\cos \frac{2\pi}{3} =-\frac{1}{2}$
So, $\theta= \frac{2\pi}{3}$
Question 39
Fill in the blanks The value of $sin^{-1}\left ( sin \frac{3\pi}{5} \right )$ is_______.
Answer:
The value of $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ is $\frac{2\pi}{5}$
Principal value of $\sin^{-1}$ is $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
now, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ should be in the given range
$\frac{3\pi}{5}$ is outside the range $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
As, sin (π – x) = sin x
So, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )=\sin^{-1}\left ( \sin \left ( \pi-\frac{3\pi}{5} \right ) \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )=\frac{2\pi}{5}$
Question 40
Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.
Answer:
$\begin{aligned} &\text { If } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0, \text { then value of } x \text { is } \sqrt{3} \text { . }\\ &\text { Given, } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0\\ &\Rightarrow \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\frac{\pi}{2}\\ &\text { We know that, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\\ &\text { So, } x=\sqrt{3} \end{aligned}$
Question 40
Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.
Answer:
If cos (tan–1x + cot–1 √3) = 0, then value of x is $\sqrt{3}$
Given, cos (tan–1x + cot–1$\sqrt{3}$) = 0
$\Rightarrow \tan^{-1}x+\cot^{-1}\sqrt{3}=\frac{\pi}{2}$
we know that, $\Rightarrow \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
so, x=$\sqrt{3}$
Question 41
fill in blanks the set of value of $\sec^{-1}\left (\frac{1}{2} \right )$ is______________.
Answer:
Fill in the blanks the set of value of $\sec^{-1}\left ( \frac{1}{2} \right )$ is $\phi$
Domain of sec-1 x is R – (-1,1).
As, $-\frac{1}{2}$ is outside domain of sec-1 x.
Which means there is no set of value of $\sec^{-1}\frac{1}{2}$
So, the solution set of $\sec^{-1}\frac{1}{2}$ is null set or $\phi$
Question 42
Fill in the blanks
The principal value of tan–1 √3 is _________.
Answer:
The Principal value of $\tan^{-1} \sqrt{3}$ is $\frac{\pi}{3}$
Principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
Let, $\tan^{-1}\left ( \sqrt{3} \right )=\theta$
$\Rightarrow \tan \theta=\sqrt{3}$
As $\Rightarrow \tan \frac{\pi}{3}=\sqrt{3}$
so, $\Rightarrow \theta=\sqrt{3}$
Question 43
The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$
Answer:
The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$ is $\frac{2\pi}{3}$
We needd, $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$
Principal value of cos-1 x is [0,π]
Also, cos (2nπ + θ) = cos θ for all n ? N
$\cos \frac{14\pi}{3}=\cos \left ( 4\pi+\frac{2\pi}{3} \right )$
$\Rightarrow \cos \frac{14\pi}{3}=\cos \frac{2\pi}{3}$
$So, \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\cos^{-1}\left (\cos \frac{2\pi}{3} \right )$
$\Rightarrow \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\frac{2\pi}{3}$
Question 44
Fill in the blanks
The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is ________.
Answer:
The value of cos (sin–1 x + cos–1 x) for |x| ≤ 1 is 0.
cos (sin–1 x + cos–1 x), |x| ≤ 1
We know that, (sin–1 x + cos–1 x), |x| ≤ 1 is $\frac{\pi}{2}$
So, $\cos\left ( \sin^{-1}x+\cos^{-1}x \right )=\cos\frac{\pi}{2}$
= 0
Question 45
Answer:
The value of expression $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$ is 1
$\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$
We know that, (sin–1 x + cos–1 x) for all |x| ≤ 1 is $\frac{\pi}{2}$
As, $x=\frac{\sqrt{3}}{2}$ lies in domain
So $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$=$\tan \frac{\pi}{4}$
=1
Question 46
Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then ______<y<_____.
Answer:
Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then $-2\pi< y< 2\pi$
$y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that,
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
so
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=4 tan-1 x
So, y = 4 tan-1 x
As, principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
So, $4 \tan^{-1}x\epsilon \left ( -2\pi,2\pi \right )$
Hence, -2π < y < 2π
Question 47
Answer:
The result $\tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right )$ is true when value of xy is > -1.
