NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions

NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions

Komal MiglaniUpdated on 12 Jan 2026, 11:38 PM IST

Imagine trying to find an unknown angle when only its sine or cosine value is given. Have you ever wondered how calculators determine the angles for trigonometric values? This is where inverse trigonometric functions come into play. They help us reverse the process of basic trigonometric functions like sine, cosine, and tangent, allowing us to find angles from given ratios. When the trigonometric values are known, the inverse trigonometric functions allow you to find the angles. These functions are very important when it comes to calculus, solving equations, and even putting them into practice in the real world, such as physics and engineering. We will go through all the NCERT Exemplar questions and Solutions in this Chapter, which are aimed at developing a solid understanding of this topic to help students understand what the author is trying to assess in the exam.

This Story also Contains

  1. NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions
  2. Sub-Topics Covered in NCERT Exemplar Class 12 Maths Solutions Chapter 2
  3. NCERT Exemplar Class 12 Maths Solutions: Chapter Wise
  4. Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 2
  5. NCERT Solutions for Class 12 Maths: Chapter Wise
  6. NCERT Books and NCERT Syllabus
NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions
NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions

In the NCERT Solutions for Class 12 Maths Chapter 2, students will understand how to find the ranges and domains of inverse trigonometric functions. Some other key concepts that students will learn are the behaviour of the function, properties of inverse trigonometric functions, and more, all to be explained in a systematic way. The NCERT Exemplar Class 12 Maths Chapter 2 Solutions will provide step-by-step guidance to ensure a strong conceptual understanding for students.

Also, read,

NCERT Exemplar Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions

Class 12 Maths Chapter 2 Exemplar Solutions
Exercise: 2.3
Page number: 35-41
Total questions: 55

Question 1

find the value of $\tan ^{-1}\left ( \tan \frac{5\pi }{6} \right )+\cos ^{-1}\left ( \cos \frac{13\pi }{6} \right )$

Answer:

we know that
$\tan^{-1}\left ( \tan x \right )=x; x \epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$ and
$\cos^{-1}\left ( \cos x \right )=x; x \epsilon \left ( 0,\pi \right)$

$\therefore \tan^{-1} \left ( \tan \frac{5\pi}{6} \right )+\cos^{-1}\left ( \cos \frac{13\pi}{6} \right )$
$= \tan^{-1}\left [ \tan \left ( \pi-\frac{\pi}{6} \right ) \right ]+\cos^{-1}\left [ cos\left ( \pi +\frac{7\pi}{6} \right ) \right ]$
$= \tan^{-1}\left (-\tan \frac{\pi}{6} \right )+cos^{-1}\left (-\cos\frac{7\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\left [cos^{-1}\left (\cos\frac{7\pi}{6} \right ) \right ]$
$\left [ since \, \tan^{-1}\left ( -x \right )=- \tan 1 x , x\epsilon R \, and \, \cos^{-1}=\left ( -x \right )=\pi-\cos^{-1}\left ( x \right ), x\epsilon \left ( -1,1 \right ) \right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi-\cos^{-1}\left [\cos\left (\pi+\frac{\pi}{6} \right )\right ]$
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \cos ^{-1} \left (-\cos\frac{\pi}{6} \right )$ [since , $\cos\left ( \pi +\theta \right )=-\cos \theta$ ]
$=- \tan^{-1}\left (\tan \frac{\pi}{6} \right )+ \pi - \pi +\cos ^{-1} \left (\cos\frac{\pi}{6} \right )$
$=-\frac{\pi}{6}+0+\frac{\pi}{6}$
$=0$

Question 2

Evaluate
$\cos\left [ \cos ^{-1} \left ( \frac{-\sqrt{3}}{2} \right ) +\frac{\pi}{6} \right]$

Answer:

We have
$\cos \left [ \cos ^{-1}\left ( \frac{-\sqrt{3}}{2} \right ) + \frac{\pi}{6}\right ]$
$\left [ Since,\cos\frac{5\pi}{6}= \frac{-\sqrt{3}}{2}\right ]$
$=\cos \left [ \cos^{-1} \left (\cos \frac{5\pi}{6} \right )+ \frac{\pi}{6}\right ]$
$=\cos\left ( \frac{5\pi}{6}+\frac{\pi}{6} \right )$

$\left [ since . \cos ^{-1}\left ( \cos x \right )=x;x\epsilon \left ( 0,\pi \right ) \right ]$
$= \cos \left ( \frac{6\pi}{6} \right )$
$= \cos \pi$
=-1

Question 3

Prove that $\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$

Answer:

We prove that
$\cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=7$
$\Rightarrow \cot \left ( \frac{\pi}{4}-2 \cot^{-1}3 \right )=\cot^{-1}7$
$\Rightarrow 2\cot^{-1}3=\frac{\pi}{4}-\cot^{-1}7$
$\Rightarrow 2\tan^{-1}\frac{1}{3}=\frac{\pi}{4}-\tan^{-1}\frac{1}{7}$
$\Rightarrow 2\tan^{-1}\frac{1}{3}+\tan^{1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , 2 \tan^{-1}(x)=2 tan^{-1}\frac{2x}{1-(x)^{2}} \right ]$
$\Rightarrow \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}}+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{2}{3}}{\frac{8}{9}} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( \frac{3}{4} \right )+\tan^{-1}\frac{1}{7}=\frac{\pi}{4}$
$\left [ since , \tan^{-1}x+ tan^{-1}y =\tan^{-1}\frac{x+y}{1-xy} \right ]$
$\Rightarrow \tan^{-1}\left ( \frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4},\frac{1}{7}} \right )=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {\frac{\left (21+4 \right )}{28}}{\frac{\left ( 28-3 \right )}{28}}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\frac {25}{25}=\frac{\pi}{4}$
$\Rightarrow \tan^{-1}\left ( 1 \right )=\frac{\pi}{4}$
$\Rightarrow 1=\tan\frac{\pi}{4}$
$\Rightarrow 1=1$
LHS=RHS
Hence Proved

Question 4

Find the value of $\tan ^{-1} \left ( -\frac{1}{\sqrt{3}} \right )+cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )+tan^{-1}\left [ sin\left ( \frac{-\pi }{2} \right ) \right ]$

Answer:

We have
$\tan^{-1}\left ( -\frac{1}{\sqrt{3}} \right )+cot^{-1}\left ( \frac{1}{\sqrt{3}} \right )+ tan^{-1}\left [ sin\left ( \frac{-\pi }{2} \right ) \right ]$
$=\tan^{-1}\left (tan \frac{5\pi}{6} \right )+cot^{-1}\left (cot \frac{\pi}{3} \right )+ tan^{-1}\left (-1 \right )$
$=\tan^{-1}\left [ tan\left ( \pi-\frac{5\pi}{6} \right ) \right ]+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ \tan\left ( \pi-\frac{\pi}{4} \right ) \right ]$
$\left [ since, \tan^{-1}\left ( \tan x \right )=x, x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right ); \cot^{-1}\left ( cot x \right )=x,x\epsilon \left ( 0,\pi \right ); and\: \tan^{-1}\left ( -x \right )=-\tan^{-1}x \right ]$
$=\tan^{-1}\left ( -\tan \frac{\pi}{6} \right )+\cot^{-1}\left ( \cot\frac{\pi}{3} \right )+\tan^{-1}\left [ -\tan\frac{\pi}{4} \right ]$
$=-\frac{\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4}$
$=\frac{-2\pi+4\pi-3\pi}{12}$
$=-\frac{\pi}{12}$

Question 5

find the value of $\tan^{-1}\left ( tan\frac{2\pi}{3} \right )$

Answer:

We have
$\tan^{-1}\left ( \tan\frac{2\pi}{3} \right )=\tan^{-1}\tan\left ( \pi-\frac{\pi}{3} \right )$
$=\tan^{-1}\left ( -\tan\frac{\pi}{3} \right )$
$\left [ Since, \tan^{-1}\left ( -x \right )=-\tan^{-1}x,x\epsilon R \right ]$
$=-\tan^{-1}tan\frac{\pi}{3}$
$\left [ Since, \tan^{-1}\left ( \tan x \right ) =x,x\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )\right ]$
$=-\frac{\pi}{3}$

Question 6

show that $2\tan^{-1}\left ( -3 \right )=-\frac{\pi}{2}+\tan ^{-1}\left ( \frac{-4}{3} \right )$

Answer:

We have to prove ,
$2\tan^{-1}(-3)=-\frac{\pi}{2}+tan^{-1}\left ( \frac{-4}{3} \right )$
LHS=$2\tan^{-1}(-3)$ $\left [ Since, \tan^{-1}\left ( -x \right ) = -\tan^{-1}x,x\epsilon R\right ]$
$=-\left [ \cos^{-1}\frac{1-3^{2}}{1+3^{2}} \right ]$ $\left [ Since 2 \tan^{-1}x=\left [\cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ], x\geq 0\right ]$
$=-\left [ \cos^{-1}\left (\frac{-8}{10} \right ) \right ]$
$=-\left [ \cos^{-1}\left (\frac{-4}{5} \right )\right ]$
$=-\left [\pi- \cos^{-1}\left (\frac{4}{5} \right ) \right ]$ $=-\left [ since \cos^{-1}(-x)=\pi-\cos^{-1}x,x\epsilon \left [ -1,1 \right ] \right ]$
$=-\pi+\cos^{-1}\left ( \frac{4}{5} \right )$
$\left [ let \cos^{-1}\left ( \frac{4}{5} \right ) =0 \Rightarrow \cos \theta = \left ( \frac{4}{5} \right ) \Rightarrow \tan \theta = \left ( \frac{3}{4} \right ) \Rightarrow \theta = \tan^{-1} \left ( \frac{3}{4} \right )\right ]$
$=-\pi+\tan^{-1}\left (\frac{3}{4} \right )=-\pi+\left [ \frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right ) \right ]$
$=-\frac{\pi}{2}-\cot^{-1}\left ( \frac{3}{4} \right )$
$\left [ Since, \tan^{-1}\left (-x \right )=-\tan^{-1}x \right ]$
$=-\frac{\pi}{2}+\tan^{-1}\left ( \frac{-4}{3} \right )$
$=-\frac{\pi}{2}+\tan^{-1}\left (- \frac{4}{3} \right )$
=RHS
Hence Proved.

Question 7

Find the real solution of the equation:
$\tan^{-1}\sqrt{x\left ( x+1 \right )}+\sin^{-1}\sqrt{x^{2}+x+1}=\frac{\pi}{2}$

Answer:

We have , $\tan^{-1}\sqrt{x(x+1)}+\sin^{-1}\sqrt{x^{2}+x+1}=\frac{\pi}{2}.........(i)$
Let $\sin^{-1}\sqrt{x^{2}+x+1}=\theta$
$\Rightarrow \sin \theta =\sqrt{\frac{x^{2}+x+1}{1}}$
$\Rightarrow \tan \theta =\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}$ $\left [ Since, \tan\theta =\frac{\sin \theta }{\cos \theta } \right ]$
$\Rightarrow \theta =\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\sin^{-1}\sqrt{x^{2}+x+1}$
On Putting the value of $\theta$ in Eq. (i), We get
$\tan^{-1}\sqrt{x(x+1)}+\tan^{-1}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}=\frac{\pi}{2}.........(ii)$
we know that,
$\tan^{-1}x+\tan^{-1}y=\tan^{-1}\frac{x+y}{1-xy},xy< 1$
So,(ii) becomes,
$\tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \tan^{-1}\left [ \frac{\sqrt{x\left ( x+1 \right )}+\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}}{1-\sqrt{x\left ( x+1 \right )}\frac{\sqrt{x^{2}+x+1}}{\sqrt{-1\left (x^{2}+x \right )}}} \right ]=\frac{\pi}{2}$
$\Rightarrow \frac{x^{2}+x+\sqrt{-\left ( x^{2}+x+1 \right )}}{\left [ 1-\sqrt{-\left ( x^{2}+x+1 \right ).\sqrt{\left ( x^{2}+x \right )}} \right ]}=\tan \frac{\pi}{2}=\frac{1}{0}$
$\Rightarrow \left [ 1-\sqrt{-\left ( x^{2}+x+1 \right )}.\sqrt{\left ( x^{2}+x \right )} \right ]=0$
$\Rightarrow -\left ( x^{2}+x+1 \right )=1\: or\: x^{2}+x=0$
$\Rightarrow x^{2}-x-1=1 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x^{2}+x+2=0 \: or\: x\left ( x+1 \right )=0$
$\Rightarrow x= \frac{-1\pm \sqrt{1-\left ( 4\times 2 \right )}}{2}\: or\: x=-1$
$\Rightarrow x= 0 \: or \: x=-1$
For real solution , we have x=0,-1.

Question 8

Find the value of $\sin\left ( 2 \tan^{-1}\frac{1}{3} \right )+\cos\left ( tan^{-1}2\sqrt{2} \right )$

Answer:

We have $\sin \left (2 \tan^{-1}\frac{1}{3} \right )+\cos \left ( tan^{-1}2\sqrt{2} \right )$
$=\sin \left [\sin^{-1}\left \{ \frac{2\times \frac{1}{3}}{1+\left ( \frac{1}{3} \right )^{2}} \right \} \right ]+\cos\left ( \cos^{-1}\frac{1}{3} \right )$
$\left [ Since, \: \tan^{-1}x =\cos^{-1}\frac{1}{\sqrt{1+x^{2}}}; 2\tan^{-1}\left ( x \right )=2 \tan^{-1}\frac{2x}{1-\left (x \right )^{2}}, -1\leq x\leq 1 \: and \: \tan^{-1}2\sqrt{2}=\cos^{-1}\frac{1}{3}\right ]$
=$\sin\left [ \sin^{-1}\left \{ \frac{\frac{2}{3}}{1+\frac{1}{9}} \right \} \right ]+\frac{1}{3}$ $\left [ Since, \cos\left ( \cos^{-1}x \right ) = x, x\epsilon \left \{ -1,1 \right \}\right ]$
$= \sin \left [ \sin^{-1}\left ( \frac{2\times 9}{3\times 10} \right ) \right ]+\frac{1}{3}$
$= \sin \left [ \sin^{-1}\left ( \frac{3}{5} \right ) \right ]+\frac{1}{3}$
$= \frac{3}{5}+\frac{1}{3}\left [ Since, \sin\left ( \sin^{-1}x \right )=x \right ]$
$= \frac{14}{15}$

Question 9

If $2 \tan ^{-1}\left ( \cos \theta \right )=\tan^{-1}\left ( cosec \theta \right ),$ then show that $\theta =\frac{\pi}{4}$, where n is any integer.

Answer:

We have $2 \tan^{-1}\left ( \cos \theta \right )=\tan^{-1}\left ( cosec\, \theta \right )$
$\Rightarrow \tan^{-1}\left ( \frac{2 \cos \theta }{1-\cos^{2}\theta } \right )=\tan^{-1}\left ( 2\, cosec\, \theta \right )$ $\left [ Since \: 2 \tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{2 \cos \theta }{\sin^{2}\theta }=2 \, cosec\, \theta$
$\Rightarrow \cot \theta . 2\, cosec\, \theta =2\, cosec\, \theta$
$\Rightarrow \cot \theta =1$
$\Rightarrow \cot \theta =\cot\frac{\pi}{4}$
$\Rightarrow \theta =\frac{\pi}{4}$
Hence Proved

Question 10

Show that $\cos \left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4 \tan^{-1}\frac{1}{3} \right )$

Answer:

We have , $\cos\left ( 2 \tan^{-1}\frac{1}{7} \right )=\sin\left ( 4\tan^{-1}\frac{1}{3} \right )$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{1-\left ( \frac{1}{7} \right )^{2}}{1+\left ( \frac{1}{7} \right )^{2}} \right ) \right ]=sin\left ( 2.2\tan^{-1}\frac{1}{3} \right )$
$\left [ Since, 2 \tan^{-1}x=\left [ \cos^{-1}\frac{1-x^{2}}{1+x^{2}} \right ] ,x\geq 0 \right ]$
$\Rightarrow \cos\left [ \cos^{-1}\left ( \frac{\frac{48}{49}}{\frac{50}{49}} \right ) \right ]=\sin\left [ 2\left ( \tan^{-1}\frac{\frac{2}{3}}{1-\left ( \frac{1}{3} \right )^{2}} \right ) \right ]$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( 2 \tan^{-1} \frac{3}{4} \right )$
$\Rightarrow \cos \left [ \cos^{-1}\left ( \frac{24}{25} \right ) \right ]=\sin\left ( \sin^{-1}\frac{2\times \frac{3}{4}}{1+\frac{9}{16}} \right )$ $\left [ Since , 2\tan^{-1}x=\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right ) \right ]$
$\Rightarrow \frac{24}{25}=\sin\left ( \sin^{-1}\frac{\frac{3}{2}}{\frac{25}{16}} \right )$
$\Rightarrow \frac{24}{25}=\frac{48}{50}$
$\Rightarrow \frac{24}{25}=\frac{24}{25}$
Since LHS=RHS
Hence Proved

Question 11

Solve the following equation $\cos \left ( \tan^{-1}x \right )=\sin\left ( \cot^{-1}\frac{3}{4} \right )$

Answer:

We have $\cos \left ( \tan^{-1}x \right )=\sin\left ( \cot^{-1}\frac{3}{4} \right )$
$\Rightarrow \cos \left ( \cos^{-1}\frac{1}{\sqrt{x^{2}+2}} \right )=\sin\left ( \sin^{-1}\frac{4}{5} \right )........(i)$
Let $\tan^{-1}x=\theta _{1}\Rightarrow \tan\theta_{1}=\frac{x}{1}$
$\Rightarrow \cos \theta_{1}=\frac{1}{\sqrt{x^{2}+1}}.....(a)$
$\Rightarrow \theta_{1}=\cos^{-1}\frac{1}{\sqrt{x^{2}+1}}.....(c)$
And $\cot^{-1}=\theta_{2}\Rightarrow \cot^{-1}=\frac{3}{4}$
$\Rightarrow \sin \theta_{2}=\frac{4}{5}.......(b)$
$\Rightarrow \theta_{2}= \sin^{-1}\frac{4}{5}.......(d)$
From (c),(d);(i) becomes
$\Rightarrow \cos \theta_{1}= \sin\theta_{2}$
$\Rightarrow \frac{1}{\sqrt{x^{2}+1}}=\frac{4}{5}$ [From (a),(b)]
On squarinting both Sides, we get
$\Rightarrow 16\left (x^{2}+1 \right )=25$
$\Rightarrow 16x^{2}=9$
$\Rightarrow x^{2}=\left (\frac{3}{4} \right )^{2}$
$\Rightarrow x=\pm \frac{3}{4}$
$\therefore x=\frac{3}{4},-\frac{3}{4}.$

Question 12

Prove that $\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )=\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^{2}$

Answer:

We have $\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )=\frac{\pi}{4}+\frac{1}{2}cos^{-1}x^{2}$
LHS=$\tan^{-1}\left ( \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}} \right )........(i)$
$\left [ x^{2}=\cos2\theta=\cos^{2}\theta+\sin^{2}\theta=1-2\sin^{2}\theta = 2\cos^{2}\theta-1 \right ]$
$\Rightarrow \cos^{-1}x^{2}=2\theta$
$\Rightarrow \theta=\frac{1}{2}\cos^{-1}x^{2}$
$\therefore \sqrt{1+x^{2}}=\sqrt{1+\cos2\theta}$
$\Rightarrow \sqrt{1+2\cos^{2}\theta-1}=\sqrt{2}\cos \theta$
And $\sqrt{1-x^{2}}=\sqrt{1-\cos2\theta}$
$\sqrt{1-1+2 \sin^{2}\theta}=\sqrt{2}\sin \theta$
$\therefore LHS = \tan^{-1}\left (\frac{ \sqrt{2}\cos \theta +\sqrt{2} \sin \theta}{ \sqrt{2}\cos \theta -\sqrt{2} \sin \theta}\right )$
$= \tan^{-1}\left (\frac{ \cos \theta + \sin \theta}{ \cos \theta - \sin \theta}\right )$
$= \tan^{-1}\left (\frac{1+\tan \theta}{ 1-\tan \theta}\right )$
$= \tan^{-1}\left \{\frac{\tan\left (\frac{\pi}{4} \right )+\tan \theta}{ \tan\left (\frac{\pi}{4} \right )-\tan \theta} \right \}$
$= \tan^{-1}\left [ \tan\left ( \frac{\pi}{4}+\theta \right ) \right ]$ $\left [ Since , \tan\left ( x+y \right )=\frac{\tan x+\tan y}{1-\tan x.\tan y} \right ]$
$=\frac{\pi}{4}+\theta$
$=\frac{\pi}{4}+\frac{1}{2}\cos^{-1}x^{2}$
=RHS
LHS=RHS
Hence Proved

Question 13

Find the simplified from of $\cos^{-1}\left ( \frac{3}{5}\cos x +\frac{4}{5}\sin x \right )$ , where $x\epsilon \left [ \frac{-3\pi}{4},\frac{\pi}{4} \right ]$

Answer:

Let $\cos y=\frac{3}{5}$
$\Rightarrow \sin y=\frac{4}{5}$
$\Rightarrow y=\cos^{-1}\frac{3}{5}=\sin^{-1}\frac{4}{5}=\tan^{-1}\frac{4}{3}$
$\therefore \cos^{-1}\left [ \cos y. \cos x+\sin y. \sin x \right ]$
$\left [ since, \cos\left ( A-B \right ) = \cos A.\cos B + \sin A. \sin B \right ]$
$=\cos^{-1}\left [ \cos\left ( y-x \right ) \right ]$
$\left [ scine, \cos \left ( \cos^{-1}x \right )=x,x\epsilon \left \{ -1,1 \right \} \right ]$
=y-x
$\left [ scine, y=\tan^{-1}\frac{4}{3} \right ]$
$=\tan^{-1}\frac{4}{3} -x$

Question 14

Prove that $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$

Answer:

we have $\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}=\sin^{-1}\frac{77}{85}$
$LHS=\sin^{-1}\frac{8}{17}+\sin^{-1}\frac{3}{5}$

$let \: \: \sin^{-1}\frac{8}{17}=\theta_{1}$
$\Rightarrow \sin \theta_{1}=\frac{8}{17}$
$\Rightarrow \tan \theta_{1}=\frac{8}{15}\Rightarrow \theta_{1}=\tan^{-1}\frac{8}{15}$
And, $\sin \frac{3}{5}=\theta_{2}\Rightarrow \sin^{-1}\frac{3}{5}$
$\Rightarrow \tan \theta_{2}=\frac{3}{4}\Rightarrow \theta_{2}=\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\frac{8}{15}+\tan^{-1}\frac{3}{4}$
$=\tan^{-1}\left [ \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15}\times \frac{3}{4}} \right ]$ $\left [ Since , \tan^{-1}x+\tan^{-1} y=tan^{-1}\left ( \frac{x+y}{1-xy} \right ) \right ]$
$=\tan^{-1}\left [ \frac{\frac{77}{60}}{\frac{36}{60}} \right ]$
$=\tan^{-1}\left ( \frac{77}{36} \right )$
Let $=\theta _{3}=tan^{-1}\left ( \frac{77}{36} \right )\Rightarrow \tan \theta_{3}=\frac{77}{36}$
$\Rightarrow \sin \theta_{3}=\frac{77}{\sqrt{5929+1296}}=\frac{77}{85}$
$\therefore \theta _{3}=\sin^{-1}\left ( \frac{77}{85} \right )$
$= \sin^{-1}\left ( \frac{77}{85} \right )=RHS$
Hence proved

Question 15

Show that $\sin^{-1}\frac{5}{13}+\cos ^{-1}\frac{3}{5}=\tan^{-1}\frac{63}{16}$

Answer:

Solving LHS, $\sin^{-1}\frac{5}{13}+\cos^{-1}\frac{3}{5}$
$Let \: \sin^{-1}\frac{5}{13}=x$
$\Rightarrow \sin x=\frac{5}{13}$
$And \, \cos^{2}x=1-\sin^{2}x$
$\Rightarrow 1-\frac{25}{169}=\frac{144}{169}$
$\Rightarrow \cos x= \sqrt{\frac{144}{169}}=\frac{12}{13}$
$\therefore \tan x=\frac{\sin x}{\cos x}=\frac{\frac{5}{13}}{\frac{12}{13}}=\frac{5}{12}$
$\Rightarrow \tan x=\frac{5}{12}..........(i)$
Again , let $\cos^{-1}\frac{3}{5}=y$
$\Rightarrow \cos y=\frac{3}{5}$
$\therefore \sin y=\sqrt{1-\cos^{2}y}$
$\Rightarrow \sin y=\sqrt{1-\left (\frac{3}{5} \right )^{2}}$
$\Rightarrow \sin y=\sqrt{\frac{16}{25}}=\frac{4}{5}$
$\Rightarrow \tan y=\frac{\sin y}{\cos y}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}.........(ii)$
We know that, $\tan\left ( x+y \right )=\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12}\frac{4}{3}}$ [from (i),(ii)]
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{15+48}{36}}{\frac{36-20}{36}}$
$\Rightarrow \tan\left ( x+y \right )=\frac{\frac{63}{36}}{\frac{16}{36}}$
$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}$$\Rightarrow \left ( x+y \right )=\tan^{-1}\frac{63}{16}=RHS$
Since , LHS=RHS
Hence Proved.

Question 16

Prove that , $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}=\sin^{-1}\frac{1}{\sqrt{5}}$

Answer:

Solving LHS, $\tan^{-1}\frac{1}{4}+\tan^{-1}\frac{2}{9}$
Let $\tan^{-1}\frac{1}{4}=x$
$\Rightarrow \tan x=\frac{1}{4}$
Squaring both sides,
$\Rightarrow \tan^{2} x=\frac{1}{16}$
$\Rightarrow \sec^{2} x-1=\frac{1}{16}$
$\Rightarrow \sec^{2} x=\frac{17}{16}$
$\Rightarrow \frac{1}{\cos^{2}x}=\frac{17}{16}$
$\Rightarrow \cos^{2}x=\frac{16}{17}$
$\Rightarrow \cos x=\frac{4}{\sqrt{17}}$
$Since,\: \sin^{2}x=1-\cos^{2}x$
$\Rightarrow \sin^{2}x=1-\frac{16}{17}=\frac{1}{17}$
$\Rightarrow \sin x=\frac{1}{\sqrt{17}}$
Again,
Let $\tan^{-1}\frac{2}{9}=y$
$\Rightarrow \tan y=\frac{2}{9}$
Squaring both sides,
$\Rightarrow \tan^{2}y=\frac{4}{81}$
$\Rightarrow \sec^{2}y-1=\frac{4}{81}$
$\Rightarrow \sec^{2}y=\frac{85}{81}$
$\Rightarrow \frac{1}{\cos^{2}y}=\frac{85}{81}$
$\Rightarrow \cos^{2}y=\frac{81}{85}$
$\Rightarrow \cos y=\frac{9}{\sqrt{85}}$
Since, $\sin^{2}y=1-\cos^{2}y$
$\Rightarrow \sin^{2}=1-\frac{81}{85}=\frac{4}{85}$
$\Rightarrow \sin x=\frac{2}{\sqrt{85}}$
We know that, $\sin(x+y)=\sin x.\sin y+ \cos x.\sin y$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{17}}.\frac{9}{\sqrt{85}}+ \frac{4}{\sqrt{17}}.\frac{2}{\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{17}{\sqrt{17}.\sqrt{85}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{\sqrt{17}}{\sqrt{17}.\sqrt{5}}$
$\Rightarrow \sin\left ( x+y \right )=\frac{1}{\sqrt{5}}$
$\Rightarrow x+y =\sin^{-1}\frac{1}{\sqrt{5}}=RHS$
Since , LHS=RHS
Hence Proved

Question 17

Find the value of $4 \tan^{-1}\frac{1}{5}-tan^{-1}\frac{1}{239}$

Answer:

We have, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}$
$=2 \times \left ( 2 \tan^{-1}\frac{1}{5} \right )-\tan^{-1}\frac{1}{239}$
$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{1-\left ( \frac{1}{5} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$

$=2 \left [ \tan^{-1}\frac{\frac{2}{5}}{ \frac{24}{25} } \right ]-\tan^{-1}\frac{1}{239}$
$=2 \tan^{-1}\frac{5}{12}-\tan^{-1}\frac{1}{239}$
$=\left [ \tan^{-1}\frac{\frac{5}{6}}{1-\left (\frac{5}{12} \right )^{2}} \right ]-\tan^{-1}\frac{1}{239}$ $\left [ since, 2\tan^{-1}x=\tan^{-1}\frac{2x}{1-\left ( x \right )^{2}} \right ]$
$=\tan^{-1}\frac{\frac{5}{6}}{1-\frac{25}{144}}-\tan^{-1}\frac{1}{139}$
$=\tan^{-1}\left ( \frac{144 \times 5}{119 \times 6} \right )-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{120}{119}-\tan^{-1}\frac{1}{239}$
$=\tan^{-1}\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119}.\frac{1}{239}}\left [ since, \tan^{-1} x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan^{-1}\left [\frac{28680-119}{28441+120} \right ]$
$=\tan^{-1}\frac{28561}{28561}$
$=\tan^{-1}\left ( 1 \right )$
$=\tan^{-1}\left ( \tan \frac{\pi}{4} \right )$
$=\frac{\pi}{4}$
Hence, $4 tan^{-1}\frac{1}{5}-\tan^{-1}\frac{1}{239}=\frac{\pi}{4}$

Question 18

Show that $\tan \left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )=\frac{4-\sqrt{7}}{3}$ and, justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored.

Answer:

Solving LHS,
$=\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4} \right )$
$Let \frac{1}{2} \sin^{-1}\frac{3}{4} =\theta$
$\Rightarrow \sin^{-1}\frac{3}{4} =2\theta$
$\Rightarrow \frac{3}{4} =\sin2\theta$
$\Rightarrow \sin2\theta= \frac{3}{4}$
$\Rightarrow \frac{2 \tan \theta}{1+\tan^{2}\theta}= \frac{3}{4}$
$\Rightarrow 3+3 \tan^{2}\theta = 8 \tan \theta$
$\Rightarrow 3 \tan^{2}\theta - 8 \tan \theta =3$
$Let \tan \theta=y$
$\therefore 3y^{2}+8y+3=0$
$\Rightarrow y= \frac{8\pm \sqrt{64-4\times 3\times 3}}{2\times 3}$$\Rightarrow = \frac{8\pm \sqrt{28}}{6}$
$\Rightarrow y=\frac{2\left ( 4\pm \sqrt{7} \right )}{2\times 3}$
$\Rightarrow \tan \theta=\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
$\Rightarrow \theta=\tan^{-1}\frac{\left ( 4\pm \sqrt{7} \right )}{3}$
{ but as we can see , $\frac{ 4+ \sqrt{7} }{3}> 1$, since $max\left [ \tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) \right ]=1$}
$\tan\left ( \frac{1}{2} \sin^{-1}\frac{3}{4}\right ) =\frac{4-\sqrt{7}}{3}=RHS$
Note: Scince $-\frac{\pi}{2}\leq sin^{-1}\frac{3}{4}\leq \frac{\pi}{2}$
$\Rightarrow -\frac{\pi}{4}\leq \frac{1}{2}sin^{-1}\frac{3}{4}\leq \frac{\pi}{4}$
$\therefore \tan\left ( -\frac{\pi}{4} \right )\leq \tan\left ( \frac{1}{2}sin^{-1}\frac{3}{4} \right )\leq \tan\left ( \frac{\pi}{4} \right )$
$\Rightarrow -1\leq \tan\left ( \frac{1}{2}\sin^{-1}\frac{3}{4} \right )\leq 1$

Question 19

If a1,a2,a3,.................an is an arithmetic progression with common difference d, then evaluate the following expression.
$\tan\left [ \tan^{-1}\left ( \frac{d}{1+a_{1}a_{2}} \right )+\tan^{-1}\left ( \frac{d}{1+a_{2}a_{3}} \right )+\tan^{-1}\left ( \frac{d}{1+a_{3}a_{4}} \right )+..........+\tan^{-1}\left ( \frac{d}{1+a_{n-1}a_{n}} \right ) \right ]$

Answer:

We have $a_{1}=a, a_{2}=a + d, a_{3}=a+2d.......$
And, $d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=......=a_{n}-a_{n-1}$
Given that,
$\tan\left [ \tan^{-1}\left (\frac{d}{1+a_{1}a_{2}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{2}a_{3}}\right )+ \tan^{-1}\left (\frac{d}{1+a_{3}a_{4}}\right )+............+ \tan^{-1}\left (\frac{d}{1+a_{n-1}a_{n}}\right ) \right ]$
$=\tan^{-1}\left [ \tan^{-1}\left ( \frac{a_{2}-a_{1}}{1+a_{1}a_{2}} \right )+\tan^{-1}\left ( \frac{a_{3}-a_{2}}{1+a_{2}a_{3}} \right )+.........+\tan^{-1}\left ( \frac{a_{n}-a_{n-1}}{1+a_{n-1}a_{n}} \right ) \right ]$
$=\tan\left [ \left ( \tan^{-1}a_{2}-\tan^{-1}a_{1} \right ) +\left ( \tan^{-1}a_{3}-\tan^{-1}a_{2} \right ) +................+\left ( \tan^{-1}a_{n}-\tan^{-1}a_{n-1} \right ) \right ]$
$=\tan \left [ \tan^{-1}a_{n}-\tan^{-1}a_{1} \right ]$
$\left [ Scince , \tan^{-1}x-\tan^{-1}y=\tan^{-1}\left ( \frac{x-y}{1+xy} \right ) \right ]$
$=\tan\left [ \tan^{-1} \left ( \frac{a_{n}-a_{1}}{1+a_{1}a_{n}} \right )\right ]$
$\left [ scince, \tan\left ( \tan^{-1}x \right )=x \right ]$
$=\frac{a_{n}-a_{1}}{1+a_{1}a_{n}}$

Question 20

Which of the following in the principal value branch of $\cos^{-1}x$
A.$\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
B.$\left ( 0,-\pi \right )$
C.$\left [ 0,\pi \right ]$
D.$\left ( 0,\pi \right )-\frac{\pi}{2}$

Answer:

Answer : (c)
We know that the principal value branch of $\cos^{-1}$ is $\left [ 0,\pi \right ]$

Question 21

Which of the following in the principal value branch of $cosec^{-1} x$ .
$A.\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
$B.\left [ 0,\pi \right ]-\left \{\frac{\pi}{2} \right \}$
$C.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
$D.\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]-\left \{ 0 \right \}$

Answer:

Answer :(D)

We know that the principal value branch of $cosec^{-1}x$ is $\left [-\frac{\pi}{2} ,\frac{\pi}{2}\right ]-\left ( 0 \right )$

Question 22

If $3\tan^{-1}x+\cot^{-1}x=\pi$, then x equals to
A. 0
B. 1
C. -1
D. 1/2

Answer:

Answer : B
Given That, $3 \tan ^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x+\tan^{-1}x+\cot^{-1}x=\pi$
$\Rightarrow 2 \tan^{-1}x=\pi-\frac{\pi}{2}$ $\left [ Scince, \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2} \right ]$
$\Rightarrow \tan^{-1}\frac{2x}{1-x^{2}}=\frac{\pi}{2}$ $\left [ Scince, 2tan^{-1}x=\tan^{-1}\frac{2x}{1-x^{2}} \right ]$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{\pi}{2}$
$\Rightarrow \frac{2x}{1-x^{2}}=\tan \frac{1}{0}$
Cross multiplying
$\Rightarrow 1-x^{2}=0$
$\Rightarrow x^{2}=\pm 1$
Here only x=1 satifies the given equation.
Note:- Here ,Putting x=-1 in the given equation we get,
$3 \tan^{-1}(-1)+cot^{-1}(-1)=\pi$
$3 \tan^{-1} \left [ \tan\left (\frac{-\pi}{4} \right )\right ]+cot^{-1} \left [ \cot \left (\frac{-\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [- \tan\left (\frac{\pi}{4} \right )\right ]+cot^{-1} \left [- \cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$3 \tan^{-1} \left [\tan\left (\frac{\pi}{4} \right )\right ]+\pi-cot^{-1} \left [\cot \left (\frac{\pi}{4} \right )\right ]=\pi$
$-3\times \frac{\pi}{4}+\pi-\frac{\pi}{4}=\pi$
$-\pi+\pi=\pi$
$0\neq \pi$
Hence , x=-1 does not satisfy the given equation.

Question 23

The value of $\sin^{-1}\left [ cos\left ( \frac{33\pi}{5} \right ) \right ]$ is
$A. \frac{3\pi}{5}$
$B. \frac{-7\pi}{5}$
$C. \frac{\pi}{10}$
$D. \frac{-\pi}{10}$

Answer:

Answer :(D)
We have
$\sin^{-1}\left [ \cos\left ( \frac{33\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( 6\pi+ \frac{3\pi}{5} \right ) \right ]$
$=\sin^{-1}\left [ \cos\left ( \frac{3\pi}{5} \right ) \right ]$ $\left [ Since , \cos\left ( 2n \pi+\theta \right ) = \cos\theta \right ]$
$=\sin^{-1}\left [ \cos \left ( \frac{\pi}{2}+\frac{\pi}{10} \right ) \right ]$
$=\sin^{-1}\left [ \sin \left (- \frac{\pi}{10} \right ) \right ]\left [ Since, \sin^{-1}\left ( x \right )=-\sin^{-1}x \right ]$
$=- \frac{\pi}{10} \left [ Since, \sin^{-1}\left ( \sin x \right )=-x, x\epsilon \left ( -\frac{\pi}{2} ,\frac{\pi}{2} \right ) \right ]$

Question 24

The domain of the function $\cos^{-1}\left ( 2x-1 \right )$ is
A.[0,1]
B.[-1,1]
C.(-1,1)
D.[0,$\pi$]

Answer:

Answer:(A)
We Have $f(x)=cos^{-1}\left ( 2x-1 \right )$
Scince $-1\leq 2x-1\leq 1$
$\Rightarrow 0\leq 2x\leq 2$
$\Rightarrow 0\leq x\leq 1$
$\therefore x\epsilon \left [ 0,1 \right ]$

Question 25

The domain of the function defined by $f(x)=\sin^{-1}\sqrt{x-1}$ is
A.[1,2]
B.[-1,1]
C.[0,1]
D. None of these

Answer:

Answer: (A)
$f(x)=\sin^{-1}\sqrt{x-1}$
$\Rightarrow 0\leq x-1\leq 1\left [ Since ,\sqrt{x-1}\geq 0 \, and\, -1\leq \sqrt{x-1} \leq 1\right ]$
$\Rightarrow 1\leq x\leq 2$
$\therefore x\epsilon \left [ 1,2 \right ]$

Question 26

If $\cos\left ( sin^{-1}\frac{2}{5} + cos^{-1}x \right )=0,$ then x is equal to
$A. \frac{1}{5}$
$B. \frac{2}{5}$
C.0
D.1

Answer:

Answer: (B)
Given, $\cos\left ( Sin^{-1}\frac{2}{5}+cos^{-1}x \right )=0$
Let $Sin^{-1}\frac{2}{5}+cos^{-1}x =\theta$
So $\cos \theta =0.......(1)$
Principal value $\cos^{-1} x$ is $\left [ 0,\pi \right ]$.......(2)
Also , we know that $\cos\frac{\pi}{2}=0......(3)$
From (1) ,,(2), and (3) we have
$\theta =\frac{\pi}{2}$
But $\theta =\sin^{-1}\frac{2}{5}+\cos^{-1}x$
So,
$\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
We know that $\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2} for\: all \: x\epsilon \left [ -1 ,1\right ]$
As $\sin^{-1}\frac{2}{5}+\cos^{-1}x=\frac{\pi}{2}$
so $x=\frac{2}{5}$

Question 27

The value of $\sin \left(2 \tan ^{-1}(.75)\right)$ is equal to
A. 0.75
B. 1.5
C. 0.96
D. sin 1.5

Answer:

Answer :(c)
$\sin \left(2 \tan ^{-1}(.75)\right)$
Let, $\tan ^{-1}(.75)=\theta$
$\Rightarrow \tan^{-1}\left (\frac{3}{4} \right )=\theta$
$\Rightarrow \tan \theta =\frac{3}{4}$
As, $\tan \theta =\frac{3}{4}$ so
$\sin \theta =\frac{3}{5}, \cos \theta =\frac{4}{5}......(1)$
Now,
$\begin{aligned} & \sin \left(2 \tan ^{-1}(.75)\right)=\sin 2 \theta \\ & =2 \sin \theta \cos \theta\end{aligned}$
$=2\left (\frac{3}{5} \right )\left (\frac{4}{5} \right )$
$=\frac{24}{25}$
So, $\sin \left(2 \tan ^{-1}(.75)\right)=0.96$.

Question 28

The Value of $\cos^{-1} \cos \frac{3\pi}{2}$ is equal to
$A. \frac{\pi}{2}$
$B. \frac{3\pi}{2}$
$C. \frac{5\pi}{2}$
$D. \frac{7\pi}{2}$

Answer:

We have $\cos^{-1}\cos\frac{3\pi}{2}$
We know that,
$\cos\frac{3\pi}{2}=0$
So, $\cos^{-1}\cos\frac{3\pi}{2}=\cos^{-1}0$
Let $\cos^{-1}0=\theta$

$\Rightarrow \cos \theta=0$
Principal value of $\cos ^{-1} x$ is $[0, \pi]$
For, $\cos \theta=0$
so,$\theta=\frac{\pi}{2}$

Question 29

The value of the expression $2 \sec^{-1}2+\sin^{-1}\left ( \frac{1}{2} \right )$ is
$A.\frac{\pi}{6}$
$B.\frac{5\pi}{6}$
$C.\frac{7\pi}{6}$
D.1

Answer:

Answer :(B)
We have,
Principal value of sin-1 x is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Principal value of sec-1 x is [0, π]$-\left \{ \frac{\pi}{2} \right \}$
Let $\sin^{-1}\frac{1}{2}=A$
$\Rightarrow \sin A =\frac{1}{2}$
$\Rightarrow A =\frac{\pi}{6}$
So, $\Rightarrow \sin^{-1}\frac{1}{2}=\frac{\pi}{6}$ … (1)

Let sec-1 2 = B
⇒ sec B = 2
$\Rightarrow B=\frac{\pi}{3}$
So, 2 sec-1 2 = 2B
$\Rightarrow 2\sec^{-1}2=\frac{2\pi}{3}$...(2)
So, the value of $2\sec^{-1}2+\sin^{-1}\frac{1}{2}$ from (1) and (2) is
$2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{2\pi}{3}+\frac{\pi}{6}$
$=\frac{4\pi}{6}+\frac{\pi}{6}$
$=\frac{5\pi}{6}$
So, $2\sec^{-1}2+\sin^{-1}\frac{1}{2}=\frac{5\pi}{6}$

Question 30

If tan–1 x + tan–1 y = 4π/5, then cot–1x + cot–1 y equals
$A. \frac{\pi}{5}$
$B. \frac{2\pi}{5}$
$C. \frac{3\pi}{5}$
$D. \pi$

Answer:

Answer :(A)
We know that,
$\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
We have,
tan–1 x + tan–1 y = 4π/5 … (1)
Let, cot–1x + cot–1 y = k … (2)
Adding (1) and (2) –
$\tan^{-1}x+\tan^{-1}y+\cot^{-1}x+\cot^{-1}y=\frac{4\pi}{5}+k$...(3)
Now, tan–1 A + cot–1 A = π/2 for all real numbers.
So, (tan–1 x + cot–1 x) + (tan–1y + cot–1 y) = π … (4)
From (3) and (4), we get,
$\frac{4\pi}{5}+k=\pi$
$\Rightarrow k=\pi-\frac{4\pi}{5}$
$\Rightarrow k=\frac{\pi}{5}$

Question 31

If $\sin^{-1}\frac{2a}{1+a^{2}}+\cos ^{-1}\frac{1-a^{2}}{1+a^{2}}=tan^{-1}\frac{2x}{1-x^{2}}$ where a, $x\epsilon \left [ 0,1 \right ]$ then the value of x is
A. 0
B. a/2
C. a
D. $\frac{2a}{1-a^{2}}$

Answer:

Answer:(D)
We have
$sin^{-1}\frac{2a}{1+a^{2}}+cos^{-1}\frac{1-a^{2}}{1+a^{2}}=\tan^{-1}\frac{2x}{1-x^{2}}$
we know that
$2 \tan ^{-1}p=\sin^{-1}\frac{2p}{1+p^{2}}.........(1)$
$Also,2 \tan^{-1}p=\cos^{-1}\frac{1-p^{2}}{1+p^{2}}.........(2)$
$Also,2 \tan^{-1}p=\tan^{-1}\frac{2p}{1-p^{2}}.........(3)$
From (1) and (2) we have,
L.H.S-
$\sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=2\tan^{-1}a+2\tan^{-1}a$
$\Rightarrow \sin^{-1}\frac{2a}{1+a^{2}}+\cos^{-1}\frac{1-a^{2}}{1+a^{2}}=4\tan^{-1}a$
From (3) R.H.S
$\tan^{-1}\frac{2x}{1-x^{2}}=2\tan^{-1}x$
So, we have 4 tan-1 a = 2 tan-1 x
⇒ 2 tan-1 a = tan-1 x
But from (3) $2\tan^{-1}a= \tan^{-1}\frac{2a}{1-a^{2}}$
So $\tan^{-1}\frac{2a}{1-a^{2}}=\tan^{-1}x$
$x=\frac{2a}{1-a^{2}}$

Question 32

The value of $\cot \cos^{-1}\frac{7}{25} is$
A. 25/24
B.25/7
C.24/25
D.7/24

Answer:

Answer :(d)
We have to find $\cot \cos^{-1}\frac{7}{25}$
Let $\cos^{-1}\frac{7}{25}=A$
$\Rightarrow \cos^{-1}=\frac{7}{25}$
Also, $\cot A=\cot \cos^{-1}\frac{7}{25}$
As, $\sin A=\sqrt{1-\cos^{2}A}$
So $\sin A=\sqrt{1-\left (\frac{7}{5} \right )^{2}}$
$\Rightarrow \sin A=\sqrt{1-\frac{49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{625-49}{625} }$
$\Rightarrow \sin A=\sqrt{\frac{576}{625} }$
$\Rightarrow \sin A={\frac{24}{25} }$
We need to find cot A
$\cot A=\frac{\cos A}{\sin A}$
$\Rightarrow \cot A=\frac{\frac{7}{25}}{\frac{24}{25}}$
$\Rightarrow \cot A=\frac{7}{24}$
So $\cot \cos^{-1}\frac{7}{25}=\frac{7}{24}$

Question 33

The value of the expression $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$ is $\left [ Hint: \tan\frac{\theta}{2} =\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}\right ]$
$A. 2+ \sqrt{5}$
$B.\sqrt{5}-2$
$C.\frac{2+\sqrt{5}}{2}$
$D. \sqrt{5}+2$

Answer:

Answer:(B)
We need to find , $\tan \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$
Let, $\cos^{-1}\frac{2}{\sqrt{5}}=A$
$\Rightarrow \cos A=\frac{2}{\sqrt{5}}$
Also we need to find $\tan\frac{A}{2}$
We know that $\tan\frac{\theta}{2}=\sqrt{\frac{\left ( 1-\cos \theta \right )}{1+\cos \theta}}$
so, $\tan^{-1}\frac{A}{2}=\sqrt{\frac{\left ( 1-\cos A \right )}{1+\cos A}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1-\frac{2}{\sqrt{5}}}{1+\frac{2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\frac{\sqrt{5}-2}{\sqrt{5}}}{\frac{\sqrt{5}+2}{\sqrt{5}}}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}$
on rationalizing,
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5}-2 \right )\left ( \sqrt{5}+2 \right )}{\left (\sqrt{5}+2 \right )\left ( \sqrt{5}+2 \right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{\left (\sqrt{5} \right )^{2}-2^{2}}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{5-4}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{\frac{1}{\left (\sqrt{5} ^{2}+2^{2}\right )}}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1}{\sqrt{5} +2}$
Again rationalizing
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{1\left ( \sqrt{5}-1 \right )}{\left (\sqrt{5} +2 \right )\left ( \sqrt{5}-2 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (\sqrt{5}^{2} -2^{2} \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\frac{\left ( \sqrt{5}-2 \right)}{\left (5-4 \right )}$
$\Rightarrow \tan^{-1} \frac{A}{2}=\sqrt{5}-2$

Question 34

If |x| ≤ 1, then $2\tan ^{2}x+\sin^{-1}\frac{2x}{1+x^{2}}$ is equal to
A. 4 tan–1 x
B. 0
C. $\frac{\pi}{2}$
D. π

Answer:

Answer(A)
We need to find, $2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
So,
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=$4 \tan^{1}x$

Question 35

If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β (γ + α) + γ (α + β) equals
A. 0
B. 1
C. 6
D. 12

Answer:

Answer :(C)
Given, cos–1α + cos–1β + cos–1γ = 3π … (1)
Principal value of cos-1 x is [0, π]
So, maximum value which cos-1 x can have is π.
So, if (1) is correct then all the three terms i.e,
cos–1α, cos–1β, cos–1γ should be equal to π
So, cos–1α = π
cos–1β = π
cos–1γ = π
So, α = β = γ = -1
So, α(β + γ) + β (γ + α) + γ (α + β)
= (-1)(-1-1) + (-1)(-1-1) + (-1)(-1-1)
= 3(-1)(-2)
= 6

Question 36

The number of real Solutions of equarion $\sqrt{1+\cos x}=\sqrt{2}\cos^{-1}\left ( \cos x \right ) in \left [ \frac{\pi}{2},\pi \right ]$ is
A. 0
B. 1
C. 2
D. Infinite

Answer:

Answer:(A)
We have , $\sqrt{1+\cos 2x}=\sqrt{2}\cos^{-1}\left ( \cos x \right )$, x is in $\left [ \frac{\pi}{2}, \pi \right ]$
R.H.S
$\sqrt{2}\cos^{-1}\left ( \cos x \right )=\sqrt{2}x$
So, $\sqrt{1+\cos 2x}=\sqrt{2}x$
Squaring both side , we get,
$\left ( 1+\cos 2 x \right )=2x^{2}$
$\Rightarrow \cos 2x=2x^{2}-1$
Now plotting cos 2x and 2x2-1, we get,
a36
As , there is no point of intersection in $\left [ \frac{\pi}{2},\pi \right ]$, so therre is no
solution of the given equation in $\left [ \frac{\pi}{2},\pi \right ]$

Question 37

If $\cos^{-1}x> \sin^{-1}x$ , then
$A. \frac{1}{\sqrt{2}}< x\leq 1$
$B. 0\leq x< \frac{1}{\sqrt{2}}$
$C.-1\leq x< \frac{1}{\sqrt{2}}$
D.x>0

Answer:

Answer :(C)
Plotting cos-1 x and sin-1 x, we get,
a37
As, graph of cos-1 x is above graph of sin-1 x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$.
So, cos–1x > sin–1 x for all x in $\left [ -1,\frac{1}{\sqrt{2}} \right )$ .

Question 38

Fill in the blanks The principle value of $\cos ^{-1}\left ( -\frac{1}{2} \right )$ is ___________.

Answer:

The principal value of $\cos^{-1}\left ( -\frac{1}{2} \right )$ is $\frac{2\pi}{3}$.
Principal value cos-1 x is [0,$\pi$]
Let, $\cos^{-1}\left ( -1 \right )=\theta$
$\Rightarrow \cos \theta=-\frac{1}{2}$
As, $\cos \frac{2\pi}{3} =-\frac{1}{2}$
So, $\theta= \frac{2\pi}{3}$

Question 39

Fill in the blanks The value of $sin^{-1}\left ( sin \frac{3\pi}{5} \right )$ is_______.

Answer:

The value of $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ is $\frac{2\pi}{5}$
Principal value of $\sin^{-1}$ is $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
now, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )$ should be in the given range
$\frac{3\pi}{5}$ is outside the range $\left [ -\frac{\pi}{2} ,\frac{\pi}{2}\right ]$
As, sin (π – x) = sin x
So, $\sin^{-1}\left ( \sin\frac{3\pi}{5} \right )=\sin^{-1}\left ( \sin \left ( \pi-\frac{3\pi}{5} \right ) \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )$
$=\sin^{-1}\left ( \sin\frac{2\pi}{5} \right )=\frac{2\pi}{5}$

Question 40

Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.

Answer:

$\begin{aligned} &\text { If } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0, \text { then value of } x \text { is } \sqrt{3} \text { . }\\ &\text { Given, } \cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0\\ &\Rightarrow \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\frac{\pi}{2}\\ &\text { We know that, } \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\\ &\text { So, } x=\sqrt{3} \end{aligned}$

Question 40

Fill in the blanks
If cos (tan–1x + cot–1 √3) = 0, then value of x is _________.

Answer:

If cos (tan–1x + cot–1 √3) = 0, then value of x is $\sqrt{3}$
Given, cos (tan–1x + cot–1$\sqrt{3}$) = 0
$\Rightarrow \tan^{-1}x+\cot^{-1}\sqrt{3}=\frac{\pi}{2}$
we know that, $\Rightarrow \tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}$
so, x=$\sqrt{3}$

Question 41

fill in blanks the set of value of $\sec^{-1}\left (\frac{1}{2} \right )$ is______________.
Answer:

Fill in the blanks the set of value of $\sec^{-1}\left ( \frac{1}{2} \right )$ is $\phi$
Domain of sec-1 x is R – (-1,1).
As, $-\frac{1}{2}$ is outside domain of sec-1 x.
Which means there is no set of value of $\sec^{-1}\frac{1}{2}$
So, the solution set of $\sec^{-1}\frac{1}{2}$ is null set or $\phi$

Question 42

Fill in the blanks
The principal value of tan–1 √3 is _________.

Answer:

The Principal value of $\tan^{-1} \sqrt{3}$ is $\frac{\pi}{3}$
Principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
Let, $\tan^{-1}\left ( \sqrt{3} \right )=\theta$
$\Rightarrow \tan \theta=\sqrt{3}$
As $\Rightarrow \tan \frac{\pi}{3}=\sqrt{3}$
so, $\Rightarrow \theta=\sqrt{3}$

Question 43

The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$

Answer:

The value of $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$ is $\frac{2\pi}{3}$
We needd, $\cos^{-1}\left ( \cos \frac{14\pi}{3} \right )$
Principal value of cos-1 x is [0,π]
Also, cos (2nπ + θ) = cos θ for all n ? N
$\cos \frac{14\pi}{3}=\cos \left ( 4\pi+\frac{2\pi}{3} \right )$
$\Rightarrow \cos \frac{14\pi}{3}=\cos \frac{2\pi}{3}$
$So, \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\cos^{-1}\left (\cos \frac{2\pi}{3} \right )$
$\Rightarrow \cos^{-1} \left (\cos \frac{14\pi}{3} \right )=\frac{2\pi}{3}$

Question 44

Fill in the blanks
The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is ________.

Answer:

The value of cos (sin–1 x + cos–1 x) for |x| ≤ 1 is 0.
cos (sin–1 x + cos–1 x), |x| ≤ 1
We know that, (sin–1 x + cos–1 x), |x| ≤ 1 is $\frac{\pi}{2}$
So, $\cos\left ( \sin^{-1}x+\cos^{-1}x \right )=\cos\frac{\pi}{2}$
= 0

Question 45

The value of expression $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x }{2}\right ),$ when $x=\frac{\sqrt{3}}{2}$ is___________.

Answer:

The value of expression $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$ is 1
$\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$ When $X=\frac{\sqrt{3}}{2}$
We know that, (sin–1 x + cos–1 x) for all |x| ≤ 1 is $\frac{\pi}{2}$
As, $x=\frac{\sqrt{3}}{2}$ lies in domain
So $\tan\left ( \frac{\sin^{-1}x+\cos^{-1}x}{2} \right )$=$\tan \frac{\pi}{4}$
=1

Question 46

Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then ______<y<_____.

Answer:

Fill in the blanks if $y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$ for all x, then $-2\pi< y< 2\pi$
$y= 2 \tan^{-1}x+\sin^{-1}\frac{2x}{1+x^{2}}$
We know that,
$2 \tan^{-1}p=\sin^{-1}\frac{2x}{1+x^{2}}$
so
$2 \tan^{1}x+\sin^{-1}\frac{2x}{1+x^{2}}=2 \tan^{1}x+2\tan^{-1}x$
=4 tan-1 x
So, y = 4 tan-1 x
As, principal value of tan-1 x is $\left (-\frac{\pi}{2},\frac{\pi}{2} \right )$
So, $4 \tan^{-1}x\epsilon \left ( -2\pi,2\pi \right )$
Hence, -2π < y < 2π

Question 47

The result $\tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right )$ is true when value of xy is _________.

Answer:

The result $\tan^{-1}x-\tan^{-1}\left ( \frac{x-y}{1+xy} \right )$ is true when value of xy is > -1.
We have,
$\tan^{-1}x-\tan^{-1}=\tan^{-1} \frac{x-y}{1+xy}$
Principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
Let tan-1x = A and tan-1y = B … (1)
So, A,B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
We know that, $\tan\left ( A-B \right )=\frac{\tan A - \tan B}{1-\tan A \tan B }$ … (2)
From (1) and (2), we get,
Applying, tan-1 both sides, we get,
$\tan^{-1}\tan\left ( A-B \right )=\tan^{-1}\frac{x-y}{1-xy}$
As, principal range of tan-1a is $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, for tan-1tan(A-B) to be equal to A-B,
A-B must lie in $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$– (3)
Now, if both A,B < 0, then A, B $\epsilon \left ( -\frac{\pi}{2},0\right )$
∴ A $\epsilon \left ( -\frac{\pi}{2},0\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan^{-1}x-\tan^{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if both A,B > 0, then A, B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( -\frac{\pi}{2},0\right )$
So, A – B $\epsilon \left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
So, from (3),
tan-1tan(A-B) = A-B
$\Rightarrow \tan{-1}x-\tan{-1}y=\tan^{-1}\frac{x-y}{z+xy}$
Now, if A > 0 and B < 0,
Then, A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
∴ A $\epsilon \left ( 0,\frac{\pi}{2}\right )$ and -B $\epsilon \left ( 0,\frac{\pi}{2}\right )$
So, A – B $\epsilon$ (0,π)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2},\frac{\pi}{2} \right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
$A-B< \frac{\pi}{2}$
$A< \frac{\pi}{2} +B$
Applying tan on both sides,
$\tan A< \tan\left ( \frac{\pi}{2} +B \right )$
As, $\tan\left ( \frac{\pi}{2} +\alpha \right )=-\cot \alpha$
So, tan A < - cot B
Again, $\cot \alpha=\frac{1}{\tan \alpha}$
So, $\tan A< \frac{1}{\tan B}$
⇒ tan A tan B < -1
As, tan B < 0
xy > -1
Now, if A < 0 and B > 0,
Then, A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and B $\epsilon$ $\left ( 0,\frac{\pi}{2} \right )$
∴ A $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$ and -B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
So, A – B $\epsilon$ (-π,0)
But, required condition is A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,\frac{\pi}{2}\right )$
As, here A – B $\epsilon$ (0,π), so we must have A – B $\epsilon$ $\left ( -\frac{\pi}{2} ,0\right )$
$\Rightarrow A-B> -\frac{\pi}{2}$
$\Rightarrow A>B -\frac{\pi}{2}$
Applying tan on both sides,
$\tan A>\tan\left (B -\frac{\pi}{2} \right )$
As, $\tan\left (\alpha -\frac{\pi}{2} \right )=-\cot \alpha$
So, tan B > - cot A
Again, $\cot \alpha\frac{1}{\tan \alpha}$
So, $\tan B >-\frac{1}{\tan A}$
⇒ tan A tan B > -1
⇒xy > -1

Question 48

Fill in the blanks
The value of cot–1(–x) for all x ? R in terms of cot–1 x is _______.

Answer:

The value of cot–1(–x) for all x ? R in terms of cot–1 x is
π – cot-1 x.
Let cot–1(–x) = A
⇒ cot A = -x
⇒ -cot A = x
⇒ cot (π – A) = x
⇒ (π – A) = cot-1 x
⇒ A = π – cot-1 x
So, cot–1(–x) = π – cot-1 x

Question 49

State True or False for the statement
All trigonometric functions have inverse over their respective domains.

Answer:

True.
It is well known that all trigonometric functions have inverse over their respective domains.

Question 50

State True or False for the statement
The value of the expression (cos–1x)2 is equal to sec2 x.

Answer:

As, cos-1 x is not equal to sec x. So, (cos–1x)2 is not equal to sec2 x.

Question 51

State True or False for the statement
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.

Answer:

As, all trigonometric and their corresponding inverse functions are periodic so, we can obtain the inverse of a trigonometric ratio in any branch in which it is one-one and onto.

Question 52

State True or False for the statement
The least numerical value, either positive or negative of angle θ is called the principal value of the inverse trigonometric function.

Answer:

True
We know that the smallest value, either positive or negative of angle θ is called principal value of the inverse trigonometric function

Question 53

State True or False for the statement
The graph of an inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging x and y axes.

Answer:

True.
Graph of any inverse function can be obtained by interchanging x and y-axis in the graph of the corresponding function. If (p, q) are two points on f(x) then (q, p) will be on f-1(x).

Question 54

State True or False for the statement
The minimum value of n for which $\tan^{-1}\frac{n}{\pi}>\frac{\pi}{4},n\epsilon N$ is valid is 5.

Answer:

false
$\tan ^{-1}\frac{n}{\pi}>\frac{\pi}{4}$
As , tan is an increasing function so applying tan on both side
we get,
$\tan\left (\tan ^{-1}\frac{n}{\pi} \right )>\tan \frac{\pi}{4}$
As, $\tan\left (\tan ^{-1}\frac{n}{\pi} \right )=\frac{n}{\pi}$ and $\tan\frac{\pi}{4}=1$
so $\frac{n}{\pi}>1$
⇒ n > π
⇒ n > 3.14
As, n is a natural number, so least value of n is 4.

Question 55

State True or False for the statement

The principal value of $\sin^{-1}\left [ \cos\left ( \sin^{-1}\frac{1}{2} \right ) \right ]$ is $\frac{\pi}{3}$

Answer:

True
Principal value of sin-1 x is $\left [ -\frac{\pi}{2},\frac{\pi}{2} \right ]$
Principal value of cos-1 x is [0, π]
We have, $\sin^{-1}\left [ \cos \left [ \sin^{-1}\left (\frac{1}{2} \right ) \right ] \right ]$
As, $\sin\frac{\pi}{6}=\frac{1}{2}$ so
$\sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos\left [ \sin^{-1}\left (\sin \frac{\pi}{6} \right ) \right ] \right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \cos \left [ \frac{\pi}{6} \right ]\right ]$
As, $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$ so,
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\sin^{-1}\left [ \sin \left [ \frac{\pi}{3} \right ]\right ]$
$\Rightarrow \sin^{-1}\left [ \cos\left [ \sin^{-1}\left ( \frac{1}{2} \right ) \right ] \right ]=\frac{\pi}{3}$

Sub-Topics Covered in NCERT Exemplar Class 12 Maths Solutions Chapter 2

The sub-topics that are covered in this Chapter of inverse trigonometric functions are:

  • Introduction
  • Basic concepts
  • Properties of inverse trigonometric functions
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Importance of NCERT Exemplar Class 12 Maths Solutions Chapter 2

Class 12 Math NCERT Exemplar Solutions Chapter 2, students will get detailed answers to the questions in the NCERT book after every topic. Understanding and grasping this Chapter can help one aim for a better score in their school exams, boards and their entrance exams.

  • In NCERT Exemplar Solutions for Class 12 Math Chapter 2, the cover properties and graphical representations of inverse trigonometric functions.
  • One will learn about the necessity of studying inverse trigonometric functions and their properties. It covers the basic details about inverse trigonometric functions.
  • These Solutions provide plenty of questions to practice.
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Solutions for Class 12 Maths: Chapter Wise

All NCERT Class 12 Maths Solutions are provided below so students can quickly access and revise each chapter.

NCERT Solutions of Class 12 - Subject-wise

Here are the subject-wise links for the NCERT Solutions of Class 12:

NCERT Notes of Class 12: Subject Wise

Given below are the subject-wise NCERT Notes of Class 12 :

NCERT Books and NCERT Syllabus

To plan studies effectively, students should review the latest syllabus before the academic year starts. Find the updated syllabus links and recommended reference books below.

NCERT Exemplar Class 12 Solutions: Subject Wise

Given below are the subject-wise Exemplar Solutions of Class 12 NCERT:

Frequently Asked Questions (FAQs)

Q: What are the important topics of this chapter?
A:

Introduction to Inverse Trigonometric Functions, The Basic Concepts of Inverse Trigonometric Functions and Properties of Inverse Trigonometric Functions are important topics of this chapter.

Q: Are these solutions helpful for board examinations?
A:

Yes, the NCERT exemplar Class 12 Maths chapter 2 solutions are helpful for you to prepare for board exams.

Q: How many questions are there in this chapter?
A:

There is only 1 exercise in this chapter with 55 problem solving questions.

Q: Are these solutions helpful for competitive examinations?
A:

Yes, NCERT exemplar solutions for Class 12 Maths chapter 2 cover syllabus for exams are very reliable for preparing for competitive entrance exams like NEET and JEE Main.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the