We have,
$\tan^{-1}x-\tan^{-1}=\tan^{-1} \frac{x-y}{1+xy}$
Principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Let tan-1x = A and tan-1y = B … (1)
So, A,B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
We know that, $\tan\left ( A-B \right )=\frac{\tan A - \tan B}{1-\tan A \tan B }$ … (2)
From (1) and (2), we get,
Applying, tan-1 both sides, we get,
$\tan^{-1}\tan\left ( A-B \right )=\tan^{-1}\frac{x-y}{1-xy}$
As, principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, for tan-1tan(A-B) to be equal to A-B,
A-B must lie in $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$– (3)
Now, if both A,B < 0, then A, B $\epsilon \left ( -\frac{\pi}{2},0\right )$
∴ A $\epsilon \left ( -\frac{\pi}{2},0\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if both A,B > 0, then A, B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( -\frac{\pi}{2},0\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan{-1}x-\tan{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if A > 0 and B < 0,
Then, A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon$ (0,π)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
$A-B< \frac{\pi}{2}$
$A< \frac{\pi}{2} +B$
Applying tan on both sides,
$\tan A< \tan\left ( \frac{\pi}{2} +B \right )$
As, $\tan\left ( \frac{\pi}{2} +\alpha \right )=-\cot \alpha$
So, tan A < - cot B
Again, $\cot \alpha=\frac{1}{\tan \alpha}$
So, $\tan A< \frac{1}{\tan B}$
⇒ tan A tan B < -1
As, tan B < 0
xy > -1
Now, if A < 0 and B > 0,
Then, A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
∴ A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and -B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
So, A – B $\epsilon$ (-π,0)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,\frac{\pi}{2}\right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
$\Rightarrow A-B> -\frac{\pi}{2}$
$\Rightarrow A>B -\frac{\pi}{2}$
Applying tan on both sides,
$\tan A>\tan\left (B -\frac{\pi}{2} \right )$
As, $\tan\left (\alpha -\frac{\pi}{2} \right )=-\cot \alpha$
So, tan B > - cot A
Again, $\cot \alpha\frac{1}{\tan \alpha}$
So, $\tan B >-\frac{1}{\tan A}$
⇒ tan A tan B > -1
⇒xy > -1
Question 48
Fill in the blanks
The value of cot–1(–x) for all x ? R in terms of cot–1 x is _______.
Answer:
The value of cot–1(–x) for all x ? R in terms of cot–1 x is
π – cot-1 x.
Let cot–1(–x) = A
⇒ cot A = -x
⇒ -cot A = x
⇒ cot (π – A) = x
⇒ (π – A) = cot-1 x
⇒ A = π – cot-1 x
So, cot–1(–x) = π – cot-1 x
Question 49
Answer:
True.
It is well known that all trigonometric functions have inverse over their respective domains.
Question 50
State True or False for the statement
The value of the expression (cos–1x)2 is equal to sec2 x.
Answer:
As, cos-1 x is not equal to sec x. So, (cos–1x)2 is not equal to sec2 x.
Question 51
Answer:
As, all trigonometric and their corresponding inverse functions are periodic so, we can obtain the inverse of a trigonometric ratio in any branch in which it is one-one and onto.
Question 52
Answer:
True
We know that the smallest value, either positive or negative of angle θ is called principal value of the inverse trigonometric function
Question 53
Answer:
True.
Graph of any inverse function can be obtained by interchanging x and y-axis in the graph of the corresponding function. If (p, q) are two points on f(x) then (q, p) will be on f-1(x).
Question 54
Answer:
false
$\tan ^{-1}\frac{n}{\pi}>\frac{\pi}{4}$
As , tan is an increasing function so applying tan on both side
we get,
$\tan\left (\tan ^{-1}\frac{n}{\pi} \right )>\tan \frac{\pi}{4}$
As, $\tan\left (\tan ^{-1}\frac{n}{\pi} \right )=\frac{n}{\pi}$ and $\tan\frac{\pi}{4}=1$
so $\frac{n}{\pi}>1$
⇒ n > π
⇒ n > 3.14
As, n is a natural number, so least value of n is 4.
Question 55
Answer:
True
Principal value of sin-1 x is $\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
Principal value of cos-1 x is [0, π]
We have, $\sin^{-1}\left [ \cos \left [ \sin^{-1}\left (\frac{1}{2} \right ) \right ] \right ]$
As, $\sin\frac{\pi}{6}=\frac{1}{2}$ so
$\sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos\left [ \sin^{-1}\left (\sin \frac{\pi}{6} \right ) \right ] \right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos \left [ \frac{\pi}{6} \right ]\right ]$
As, $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$ so,
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \sin \left [ \frac{\pi}{3} \right ]\right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\frac{\pi}{3}$
The sub-topics that are covered in this Chapter of inverse trigonometric functions are:
Find all NCERT Class 12 Maths Exemplar Solutions in one place to help you understand concepts better and practise effectively.
Class 12 Math NCERT Exemplar Solutions Chapter 2, students will get detailed answers to the questions in the NCERT book after every topic. Understanding and grasping this Chapter can help one aim for a better score in their school exams, boards and their entrance exams.
All NCERT Class 12 Maths Solutions are provided below so students can quickly access and revise each chapter.
Here are the subject-wise links for the NCERT Solutions of Class 12:
Given below are the subject-wise NCERT Notes of Class 12 :
To plan studies effectively, students should review the latest syllabus before the academic year starts. Find the updated syllabus links and recommended reference books below.
Given below are the subject-wise Exemplar Solutions of Class 12 NCERT:
Frequently Asked Questions (FAQs)
Introduction to Inverse Trigonometric Functions, The Basic Concepts of Inverse Trigonometric Functions and Properties of Inverse Trigonometric Functions are important topics of this chapter.
Yes, the NCERT exemplar Class 12 Maths chapter 2 solutions are helpful for you to prepare for board exams.
There is only 1 exercise in this chapter with 55 problem solving questions.
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters