CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Continuity is the foundation, and differentiability is the strength that builds upon it. Class 12 Maths NCERT Chapter 5, Continuity and Differentiability, is an important foundational step for advanced calculus. Continuity of a function means that the function's graph can be drawn without any break, or the graph can be drawn without lifting the pen. Differentiability means the function derivative exists at every point of the given interval, or we can also define differentiability if there is only a tangent to the given point in an interval. In the NCERT solutions for Class 12, Continuity and Differentiability, students will learn important concepts related to continuity, differentiability, and their interrelationships. The differentiation of inverse trigonometric functions, exponential and logarithmic functions is also discussed in this chapter.
This Story also Contains
A function without continuity is like a road with holes, and without differentiability, it is like a road full of sharp turns. These Class 12 Maths chapter 5 solutions are crucial for the final board examination and various competitive tests, such as JEE Mains, JEE Advanced, BITSAT, and others. At Careers360, experts with years of experience have created these NCERT Solutions for Class 12 Maths, Continuity and Differentiability. It is advisable to work through all the NCERT problems, including examples and the miscellaneous exercises, to master this chapter. For syllabus, notes, and PDF, refer to this link: NCERT.
Students who wish to access the Class 12 Maths Chapter 5 NCERT Solutions can click on the link below to download the complete solution in PDF.
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.1 Page number: 116-118 Total questions: 34 |
Question 1: Prove that the function $f ( x) = 5 x -3$ is continuous at $x = 0, at\: \: x = - 3$ and at $x = 5$
Answer:
The given function is
$f ( x) = 5 x -3$
$f(0) = 5(0)-3 = -3$
$\lim\limits_{x\rightarrow 0} f(x) = 5(0)-3 = -3$
$\lim\limits_{x\rightarrow 0} f(x) =f(0)$
Hence, the function is continuous at x = 0
$f(-3)= 5(-3)-3=-15-3=-18 \Rightarrow \lim\limits_{x \rightarrow -3} f(x) = 5(-3)-3 = -15-3=-18$
$ \Rightarrow \lim\limits_{x \rightarrow -3} f(x) = f(-3)$
Hence, the function is continuous at $x = -3$
$f(5)= 5(5)-3=25-3=22 \Rightarrow \lim\limits_{x \rightarrow 5} f(x) = 5(5)-3 = 25-3=-22$
$\Rightarrow \lim\limits_{x \rightarrow 5} f(x) = f(5)$
Hence, the function is continuous at $x = 5$
Question 2: Examine the continuity of the function $f (x) = 2x ^2 - 1 at x = 3.$
Answer:
The given function is
$f(x) = 2x^2-1$
at $x = 3$
$f(3) = 2(3)^2-1 = 2\times 9 - 1=18-1=17\\$
$ \lim\limits_{x\rightarrow 3}f(x) = 2(3)^2-1=2\times 9-1=18-1=17$
$\lim\limits_{x\rightarrow 3}f(x) = f(3)$
Hence, the function is continuous at $x = 3$
Question 3: Examine the following functions for continuity.
$(a) f (x) = x - 5$
Answer:
The given function is
$f(x) = x-5$
Our function is defined for every real number, say k
and value at $x = k$, $f(k) = k-5$
And also,
$\lim\limits_{x\rightarrow k} f(x) = k -5\\$
$ \lim\limits_{x\rightarrow k} f(x) = f(k)$
Hence, the function $f(x) = x-5$ is continuous at every real number
Question 3(b): Examine the following functions for continuity.
$f (x) = \frac{1}{x-5} , x \neq 5$
Answer:
The given function is
$f(x ) = \frac{1}{x-5}$
For every real number k, $k \neq 5$
We get,
$f(k) = \frac{1}{k-5}\\$
$ \lim\limits_{x\rightarrow k}f(x ) = \frac{1}{k-5}\\$
$ \lim\limits_{x\rightarrow k}f(x ) = f(k)$
Hence, function $f(x ) = \frac{1}{x-5}$ continuous for every real value of $x$, $x \neq 5$
Question 3(c): Examine the following functions for continuity.
$f (x) = \frac{x ^2-25}{x+5}, x \neq -5$
Answer:
The given function is
$f(x ) = \frac{x^2-25}{x+5}$
For every real number k, $k \neq -5$
We get,
$f(k) = \frac{k^2-5^2}{k+5}= \frac{(k +5)(k-5)}{k+5} = k-5\\$
$ \lim\limits_{x\rightarrow k}f(x ) = \frac{k^2-5^2}{k+5}$
$= \frac{(k +5)(k-5)}{k+5} = k-5\\$
$ \lim\limits_{x\rightarrow k}f(x ) = f(k)$
Hence, function $f(x ) = \frac{x^2-25}{x+5}$ continuous for every real value of x , $x \neq -5$
Question 3(d): Examine the following functions for continuity. $f (x) = | x - 5|$
Answer:
The given function is
$f (x) = | x - 5|$
for $x > 5 , f(x) = x – 5$
for $x < 5 , f(x) = 5 – x$
So, there are different cases.
case(i) $x > 5$
for every real number $k > 5$ , $f(x) = x – 5$ is defined
$f(k) = k - 5\\$
$ \lim\limits_{x\rightarrow k }f(x) = k -5\\$
$ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, function $f(x) = x – 5$ is continuous for $x > 5$
case (ii) $x < 5$
for every real number $k < 5$ , $f(x) = 5 – x$ is defined
$f(k) = 5-k\\ \lim\limits_{x\rightarrow k }f(x) = 5 -k\\ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, function $f(x) = 5 – x$ is continuous for $x < 5$
case(iii) $x = 5$
for $x = 5$ , $f(x) = x – 5$ is defined
$f(5) = 5 - 5=0\\ \lim\limits_{x\rightarrow 5 }f(x) = 5 -5=0\\ \lim\limits_{x\rightarrow 5 }f(x) = f(5)$
Hence, function $f(x) = x – 5$ is continous for $x = 5$
Hence, the function $f (x) = | x - 5|$ is continuous for every real number.
Question 4: Prove that the function $f (x) = x^n$ is continuous at x = n, where n is a positive integer
Answer:
The given function is
$f (x) = x^n$
The function $f (x) = x^n$ is defined for all positive integer, n
$f(n) = n^n\\$
$\lim\limits_{x\rightarrow n}f(x) = n^n\\$
$ \lim\limits_{x\rightarrow n}f(x) = f(n)$
Hence, the function $f (x) = x^n$ is continuous at x = n, where n is a positive integer
Answer:
The given function is
$f (x) = \left\{\begin{matrix} x , & if x \leq 1 \\ 5 & if x \geq 1 \end{matrix}\right.$
The function is defined at $x = 0$ and its value is $0$
$f(0) = 0\\$
$ \lim\limits_{x\rightarrow 0}f(x) = f(x) = 0\\$
$ \lim\limits_{x\rightarrow 0}f(x) = f(0)$
Hence, the given function is continuous at $x = 0$
The given function is defined for $x = 1$
Now, for $x = 1$ Right-hand limit and left-hand limit are not equal.
$f(1) = 1\\ \lim\limits_{x\rightarrow 1^-}f(x) = f(x) = 1\\$
$ \lim\limits_{x\rightarrow 1^+}f(x) =f(5) = 5$
R.H.L $\neq$ L.H.L.
Therefore, the given function is not continuous at $x =1$
Given function is defined for $x = 2$ and its value at $x = 2$ is $5$
$f(2) = 2\\ \lim\limits_{x\rightarrow 2}f(x) = f(5) = 5\\\lim\limits_{x\rightarrow 2}f(x) = f(2)$
Hence, the given function is continuous at $x = 2$
Question 6: Find all points of discontinuity of f, where f is defined by
$f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.$
Answer:
The given function is
$f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.$
The given function is defined for every real number k
There are different cases for the given function.
case(i) $k > 2$
$f(k) = 2k-3\\ \lim\limits_{x\rightarrow k}f(x) = 2k-3\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k > 2$
case(ii) $k < 2$
$f(k) = 2k +3\\ \lim\limits_{x\rightarrow k}f(x) = 2k+3\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k < 2$
case(iii) $x = 2$
$\lim\limits_{x\rightarrow 2^-}f(x) = 2x+3 = 2\times 2 + 3 = 4 + 3 = 7\\ $
$\lim\limits_{x\rightarrow 2^+}f(x) = 2x-3 = 2\times 2-3 = 4-3 = 1$
Right hand limit at x= 2 $\neq$ Left hand limit at x = 2
Therefore, x = 2 is the point of discontinuity
Question 7: Find all points of discontinuity of f, where f is defined by
Answer:
The given function is
$f (x) = \left\{\begin{matrix} |x|+3 & if \: \: x \leq -3 & \\ -2x & if \: \: -3 <x< 3 & \\ 6x +2 & if \: \: x \geq 3 & \end{matrix}\right.$
The given function is defined for every real number k
There are different cases.
case (i) $k < -3$
$f(k) = -k + 3\\ \lim\limits_{x\rightarrow k}f(x) = -k + 3\\ $
$\lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of k < -3
case(ii) $k = -3$
$f(-3) = -(-3) + 3 = 6\\ \lim\limits_{x\rightarrow -3^-}f(x) = -k + 3=-(-3)+3 = 6\\$
$ \lim\limits_{x\rightarrow -3^+}f(x) = -2x = -2(-3) = 6\\$
$ R.H.L. = L.H.L. = f(-3)$
Hence, the given function is continuous for x = -3
case(iii) $-3 < k < 3$
$f(k) = -2k \\ \lim\limits_{x\rightarrow k}f(x) = -2k\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in -3 < k < 3 given function is continuous.
case(iv) $k = 3$
$f(3) = 6x+2 = 6\times3+2 =18+2=20\\$
$ \lim\limits_{x\rightarrow 3^-}f(x) = -2x = -2(3) = -6\\$
$ \lim\limits_{x\rightarrow 3^+}f(x) = 6x+2 = 6\times3+2 = 20\\$
$ R.H.L. = f(3) \neq L.H.L.$
Hence, $x = 3$ is the point of discontinuity
case(v) $k > 3$
$f(k) = 6k+2 \\$
$ \lim\limits_{x\rightarrow k}f(x) = 6k+2 \\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of k > 3
Question 8: Find all points of discontinuity of f, where f is defined by
Answer:
The given function is
$f (x ) \left\{\begin{matrix} \frac{|x|}{x} & if \: \: x \neq 0 \\ 0 & if \: \: x = 0 \end{matrix}\right.$
if x > 0 , $f(x)=\frac{x}{x} = 1$
if x < 0 , $f(x)=\frac{-(x)}{x} = -1$
The given function is defined for every real number k
Now,
case(i) k < 0
$f(k) = -1\\ \lim\limits_{x\rightarrow k }f(x) = -1\\$
$ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, the given function is continuous for every value of k < 0
case(ii) k > 0
$f(k) = 1\\ \lim\limits_{x\rightarrow k }f(x) = 1\\$
$ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, the given function is continuous for every value of k > 0
case(iii) x = 0
$f(0) = 0\\ \lim\limits_{x\rightarrow 0^- }f(x) = -1\\$
$ \lim\limits_{x\rightarrow 0^+}f(x) = 1\\ f(0) \neq R.H.L. \neq L.H.L.$
Hence, 0 is the only point of discontinuity
Question 9: Find all points of discontinuity of f, where f is defined by
Answer:
The given function is
$f (x) = \left\{\begin{matrix} \frac{x }{|x|} & if \: \: x < 0\\ -1 & if x \geq 0 \end{matrix}\right.$
if x < 0 , $f (x) =\frac{x }{|x|} = \frac{x}{-(x)} = -1$
Now, for any value of x, the value of our function is -1
Therefore, the given function is continuous for every value of x
Hence, no point in discontinuity
Question 10: Find all points of discontinuity of f, where f is defined by
Answer:
The given function is
$f (x) = \left\{\begin{matrix} x+1 & if \: \: x \geq 1 \\ x^2 +1 & if x \: \: <1 \end{matrix}\right.$
The given function is defined for every real number $k$
There are different cases for the given function.
case(i) $k > 1$
$f(k) = k+1\\ \lim\limits_{x\rightarrow k}f(x) = k+1\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k > 1$
case(ii) $k < 1$
$f(k) = k^2 +1\\ \lim\limits_{x\rightarrow k}f(x) = k^2+1\\ $
$\lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k < 1$
case(iii) $x = 1$
$\lim\limits_{x\rightarrow 1^-}f(x) = x^2+1 = 1^2 + 1 = 1 + 1 = 2\\$
$ \lim\limits_{x\rightarrow 1^+}f(x) = x+1 = 1+1 = 2\\ f(1) = 1^2+1 = 2 \\ $
$R.H.L. = L.H.L. = f(1)$
Hence, at x = 2 given function is continuous.
Therefore, no point of discontinuity
Question 11: Find all points of discontinuity of f, where f is defined by
Answer:
The given function is
$f ( x) = \left\{\begin{matrix} x^3 -3 & if \: \: x \leq 2\\ x ^2 +1 & if \: \: x > 2 \end{matrix}\right.$
The given function is defined for every real number $k$
There are different cases for the given function.
case(i) $k > 2$
$f(k) = k^2+1\\ \lim\limits_{x\rightarrow k}f(x) = k^2+1\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k > 2$
case(ii) $k < 2$
$f(k) = k^3 -3\\ \lim\limits_{x\rightarrow k}f(x) = k^3-3\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k < 2$
case(iii) $x = 2$
$\lim\limits_{x\rightarrow 2^-}f(x) = x^3-3 = 2^3- 3 = 8- 3 = 5\\$
$ \lim\limits_{x\rightarrow 2^+}f(x) = x^2+1= 2^2+1 = 4+1 = 5\\$
$ f(2) = 2^3-3 = 8 - 3 = 5\\ f(2)=R.H.L.=L.H.L.$
Hence, the given function is continuous at $x = 2$
There is no point of discontinuity
Question 12: Find all points of discontinuity of f, where f is defined by
$f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.$
Answer:
The given function is
$f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.$
The given function is defined for every real number k
There are different cases for the given function.
case(i) $k > 1$
$f(k) = k^2\\ \lim\limits_{x\rightarrow k}f(x) = k^2\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of k > 1
case(ii) $k < 1$
$f(k) = k^{10} -1\\$
$ \lim\limits_{x\rightarrow k}f(x) = k^{10}-1\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of k < 1
case(iii) x = 1
$\lim\limits_{x\rightarrow 1^-}f(x) = x^{10}-1 = 1^{10} - 1 = 1 - 1 = 0\\$
$ \lim\limits_{x\rightarrow 1^+}f(x) = x^2 = 1^2 = 1\\$
$ f(1) = x^{10}-1 = 0\ f(1) = L.H.L. \neq R.H.L.$
Hence, x = 1 is the point of discontinuity.
Question 13: Is the function defined by
Answer:
The given function is
$f (x) = \left\{\begin{matrix} x+5 & if x \leq 1\\ x-5 & if x > 1 \end{matrix}\right.$
The given function is defined for every real number $k$
There are different cases for the given function.
case(i) $k > 1$
$f(k) = k-5\\ \lim\limits_{x\rightarrow k}f(x) = k-5\\$
$ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k > 1$
case(ii) $k < 1$
$f(k) = k+5\\ \lim\limits_{x\rightarrow k}f(x) = k+5\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for each value of $k < 1$
case(iii) $x = 1$
$\lim\limits_{x\rightarrow 1^-}f(x) = x+5 = 1 + 5 = 1 + 5 = 6\\ \lim\limits_{x\rightarrow 1^+}f(x) = x-5 = 1-5 = -4\\ f(1) = x+5 =1+5= 6 \\ L.H.L. = f(1) \neq R.H.S.$
Hence, $x = 1$ is the point of discontinuity.
Question 14: Discuss the continuity of the function f, where f is defined by
Answer:
The given function is
$f (x)\left\{\begin{matrix} 3 & if 0 \leq x \leq 1 \\ 4& if 1 < x < 3 \\ 5& if 3 \leq x \leq 10 \end{matrix}\right.$
The given function is defined for every real number k
Different cases are there
case (i) $k < 1$
$f(k) = 3\\ \lim\limits_{x\rightarrow k}f(x) = 3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of $k < 1$
case(ii) $k = 1$
$f(1) = 3 \\ \lim\limits_{x\rightarrow 1^-}f(x) = 3\\ \lim\limits_{x\rightarrow 1^+}f(x) = 4\\ R.H.L. \neq L.H.L. = f(1)$
Hence, the given function is discontinuous at $x = 1$
Therefore, $x = 1$ is the point of discontinuity.
case(iii) $1 < k < 3$
$f(k) = 4 \\ \lim\limits_{x\rightarrow k}f(x) = 4\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of $k$ in $1 < k < 3$ given function is continuous.
case(iv) $k = 3$
$f(3) =5\\ \lim\limits_{x\rightarrow 3^-}f(x) = 4\\ \lim\limits_{x\rightarrow 3^+}f(x) =5\\ R.H.L. = f(3) \neq L.H.L.$
Hence, $x = 3$ is the point of discontinuity
case(v) $k > 3$
$f(k) = 5 \\ \lim\limits_{x\rightarrow k}f(x) = 5 \\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of $k > 3$
case(vi) when $k < 3$
$f(k) = 4 \\ \lim\limits_{x\rightarrow k}f(x) = 4\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of $k$ in $k < 3$ given function is continuous
Question 15: Discuss the continuity of the function f, where f is defined by $f(x)\left\{\begin{matrix} 2x & if &x<0 \\ 0& if &0\leq x\leq 1 \\ 4x&if & x>1 \end{matrix}\right.$
Answer:
Given function is satisfied for all real values of $x$
case (i) $k < 0$
Hence, the function is continuous for all values of $x < 0$
case (ii) $x = 0$
L.H.L at $x= 0$
R.H.L. at $x = 0$
L.H.L. = R.H.L. = $f(0)$
Hence, the function is continuous at $x = 0$
case (iii) $k > 0$
L.H.L. = R.H.L. = $f(0)$
Hence, the function is continuous for all values of x > 0
case (iv) k < 1
Hence, the function is continuous for all values of x < 1
case (v) k > 1
Hence, the function is continuous for all values of x > 1
case (vi) x = 1
Hence, the function is not continuous at x = 1
Question 16: Discuss the continuity of the function f, where f is defined by
Answer:
The given function is
$f ( x ) = \left\{\begin{matrix} -2 & if x \leq -1 \\ 2x & if -1< x \leq 1 \\ 2 & if x > 1 \end{matrix}\right.$
The given function is defined for every real number $k$
Different cases are there
case (i) $k < -1$
$f(k) = -2\\ \lim\limits_{x\rightarrow k}f(x) = -2\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of $k < -1$
case(ii) k = -1
$f(-1) = -2 \\ \lim\limits_{x\rightarrow -1^-}f(x) = -2\\ \lim\limits_{x\rightarrow -1^+}f(x) = 2x = 2(-1) = -2\\ R.H.L. =L.H.L. = f(-1)$
Hence, the given function is continuous at $x = -1$
case(iii) $k > -1$
$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for all values of $x > -1$
case(vi) $-1 < k < 1$
$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of $k$ in $-1 < k < 1$ given function is continuous.
case(v) $k = 1$
$f(1) =2x = 2(1)=2\\ \lim\limits_{x\rightarrow 1^-}f(x) = 2x=2(1)=2\\ \lim\limits_{x\rightarrow 1^+}f(x) =2\\ R.H.L. = f(1) = L.H.L.$
Hence, at x =1 function is continuous
case(vi) $k > 1$
$f(k) = 2 \\ \lim\limits_{x\rightarrow k}f(x) = 2 \\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, the given function is continuous for every value of k > 1
case(vii) when $k < 1$
$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in $k < 1$ given function is continuous.
Therefore, continuous at all points
Answer:
The given function is
$f (x) = \left\{\begin{matrix} ax +1 , &if x < 3 \\ bx +3 & if x > 3 \end{matrix}\right.$
For the function to be continuous at $x = 3$, R.H.L. must be equal to L.H.L.
$\lim\limits_{x\rightarrow 3^-}f(x)= ax + 1 = 3a+1\\ \lim\limits_{x\rightarrow 3^+}f(x) = bx+3=3b+3$
For the function to be continuous
$\lim\limits_{x\rightarrow 3^-}f(x) = \lim\limits_{x\rightarrow 3^+}f(x) \\ 3a + 1= 3b+3\\ 3(a-b)=2\\ a-b = \frac{2}{3}\\ a = b+\frac{2}{3}$
Answer:
Given function is
$f (x) = \left\{\begin{matrix} \lambda (x^2 -2x) & if x \leq 0 \\ 4x+1 & if x > 0 \end{matrix}\right.$
For the function to be continuous at $x = 0$, R.H.L. must be equal to L.H.L.
$\lim\limits_{x\rightarrow 0^-}f(x) = \lambda (x^2-2x) = 0\\ \lim\limits_{x\rightarrow 0^+}f(x) = 4x+1=1$
For the function to be continuous
$\lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0^+}f(x) \\ 0\neq 1$
Hence, if no value of the function is continuous at $x = 0$
For $x = 1$
$f(1)=4x+1=4(1)+1=5\\ \lim\limits_{x\rightarrow 1}f(x) =4+1=5 \\\ \lim\limits_{x\rightarrow 1}f(x) = f(x)$
Hence, the given function is continuous at $x =1$
Answer:
Given function is
$g (x) = x- [x]$
Given is defined for all real numbers k
$\lim\limits_{x\rightarrow k^-}f(x) = k - (k-1) = k-k+1 =1\\ \lim\limits_{x\rightarrow k^+}f(x) = k – k = 0\\ \lim\limits_{x\rightarrow k^-}f(x) \neq \lim\limits_{x\rightarrow k^+}f(x)$
Hence, by this, we can say that the function defined by $g (x) = x- [x]$ is discontinuous at all integral points
Question 20: Is the function defined by $f (x) = x^2 - sin x + 5$ continuous at x = $\pi$ ?
Answer:
Given function is
$f (x) = x^2 - sin x + 5$
Clearly, the Given function is defined at x = $\pi$
$f(\pi) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim\limits_{x\rightarrow \pi}f(x) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim\limits_{x\rightarrow \pi}f(x) = f(\pi)$
Hence, the function defined by $f (x) = x^2 - sin x + 5$ continuous at x = $\pi$
Question 21: Discuss the continuity of the following functions:
a) $f (x) = \sin x + \cos x$
Answer:
Given function is
$f (x) = \sin x + \cos x$
The given function is defined for all real numbers.
We, know that if two function $g(x)$ and $h(x)$ are continuous then $g(x)+h(x)$ , $g(x)-h(x)$ , $g(x).h(x)$ all are continuous
Lets take $g(x) = \sin x$ and $h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$g(c) = \sin c\\ \lim\limits_{x\rightarrow c}g(x)$
$ = \lim\limits_{x\rightarrow c}\sin x = \lim\limits_{h\rightarrow 0}\sin (c+h)$
$ \text{We know that } \sin(a+b) = \sin a \cos b + \cos a\sin b$
$ \lim\limits_{h\rightarrow 0}\sin (c+h) =$ $\lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}g(x) = g(c)$
Hence, function $g(x) = \sin x$ is a continuous function
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x) = \lim\limits_{x\rightarrow c}\cos x = \lim\limits_{h\rightarrow 0}\cos (c+h)$
$\text{ We know that }\cos(a+b) = \cos a \cos b + \sin a\sin b$
$\lim\limits_{h\rightarrow 0}\cos (c+h) = \lim\limits_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that $\sin x$ and $\cos x$ are continuous functions.
So, we can say that
$f(x) = g(x) + h(x) = \sin x + \cos x$ is also a continuous function
Question 21(b):Discuss the continuity of the following functions:
$f (x) = \sin x - \cos x$
Answer:
Given function is
$f (x) = \sin x - \cos x$
The given function is defined for all real numbers.
We know that if two functions g(x) and h(x) are continuous then $g(x)+h(x), g(x)-h(x), g(x).h(x)$ all are continuous
Lets take $g(x) = \sin x$ and $h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$g(c) = \sin c\\ \lim\limits_{x\rightarrow c}g(x) = \lim\limits_{x\rightarrow c}\sin x = \lim\limits_{h\rightarrow 0}\sin (c+h)$
$\text{We know that} \sin(a+b) = \sin a \cos b + \cos a\sin b$
$\lim\limits_{h\rightarrow 0}\sin (c+h) = \lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}g(x) = g(c)$
Hence, function $g(x) = \sin x$ is a continuous function
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x) = \lim\limits_{x\rightarrow c}\cos x = \lim\limits_{h\rightarrow 0}\cos (c+h)$
$ \text{We know that} \cos(a+b) = \cos a \cos b + \sin a\sin b$
$ \lim\limits_{h\rightarrow 0}\cos (c+h) = \lim\limits_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \cos x$ is a continuous discussion of the continuity of the following functions:
$f (x)$ is continuous, we can say that
$f(x) = g(x) - h(x) = \sin x - \cos x$ is also a continuous function.
Question 21(c): Discuss the continuity of the following functions:
$f (x) = \sin x \cdot \cos x$
Answer:
Given function is
$f (x) = \sin x \cdot \cos x$
The given function is defined for all real numbers.
We know that if two functions $g(x)$ and $h(x)$ are continuous then $g(x)+h(x), g(x)-h(x), g(x).h(x)$ all are continuous
Lets take $g(x) = \sin x$ and $h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$g(c) = \sin c\\ \lim\limits_{x\rightarrow c}g(x) = \lim\limits_{x\rightarrow c}\sin x = \lim\limits_{h\rightarrow 0}\sin (c+h)$
$\text{We know that} \sin(a+b) = \sin a \cos b + \cos a\sin b$
$ \lim\limits_{h\rightarrow 0}\sin (c+h) = \lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}g(x) = g(c)$
Hence, function $g(x) = \sin x$ is a continuous function
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c, \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x) = \lim\limits_{x\rightarrow c}\cos x = \lim\limits_{h\rightarrow 0}\cos (c+h)$
$\text{We know that} \cos(a+b) = \cos a \cos b + \sin a\sin b$
$ \lim\limits_{h\rightarrow 0}\cos (c+h) = \lim\limits_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x are continuous functions.
So, we can say that
$f(x) = g(x).h(x) = \sin x .\cos x$ is also a continuous function
Question 22: Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Answer:
We know that if two functions g(x) and h(x) are continuous, then.
$\frac{g(x)}{h(x)} , h(x) \neq0\text{ is continuous}$
$\frac{1}{h(x)} , h(x) \neq 0\ \text{is continuous} \frac{1}{g(x)} , g(x) \neq0\text{ is continuous}$
Lets take $g(x) = \sin x$ and $h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$g(c) = \sin c\\ \lim\limits_{x\rightarrow c}g(x) = \lim\limits_{x\rightarrow c}\sin x = \lim\limits_{h\rightarrow 0}\sin (c+h)$
$\text {We know that } \sin(a+b) = \sin a \cos b + \cos a\sin b$
$\lim\limits_{h\rightarrow 0}\sin (c+h) = \lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}g(x) = g(c)$
Hence, function $g(x) = \sin x$ is a continuous function
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x)$
$= \lim\limits_{x\rightarrow c}\cos x $
$= \lim\limits_{h\rightarrow 0}\cos (c+h)$
$\text{We know that }\cos(a+b) = \cos a \cos b + \sin a\sin b$
$\lim\limits_{h\rightarrow 0}\cos (c+h)$
$=\lim\limits_{h \rightarrow 0} (\cos c \cos h+ \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, the function $h(x) = \cos x$ is a continuous function
We proved independently that $\sin x$ and $\cos x$ a continuous functions.
So, we can say that
cosec x = $\frac{1}{\sin x} = \frac{1}{g(x)}$ is also continuous except at $x=n\pi$
sec x = $\frac{1}{\\cos x} = \frac{1}{h(x)}$ is also continuous except at $x=\frac{(2n+1) \pi}{2}$
cot x = $\frac{\cos x}{\sin x} = \frac{h(x)}{g(x)}$ is also continuous except at $x=n\pi$
Question 23: Find all points of discontinuity of f, where
$f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.$
Answer:
Given function is
$f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.$
$\lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0}\frac{\sin x}{x} = 1\\ \lim\limits_{x\rightarrow 0^+}f(x) = x + 1 = 1\\ \lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0^+}f(x)$
Hence, the function is continuous.
Therefore, no point of discontinuity
Answer:
The given function is
$f (x) = \left\{\begin{matrix} x^2 \sin 1/x & if x \neq 0 \\ 0 & if x = 0 \end{matrix}\right.$
The given function is defined for all real numbers k
when x = 0
$f(0) = 0\\ \lim\limits_{x\rightarrow 0}f(x)=\lim\limits_{x\rightarrow 0}\left ( x^2\sin\frac{1}{x} \right )=\lim\limits_{x\rightarrow 0}\left ( \frac{x.\sin\frac{1}{x}}{\frac{1}{x}} \right ) = 0(1)=0 \ \ \ \ \ \ (\because\lim\limits_{x\rightarrow 0}\frac{\sin x}{x} = 1)$
$\lim\limits_{x\rightarrow 0}f(x) = f(0)$
Hence, the function is continuous at x = 0
when $x \neq 0$
$f(k) = k^2\sin \frac{1}{k}\\ \lim\limits_{x\rightarrow k}f(x)=\lim\limits_{x\rightarrow k}\left ( x^2\sin\frac{1}{x} \right )=k^2\sin \frac{1}{k}\\ \lim\limits_{x\rightarrow k} = f(k)$
Hence, the given function is continuous for all points
Question 25: Examine the continuity of f, where f is defined by
$f (x) = \left\{\begin{matrix} \sin x - \cos x & if x \neq 0 \\ -1 & if x = 0 \end{matrix}\right.$
Answer:
The given function is
$f (x) = \sin x - \cos x$
The given function is defined for all real numbers.
We know that if two functions $g(x)$ and $h(x)$ are continuous then $g(x)+h(x), g(x)-h(x), g(x).h(x)$ all are continuous
Lets take $g(x) = \sin x$ and $h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$g(c) = \sin c\\ \lim\limits_{x\rightarrow c}g(x) = \lim\limits_{x\rightarrow c}\sin x = \lim\limits_{h\rightarrow 0}\sin (c+h)$
$\text{We know that} \sin(a+b) = \sin a \cos b + \cos a\sin b$
$\lim\limits_{h\rightarrow 0}\sin (c+h) = \lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}g(x) = g(c)$
Hence, function $g(x) = \sin x$ is a continuous function
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x) = \lim\limits_{x\rightarrow c}\cos x$
$= \lim\limits_{h\rightarrow 0}\cos (c+h)$
$\text{We know that} \cos(a+b) = \cos a \cos b + \sin a\sin b$
$\lim\limits_{h\rightarrow 0}\cos (c+h) = \lim\limits_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that $ \sin x$ and $\cos x$ are continuous functions.
So, we can say that
$f(x) = g(x) - h(x) =$ $\sin x$ - $\cos x$ is also a continuous function
When $x = 0$
$f (0) = (-1) \lim\limits_{x\rightarrow 0^-}f(x)$
$= \sin 0 - \cos 0 = -1$
$ \lim\limits_{x\rightarrow 0^+}f(x) = \sin 0 - \cos 0 = -1 $
$ R.H.L. = L.H.L. = f(0)$
Hence, the function is also continuous at $x = 0$
Question 26: Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
The given function is
$f (x) = \left\{\begin{matrix} \frac{k\cos x }{\pi - 2x } & if x \neq \pi/2 \\ 3 & if x = \pi/2 \end{matrix}\right.$
When $x = \frac{\pi}{2}$
$f(\frac{\pi}{2}) = 3\\let\ x=\pi +h\\ \lim\limits_{x\rightarrow \frac{\pi}{2}}f(x)= \lim\limits_{h\rightarrow 0}\frac{k\cos\left ( \frac{\pi}{2}+h \right )}{\pi-2\left ( \frac{\pi}{2}+h \right )} = k. \lim\limits_{h\rightarrow 0}\frac{-\sin h}{-2h} = \frac{k}{2}\\$
For the function to be continuous
$\lim\limits_{x\rightarrow \frac{\pi}{2}}f(x)= f(\frac{\pi}{2})\\ \frac{k}{2} = 3\\ k = 6$
Therefore, the value of k so that the function f is continuous at 6
Question 27: Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
The given function is
$f (x) = \left\{\begin{matrix} kx^2 &if x \leq 2 \\ 3 & if x > 2 \end{matrix}\right.$
When $x = 2$
For the function to be continuous
$f(2) = R.H.L. = LH.L.$
$f(2) = 4k\\ \lim\limits_{x\rightarrow 2^-}f(x)= 4k\\ \lim\limits_{x\rightarrow 2^+}f(x) = 3\\ f(2) = \lim\limits_{x\rightarrow 2^-}f(x) = \lim\limits_{x\rightarrow 2^+}f(x)\\ 4k = 3\\ k = \frac{3}{4}$
Hence, the values of k so that the function f is continuous at x=2 are $\frac{3}{4}$
Question 28: Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
The given function is
$f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right.$
When x = $\pi$
For the function to be continuous
, f( $\pi$ ) = R.H.L. = LH.L.
$f(\pi) = k\pi+1\\ \lim\limits_{x\rightarrow \pi^-}f(x)= k\pi+1\\ \lim\limits_{x\rightarrow \pi^+}f(x) = \cos \pi = -1\\ f(\pi) = \lim\limits_{x\rightarrow \pi^-}f(x) = \lim\limits_{x\rightarrow \pi^+}f(x)\\ k\pi+1 = -1\\ k = \frac{-2}{\pi}$
Hence, the values of k so that the function f is continuous at x= $\pi$ is $\frac{-2}{\pi}$
Question 29: Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
$f (x) = \left\{\begin{matrix} kx +1 & if x \leq 5 \\ 3x-5 & if x > 5 \end{matrix}\right.$
When $x = 5$
For the function to be continuous
$f(5) = R.H.L. = LH.L.$
$f(5) = 5k+1\\ \lim\limits_{x\rightarrow 5^-}f(x)= 5k+1\\ \lim\limits_{x\rightarrow 5^+}f(x) = 3(5)-5 = 15-5=10\\ f(5) = \lim\limits_{x\rightarrow 5^-}f(x) = \lim\limits_{x\rightarrow 5^+}f(x)\\ 5k+1 = 10\\ k = \frac{9}{5}$
Hence, the values of k so that the function f is continuous at $x= 5$ is $\frac{9}{5}$
Answer:
Given that continuous function is
$f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right.$
The function is continuous so
$\lim\limits_{x\rightarrow 2^-}f(x) = \lim\limits_{x\rightarrow 2^+}f(x)\\ and\\ \lim\limits_{x\rightarrow 10^-}f(x)=\lim\limits_{x\rightarrow 10^+}f(x)$
$\lim\limits_{x\rightarrow 2^-}f(x) = 5\\ \lim\limits_{x\rightarrow 2^+}f(x)=ax+b=2a+b$
$ 2a+b = 5 \ \ \ \ \ \ -(i)$
$\lim\limits_{x\rightarrow 10^-}f(x)=ax+b=10a+b\\ \lim\limits_{x\rightarrow 10^+}f(x)=21$
$ 10a+b=21 \ \ \ \ \ \ \ \ -(ii)$
By solving equation (i) and (ii)
a = 2 and b = 1
Hence, values of a and b such that the function defined by $f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21, & if\: \: x > 10 \end{matrix}\right.$ is a continuous function is 2 and 1 respectively
Question 31 Show that the function defined by $f (x) = \cos (x^2 )$ is a continuous function.
Answer:
Given function is
$f (x) = \cos (x^2 )$
Given function is defined for all real values of x
Let x = k + h
if $x\rightarrow k , \ then \ h \rightarrow 0$
$f(k) = \cos k^2\\ \lim\limits_{x \rightarrow k}f(x) = \lim\limits_{x \rightarrow k}\cos x^2 = \lim\limits_{h \rightarrow 0}\cos (k+h)^2 $
$= \cos k^2\\ \lim\limits_{x \rightarrow k}f(x) = f(k)$
Hence, the function $f (x) = \cos (x^2 )$ is a continuous function
Question 32: Show that the function defined by $f (x) = |\cos x |$ is continuous.
Answer:
Given function is
$f (x) = |\cos x |$
Given function is defined for all values of x
f = g o h , $g(x) = \|x\|$ and $h(x) = \cos x$
Now,
$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) $k < 0$
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when $k < 0$
case (ii) $k > 0$
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0
case (iii) $k = 0$
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0$
$ \lim\limits_{x\rightarrow 0^+}g(x ) = x = 0$
$\lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
$h(x) = \cos x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \cos c\\ \lim\limits_{x\rightarrow c}h(x)$
$= \lim\limits_{x\rightarrow c}\cos x$
$= \lim\limits_{h\rightarrow 0}\cos (c+h)$
$\text{We know that } \cos(a+b) = \cos a \cos b + \sin a\sin b$
$ \lim\limits_{h\rightarrow 0}\cos (c+h) = \lim\limits_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h)$
$= \lim\limits_{h\rightarrow 0}\cos c\cos h + \lim\limits_{h\rightarrow 0}\sin c \sin h$
$=\cos c\cos 0 + \sin c \sin 0 = \cos c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \cos x$ is a continuous function
g(x) is continuous , $h(x)$ is continuous
Therefore, $f(x) = g o h$ is also continuous
Question 33: Examine that sin | x| is a continuous function.
Answer:
The given function is
$f(x) = \sin \|x\|$
f(x) = h o g , h(x) =$\sin x$ and g(x) = |x|
Now,
$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) $k < 0$
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k < 0
case (ii) $k > 0$
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0
case (iii) $k = 0$
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0$
$\lim\limits_{x\rightarrow 0^+}g(x ) = x = 0$
$ \lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) =$\sin x$
Let's suppose $x = c + h$
if $x \rightarrow c , \ then \ h \rightarrow 0$
$h(c) = \sin c$
$ \lim\limits_{x\rightarrow c}h(x) = \lim\limits_{x\rightarrow c}\sin x$
$= \lim\limits_{h\rightarrow 0}\sin (c+h)$
$\text{ We know that } \sin(a+b) = \sin a \cos b + \cos a\sin b$
$ \lim\limits_{h\rightarrow 0}\sin (c+h) = \lim\limits_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h)$
$= \lim\limits_{h\rightarrow 0}\sin c\cos h + \lim\limits_{h\rightarrow 0}\cos c \sin h$
$=\sin c\cos 0 + \cos c \sin 0 = \sin c$
$\lim\limits_{x\rightarrow c}h(x) = h(c)$
Hence, function $h(x) = \sin x$ is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, $f(x) = h o g$ is also continuous
Question 34: Find all the points of discontinuity of f defined by $f (x) = | x| - | x + 1|.$
Answer:
The given function is
$f (x) = | x| - | x + 1|$
Let g(x) = |x| and h(x) = |x+1|
Now,
$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < 0
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k < 0
case (ii) k > 0
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0
case (iii) k = 0
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0$
$ \lim\limits_{x\rightarrow 0^+}g(x ) = x = 0$
$ \lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
$h(x)\begin{cases} -(x+1) & \text{ if } x<-1 \\ 0 & \text{ if } x= -1\\ (x+1)& \text{ if } x>-1 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < -1
$h(k) = -(k+1)\\ \lim\limits_{x\rightarrow k}h(x) = -(k+1)\\ \lim\limits_{x\rightarrow k}h(x) = h(k)$
Hence, h(x) is continuous when k < -1
case (ii) k > -1
$h(k) = k+1\\ \lim\limits_{x\rightarrow k}h(x) = k+1\\ \lim\limits_{x\rightarrow k}h(x) = h(k)$
Hence, h(x) is continuous when k > -1
case (iii) k = -1
$h(-1) = 0\\ \lim\limits_{x\rightarrow -1^-}h(x) = -(x-1)$
$= 0\\ \lim\limits_{x\rightarrow -1^+}h(x ) = x+1 = 0$
$ \lim\limits_{x\rightarrow -1^-}h(x) = h(0) = \lim\limits_{x\rightarrow -1^+}h(x )$
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x.
g(x) is continuous and h(x) is continuous
Therefore, $f(x) = g(x) - h(x) = |x| - |x+1|$ is also continuous
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.2 |
Question 1: Differentiate the functions with respect to x in
Answer:
The given function is
$f(x)=\sin (x^2 +5 )$
When we differentiate it w.r.t. x.
Let's take $t = x^2+5$. then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (x^2+5)$
$\frac{dt}{dx} = \frac{d(x^2+5 )}{dx} = 2x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (x^2+5).2x$
Therefore, the answer is $2x \cos (x^2+5)$
Question 2: Differentiate the functions with respect to x in
Answer:
The given function is
$f(x)= \cos ( \sin x )$
Let’s take $t = \sin x$ then,
$f(t) = \cos t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ ( By chain rule)
$\frac{df(t)}{dt} = \frac{d(\cos t)}{dt} = -\sin t = -\sin (\sin x)$
$\frac{dt}{dx} = \frac{d(\sin x)}{dt} = \cos x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = -\sin(\sin x).\cos x$
Therefore, the answer is $-\sin(\sin x).\cos x$
Question 3: Differentiate the functions with respect to x in
Answer:
The given function is
$f(x) = \sin (ax +b )$
When we differentiate it w.r.t. x.
Let's take $t = ax+b$. then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (ax+b)$
$\frac{dt}{dx} = \frac{d(ax+b )}{dx} = a$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (ax+b).a$
Therefore, the answer is $a \cos (ax+b)$
Question 4: Differentiate the functions with respect to x in
Answer:
The given function is
$f(x)=\sec (\tan (\sqrt x) )$
When we differentiate it w.r.t. x.
Let's take $t = \sqrt x$. then,
$f(t) = \sec (\tan t)$
take $\tan t = k$ . then,
$f(k) = \sec k$
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(k)}{dk} = \frac{d(\sec k )}{dk} = \sec k \tan k = \sec(\tan\sqrt x)\tan(\tan\sqrt x)$
$(\because k = \tan t \ and \ t = \sqrt x)$
$\frac{df(t)}{dt} = \frac{d(\tan t )}{dt} = \sec^2 t =\sec^2 (\sqrt x) \ \ \ \ \ \ (\because t = \sqrt x)$
$\frac{dt}{dx} = \frac{d(\sqrt x)}{dx} = \frac{1}{2\sqrt x}$
Now,
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$
$=\sec(\tan \sqrt x)\tan(\tan \sqrt x).\sec^2 (\sqrt x) . \frac{1}{2\sqrt x}$
Therefore, the answer is $\frac{\sec(\tan \sqrt x).\tan(\tan \sqrt x).\sec^2 (\sqrt x)}{2\sqrt x}$
Question 5: Differentiate the functions with respect to x in
$\frac{\sin (ax +b )}{\cos (cx + d)}$
Answer:
The given function is
$f(x) = \frac{\sin (ax +b )}{\cos (cx + d)} = \frac{g(x)}{h(x)}$
We know that,
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)}$
$g(x) = \sin(ax+b)$ and $h(x) = \cos(cx+d)$
Let's take $u = (ax+b) \ and \ v = (cx+d)$
Then,
$\sin (ax+b) = \sin u \ and \ \cos(cx+d) = \cos c$
$g^{'}(x)=\frac{d(g(x))}{dx} = \frac{d(g(x))}{du}.\frac{du}{dx}$ (By chain rule)
$\frac{d(g(x))}{du} = \frac{d(\sin u)}{du} = \cos u = \cos(ax+b) \ \ \ \ \ \ \ \ \ (\because u = ax +b)$
$\frac{du}{dx} = \frac{d(ax+b)}{dx} = a$
$g^{'}(x)=a\cos (ax+b)$ -(i)
Similarly,
$h^{'}(x)=\frac{d(h(x))}{dx} = \frac{d(h(x))}{dv}.\frac{dv}{dx}$
$\frac{d(h(x))}{dv}= \frac{d(\cos v)}{dv} = -\sin v = -\sin (cx+d) \ \ \ \ \ \ \ (\because v = (cx+d))$
$\frac{dv}{dx}= \frac{d(cx+d)}{dv} = c$
$h^{'}(x)=-c\sin(cx+d)$ -(ii)
Now, put (i) and (ii) in
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)} = \frac{a\cos(ax+b).\cos(cx+d)-\sin(ax+b).(-c.\sin(cx+d))}{\cos^2(cx+d)}$
$= \frac{a\cos(ax+b).\cos(cx+d)}{\cos^2(cx+d)}+\frac{\sin(ax+b).c.\sin(cx+d)}{\cos^2(cx+d)}$
$= a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$
Therefore, the answer is $a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$
Question 6: Differentiate the functions with respect to x in
$\cos x^3 . \sin ^ 2 ( x ^5 )$
Answer:
The given function is
$f(x)=\cos x^3 . \sin ^ 2 ( x ^5 )$
Differentiation w.r.t. x is
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x)$
$g(x) = \cos x^3 \ and \ h(x) = sin^2(x^5)$
Lets take $u = x^3 \ and \ v = x^5$
Our functions become,
$\cos x^3 = \cos u$ and $\sin^2(x^5) = \sin^2v$
Now,
$g^{'}(x) = \frac{d(g(x))}{dx} =\frac{d(g(u))}{du}.\frac{du}{dx}$ ( By chain rule)
$\frac{d(g(u))}{du} = \frac{d(\cos u)}{du} = -\sin u =- \sin x^3 \ \ \ \ (\because u = x^3)$
$\frac{du}{dx} = \frac{d(x^3)}{dx} = 3x^2$
$g^{'}(x) = -\sin x^3.3x^2$ -(i)
Similarly,
$h^{'}(x) = \frac{d(h(x))}{dx} =\frac{d(h(v))}{dv}.\frac{dv}{dx}$
$\frac{d(h(v))}{dv}= \frac{d(\sin^2v)}{dv} =2\sin v \cos v =2\sin x^5\cos x^5$
$ (\because v = x^5)$
$\frac{dv}{dx} = \frac{d(x^5)}{dx} = 5x^4$
$h^{'}(x) = 2\sin x^5\cos x^5.5x^4 = 10x^4\sin x^5\cos x^5$ -(ii)
Put (i) and (ii) in
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x) $
$= -3x^2\sin x^3.\sin^2 x^5+\cos x^3.10x^4\sin x^5 \cos x^5$
Therefore, the answer is $10x^4\sin x^5 \cos x^5.\cos x^3 -3x^2\sin x^3.\sin^2 x^5$
Question 7: Differentiate the functions with respect to x in
Answer:
The give function is
$f(x)=2 \sqrt { \cot ( x^2 )}$
Let's take $t = x^2$
Now, take $\cot t = k^2$
$f(k) = 2k$
Differentiation w.r.t. x
$\frac{d(f(k))}{dx} = \frac{d(f(k))}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ -(By chain rule)
$\frac{d(f(k))}{dk} = \frac{d(2k)}{dk} = 2$
$\frac{dk}{dt} = \frac{d(\sqrt{\cot t})}{dt} = \frac{1}{2\sqrt{cot t}}.(-cosec^2 t) = \frac{-cosec^2 x^2}{2\sqrt{cot x^2}}(\because t = x^2)$
$\frac{dt}{dx} = \frac{d(x^2)}{dx} = 2x$
So,
$\frac{d(f(k))}{dx} = 2.\frac{-cosec^2 x^2}{2\sqrt{cot x^2}}.2x = \frac{-2\sqrt2x}{\sin^2x^2\sqrt{\frac{2\sin x^2\cos x^2}{\sin^2x^2}} }$ ( Multiply and divide by $\sqrt 2$ and multiply and divide $\sqrt {\cot x^2}$ by $\sqrt{\sin x^2}$
$(\text{because} \cot x = \frac{\cos x}{\sin x} \ and \csc x = \frac{1}{\sin x })$
$=\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}}(\because 2\sin x\cos x=\sin2x)$
There, the answer is $\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}}$
Question 8: Differentiate the functions with respect to x in
Answer:
Let us assume : $y\ =\ \cos ( \sqrt x )$
Differentiating y with respect to x, we get :
$\frac{dy}{dx}\ =\ \frac{d(\cos ( \sqrt x ))}{dx}$
or $=\ - \sin \sqrt{x}.\frac{d( \sqrt x )}{dx}$
or $=\ \frac{- \sin \sqrt{x}}{2\sqrt{x}}$
Question 9: Prove that the function f given by $f (x) = |x-1 |, x \epsilon R$ is not differentiable at x = 1.
Answer:
The given function is
$f (x) = |x-1 | , x \epsilon R$
We know that any function is differentiable when both.
$\lim\limits_{h\rightarrow 0^-}\frac{f(c+h)-f(c)}{h}$ and $\lim\limits_{h\rightarrow 0^+}\frac{f(c+h)-f(c)}{h}$ are finite and equal
The required condition for the function to be differentiable at x = 1 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{f(1+h)-f(1)}{h}$
Now, the Left-hand limit of a function at x = 1 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^-}\frac{|1+h-1|-|1-1|}{h} = \lim\limits_{h\rightarrow 0^-}\frac{|h|-0}{h}$
$= \lim\limits_{h\rightarrow 0^-}\frac{-h}{h} = -1 \ \ \ \ (\because h < 0)$
The right-hand limit of a function at x = 1 is
$\lim\limits_{h\rightarrow 0^+}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{|1+h-1|-|1-1|}{h} = \lim\limits_{h\rightarrow 0^+}\frac{|h|-0}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{h}{h} = 1$
Now, it is clear that.
R.H.L. at x= 1 $\neq$ L.H.L. at x= 1
Therefore, function $f (x) = |x-1 |$ is not differentiable at x = 1
Question 10: Prove that the greatest integer function defined by $f (x) = [x] , 0 < x < 3$ is not differentiable at
Answer:
The given function is
$f (x) = [x] , 0 < x < 3$
We know that any function is differentiable when both.
$\lim\limits_{h\rightarrow 0^-}\frac{f(c+h)-f(c)}{h}$ and $\lim\limits_{h\rightarrow 0^+}\frac{f(c+h)-f(c)}{h}$ are finite and equal
The required condition for the function to be differentiable at x = 1 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{f(1+h)-f(1)}{h}$
Now, the Left-hand limit of the function at x = 1 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^-}\frac{[1+h]-[1]}{h} = \lim\limits_{h\rightarrow 0^-}\frac{0-1}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{-1}{h} = -\infty \ \ \ \ \ (\because h < 0 \rightarrow 1+h<1, \therefore [1+h] =0)$
The right-hand limit of the function at x = 1 is
$\lim\limits_{h\rightarrow 0^+}\frac{f(1+h)-f(1)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{[1+h]-[1]}{h} = \lim\limits_{h\rightarrow 0^+}\frac{1-1}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{0}{h} = 0 \ \ \ \ \ (\because h > 0 \rightarrow 1+h>1, \therefore [1+h] =1)$
Now, it is clear that.
R.H.L. at x= 1 $\neq$ L.H.L. at x= 1 and L.H.L. is not finite as well
Therefore, function $f(x) = [x]$ is not differentiable at x = 1
Similarly, for x = 2
The required condition for the function to be differentiable at x = 2 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(2+h)-f(2)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{f(2+h)-f(2)}{h}$
Now, the Left-hand limit of the function at x = 2 is
$\lim\limits_{h\rightarrow 0^-}\frac{f(2+h)-f(2)}{h } = \lim\limits_{h\rightarrow 0^-}\frac{[2+h]-[2]}{h} = \lim\limits_{h\rightarrow 0^-}\frac{1-2}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{-1}{h} = -\infty \ \ \ \ (\because h < 0 \rightarrow 2+h<2, \therefore [2+h] =1)$
The right-hand limit of the function at x = 1 is
$\lim\limits_{h\rightarrow 0^+}\frac{f(2+h)-f(2)}{h } = \lim\limits_{h\rightarrow 0^+}\frac{[2+h]-[2]}{h} = \lim\limits_{h\rightarrow 0^+}\frac{2-2}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{0}{h} = 0 \ \ \ \ \ (\because h > 0 \rightarrow 2+h>2, \therefore [2+h] =2)$
Now, it is clear that.
R.H.L. at x= 2 $\neq$ L.H.L. at x= 2 and L.H.L. is not finite as well
Therefore, function $f(x) = [x]$ is not differentiable at x = 2
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.3 |
Question 1: Find $\frac{dy}{dx}$ in the following:
Answer:
The given function is
$2 x + 3 y = \sin x$
We can rewrite it as
$3y = \sin x - 2x$
Now, differentiation w.r.t. x is
$3\frac{dy}{dx} = \frac{d(\sin x - 2x)}{dx} = \cos x - 2$
$\frac{dy}{dx} = \frac{\cos x-2}{3}$
Therefore, the answer is $\frac{\cos x-2}{3}$
Question 2: Find $\frac{dy}{dx}$ in the following: $2 x + 3y = \sin y$
Answer:
The given function is
$2 x + 3 y = \sin y$
We can rewrite it as
$\sin y - 3y = 2x$
Now, differentiation w.r.t. x is
$\frac{dy}{dx}(\sin y - 3y) = \frac{d( 2x)}{dx}$
$(\cos y\frac{dy}{dx} - 3\frac{dy}{dx}) = 2$
$\frac{dy}{dx} = \frac{2}{\cos y -3}$
Therefore, the answer is $\frac{2}{\cos y -3}$
Question 3: Find $\frac{dy}{dx}$ in the following: $ax + by ^2 = \cos y$
Answer:
The given function is
$ax + by ^2 = \cos y$
We can rewrite it as
$by^2-\cos y = -ax$
Now, differentiation w.r.t. x is
$\frac{dy}{dx}(2by - (-\sin y)) = \frac{d( -ax)}{dx} = -a$
$\frac{dy}{dx} = \frac{-a}{2b y +\sin y}$
Therefore, the answer is $\frac{-a}{2b y +\sin y}$
Question 4: Find $\frac{dy}{dx}$ in the following:
Answer:
The given function is
$xy + y^2 = \tan x + y$
We can rewrite it as
$xy+y^2-y= \tan x$
Now, differentiation w.r.t. x is
$y+\frac{dy}{dx}(x+2y-1) = \frac{d( \tan x)}{dx} = \sec^2 x$
$\frac{dy}{dx} = \frac{\sec^2 x- y}{x+2y-1}$
Therefore, the answer is $\frac{\sec^2 x- y}{x+2y-1}$
Question 5: Find $\frac{dy}{dx}$ in the following: $x^2 + xy + y^2 = 100$
Answer:
The given function is
$x^2 + xy + y^2 = 100$
We can rewrite it as
$xy + y^2 = 100 - x^2$
Now, differentiation w.r.t. x is
$y+\frac{dy}{dx}(x+2y) = \frac{d( 100-x^2)}{dx} = -2x$
$\frac{dy}{dx} = \frac{-2 x- y}{x+2y}$
Therefore, the answer is $\frac{-2 x- y}{x+2y}$
Question 6: Find $\frac{dy}{dx}$ in the following:
$x ^3 + x^2 y + xy^2 + y^3 = 81$
Answer:
The given function is
$x ^3 + x^2 y + xy^2 + y^3 = 81$
We can rewrite it as
$x^2 y + xy^2 + y^3 = 81 - x^3$
Now, differentiation w.r.t. x is
$\frac{d(x^2 y + xy^2 + y^3)}{dx} = \frac{d(81 - x^3)}{dx}$
$2xy+y^2+\frac{dy}{dx}(x^2+2xy+3y^2) = -3x^2\\ \frac{dy}{dx}=\frac{-(3x^2+2xy+y^2)}{(x^2+2xy+3y^2}$
Therefore, the answer is $\frac{-(3x^2+2xy+y^2)}{(x^2+2xy+3y^2}$
Question 7: Find $\frac{dy}{dx}$ in the following: $\sin ^ 2 y + \cos xy = k$
Answer:
The given function is
$\sin ^ 2 y + \cos xy = k$
Now, differentiation w.r.t. x is
$\frac{d(\sin^2y+\cos xy)}{dx} = \frac{d(k)}{dx}$
$2\sin y \cos y\frac{dy}{dx}+(-\sin xy)(y+x\frac{dy}{dx})=0$
$\frac{dy}{dx}(2\sin y \cos y-x\sin xy)= y\sin xy\\ \frac{dy}{dx}$
$= \frac{y\sin xy}{2\sin y \cos y-x\sin xy}$
$= \frac{y\sin xy}{\sin 2y -x\sin xy} \ \ \ \ \ \ (\because 2\sin x\cos y = \sin 2x)$
Therefore, the answer is $\frac{y\sin xy}{\sin 2y -x\sin xy}$
Question 8: Find $\frac{dy}{dx}$ in the following:
Answer:
The given function is
$\sin ^2 x + \cos ^ 2 y = 1$
We can rewrite it as
$\cos ^ 2 y = 1-\sin^2x$
Now, differentiation w.r.t. x is
$\frac{d(\cos^2y)}{dx} = \frac{d(1-\sin^2x)}{dx}$
$2\cos y (-\sin y)\frac{dy}{dx} = -2\sin x \cos x\\ \frac{dy}{dx} = \frac{2\sin x\cos x}{2\sin y \cos y} = \frac{\sin 2x }{\sin 2y} \ \ \ \ \ \ (\because2\sin a \cos a = \sin 2a)$
Therefore, the answer is $\frac{\sin 2x}{\sin 2y }$
Question 9: Find $\frac{dy}{dx}$ in the following:
$y = \sin ^{-1} \left ( \frac{2x}{1+ x^2 } \right )$
Answer:
The given function is
$y = \sin ^{-1} \left ( \frac{2x}{1+ x^2 } \right )$
Lets consider $x = \tan t$
Then,
$\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)$
$1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)$
Now,
$\frac{2x}{1+x^2} = \frac{2\tan t }{1+\tan^2t} = \sin 2t \ \ \ \ \ \ (\because \sin 2x = \frac{2\tan x }{1+\tan^2 x})$
Our equation reduces to
$y = \sin^{-1}(\sin 2t)$
$y = 2t$
Now, differentiation w.r.t. x is
$\frac{d(y)}{dx} = \frac{d(2t)}{dt}.\frac{dt}{dx}$
$\frac{dy}{dx} = 2.\frac{1}{1+x^2} = \frac{2}{1+x^2}$
Therefore, the answer is $\frac{2}{1+x^2}$
Answer:
The given function is
$y = \tan ^{-1} \left ( \frac{3x- x ^3}{1- 3x ^2} \right )$
Lets consider $x = \tan t$
Then,
$\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)$
$1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)$
Now,
$\frac{3x-x^3}{1-3x^2} = \frac{3\tan t-\tan^3t }{1-3\tan^2t} = \tan3t \ \ \ \ \ \ (\because \tan 3x = \frac{3\tan x-\tan^3x }{1-3\tan^2x} )$
Our equation reduces to
$y = \tan^{-1}(\tan 3t)$
$y = 3t$
Now, differentiation w.r.t. x is
$\frac{d(y)}{dx} = \frac{d(3t)}{dt}.\frac{dt}{dx}$
$\frac{dy}{dx} = 3.\frac{1}{1+x^2} = \frac{3}{1+x^2}$
Therefore, the answer is $\frac{3}{1+x^2}$
Question 11: Find $\frac{dy}{dx}$ in the following:
$y = \cos ^{-1} \left ( \frac{1 - x^2 }{1+ x^2 } \right ) , 0 < x < 1$
Answer:
The given function is
$y = \cos ^{-1} \left ( \frac{1 - x^2 }{1+ x^2 } \right )$
Let's consider $x = \tan t$
Then,
$\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)$
$1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)$
Now,
$\frac{1-x^2}{1+x^2} = \frac{1-\tan^2t }{1+\tan^2t} = \cos 2t \ \ \ \ \ \ (\because \cos 2x = \frac{1-\tan^2x }{1+\tan^2x} )$
Our equation reduces to
$y = \cos^{-1}(\cos 2t)$
$y = 2t$
Now, differentiation w.r.t. x is
$\frac{d(y)}{dx} = \frac{d(2t)}{dt}.\frac{dt}{dx}$
$\frac{dy}{dx} = 2.\frac{1}{1+x^2} = \frac{2}{1+x^2}$
Therefore, the answer is $\frac{2}{1+x^2}$
Question 12: Find $\frac{dy}{dx}$ in the following: $y = \sin ^{-1 } \left ( \frac{1- x ^2 }{1+ x^2} \right ) , 0< x < 1$
Answer:
The given function is
$y = \sin ^{-1} \left ( \frac{1 - x^2 }{1+ x^2 } \right )$
We can rewrite it as
$\sin y = \ \left ( \frac{1 - x^2 }{1+ x^2 } \right )$
Let's consider $x = \tan t$
Then,
$\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)$
$1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)$
Now,
$\frac{1-x^2}{1+x^2} = \frac{1-\tan^2t }{1+\tan^2t} = \cos 2t \ \ \ \ \ \ (\because \cos 2x = \frac{1-\tan^2x }{1+\tan^2x} )$
Our equation reduces to
$\sin y = \cos 2t$
Now, differentiation w.r.t. x is
$\frac{d(\sin y)}{dx} = \frac{d(\cos2t)}{dt}.\frac{dt}{dx}$
$\cos y\frac{dy}{dx} = 2(-\sin 2t).\frac{1}{1+x^2} = \frac{-2\sin2t}{1+x^2}$ $= \frac{-2.\frac{2\tan t}{1+\tan^2t}}{1+x^2} =\frac{-2.\frac{2x}{1+x^2}}{1+x^2} =\frac{-4x}{(1+x^2)^2}$
$(\because \sin 2x = \frac{2\tan x}{1+\tan^2x} \ and \ x = \tan t)$
$\sin y = \ \left ( \frac{1 - x^2 }{1+ x^2 } \right )\rightarrow \cos y = \frac{2x}{1+x^2}$
$\frac{2x}{1+x^2}\frac{dy}{dx} = \frac{-4x}{(1+x^2)^2}$
$\frac{dy}{dx} = \frac{-2}{(1+x^2)}$
Therefore, the answer is $\frac{-2}{1+x^2}$
Question 13: Find $\frac{dy}{dx}$ in the following:
$y = \cos ^{-1} \left ( \frac{2x}{1+ x^2 } \right ) , -1 < x < 1$
Answer:
The given function is
$y = \cos ^{-1} \left ( \frac{2x}{1+ x^2 } \right )$
We can rewrite it as
$\cos y = \left ( \frac{2x}{1+ x^2 } \right )$
Let's consider $x = \tan t$
Then,
$\frac{d(x)}{dx} = \frac{d(\tan t)}{dt}.\frac{dt}{dx} \ \ \ \ \ \ \ \ \ (by \ chain \ rule)$
$1 = \sec^2 t . \frac{dt}{dx}\\ \frac{dt}{dx} = \frac{1}{\sec^2t} = \frac{1}{1+\tan ^2t} = \frac{1}{1+x^2}\ \ \ \ \ \ \ (\because \sec^2t=1+\tan^2t \ and \ x = \tan t)$
Now,
$\frac{2x}{1+x^2} = \frac{2\tan t }{1+\tan^2t} = \sin 2t \ \ \ \ \ \ (\because \sin 2x = \frac{2\tan x }{1+\tan^2x} )$
Our equation reduces to
$\cos y = \sin 2t$
Now, differentiation w.r.t. x is
$\frac{d(\cos y)}{dx} = \frac{d(\sin2t)}{dt}.\frac{dt}{dx}$
$(-\sin y)\frac{dy}{dx} = 2(\cos 2t).\frac{1}{1+x^2} = \frac{2\cos2t}{1+x^2}$ $= \frac{2.\frac{1-\tan^2 t}{1+\tan^2t}}{1+x^2} =\frac{2.\frac{1-x^2}{1+x^2}}{1+x^2} =\frac{2(1-x^2)}{(1+x^2)^2}$
$(\because \cos 2x = \frac{1-\tan^2 x}{1+\tan^2x} \ and \ x = \tan t)$
$\cos y = \ \left ( \frac{2 x }{1+ x^2 } \right )\rightarrow \sin y = \frac{1-x^2}{1+x^2}$
$-\frac{1-x^2}{1+x^2}\frac{dy}{dx} = \frac{2(1-x^2)}{(1+x^2)^2}$
$\frac{dy}{dx} = \frac{-2}{(1+x^2)}$
Therefore, the answer is $\frac{-2}{1+x^2}$
Question 14: Find $\frac{dy}{dx}$ in the following:
$y = \sin ^ { -1 } ( 2x \sqrt {1- x^2} ) , -\frac{1}{\sqrt2} < x \frac{1}{\sqrt 2 }$
Answer:
The given function is
$y = \sin ^ { -1 } ( 2x \sqrt {1- x^2} )$
Let's take $x = \sin t$
Then,
$\frac{d(x)}{dx} = \frac{(\sin t)}{dt}.\frac{dt}{dx} \ \ \ \ \ (by \ chain \ rule)$
$1 =\cos t.\frac{dt}{dx}$
$\frac{dt}{dx} = \frac{1}{\cos t } = \frac{1}{\sqrt{1-\sin ^2t}} = \frac{1}{\sqrt{1-x^2}}$
$(\because \cos x = \sqrt{1-\sin^2x} \ and \ x = \sin t )$
And
$2x\sqrt{1-x^2} = 2\sin t \sqrt{1-\sin^2t} = 2\sin t \sqrt{\cos^2 t}$
$= 2\sin t\cos t =\sin 2t$
$(\because \cos x = \sqrt{1-\sin^2x} \text{ and }\ 2\sin x\cos x = \sin2x )$
Now, our equation reduces to
$y = \sin ^ { -1 } ( \sin 2t )$
$y = 2t$
Now, differentiation with respect to. x
$\frac{d(y)}{dx} = \frac{d(2t)}{dt}.\frac{dt}{dx}$
$\frac{dy}{dx} = 2.\frac{1}{\sqrt{1-x^2}} = \frac{2}{\sqrt{1-x^2}}$
Therefore, the answer is $\frac{2}{\sqrt{1-x^2}}$
Question 15: Find $\frac{dy}{dx}$ in the following:
$y = \sec ^{-1} \left ( \frac{1}{2x ^2 -1} \right ) , 0 < x < 1/ \sqrt 2$
Answer:
The given function is
$y = \sec ^{-1} \left ( \frac{1}{2x ^2 -1} \right )$
Let's take $x = \cos t$
Then,
$\frac{d(x)}{dx} = \frac{(\cos t)}{dt}.\frac{dt}{dx} \ \ \ \ \ (by \ chain \ rule)$
$1 =-\sin t.\frac{dt}{dx}$
$\frac{dt}{dx} = \frac{-1}{\sin t } = \frac{-1}{\sqrt{1-\cos ^2t}} = \frac{-1}{\sqrt{1-x^2}}$
$(\because \sin x = \sqrt{1-\cos^2x} \ and \ x = \cos t )$
And
$\frac{1}{2x^2-1} =\frac{1}{2\cos^2 t - 1} = \frac{1}{\cos2t} = \sec2t$
$(\because \cos 2x = \sqrt{2\cos^2x-1} \text{ and }\cos x = \frac{1}{\sec x} )$
Now, our equation reduces to
$y = \sec ^{-1} \left ( \sec 2t \right )$
$y = 2t$
Now, differentiation with respect to. x
$\frac{d(y)}{dx} = \frac{d(2t)}{dt}.\frac{dt}{dx}$
$\frac{dy}{dx} = 2.\frac{-1}{\sqrt{1-x^2}} = \frac{-2}{\sqrt{1-x^2}}$
Therefore, the answer is $\frac{-2}{\sqrt{1-x^2}}$
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.4 |
Question 1: Differentiate the following w.r.t. x:
Answer:
The given function is
$f(x)=\frac{e ^x }{\sin x }$
We differentiate with the help of the Quotient rule.
$f^{'}(x)=\frac{\frac{d(e^x)}{dx}.\sin x-e^x.\frac{(\sin x)}{dx} }{\sin^2 x }$
$=\frac{e^x.\sin x-e^x.\cos }{\sin^2 x } = \frac{e^x(\sin x-\cos x)}{\sin^2x}$
Therefore, the answer is $\frac{e^x(\sin x-\cos x)}{\sin^2x}$
Question 2: Differentiate the following w.r.t. x:
Answer:
The given function is
$f(x)=e ^{\sin ^{-1}x}$
Let $g(x)={\sin ^{-1}x}$
Then,
$f(x)=e^{g(x)}$
Now, differentiation with respect to. x
$f^{'}(x)=g^{'}(x).e^{g(x)}$ -(i)
$g(x) = \sin^{-1}x \rightarrow g^{'}(x ) = \frac{1}{\sqrt{1-x^2}}$
Put this value in our equation (i)
$f^{'}(x) = \frac{1}{\sqrt{1-x^2}}.e^{\sin^{-1}x} = \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$
Question 3: Differentiate the following w.r.t. x:
Answer:
The given function is
$f(x)=e ^{x^3}$
Let $g(x)=x^3$
Then,
$f(x)=e^{g(x)}$
Now, differentiation with respect to. x
$f^{'}(x)=g^{'}(x).e^{g(x)}$ -(i)
$g(x) = x^3 \rightarrow g^{'}(x ) =3x^2$
Put this value in our equation (i)
$f^{'}(x) =3x^2.e^{x^3}$
Therefore, the answer is $3x^2.e^{x^3}$
Question 4: Differentiate the following w.r.t. x:
$\sin ( \tan ^ { -1} e ^{-x })$
Answer:
The given function is
$f(x)=\sin ( \tan ^ { -1} e ^{-x })$
Let's take $g(x ) = \tan^{-1}e^{-x}$
Now, our function reduces to
$f(x) = \sin(g(x))$
Now,
$f^{'}(x) = g^{'}(x)\cos(g(x))$ -(i)
And
$g(x)=\tan^{-1}e^{-x}\\\rightarrow g^{'}(x) = \frac{d(\tan^{-1}e^{-x})}{dx}.\frac{d(e^{-x})}{dx}= \frac{1}{1+(e^{-x})^2}.-e^{-x} = \frac{-e^{-x}}{1+e^{-2x}}$
Put this value in our equation (i)
$f^{'}(x) =\frac{-e^{-x}}{1+e^{-2x}}\cos(\tan^{-1}e^{-x})$
Therefore, the answer is $\frac{-e^{-x}}{1+e^{-2x}}\cos(\tan^{-1}e^{-x})$
Question 5: Differentiate the following w.r.t. x:
Answer:
The given function is
$f(x)=\log (\cos e ^x )$
Let's take $g(x ) = \cos e^{x}$
Now, our function reduces to
$f(x) = \log(g(x))$
Now,
$f^{'}(x) = g^{'}(x).\frac{1}{g(x)}$ -(i)
And
$g(x)=\cos e^{x}\\\rightarrow g^{'}(x) = \frac{d(\cos e^{x})}{dx}.\frac{d(e^{x})}{dx}= (-\sin e^x).e^{x} = -e^x.\sin e^x$
Put this value in our equation (i)
$f^{'}(x) =-e^x.\sin e^x.\frac{1}{\cos e^x} = -e^x.\tan e^x \ \ \ \ \ (\because \frac{\sin x}{\cos x}=\tan x)$
Therefore, the answer is $-e^x.\tan e^x,\ \ \ e^x\neq (2n+1)\frac{\pi}{2},\ \ n\in N$
Question 6: Differentiate the following w.r.t. x:
$e ^x + e ^{x^2} + .....e ^{x^5}$
Answer:
The given function is
$f(x)= e ^x + e ^{x^2} + .....e ^{x^5}$
Now, differentiation w.r.t. x is
$f^{'}(x)= \frac{d(e^x)}{dx}.\frac{d(x)}{dx}+\frac{d(e^{x^2})}{dx}.\frac{d(x^2)}{dx}+\frac{d(e^{x^3})}{dx}.\frac{d(x^3)}{dx}+\frac{d(e^{x^4})}{dx}.\frac{d(x^4)}{dx}+\frac{d(e^{x^5})}{dx}.\frac{d(x^5)}{dx}$
$=e^x.1+e^{x^2}.2x+e^{x^3}.3x^2+e^{x^4}.4x^3+e^{x^5}.5x^4$
$=e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^5}$
Therefore, answer is $e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^5}$
Question 7: Differentiate the following w.r.t. x:
$\sqrt { e ^{ \sqrt x }} , x > 0$
Answer:
The given function is
$f(x)=\sqrt { e ^{ \sqrt x }}$
Let's take $g(x ) = \sqrt x$
Now, our function reduces to
$f(x) = \sqrt {e^{g(x)}}$
Now,
$f^{'}(x) = g^{'}(x).\frac{1}{2\sqrt{e^{g(x)}}}.\frac{d({e^{g(x)}})}{dx} = g{'}(x).\frac{1}{2\sqrt{e^{g(x)}}}.{e^{g(x)}} = \frac{g^{'}(x).e^{g(x)}}{2.\sqrt{e^{g(x)}}} = \frac{g^{'}(x).e^{\sqrt x}}{2.\sqrt{e^{\sqrt x}}}$ -(i)
And
$g(x)=\sqrt x\\\rightarrow g^{'}(x) = \frac{(\sqrt x)}{dx}=\frac{1}{2\sqrt x}$
Put this value in our equation (i)
$f^{'}(x) =\frac{e^{\sqrt x}}{2\sqrt x.2.\sqrt{e^{\sqrt x}}} = \frac{e^{\sqrt x}}{4\sqrt{xe^{\sqrt x}}}$
Therefore, the answer is $\frac{e^{\sqrt x}}{4\sqrt{xe^{\sqrt x}}}.\ \ x>0$
Question 8: Differentiate the following w.r.t. x: $\log ( \log x ) , x > 1$
Answer:
The given function is
$f(x)=\log ( \log x )$
Let's take $g(x ) = \log x$
Now, our function reduces to
$f(x) = \log(g(x))$
Now,
$f^{'}(x) = g^{'}(x).\frac{1}{g(x)}$ -(i)
And
$g(x)=\log x\\\rightarrow g^{'}(x) = \frac{1}{x}$
Put this value in our equation (i)
$f^{'}(x) =\frac{1}{x}.\frac{1}{\log x} = \frac{1}{x\log x}$
Therefore, the answer is $\frac{1}{x\log x}, \ \ x>1$
Question 9: Differentiate the following w.r.t. x:
$\frac{\cos x }{\log x} , x > 0$
Answer:
The given function is
$f(x)=\frac{\cos x }{\log x}$
We differentiate with the help of the Quotient rule.
$f^{'}(x)=\frac{\frac{d(\cos x)}{dx}.\log x-\cos x.\frac{(\log x)}{dx} }{(\log x)^2 }$
$=\frac{(-\sin x).\log x-\cos x.\frac{1}{x} }{(\log x)^2 } = \frac{-(x\sin x\log x+\cos x)}{x(\log x)^2}$
Therefore, the answer is $\frac{-(x\sin x\log x+\cos x)}{x(\log x)^2}$
Question 10: Differentiate the following w.r.t. x:
$\cos ( log x + e ^x ) , x > 0$
Answer:
The given function is
$f(x)=\cos ( log x + e ^x )$
Let's take $g(x) = ( log x + e ^x )$
Then, our function reduces to
$f(x) = \cos (g(x))$
Now, differentiation w.r.t. x is
$f^{'}(x) = g^{'}(x)(-\sin) (g(x))$ -(i)
And
$g(x) = ( log x + e ^x )$
$g^{'}(x)= \frac{d(\log x)}{dx}+\frac{d(e^x)}{dx} = \frac{1}{x}+e^x$
Put this value in our equation (i)
$f^{'}(x) = -\left ( \frac{1}{x}+e^x \right )\sin (\log x+e^x)$
Therefore, the answer is $-\left ( \frac{1}{x}+e^x \right )\sin (\log x+e^x), x>0$
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.5 |
Question 1: Differentiate the functions w.r.t. x. $\cos x . \cos 2x .\cos 3x$
Answer:
The given function is
$y=\cos x. \cos 2x .\cos 3x$
Now, take a look at both sides.
$\log y=\log (\cos x . \cos 2x .\cos 3x)$
$\log y = \log \cos x + \log \cos 2x + \log \cos 3x$
Now, differentiation with respect to. x
$\log y=\log (\cos x . \cos 2x .\cos 3x)$
$\frac{d(\log y )}{dx} = \frac{\log \cos x}{dx} + \frac{\log \cos 2x}{dx} + \frac{\log \cos 3x}{dx}$
$\frac{1}{y}.\frac{dy}{dx} =$
$(-\sin x)\frac{1}{\cos x}+(-2\sin 2x)\frac{1}{\cos 2x}+(-3\sin3x).\frac{1}{\cos3x}$
$\frac{1}{y} \frac{dy}{dx}= (\tan x+ \tan 2x+ \tan 3x )$
$(\because \frac{\sin x }{\cos x} =\tan x)$
$ \frac{dy}{dx}=-y(\tan x+\tan 2x+\tan 3x)$
$ \frac{dy}{dx}= -\cos x \cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$
There, the answer is $-\cos x\cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$
Question 2: Differentiate the functions with respect to. x.
$\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Answer:
The given function is
$y=\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Take logs on both sides.
$\log y=\frac{1}{2}\log\left ( \frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)} \right )$
$\log y =$
$\frac{1}{2} (\log(x-1)+\log(x-2)-\log(x-3)-\log(x-4)$
$-\log(x-5))$
Now, differentiation w.r.t. x is
$\frac{d(\log y)}{dx} = \frac{1}{2} (\frac{d(\log(x-1))}{dx}+\frac{d(\log(x-2))}{dx}-\frac{d(\log(x-3))}{dx}$
$-\frac{d(\log(x-4))}{dx}- \frac{d(\log(x-5))}{dx})$
$\frac{1}{y}\frac{dy}{dx}=\frac{1}{2}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})\\ \frac{dy}{dx}$
$=y\frac{1}{2}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$
$ \frac{dy}{dx} = \frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
$(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$
Therefore, the answer is $\frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$
Question 3: Differentiate the functions w.r.t. x. $(\log x ) ^{\cos x}$
Answer:
The given function is
$y=(\log x ) ^{\cos x}$
Take logs on both sides.
$\log y=\cos x\log (\log x )$
Now, differentiation w.r.t x is
$\frac{d(\log y)}{dx}= \frac{d(\cos x\log(\log x))}{dx}$
$\frac{1}{y} \frac{dy}{dx}= (-\sin x)(\log(\log x))+\cos x (\frac{1}{\log x} \cdot \frac{1}{x})$
$\frac{dy}{dx}= y( \cos x.\frac{1}{\log x}.\frac{1}{x}-\sin x\log(\log x) )\\$
$\frac{dy}{dx} = (\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$
Therefore, the answer is $(\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$
Question 4: Differentiate the functions w.r.t. x. $x ^x - 2 ^{ \sin x }$
Answer:
The given function is
$y = x ^x - 2 ^{ \sin x }$
Let's take $t = x^x$
Take logs on both sides.
$\log t=x\log x\\$
Now, differentiation w.r.t x is
$\log t=x\log x\\ \frac{d(\log t)}{dt}.\frac{dt}{dx} = \frac{d(x\log x)}{dx} \ \ \ \ \ \ \ (by \ chain \ rule)$
$\frac{1}{t}.\frac{dt}{dx} = \log x +1$
$\frac{dt}{dx} = t(\log x+1)$
$\frac{dt}{dx}= x^x(\log x+1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\because t = x^x )$
Similarly, take $k = 2^{\sin x}$
Now, take the log on both sides and differentiate with respect to. x
$\log k=\sin x\log 2\\ \frac{d(\log k)}{dk}.\frac{dk}{dx} = \frac{d(\sin x\log 2)}{dx} \ \ \ \ \ \ \ (by \ chain \ rule)$
$\frac{1}{k}.\frac{dk}{dx} = \cos x \log 2$
$\frac{dk}{dx} = k(\cos x \log 2)$
$\frac{dk}{dx}= 2^{\sin x}(\cos x\log 2)$
$(\because k = 2^{\sin x} )$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}-\frac{dk}{dx}$
$\frac{dy}{dx} = x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$
Therefore, the answer is $x^x(\log x+1 )- 2^{\sin x}(\cos x \log 2)$
Question 5: Differentiate the functions w.r.t. x. $( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Answer:
The given function is
$y=( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Take logs on both sides.
$\log y=\log [( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4]$
$ \log y = 2\log(x+3)+3\log(x+4)+4\log(x+5)$
Now, differentiate w.r.t. x we get,
$\frac{1}{y}.\frac{dy}{dx} = 2.\frac{1}{x+3}+3.\frac{1}{x+4}+4.\frac{1}{x+5}$
$\frac{dy}{dx}=y\left ( \frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5} \right ) $
$\frac{dy}{dx} = (x+3)^2.(x+4)^3.(x+5)^4.\left ( \frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5} \right )$
$\frac{dy}{dx} = (x+3)^2.(x+4)^3.(x+5)^4.$
$\left ( \frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right )$
$ \frac{dy}{dx} = (x + 3) (x + 4)^2 (x + 5)^3$
$(9x^2 + 70x + 133)$
Therefore, the answer is $(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$
Question 6: Differentiate the functions w.r.t. x. $( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Answer:
The given function is
$y = ( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Let's take $t = ( x+ \frac{1}{x} ) ^ x$
Now, take a look at both sides.
$\log t =x \log ( x+ \frac{1}{x} )$
Now, differentiate with respect. x
We get,
$\frac{1}{t}.\frac{dt}{dx}=\log \left ( x+\frac{1}{x} \right )+x(1-\frac{1}{x^2}).\frac{1}{\left ( x+\frac{1}{x} \right )}$
$= \frac{x^2-1}{x^2+1}+\log \left ( x+\frac{1}{x} \right )$
$ \frac{dt}{dx} = t(\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))$
$ \frac{dt}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))$
Similarly, take $k = x^{1+\frac{1}{x}}$
Now, take a look at both sides.
$\log k = ({1+\frac{1}{x}})\log x$
Now, differentiate with respect. x
We get,
$\frac{1}{k}.\frac{dk}{dx}=\frac{1}{x} \left ( 1+\frac{1}{x} \right )+(-\frac{1}{x^2}).\log x$
$= \frac{x^2+1}{x^2}+\frac{-1}{x^2}.\log x$
$ \frac{dk}{dx} = t(\frac{x^2+1}{x^2}+\left (\frac{-1}{x^2} \right )\log x)$
$\frac{dk}{dx} = x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+$
$\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Therefore, the answer is $\left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Question 7: Differentiate the functions with respect to. x. $(\log x )^x + x ^{\log x }$
Answer:
The given function is
$y = (\log x )^x + x ^{\log x }$
Let's take $t = (\log x)^x$
Now, take a look at both sides.
$\log t = x \log(\log x)$
Now, differentiate with respect. x
We get,
$\frac{1}{t}\frac{dt}{dx} = \log (\log x) + x.\frac{1}{x}.\frac{1}{\log x}$
$= \log (\log x)+\frac{1}{\log x}\\$
$ \frac{dt}{dx}= t.(\log (\log x)+\frac{1}{\log x})\\$
$ \frac{dt}{dx} =(\log x)^x(\log (\log x)) + (\log x)^x.\frac{1}{\log x}$
$=(\log x)^x(\log (\log x))+ (\log x )^{x-1}$
Similarly, take $k = x^{\log x}$
Now, take a look at both sides.
$\log k = \log x \log x = (\log x)^2$
Now, differentiate with respect. x
We get,
$\frac{1}{k}\frac{dk}{dx} =2 (\log x).\frac{1}{x} \\$
$ \frac{dt}{dx}= k.\left ( 2 (\log x).\frac{1}{x} \right )\\$
$ \frac{dt}{dx} = x^{\log x}.\left (2 (\log x).\frac{1}{x} \right ) = 2x^{\log x-1}.\log x$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Therefore, the answer is $(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Question 8: Differentiate the functions with respect to. x. $(\sin x )^x + \sin ^{-1} \sqrt x$
Answer:
The given function is
$(\sin x )^x + \sin ^{-1} \sqrt x$
Let's take $t = (\sin x)^x$
Now, take a look at both sides.
$\log t = x \log(\sin x)$
Now, differentiate with respect. x
We get,
$\frac{1}{t}\frac{dt}{dx} = \log (\sin x) + x.\cos x.\frac{1}{\sin x}$
$= \log (\sin x)+x.\cot x$
$ \ \ \ (\because \frac{\cos x}{\sin x}=\cot x)\\$
$ \frac{dt}{dx}= t.(\log (\sin x)+x.\cot x)\\$
$ \frac{dt}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)$
Similarly, take $k = \sin^{-1}\sqrt x$
Now, differentiate with respect. x
We get,
$\frac{dk}{dt} = \frac{1}{\sqrt{1-(\sqrt x)^2}}.\frac{1}{2\sqrt x}$
$= \frac{1}{2\sqrt{x-x^2}}\\$
$ \frac{dk}{dt}=\frac{1}{2\sqrt{x-x^2}}\\$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Therefore, the answer is $(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Question 9: Differentiate the functions w.r.t. x $y=x^{\sin x}+(\sin x)^{\cos x}$
Answer:
The given function is
$y=x^{\sin x}+(\sin x)^{\cos x}$
Now, take $t = x^{\sin x}$
Now, take a look at both sides.
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
We get,
$\frac{1}{t}\frac{dt}{dx} = \cos x \log x+\frac{1}{x}.\sin x\\$
$\frac{dt}{dx}=t\left ( \cos x \log x+\frac{1}{x}.\sin x \right )\\$
$\frac{dt}{dx}= x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )$
Similarly, take $k = (\sin x)^{\cos x}$
Now, take a look at both sides.
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dt} = (-\sin x)(\log (\sin x)) + \cos x.\frac{1}{\sin x}.\cos x$
$=-\sin x\log(\sin x)+\cot x.\cos x\\ \frac{dk}{dt}$
$= k\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )\\ $
$\frac{dk}{dt}=(\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Now,
$\frac{dy}{dx} = x^{\sin x}(\cos x \log x+\frac{1}{x}.\sin x)+$
$(\sin x)^{\cos x} ( -\sin x\log(\sin x)+\cot x.\cos x)$
Therefore, the answer is $x^{\sin x}\left (\cos x\log x+\frac{1}{x}.\sin x \right )+$
$(\sin x)^{\cos x}\left (-\sin x\log(\sin x)+\cot x.\cos x\right )$
Question 10: Differentiate the functions with respect to. x. $x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Answer:
The given function is
$y=x^{\sin x}+(\sin x)^{\cos x}$
Now, take $t = x^{\sin x}$
Now, take a look at both sides.
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
We get,
$\frac{1}{t}\frac{dt}{dx} = \cos x \log x+\frac{1}{x}.\sin x\\$
$\frac{dt}{dx}=t\left ( \cos x \log x+\frac{1}{x}.\sin x \right )\\$
$\frac{dt}{dx}= x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )$
Similarly, take $k = (\sin x)^{\cos x}$
Now, take a look at both sides.
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dt} = (-\sin x)(\log (\sin x)) + \cos x.\frac{1}{\sin x}.\cos x$
$=-\sin x\log(\sin x)+\cot x.\cos x\\ \frac{dk}{dt}$
$= k\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )\\ $
$\frac{dk}{dt}=(\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Now,
$\frac{dy}{dx} = x^{\sin x}(\cos x \log x+\frac{1}{x}.\sin x)+$
$(\sin x)^{\cos x} ( -\sin x\log(\sin x)+\cot x.\cos x)$
Therefore, the answer is $x^{\sin x}\left (\cos x\log x+\frac{1}{x}.\sin x \right )+$
$(\sin x)^{\cos x}\left (-\sin x\log(\sin x)+\cot x.\cos x\right )$
Question 11: Differentiate the functions w.r.t. x. $( x \cos x )^ x + ( x \sin x )^{1/ x}$
Answer:
Given function is
$f(x)=( x \cos x)^ x + ( x \sin x )^{1/ x}$
Let's take $t = (x\cos x)^x$
Now, take a look at both sides.
$\log t =x\log (x\cos x) = x(\log x+\log \cos x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t}\frac{dt}{dx} =(\log x+\log \cos x)+x(\frac{1}{x}+\frac{1}{\cos x}.(-\sin x))\\$
$\frac{dt}{dx} = t(\log x + \log \cos x+1-x\tan x) $
$\ \ \ \ \ \ \ \ \ (\because \frac{\sin x}{\cos x}= \tan x)\\$
$\frac{dt}{dx}= (x\cos x)^x(\log x + \log \cos x+1-x\tan x)\\$
$\frac{dt}{dx}=(x\cos x)^x(+1-x\tan x+\log (x\cos x))$
Similarly, take $k = (x\sin x)^{\frac{1}{x}}$
Now, take a look at both sides.
$\log k = \frac{1}{x}(\log x+\log \sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} =(\frac{-1}{x^2})(\log x+\log \sin x)+$
$\frac{1}{x}(\frac{1}{x}+\frac{1}{\sin x}.(\cos x))\\$
$\frac{dk}{dx} = \frac{k}{x^2}(-\log x - \log \sin x+\frac{1}{x^2}+\frac{\cot x}{x})$
$\ \ \ \ \ \ \ \ \ (\because \frac{\cos x}{\sin x}= \cot x)\\$
$\frac{dk}{dx}=\frac{(x\sin x)^{\frac{1}{x}}}{x^2}(-\log x - \log \sin x+\frac{1}{x^2}+\frac{\cot x}{x})\\$
$\frac{dk}{dx}=(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Now,
$\frac{dy}{dx}= \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx}= (x\cos x)^x(+1-x\tan x+\log (x\cos x))+$
$(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Therefore, the answer is $(x\cos x)^x(1-x\tan x+\log (x\cos x))+$
$(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Question 12: Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15
Answer:
The given function is
$f(x)=x ^ y + y ^ x = 1$
Now, take $t = x^y$
Take logs on both sides.
$\log t = y\log x$
Now, differentiate w.r.t x
We get,
$\frac{1}{t}\frac{dt}{dx} = \frac{dy}{dx}(\log x)+y\frac{1}{x}=\frac{dy}{dx}(\log x)+\frac{y}{x}\\$
$ \frac{dt}{dx}= t(\frac{dy}{dx}(\log x)+\frac{y}{x})\\$
$ \frac{dt}{dx}= ( x^y)(\frac{dy}{dx}(\log x)+\frac{y}{x})$
Similarly, take $k = y^x$
Now, take a look at both sides.
$\log k = x\log y$
Now, differentiate with respect. x
We get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\$
$ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\$
$ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)= \frac{dt}{dx}+\frac{dk}{dx}= 0$
$( x^y)(\frac{dy}{dx}(\log x)+\frac{y}{x}) + (y^x)(\log y+\frac{x}{y}\frac{dy}{dx}) = 0\\$
$\frac{dy}{dx}(x^y(\log x)+xy^{x-1}) = -(yx^{y-1}+y^x(\log y))\\ $
$\frac{dy}{dx}= \frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$
Therefore, the answer is $\frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$
Question 13: Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15.
Answer:
The given function is
$f(x)\rightarrow x ^ y = y ^ x$
Now, take $t = x^y$
Take logs on both sides.
$\log t = y\log x$
Now, differentiate w.r.t x
We get,
$\frac{1}{t}\frac{dt}{dx} = \frac{dy}{dx}(\log x)+y\frac{1}{x}=\frac{dy}{dx}(\log x)+\frac{y}{x}\\$
$ \frac{dt}{dx}= t(\frac{dy}{dx}(\log x)+\frac{y}{x})$
$ \frac{dt}{dx}= ( x^y)(\frac{dy}{dx}(\log x)+\frac{y}{x})$
Similarly, take $k = y^x$
Now, take a look at both sides.
$\log k = x\log y$
Now, differentiate with respect. x
We get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\$
$ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ $
$\frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)\rightarrow \frac{dt}{dx}= \frac{dk}{dx}$
$( x^y)(\frac{dy}{dx}(\log x)+\frac{y}{x}) = (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})\\$
$ \frac{dy}{dx}(x^y(\log x)-xy^{x-1}) = (y^x(\log y)-yx^{y-1})\\$
$ \frac{dy}{dx}= \frac{ y^x(\log y)-yx^{y-1}}{(x^y(\log x)-xy^{x-1})} $
$= \frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$
Therefore, the answer is $\frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$
Question 14: Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15. $(\cos x )^y = ( \cos y )^x$
Answer:
The given function is
$f(x)\rightarrow (\cos x) ^ y = (\cos y) ^ x$
Now, take the log on both sides.
$y\log \cos x = x \log \cos y$
Now, differentiate w.r.t x
$\frac{dy}{dx}(\log \cos x)-y\tan x = \log \cos y-x\tan y\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$(\frac{dy}{dx}(\log \cos x)-y\tan x)$
$= (\log \cos y-x\tan y\frac{dy}{dx})\\ \frac{dy}{dx} \left (\log \cos x+(\cos y)^x.x\tan y) \right )$
$= \left ( \log \cos y+(\cos x)^y.y\tan x \right )\\ \frac{dy}{dx}$
$= \frac{\left (\log \cos y+y\tan x \right )}{\left ( \log \cos x+x\tan y) \right )}$
$= \frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$
Therefore, the answer is $\frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$
Question 15: Find $\frac{dy}{dx}$ of the functions given in Exercises 12 to 15. $xy = e ^{x-y}$
Answer:
The given function is
$f(x)\rightarrow xy = e ^{x-y}$
Now, take a look at both sides.
$\log x+\ log y = (x-y)(1) \ \ \ \ \ \ \ \ \ \ \ \ (\because \log e = 1)\\ \log x+\ log y = (x-y)$
Now, differentiate w.r.t x
$\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}$
Therefore, the answer is $\frac{y}{x}.\frac{x-1}{y+1}$
Question 16: Find the derivative of the function given by $f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find
Answer:
The given function is
$y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$
Take logs on both sides.
$\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)$
NOW, differentiate with respect. x
$\frac{1}{y}.\frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}\\$
$ \frac{dy}{dx}=y.\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )\\ $
$\frac{dy}{dx}= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Therefore, $f^{'}(x)=$
$ (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+\frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Now, the value of $f^{'}(1)$ is
$f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+\frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\$
$ f^{'}(1)=16.\frac{15}{2} = 120$
Question 17(1): Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(i) By using the product rule
Answer:
The given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, we need to differentiate using the product rule.
$f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\$
$= (2x-5).(x^3+7x+9)+(x^2-5x+8)(3x^2+7)\\$
$ =2x^4+14x^2+18x-5x^3-35x-45+3x^4-15x^3+24x^2+7x^2-35x+56\\$
$ = 5x^4 -20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4 -20x^3+45x^2-52x+11$
Question 17(2): Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(ii) by expanding the product to obtain a single polynomial.
Answer:
The given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Multiply both to obtain a single higher-degree polynomial.
$f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)$
$= x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72$
$= x^5-5x^4+15x^3-26x^2+11x+72$
Now, differentiate with respect. x
We get,
$f^{'}(x)=5x^4-20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-52x+11$
Answer:
The given function is
$y=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, take a look at both sides.
$\log y = \log (x^2-5x+8)+\log (x^3+7x+9)$
Now, differentiate with respect. x
We get,
$\frac{1}{y}.\frac{dy}{dx} = \frac{1}{x^2-5x+8}.(2x-5) + \frac{1}{x^3+7x+9}.(3x^2+7)\\$
$ \frac{dy}{dx}= y.\left ( \frac{(2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)} \right )\\$
$ \frac{dy}{dx}=(x^2-5x+8)(x^3+7x+9).\left ( \frac{(2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)} \right )\\$
$ \frac{dy}{dx} = (2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)\\ \frac{dy}{dx} = 5x^4-20x^3+45x^2-56x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-56x+11$
And yes, they all give the same answer.
Question 18: If u, v and w are functions of x, then show that $\frac{d}{dx} ( u,v,w) = \frac{du}{dx} v.. w +u. \frac{dv }{dx } v. w+ u . \frac{dv}{dx } . w+u.v \frac{dw}{dx}$ in two ways - first by repeated application of the product rule, second by logarithmic differentiation.
Answer:
It is given that u, v and w are the functions of x
Let $y = u.v.w$
Now, we differentiate using the product rule with respect to x
First, take $y = u.(vw)$
Now,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u$ -(i)
Now, again, by the product rule
$\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v$
Put this in equation (i)
We get,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, by the product rule, we proved it.
Now, by taking the log
Again take $y = u.v.w$
Now, take a look at both sides.
$\log y = \log u + \log v + \log w$
Now, differentiate with respect. x
We get,
$\frac{1}{y}.\frac{dy}{dx} = \frac{1}{u}.\frac{du}{dx}+\frac{1}{v}\frac{dv}{dx}+\frac{1}{w}.\frac{dw}{dx}\\ \frac{dy}{dx}= y. \left ( \frac{v.w.\frac{du}{dx}+u.w.\frac{dv}{dx}+u.v.\frac{dw}{dx}}{u.v.w} \right )\\ \frac{dy}{dx} $
$= (u.v.w)\left ( \frac{v.w.\frac{du}{dx}+u.w.\frac{dv}{dx}+u.v.\frac{dw}{dx}}{u.v.w} \right )\\$
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, we proved it by taking the log.
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.6 |
Answer:
The given equations are
$x = 2at^2, y = at^4$
Now, differentiate both with respect to t
We get,
$\frac{dx}{dt}=\frac{d(2at^2)}{dt}= 4at$
Similarly,
$\frac{dy}{dt}=\frac{d(at^4)}{dt}= 4at^3$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{4at^3}{4at} = t^2$
Therefore, the answer is $\frac{dy}{dx}= t^2$
Question 2: If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, find $\frac{dy}{dx}$.
Answer:
The given equations are
$x= a \cos \theta , y = b \cos \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\cos \theta)}{d\theta}= -a\sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\cos \theta)}{d\theta}= -b\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-b\sin \theta}{-a\sin \theta} = \frac{b}{a}$
Therefore, answer is $\frac{dy}{dx}= \frac{b}{a}$
Answer:
The given equations are
$x = \sin t , y = \cos 2 t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(\sin t)}{dt}= \cos t$
Similarly,
$\frac{dy}{dt}=\frac{d(\cos 2t)}{dt}= -2\sin 2t = -4\sin t \cos t $
$\ \ \ \ \ (\because \sin 2x = \sin x\cos x)$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{-4\sin t \cos t }{\cos t} = -4\sin t$
Therefore, the answer is $\frac{dy}{dx} = -4\sin t$
Answer:
The given equations are
$x = 4t , y = 4/t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(4 t)}{dt}= 4$
Similarly,
$\frac{dy}{dt}=\frac{d(\frac{4}{t})}{dt}= \frac{-4}{t^2}$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{ \frac{-4}{t^2} }{4} = \frac{-1}{t^2}$
Therefore, the answer is $\frac{dy}{dx} = \frac{-1}{t^2}$
Answer:
The given equations are
$x = \cos \theta - \cos 2\theta , y = \sin \theta - \sin 2 \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(\cos \theta-\cos 2\theta)}{d\theta}= -\sin \theta -(-2\sin 2\theta) = 2\sin 2\theta - \sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(\sin \theta - \sin 2\theta)}{d\theta}= \cos \theta -2\cos2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$
Therefore, answer is $\frac{dy}{dx}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$
Answer:
Given equations are
$x = a ( \theta - \sin \theta ) , y = a ( 1+ \cos \theta )$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\theta- \sin \theta))}{d\theta}= a(1-\cos \theta)$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(1+\cos \theta))}{d\theta}=-a\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-a\sin \theta}{a(1-\cos \theta)} = \frac{-\sin }{1-\cos \theta} =- \cot \frac{\theta}{2} \ \ \ \ \ \ \ (\cot \frac{x}{2}=\frac{\sin x}{1-\cos x})$
Therefore, the answer is $\frac{dy}{dx}=-\cot \frac{\theta}{2}$
Answer:
Given equations are
$x = \frac{\sin ^3 t }{\sqrt {\cos 2t }} , y = \frac{\cos ^3 t }{\sqrt {\cos 2t }}$
Now, differentiate both w.r.t
We get,
$\frac{dx}{dt}=\frac{d(\frac{\sin ^3 t }{\sqrt {\cos 2t }})}{dt}$
$=\frac{\sqrt{\cos 2t}.\frac{d(\sin^3t)}{dt}-\sin^3t.\frac{d(\sqrt{\cos2t})}{dt}}{(\sqrt{\cos2t})^2}$
$=\frac{3\sin^2 t\cos t.\sqrt{\cos 2t}-\sin^3t.\frac{1}{2\sqrt{\cos 2t}}.(-2\sin 2t)}{{\cos 2t}}$
$=\frac{3\sin^2t\cos t . \cos 2t+sin^3t\sin 2t}{\cos2t\sqrt{\cos2t}}$
$=\frac{\sin^3t\sin2t(3\cot t \cot 2t+1)}{\cos2t\sqrt{\cos2t}} \ \ \ \ \ (\because \frac{\cos }{\sin x}=\cot x)$
Similarly,
$\frac{dy}{dt}=\frac{d( \frac{\cos ^3 t }{\sqrt {\cos 2t }})}{dt}$
$=\frac{\sqrt{\cos 2t}.\frac{d(\cos^3t)}{dt}-\cos^3t.\frac{d(\sqrt{\cos2t})}{dt}}{(\sqrt{\cos2t})^2}$
$=\frac{3\cos^2 t(-\sin t).\sqrt{\cos 2t}-\cos^3t.\frac{1}{2\sqrt{\cos 2t}}.(-2\sin 2t)}{(\sqrt{\cos 2t})^2}$
$=\frac{-3\cos^2t\sin t\cos2t+\cos^3t\sin 2t}{\cos2t\sqrt{\cos2t}}$
$=\frac{ \sin2t\cos^3t(1-3\tan t \cot 2t)}{\cos2t\sqrt{\cos2t}}$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
$= \frac{\frac{ \sin2t\cos^3t(1-3\tan t \cot 2t)}{\cos2t\sqrt{\cos2t}} }{\frac{\sin^3t\sin2t(3\cot t \cot 2t+1)}{\cos2t\sqrt{\cos2t}}}$
$= \frac{\cot^3t(1-3\tan t \cot 2t)}{(3\cot t \cot 2t+1)}$
$= \frac{\cos^3t(1-3.\frac{\sin t}{\cos t}.\frac{\cos2t}{\sin 2t})}{\sin^3t(3.\frac{\cos t}{\sin t}.\frac{\cos 2t}{\sin 2t}+1)} $
$= \frac{\cos^2t(\cos t\sin2t -3\sin t \cos 2t)}{\sin^2t(3\cos t \cos2t+\sin t \sin 2t)}$
$=\frac{\cos^2t(\cos t .2\sin t \cos t - 3\sin t (2\cos^2t-1))}{\sin^2t(3\cos t(1-2\sin^2 2t)+\sin t.2\sin t \cos t)}$
$(\because \sin 2x = 2\sin x\cos x \ and \ \cos 2x = 2\cos^2x-1 \ and \ \cos 2x = 1-2\sin^2x)$
$=\frac{\cos^2t(2\sin t\cos^2 t-6\sin t\cos^2t+3\sin t)}{\sin^2t(3\cos t-6\cos t \sin^2t+2\sin^2\cos t)}\\=\frac{sint cost(-4cos^3t+3cost)}{sintcost(3sint-4sin^3t)}$
$\frac{dy}{dx} = \frac{-4\cos^3t+3\cos t}{3\sin t -4\sin^3 t}= \frac{-\cos 3t}{\sin 3t} = -\cot 3t$ $\left ( \because \sin3t = 3\sin t-4\sin^3t \\ \ and \ \cos3t = 4\cos^3t - 3\cos t \right )$
Therefore, the answer is $\frac{dy}{dx} = -\cot 3t$
Answer:
Given equations are
$x = a ( \cos t + \log \tan \frac{t}{2} ),y = a \sin t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(a ( \cos t + \log \tan \frac{t}{2} ))}{dt}= a(-\sin t + \frac{1}{\tan\frac{t}{2}}.\sec^2\frac{t}{2}.\frac{1}{2})$
$= a(-\sin t+\frac{1}{2}.\frac{\cos \frac{t}{2}}{\sin\frac{t}{2}}.\frac{1}{\cos^2\frac{t}{2}}) = a(-\sin t+\frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}})$
$=a(-\sin t+\frac{1}{\sin 2.\frac{t}{2}} ) = a(\frac{-\sin^2t+1}{\sin t})= a(\frac{\cos^2t}{\sin t})$
Similarly,
$\frac{dy}{dt}=\frac{d(a\sin t)}{dt}= a\cos t$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{a \cos t }{ a(\frac{\cos^2t}{\sin t})} = \frac{\sin t}{\cos t} = \tan t$
Therefore, the answer is $\frac{dy}{dx} = \tan t$
Answer:
Given equations are
$x = a \sec \theta , y = b \ tan \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\sec \theta)}{d\theta}= a\sec \theta \tan \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\tan \theta)}{d\theta}= b\sec^2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{b\sec^2 \theta}{a\sec\theta\tan \theta} = \frac{b\sec\theta}{a\tan \theta}= \frac{b\frac{1}{\cos\theta}}{a\frac{\sin \theta}{\cos \theta}} = \frac{b }{a\sin \theta} = \frac{b cosec \theta}{a}$
Therefore, the answer is $\frac{dy}{dx} = \frac{b cosec \theta}{a}$
Answer:
The given equations are
$x = a ( \cos \theta + \theta \sin \theta ) , y = a ( \sin \theta - \theta \cos \theta )$
Now, differentiate both with respect to $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\cos \theta+ \theta\sin \theta))}{d\theta}= a(-\sin \theta+\sin \theta+ \theta\cos \theta)= a \theta\cos \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(\sin \theta- \theta\cos \theta))}{d\theta}= a(\cos \theta-\cos \theta+ \theta\sin \theta) = a \theta\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{a \theta\sin \theta}{a \theta\cos \theta} = \tan \theta$
Therefore, the answer is $\frac{dy}{dx}= \tan \theta$
Question 11: If $x = \sqrt {a ^{\sin ^{-1}t}} , y = \sqrt { a ^{ \cos ^{-1}t}}$ , show that $\frac{dy}{dx}$ = - y /x$
Answer:
The given equations are
$x = \sqrt {a ^{\sin ^{-1}t}} , y = \sqrt { a ^{ \cos ^{-1}t}}$
$xy=\sqrt{a^{sin^{-1}t+cos^{-1}t}}\\since\sin ^{-1}x+cos^{-1}x=\frac{\pi}{2}\\xy=a^{\frac{\pi}{2}}=constant=c$
Differentiating with respect to x
$x\frac{dy}{dx}+y=0\\\frac{dy}{dx}=\frac{-y}{x}$
NCERT Continuity and Differentiability Class 12 Solutions: Exercise: 5.7 |
Question 1: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
The given function is
$y=x^2 + 3x+ 2$
Now, differentiation with respect to. x
$\frac{dy}{dx}= 2x+3$
Now, the second-order derivative
$\frac{d^2y}{dx^2}= 2$
Therefore, the second order derivative is $\frac{d^2y}{dx^2}= 2$
Question 2: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
The given function is
$y=x ^{20}$
Now, differentiation with respect to. x
$\frac{dy}{dx}= 20x^{19}$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 20.19x^{18}= 380x^{18}$
Therefore, second-order derivative is $\frac{d^2y}{dx^2}= 380x^{18}$
Question 3: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
The given function is
$y = x \cos x$
Now, differentiation with respect to. x
$\frac{dy}{dx}= \cos x + x(-\sin x ) = \cos x-x\sin x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= -\sin x-(\sin x+x\cos x) = -2\sin x - x\sin x$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2}= -2\sin x - x\sin x$
Question 4: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
The given function is
$y=\log x$
Now, differentiation with respect to. x
$\frac{dy}{dx}=\frac{1}{x}$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Question 5: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
The given function is
$y=x^3\log x$
Now, differentiation with respect. x
$\frac{dy}{dx}=3x^2.\log x+x^3.\frac{1}{x}= 3x^2.\log x+ x^2$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 6x.\log x+3x^2.\frac{1}{x}+2x=6x.\log x+3x+2x = x(6.\log x+5)$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2} = x(6.\log x+5)$
Question 6: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y= e^x\sin 5x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=e^x.\sin 5x +e^x.5\cos 5x = e^x(\sin5x+5\cos5x)$
Now, the second order derivative is
$\frac{d^2y}{dx^2}= e^x(\sin5x+5\cos5x)+e^x(5\cos5x+5.(-5\sin5x))$
$= e^x(\sin5x+5\cos5x)+e^x(5\cos5x-25\sin5x)=e^x(10\cos5x-24\sin5x)$
$=2e^x(5\cos5x-12\sin5x)$
Therefore, second order derivative is $\frac{dy}{dx}=2e^x(5\cos5x-12\sin5x)$
Question 7: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y= e^{6x}\cos 3x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=6e^{6x}.\cos 3x +e^{6x}.(-3\sin 3x)= e^{6x}(6\cos 3x-3\sin 3x)$
Now, the second order derivative is
$\frac{d^2y}{dx^2}= 6e^{6x}(6\cos3x-3\sin3x)+e^{6x}(6.(-3\sin3x)-3.3\cos3x)$
$= 6e^{6x}(6\cos3x-3\sin3x)-e^{6x}(18\sin3x+9\cos3x)$
$e^{6x}(27\cos3x-36\sin3x) = 9e^{6x}(3\cos3x-4\sin3x)$
Therefore, second order derivative is $\frac{dy}{dx} = 9e^{6x}(3\cos3x-4\sin3x)$
Question 8: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \tan^{-1}x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\tan^{-1}x)}{dx}=\frac{1}{1+x^2}$
Now, the second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(1+x^2)^2}.2x = \frac{-2x}{(1+x^2)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-2x}{(1+x^2)^2}$
Question 9: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \log(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\log(\log x))}{dx}=\frac{1}{\log x}.\frac{1}{x}= \frac{1}{x\log x}$
Now, the second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(x\log x)^2}.(1.\log x+x.\frac{1}{x}) = \frac{-(\log x+1)}{(x\log x)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\log x+1)}{(x\log x)^2}$
Question 10: Find the second-order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \sin(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\sin(\log x))}{dx}=\cos (\log x).\frac{1}{x}= \frac{\cos (\log x)}{x}$
Now, the second order derivative is
Using Quotient rule
$\frac{d^2y}{dx^2}=\frac{-\sin(\log x)\frac{1}{x}.x-\cos(\log x).1}{x^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Question 11: If $y = 5 \cos x - 3 \sin x$ prove that $\frac{d^2y}{dx^2}+y = 0$
Answer:
Given function is
$y = 5 \cos x - 3 \sin x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(5\cos x-3\sin x)}{dx}$
$=-5\sin x-3\cos x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(-5\sin x-3\cos x)}{dx^2}$
$=-5\cos x+3\sin x$
Now,
$\frac{d^2y}{dx^2}+y=-5\cos x+3\sin x+5\cos x-3\sin x = 0$
Hence proved
Question 12: If $y = \cos ^{-1} x$ Find $\frac{d ^2 y }{dx^2 }$ in terms of y alone.
Answer:
Given function is
$y = \cos ^{-1} x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d( \cos ^{-1} x)}{dx}=\frac{-1}{\sqrt{1-x^2}}$
Now, the second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{\sqrt{1-x^2}})}{dx^2}=\frac{-(-1)}{(\sqrt{1-x^2})^2}.(-2x) = \frac{-2x}{1-x^2}$ -(i)
Now, we want $\frac{d^2y}{dx^2}$ in terms of y
$y = \cos ^{-1} x$
$x = \cos y$
Now, put the value of x in (i)
$\frac{d^2y}{dx^2} = \frac{-2\cos y }{1-\cos^2 y } = \frac{-2\cos y}{\sin ^2 y}= -2\cot y cosec y$
$(\because 1-\cos^2x =\sin^2 x\ and \ \frac{\cos x}{\sin x} = \cot x \ and \ \frac{1}{\sin x}= cosec x)$
Therefore, answer is $\frac{d^2y}{dx^2} = -2\cot y cosec y$
Question 13: If $y = 3 \cos (\log x) + 4 \sin (\log x)$ , show that $x^2 y_2 + xy_1 + y = 0$
Answer:
The given function is
$y = 3 \cos (\log x) + 4 \sin (\log x)$
Now, differentiation with respect to. x
$y_1=\frac{dy}{dx}=\frac{d( 3 \cos (\log x) + 4 \sin (\log x))}{dx}=-3\sin(\log x).\frac{1}{x}+4\cos (\log x).\frac{1}{x}$
$=\frac{4\cos (\log x)-3\sin(\log x)}{x}$ -(i)
Now, the second-order derivative is
By using the Quotient rule
$y_2=\frac{d^2y}{dx^2}=\frac{d^2(\frac{4\cos (\log x)-3\sin(\log x)}{x})}{dx^2}= \frac{(-4\sin(\log x).\frac{1}{x}-3\cos(\log x).\frac{1}{x}).x-1.(4\cos (\log x)-3\sin(\log x))}{x^2}$
$=\frac{-\sin(\log x)+7\cos (\log x)}{x^2}$ -(ii)
Now, from equation (i) and (ii), we will get $y_1 \ and \ y_2$
Now, we need to show.
$x^2 y_2 + xy_1 + y = 0$
Put the value of $y_1 \ and \ y_2$ from equation (i) and (ii)
$x^2\left ( \frac{-\sin(\log x)+7\cos (\log x)}{x^2} \right )+x\left ( \frac{4\cos (\log x)-3\sin(\log x)}{x} \right )+ 3 \cos (\log x)$ $+4\sin(\log x)$
$-\sin(\log x)-7\cos(\log x)+4\cos(\log x)-3\sin(\log x)+3\cos (\log x)$ $+4\sin(\log x)$
$=0$
Hence proved
Question 14: If $y = A e ^{mx} + Be ^{nx}$ , show that $\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + many = 0$
Answer:
The given function is
$y = A e ^{mx} + Be ^{nx}$
Now, differentiation with respect to. x
$\frac{dy}{dx}=\frac{d(A e ^{mx} + Be ^{nx})}{dx}=mAe^{mx}+nBe^{nx}$ -(i)
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(mAe^{mx}+nBe^{nx})}{dx^2}= m^2Ae^{mx}+n^2Be^{nx}$ -(ii)
Now, we need to show.
$\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$
Put the value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$m^2Ae^{mx}+n^2Be^{nx}-(m+n)(mAe^{mx}+nBx^{nx}) +mn(Ae^{mx}+Be^{nx})$
$m^2Ae^{mx}+n^2Be^{nx}-m^2Ae^{mx}-mnBx^{nx}-mnAe^{mx} -n^2Be^{nx}+mnAe^{mx}$ $+mnBe^{nx}$
$=0$
Hence proved
Question 15: If $y = 500 e ^{7x} + 600 e ^{- 7x }$ , show that $\frac{d^2 y}{dx ^2} = 49 y$
Answer:
The given function is
$y = 500 e ^{7x} + 600 e ^{- 7x }$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(500 e ^{7x} + 600 e ^{- 7x })}{dx}=7.500e^{7x}-7.600e^{-7x} =3500e^{7x}-4200e^{-7x}$ -(i)
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(3500e^{7x}-4200e^{-7x})}{dx^2}$
$= 7.3500e^{7x}-(-7).4200e^{-7x}= 24500e^{7x}+29400e^{-7x}$ -(ii)
Now, we need to show.
$\frac{d^2 y}{dx ^2} = 49 y$
Put the value of $\frac{d^2y}{dx^2}$ from equation (ii)
$24500e^{7x}+29400e^{-7x}=49(500e^{7x}+600e^{-7x})$
$= 24500e^{7x}+29400e^{-7x}$
Hence, L.H.S. = R.H.S.
Hence proved
Question 16: If $e ^y (x+1) = 1$ show that $\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Answer:
The given function is
$e ^y (x+1) = 1$
We can rewrite it as
$e^y = \frac{1}{x+1}$
Now, differentiation with respect to. x
$\frac{d(e^y)}{dx}=\frac{d(\frac{1}{x+1})}{dx}\\ e^y.\frac{dy}{dx}= \frac{-1}{(x+1)^2}\\ \frac{1}{x+1}.\frac{dy}{dx}= \frac{-1}{(x+1)^2} \ \ \ \ \ \ \ \ \ (\because e^y = \frac{1}{x+1})\\ \frac{dy}{dx}= \frac{-1}{x+1}$ -(i)
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{x+1})}{dx^2}=\frac{-(-1)}{(x+1)^2} = \frac{1}{(x+1)^2}$ -(ii)
Now, we need to show.
$\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Put value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$\frac{1}{(x+1)^2}=\left ( \frac{-1}{x+1} \right )^2$
$=\frac{1}{(x+1)^2}$
Hence, L.H.S. = R.H.S.
Hence proved
Question 17: If $y = (\tan^{-1} x)^2$ show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Answer:
The given function is
$y = (\tan^{-1} x)^2$
Now, differentiation with respect to. x
$y_1=\frac{dy}{dx}=\frac{d((\tan^{-1}x)^2)}{dx}= 2.\tan^{-1}x.\frac{1}{1+x^2}= \frac{2\tan^{-1}x}{1+x^2}$ -(i)
Now, the second-order derivative is
By using the quotient rule
$y_2=\frac{d^2y}{dx^2}=\frac{d^2(\frac{2\tan^{-1}x}{1+x^2})}{dx^2}=\frac{2.\frac{1}{1+x^2}.(1+x^2)-2\tan^{-1}x(2x)}{(1+x^2)^2}=\frac{2-4x\tan^{-1}x}{(1+x^2)^2}$ -(ii)
Now, we need to show.
$(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Put the value from equations (i) and (ii)
$(x^2+1)^2.\frac{2-4x\tan^{-1}x}{(1+x^2)^2}+2x(x^2+1).\frac{2\tan^{-1}x}{x^2+1}\\ \rightarrow 2-4x\tan^{-1}x+4x\tan^{-1}x = 2$
Hence, L.H.S. = R.H.S.
Hence proved
NCERT Continuity and Differentiability Class 12 Solutions: Miscellaneous Exercise |
Question 1: Differentiate with respect to. x the function in Exercises 1 to 11.
Answer:
The given function is
$f(x)=( 3x^2 - 9x + 5 )^9$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d((3x^2-9x+5)^9)}{dx}= 9(3x^2-9x+5)^8.(6x-9)$
$= 27(2x-3)(3x^2-9x+5)^8$
Therefore, differentiation w.r.t. x is $27(3x^2-9x+5)^8(2x-3)$
Question 2: Differentiation with respect to. x the function in Exercises 1 to 11.
Answer:
The given function is
$f(x)= \sin ^3 x + \cos ^6 x$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\sin^3x +\cos^6x)}{dx}=3\sin^2x.\frac{d(\sin x)}{dx}+6\cos^5x.\frac{d(\cos x)}{dx}$
$=3\sin^2x.\cos x+6\cos^5x.(-\sin x)$
$=3\sin^2x\cos x- 6\cos^5x\sin x = 3\sin x\cos x(\sin x- 2\cos ^4x)$
Therefore, differentiation w.r.t. x is $3\sin x\cos x(\sin x- 2\cos ^4x)$
Question 3: Differentiate with respect. x the function in Exercises 1 to 11.
Answer:
The given function is
$y=( 5 x) ^{ 3 \cos 2x }$
Take a log on both sides.
$\log y = 3\cos 2x\log 5x$
Now, differentiation w.r.t. x is
By using the product rule
$\frac{1}{y}.\frac{dy}{dx} = 3.(-2\sin 2x)\log 5x + 3\cos 2x.\frac{1}{5x}.5$
$= -6\sin2x\log 5x +\frac{3\cos 2x}{x}\\ \frac{dy}{dx} $
$= y.\left ( -6\sin2x\log 5x +\frac{3\cos 2x}{x} \right )\\$
$ \frac{dy}{dx} = (5x)^{3\cos 2x}.\left ( -6\sin2x\log 5x +\frac{3\cos 2x}{x} \right )$
Therefore, differentiation w.r.t. x is $(5x)^{3\cos 2x}.\left ( \frac{3\cos 2x}{x}-6\sin2x\log 5x \right )$
Question 4: Differentiate with respect to. x the function in Exercises 1 to 11.
$\sin ^ {-1} (x \sqrt x ) , 0 \leq x\leq 1$
Answer:
The given function is
$f(x)=\sin ^ {-1} (x \sqrt x ) , 0 \leq x\leq 1$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\sin^{-1}x\sqrt x)}{dx}=\frac{1}{\sqrt{1-(x\sqrt x)^2}}.\frac{d(x\sqrt x)}{dx}$
$=\frac{1}{\sqrt{1-x^3}}.\left ( 1.\sqrt x+x\frac{1}{2\sqrt x} \right )$
$=\frac{1}{\sqrt{1-x^3}}.\left ( \frac{3\sqrt x}{2} \right )$
$=\frac{3}{2}.\sqrt{\frac{x}{1-x^3}}$
Therefore, differentiation w.r.t. x is $\frac{3}{2}.\sqrt{\frac{x}{1-x^3}}$
Question 5: Differentiate with respect to. x the function in Exercises 1 to 11.
$\frac{\cos ^{-1}x/2}{\sqrt {2x+7}} , -2 < x < 2$
Answer:
The given function is
$f(x)=\frac{\cos ^{-1}x/2}{\sqrt {2x+7}} , -2 < x < 2$
Now, differentiation w.r.t. x is
By using the Quotient rule
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}})}{dx}$
$=\frac{\frac{d(\cos^{-1}\frac{x}{2})}{dx}.\sqrt{2x+7}-\cos^{-1}\frac{x}{2}.\frac{d(\sqrt{2x+7})}{dx}}{(\sqrt{2x+7})^2}\\$
$ f^{'}(x) = \frac{\frac{-1}{\sqrt{1-(\frac{x}{2})^2}}.\frac{1}{2}.\sqrt{2x+7}-\cos^{-1}\frac{x}{2}.\frac{1}{2.\sqrt{2x+7}}.2}{2x+7}\\$
$ f^{'}(x)= -\left [\frac{1}{(\sqrt{4-x^2})(\sqrt{2x+7})}+\frac{\cos^{-1}\frac{x}{2}}{(2x+7)^\frac{3}{2}} \right ]$
Therefore, differentiation w.r.t. x is $-\left [\frac{1}{(\sqrt{4-x^2})(\sqrt{2x+7})}+\frac{\cos^{-1}\frac{x}{2}}{(2x+7)^\frac{3}{2}} \right ]$
Question 6: Differentiate with respect to. x the function in Exercises 1 to 11.
Answer:
The given function is
$f(x)=\cot ^{-1} \left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} \right ] , 0 < x < \pi /2$
Now, rationalise the part.
$\left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} \right ]$
$= \left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} .\frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}\right ]$
$=\frac{(\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x })^2}{(\sqrt{1+\sin x})^2-(\sqrt{1-\sin x})^2}$
$ \ \ \ \ \ \ (Using \ (a-b)(a+b)=a^2-b^2)$
$=\frac{((\sqrt { 1+ \sin x })^2+ (\sqrt { 1- \sin x })^2+2(\sqrt { 1+ \sin x })(\sqrt { 1- \sin x }))}{1+\sin x-1+\sin x}$
$(Using \ (a+b)^2=a^2+b^2+2ab)$
$=\frac{1+\sin x+1-\sin x+2\sqrt{1-\sin^2x} }{2\sin x}$
$=\frac{2(1+\cos x)}{2\sin x} = \frac{1+\cos x}{\sin x}$
$=\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} \ \ \ \ \ (\because 2\cos^2= 1+\cos2x \ and \ \sin2x = 2\sin x\cos x)$
$=\frac{2\cos\frac{x}{2}}{2\sin\frac{x}{2}} = \cot \frac{x}{2}$
Given function reduces to
$f(x) = \cot^{-1}(\cot \frac{x}{2})\\ f(x) = \frac{x}{2}$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}$
$=\frac{d(\frac{x}{2})}{dx} = \frac{1}{2}$
Therefore, differentiation w.r.t. x is $\frac{1}{2}$
Question 7: Differentiate with respect to. x the function in Exercises 1 to 11. $( \log x )^{ \log x } , x > 1$
Answer:
The given function is
$y=( \log x )^{ \log x } , x > 1$
Take logs on both sides.
$\log y=\log x\log( \log x )$
Now, differentiate with respect.
$\frac{1}{y}.\frac{dy}{dx}= \frac{1}{x}.\log (\log x)+\log x.\frac{1}{\log x}.\frac{1}{x} = \frac{\log x+1}{x}$
$\frac{dy}{dx} = y.\left ( \frac{\log x+1}{x} \right )\\$
$\frac{dy}{dx} = (\log x)^{\log x}.\left ( \frac{\log x+1}{x} \right )\\$
Therefore, differentiation w.r.t x is $(\log x)^{\log x}.\left ( \frac{\log x+1}{x} \right )\\$
Question 8: $\cos ( \cos x + b \sin x )$, for some constant a and b. r:
The given function is
$f(x)=\cos ( a \cos x + b \sin x )$
Now, differentiation w.r.t x
$f^{'}(x)= \frac{d(f(x))}{dx}= \frac{d(\cos(a\cos x+ b \sin x))}{dx}$
$= -\sin(a\cos x+b\sin x).\frac{d(a\cos x+b\sin x)}{dx}$
$= -\sin(a\cos x+b\sin x).(-a\sin x+b\cos x)$
$= (a\sin x-b\cos x)\sin(a\cos x+b\sin x).$
Therefore, differentiation w.r.t x $(a\sin x-b\cos x)\sin(a\cos x+b\sin x)$
Question 9: $(\sin x - \cos x)^{ (\sin x - \cos x), } , \frac{\pi }{4} <x<\frac{3 \pi }{4}$
Answer:
The given function is
$y=(\sin x - \cos x)^{ (\sin x - \cos x), } , \frac{\pi }{4} <x<\frac{3 \pi }{4}$
Take logs on both sides.
$\log y=(\sin x - \cos x)\log (\sin x - \cos x)$
Now, differentiate with respect. x
$\frac{1}{y}.\frac{dy}{dx} = \frac{d(\sin x-\cos x)}{dx}.\log(\sin x- \cos x)+(\sin x- \cos x).\frac{d(\log(\sin x- \cos x))}{dx}$
$\frac{1}{y}.\frac{dy}{dx} =(\cos x -(-\sin x)).\log(\sin x-\cos x)+(\sin x- \cos x).\frac{(\cos x -(-\sin x))}{(\sin x- \cos x)}$
$\frac{dy}{dx} =y.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right )$
$\frac{dy}{dx} =(\sin x-\cos x)^{(\sin x-\cos x)}.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right )$
Therefore, differentiation w.r.t x is $(\sin x-\cos x)^{(\sin x-\cos x)}.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right ), sinx>cosx$
Question 10: $x ^x + x ^a + a ^x + a ^a$ , for some fixed a > 0 and x > 0
Answer:
The given function is
$f(x)=x ^x + x ^a + a ^x + a ^a$
Let's take
$u = x^x$
Now, take a look at both sides.
$\log u = x \log x$
Now, differentiate w.r.t x
$\frac{1}{u}.\frac{du}{dx}= \frac{dx}{dx}.\log x+x.\frac{d(\log x)}{dx}\\ \\ \frac{1}{u}.\frac{du}{dx}= 1.\log x+x.\frac{1}{x}\\ \\ \frac{du}{dx}= y.(\log x+1)\\ \\ \frac{du}{dx}= x^x.(\log x+1)$ -(i)
Similarly, take $v = x^a$
Take logs on both sides.
$\log v = a\log x$
Now, differentiate w.r.t x
$\frac{1}{v}.\frac{dv}{dx}= a.\frac{d(\log x)}{dx}=a.\frac{1}{x}= \frac{a}{x}\\ \\ \frac{dv}{dx}= v.\frac{a}{x}\\ \\ \frac{dv}{dx}= x^a.\frac{a}{x}$ -(ii)
Similarly, take $z = a^x$
Take logs on both sides.
$\log z = x\log a$
Now, differentiate w.r.t x
$\frac{1}{z}.\frac{dz}{dx}=\log a.\frac{d(x)}{dx}=\log a.1= \log a\\ \\ \frac{dz}{dx}= z.\log a\\ \\ \frac{dz}{dx}= a^x.\log a$ -(iii)
Similarly, take $w = a^a$
Take logs on both sides.
$\log w = a\log a= \ constant$
Now, differentiate w.r.t x
$\frac{1}{w}.\frac{dw}{dx}= a.\frac{d(a\log a)}{dx}= 0\\ \\ \frac{dw}{dx} = 0$ -(iv)
Now,
$f(x)=u+v+z+w$
$f^{'}(x) = \frac{du}{dx}+\frac{dv}{dx}+\frac{dz}{dx}+\frac{dw}{dx}$
Put values from equations (i), (ii),(iii) and (iv)
$f^{'}(x)= x^x(\log x+1)+ax^{a-1}+a^x\log a$
Therefore, differentiation w.r.t. x is $x^x(\log x+1)+ax^{a-1}+a^x\log a$
Question 11: $x ^{x^2 -3} + ( x-3 ) ^{x^2} , for\: \: x > 3$
Answer:
The given function is
$f(x)=x ^{x^2 -3} + ( x-3 ) ^{x^2} , for\: \: x > 3$
take $u=x ^{x^2 -3}$
Now, take a look at both sides.
$\log u=(x^2-3)\log x$
Now, differentiate w.r.t x
$\frac{1}{u}.\frac{du}{dx}= \frac{d(x^2-3)}{dx}.\log x+(x^2-3).\frac{d(\log x)}{dx}\\$
$\frac{1}{u}.\frac{du}{dx} = 2x.\log x+(x^2-3).\frac{1}{x}\\$
$ \frac{1}{u}.\frac{du}{dx} = \frac{2x^2\log x+x^2-3}{x}\\$
$ \frac{du}{dx}= u.\left ( \frac{2x^2\log x+x^2-3}{x} \right )\\$
$ \frac{du}{dx}= x^{(x^2-3)}.\left ( \frac{2x^2\log x+x^2-3}{x} \right )\\$ -(i)
Similarly,
take $v=(x-3)^{x^2}\\$
Now, take a look at both sides.
$\log v=x^2\log (x-3)$
Now, differentiate w.r.t x
$\frac{1}{v}.\frac{dv}{dx}= \frac{d(x^2)}{dx}.\log (x-3)+x^2.\frac{d(\log (x-3))}{dx}\\$
$ \frac{1}{v}.\frac{dv}{dx} = 2x.\log (x-3)+x^2.\frac{1}{(x-3)}\\$
$ \frac{1}{v}.\frac{dv}{dx} = 2x\log(x-3)+\frac{x^2}{x-3}\\$
$ \frac{dv}{dx}= v.\left ( 2x\log(x-3)+\frac{x^2}{x-3} \right )\\$
$ \frac{dv}{dx}= (x-3)^{x^2}.\left ( 2x\log(x-3)+\frac{x^2}{x-3}\right )\\ \\$ -(ii)
Now
$f(x)= u + v$
$f^{'}(x)= \frac{du}{dx}+\frac{dv}{dx}$
Put the value from equations (i) and (ii)
$f^{'}(x)= x^{(x^2-3)}.\left ( \frac{2x^2\log x+x^2-3}{x} \right )+(x-3)^{x^2}.\left ( 2x\log(x-3)+\frac{x^2}{x-3}\right )$
Therefore, differentiation w.r.t x is $x^{(x^2-3)}.\left ( \frac{2x^2\log x+x^2-3}{x} \right )+(x-3)^{x^2}.\left ( 2x\log(x-3)+\frac{x^2}{x-3}\right )$
Question 12: Find $\frac{dy}{dx}$ if $y = 12 (1 - \cos t), x = 10 (t - \sin t),$ $-\frac{\pi }{2} <t< \frac{\pi }{2}$
Answer:
The given equations are
$y = 12 (1 - \cos t), x = 10 (t - \sin t),$
Now, differentiate both y and x w.r.t t independently.
$\frac{dy}{dt}=\frac{d(12(1-\cos t))}{dt}= -12(-\sin t)=12\sin t$
And
$\frac{dx}{dt}=\frac{d(10(t-\sin t))}{dt}= 10-10\cos t$
Now
$\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{12\sin t}{10(1-\cos t)} = \frac{6}{5}.\frac{2\sin \frac{t}{2}\cos \frac{t}{2}}{2\sin^2\frac{t}{2}} = \frac{6}{5}.\frac{\cos \frac{t}{2}}{\sin \frac{t}{2}}\\ \\$
$(\because \sin 2x = 2\sin x\cos x \ and \ 1-\cos 2x = 2\sin^2x)$
$\frac{dy}{dx}=\frac{6}{5}.\cot \frac{t}{2}$
Therefore, differentiation w.r.t x is $\frac{6}{5}.\cot \frac{t}{2}$
Question 13: Find $\frac{dy}{dx}$ if $y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1$
Answer:
The given function is
$y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1$
Now, differentiate with respect. x
$\frac{dy}{dx}= \frac{d(sin ^{-1} x + sin^{-1} \sqrt{1- x^2})}{dx} = \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}}.\frac{d(\sqrt{1-x^2})}{dx}\\$
$ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-1+x^2}}.\frac{1}{2\sqrt{1-x^2}}.(-2x)\\$
$ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}\\$
$ \frac{dy}{dx}= 0$
Therefore, differentiate w.r.t. x is 0
Answer:
The given function is
$x \sqrt {1+ y }+ y \sqrt { 1+ x } = 0$
$x\sqrt{1+y} = - y\sqrt{1+x}$
Now, squaring both sides.
$(x\sqrt{1+y})^2 = (- y\sqrt{1+x})^2\\ x^2(1+y)=y^2(1+x)\\$
$ x^2+x^2y=y^2x+y^2\\$
$ x^2-y^2=y^2x-x^2y\\ (x-y)(x+y) = -xy(x-y) \\$
$ x+y =-xy\\ y = \frac{-x}{1+x}$
Now, differentiate w.r.t. x is
$\frac{dy}{dx} = \frac{d(\frac{-x}{1+x})}{dx}= \frac{-1.(1+x)-(-x).(1)}{(1+x)^2}= \frac{-1}{(1+x)^2}$
Hence proved
Answer:
The given function is
$(x - a)^2 + (y - b)^2 = c^2$
$(y - b)^2 = c^2-(x - a)^2$ - (i)
Now, differentiate with respect. x
$\frac{d((x-a)^2)}{dx}+\frac{((y-b)^2)}{dx}=\frac{d(c^2)}{dx}\\ \\ 2(x-a)+2(y-b).\frac{dy}{dx}=0\\ \\ \frac{dy}{dx} = \frac{a-x}{y-b}$ -(ii)
Now, the second derivative
$\frac{d^2y}{dx^2} = \frac{\frac{d(a-x)}{dx}.(y-b) -(a-x).\frac{d(y-b)}{dx}}{(y-b)^2}\\ \\ \frac{d^2y}{dx^2} =\frac{ (-1).(y-b)-(a-x).\frac{dy}{dx}}{(y-b)^2}\\ \\$
Now, put values from equations (i) and (ii)
$\frac{d^2y}{dx^2} =\frac{-(y-b)-(a-x).\frac{a-x}{y-b}}{(y-b)^2}\\ \\ \frac{d^2y}{dx^2} = \frac{-((y-b)^2+(a-x)^2)}{(y-b)^\frac{3}{2}} = \frac{-c^2}{(y-b)^\frac{3}{2}}$ $(\because (x - a)^2 + (y - b)^2 = c^2)$
Now,
$\frac{\left [ 1+(\frac{dy}{dx} )^2 \right ]^{3/2}}{\frac{d^2 y }{dx^2}} = \frac{\left ( 1+\left ( \frac{x-a}{y-b} \right )^2 \right )^\frac{3}{2}}{\frac{-c^2}{(y-b)^\frac{3}{2}}} = \frac{\frac{\left ( (y-b)^2 +(x-a)^2\right )^\frac{3}{2}}{(y-b)^\frac{3}{2}}}{\frac{-c^2}{(y-b)^\frac{3}{2}}} = \frac{(c^2)^\frac{3}{2}}{-c^2}= \frac{c^3}{-c^2}= c$ $(\because (x - a)^2 + (y - b)^2 = c^2)$
Which is independent of a and b
Hence proved
Question 16: If $\cos y = x \cos (a + y)$ , with $\cos a \neq \pm 1$ , prove that $\frac{dy}{dx} = \frac{\cos ^2 (a+y )}{\sin a }$
Answer:
The given function is
$\cos y = x \cos (a + y)$
Now, differentiate w.r.t x
$\frac{d(\cos y)}{dx} = \frac{dx}{dx}.\cos(a+y)+x.\frac{d(\cos (a+y))}{dx}\\$
$-\sin y \frac{dy}{dx} = 1.\cos (a+y)+x.(-\sin(a+y)).\frac{dy}{dx}\\$
$ \frac{dy}{dx}.(x\sin(a+y)-\sin y)= \cos(a+y)\\$
$ \frac{dy}{dx}.(\frac{\cos y}{\cos (a+b)}.\sin(a+y)-\sin y)= \cos(a+b) $
$\ \ \ \ \ (\because x = \frac{\cos y}{\cos (a+b)})\\$
$ \frac{dy}{dx}.(\cos y\sin(a+y)-\sin y\cos(a+y))=\cos^2(a+b)\\$
$ \frac{dy}{dx}.(\sin(a+y-y))=\cos^2(a+b)$
$ \ \ \ \ \ \ \ (\because \cos A\sin B-\sin A\cos B = \sin(A-B))\\$
$ \frac{dy}{dx}= \frac{\cos^2(a+y)}{\sin a}$
Hence proved
Question 17: If $x = a (\cos t + t \sin t)$ and $y = a (\sin t - t \cos t),$ find $\frac{d^2 y }{dx^2 }$
Answer:
Given functions are
$x = a (\cos t + t \sin t)$ and $y = a (\sin t - t \cos t)$
Now, differentiate both the functions w.r.t. t independently.
We get
$\frac{dx}{dt} = \frac{d(a(\cos t +t\sin t))}{dt}= a(-\sin t)+a(\sin t+t\cos t)$
$=-a\sin t+a\sin t+at\cos t = at\cos t$
Similarly,
$\frac{dy}{dt} = \frac{d(a(\sin t - t\cos t))}{dt}= a\cos t -a(\cos t+t(-\sin t))$
$= a\cos t -a\cos t+at\sin t =at\sin t$
Now,
$\frac{dy}{dx}= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{at\sin t}{at \cos t} = \tan t$
Now, the second derivative
$\frac{d^2y}{dx^2}=\frac{d}{dx}\frac{dy}{dx}= \sec^2 t.\frac{dt}{dx}=\frac{\sec^2t.\sec t }{at}=\frac{\sec^3t}{at}$
$(\because \frac{dx}{dt} = at\cos t \rightarrow \frac{dt}{dx}= \frac{1}{at\cos t}=\frac{\sec t}{at})$
Therefore, $\frac{d^2y}{dx^2}=\frac{\sec^3t}{at}$
Question 18: If $f (x) = |x|^3$, show that f ''(x) exists for all real x and find it.
Answer:
The given function is
$f (x) = |x|^3$
$f(x)\left\{\begin{matrix} -x^3 & x<0\\ x^3 & x>0 \end{matrix}\right.$
Now, differentiate in both cases.
$f(x)= x^3\\ f^{'}(x)=3x^2\\ f^{''}(x)= 6x$
And
$f(x)= -x^3\\ f^{'}(x)=-3x^2\\ f^{''}(x)= -6x$
In both cases, f ''(x) exists.
Hence, we can say that f ''(x) exists for all real x
And values are
$f^{''}(x)\left\{\begin{matrix} -6x &x<0 \\ 6x& x>0 \end{matrix}\right.$
Answer:
The given function is
$\sin (A + B) = \sin A \cos B + \cos A \sin B$
Now, differentiate with respect. x
$\frac{d(\sin(A+B))}{dx} = \frac{d\sin A}{dx}.\cos B+\sin A.\frac{d\cos B}{dx}+\frac{d\cos A}{dx}.\sin B+\cos A.\frac{d\sin B}{dx}$
$\cos (A+b)\frac{d(A+B)}{dx}$ $=\frac{dA}{dx}(\cos A\cos B-\sin A\cos B)+\frac{dB}{dx}(\cos A \sin B-\sin A\sin B)$
$=(\cos A \sin B-\sin A\sin B).\frac{d(A+B)}{dx}$
$\cos(A+B)= \cos A\sin B-\sin A\cos B$
Hence, we get the formula by differentiation of sin(A + B)
Answer:
Consider f(x) = |x| + |x +1|
We know that modulus functions are continuous everywhere, and the sum of two continuous functions is also a continuous function.
Therefore, our function f(x) is continuous.
Now,
If Lets differentiability of our function at x = 0 and x= -1
L.H.D. at x = 0
$\lim\limits_{h\rightarrow 0^-}\frac{f(x+h)-f(x)}{h}= \lim\limits_{h\rightarrow 0^-}\frac{f(h)-f(0)}{h}= \lim\limits_{h\rightarrow 0^-}\frac{|h|+|h+1|-|1|}{h}$
$=\lim\limits_{h\rightarrow 0^-}\frac{-h-(h+1)-1}{h}= 0$ $(|h| = - h \ because\ h < 0)$
R.H.L. at x = 0
$\lim\limits_{h\rightarrow 0^+}\frac{f(x+h)-f(x)}{h}= \lim\limits_{h\rightarrow 0^+}\frac{f(h)-f(0)}{h}= \lim\limits_{h\rightarrow 0^+}\frac{|h|+|h+1|-|1|}{h}$
$=\lim\limits_{h\rightarrow 0^+}\frac{h+h+1-1}{h}= \lim\limits_{h\rightarrow 0^+}\frac{2h}{h}= 2$ $(|h| = h \ because \ h > 0)$
R.H.L. is not equal to L.H.L.
Hence. At x = 0, the function is not differentiable.
Now, Similarly
R.H.L. at x = -1
$\lim\limits_{h\rightarrow 0^+}\frac{f(x+h)-f(x)}{h}= \lim\limits_{h\rightarrow 0^+}\frac{f(-1+h)-f(-1)}{h}= \lim\limits_{h\rightarrow 0^+}\frac{|-1+h|+|h|-|-1|}{h}$
$=\lim\limits_{h\rightarrow 0^+}\frac{1-h+h-1}{h}= \lim\limits_{h\rightarrow 0^+}\frac{0}{h}= 0$ $(|h| = h \ because \ h > 0)$
L.H.L. at x = -1
$\lim\limits_{h\rightarrow 0^-}\frac{f(x+h)-f(x)}{h}= \lim\limits_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h}= \lim\limits_{h\rightarrow 0^-}\frac{|-1+h|+|h|-|1|}{h}$
$=\lim\limits_{h\rightarrow 1^+}\frac{1-h-h-1}{h}= \lim\limits_{h\rightarrow 0^+}\frac{-2h}{h}= -2$ $(|h| = - h \ because\ h < 0)$
L.H.L. is not equal to R.H.L, so not differentiable at x=-1
Hence, exactly two points where it is not differentiable
Answer:
Given that
$y = \begin{vmatrix} f (x) & g(x) & h (x) \\ l& m &n \\ a& b &c \end{vmatrix}$
We can rewrite it as
$y = f(x)(mc-bn)-g(x)(lc-an)+h(x)(lb-am)$
Now, differentiate w.r.t x
We will get
$\frac{dy}{dx} = f^{'}(x)(mc-bn)-g^{'}(x)(lc-an)+h^{'}(x)(lb-am) \rightarrow \begin{bmatrix} f^{'}(x) &g^{'}(x) &h^{'}(x) \\ l&m &n \\ a& b &c \end{bmatrix}$
Hence proved
Question 22: If $y=e^{a \cos ^{-1} x},-1 \leq x\leq 1$ , show that $( 1- x^2 ) \frac{d^2 y }{dx ^2} - x \frac{dy}{dx} - a ^2 y = 0$
Answer:
The given function is
$y=e^{a \cos ^{-1} x},-1 \leq 1$
Now, differentiate w.r.t x, we will get.
$\frac{dy}{dx}= \frac{d(e^{a\cos^{-1}x})}{dx}.\frac{d(a\cos^{-1}x)}{dx} = e^{a\cos^{-1}x}.\frac{-a}{\sqrt{1-x^2}}$ -(i)
Now, again differentiate with respect to x
$\frac{d^2y}{dx^2}= \frac{d}{dx}\frac{dy}{dx}= \frac{-ae^{a\cos^{-1}x}.\frac{-a}{\sqrt{1-x^2}}.\sqrt{1-x^2}+ae^{a\cos^{-1}x}.\frac{1.(-2x)}{2\sqrt{1-x^2}}}{(\sqrt{1-x^2})^2}$
$=\ \frac{a^2e^{a\cos^{-1}x}-\frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}}}{1-x^2}$ -(ii)
Now, we need to show that.
$( 1- x^2 ) \frac{d^2 y }{dx ^2} - x \frac{dy}{dx} - a ^2 y = 0$
Put the values from equations (i) and (ii)
$(1-x^2).\left ( \ \frac{a^2e^{a\cos^{-1}x}-\frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}}}{1-x^2} \right )-x.\left ( \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}} \right )-a^2e^{a\cos^{-1}x}$
$a^2e^{a\cos^{-1}x}-\frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}}+\left ( \frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}} \right )-a^2e^{a\cos^{-1}x} = 0$
Hence proved
Also, read,
Question: If $f(x)=x|x|_{\text {, then }} f^{\prime}(x)=$
Solution:
$\begin{aligned} & f(x)=x|x| \\ & f(x)=\left\{\begin{array}{cc}x^2 & x \geq 0 \\ -x^2 & x<0\end{array}\right\} \\ & f^{\prime}(x)=\left\{\begin{array}{cc}2 x & x \geq 0 \\ -2 x & x<0\end{array}\right\}\end{aligned}$
Hence, the answer is $f^{\prime}(x)=\left\{\begin{array}{cc}2 x & x \geq 0 \\ -2 x & x<0\end{array}\right\}$
Here are the topics that are discussed in the Class 12 Maths NCERT Chapter 5, Continuity and Differentiability.
A function $f(x)$ is continuous at a point $x = a$ if:
$f(x)$ is discontinuous in an interval if it is discontinuous at any point in that interval.
The sum, difference, product, and quotient of continuous functions are continuous.
Differentiation:
The derivative of $f(x)$ at $x = a$, denoted as $f’(a)$, represents the slope of the tangent line to the graph.
Chain Rule:
If $f = v o u$, where $t = u(x)$, and if both $\frac{dt}{dx}$ and $\frac{dv}{dx}$ exist, then: $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$.
The mean Value Theorem states that if $f(x)$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there exists some $c$ in $(a, b)$ such that: $f’(c) = \frac{(f(b) - f(a))}{(b - a)}$.
Rolle's Theorem states that if $f(x)$ is continuous on $[a, b]$, differentiable on $(a, b)$, and $f(a) = f(b)$, then there exists some $c$ in $(a, b)$ such that $f’(c) = 0$.
Lagrange's Mean Value Theorem states that if $f(x)$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there exists some c in $(a, b)$ such that:
$f’(c) = \frac{(f(b) - f(a))}{(b - a)}$.
Concept Name |
JEE |
NCERT |
✅ |
✅ | |
✅ |
✅ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
✅ | |
Differentiation of Inverse Trigonometric Function (cos/sine/tan) |
✅ |
✅ |
✅ |
✅ | |
Differentiation of a Function wrt Another Function and Higher Order derivative of a Function |
✅ |
✅ |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
✅ | |
✅ |
❌ | |
Non - Removable, Infinite and Oscillatory Type Discontinuity |
✅ |
❌ |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
❌ | |
✅ |
✅ | |
✅ |
✅ |
Students can access all the Maths solutions from the NCERT book from the links below.
Also, read,
For subject-wise solutions, you can refer here
For the solution of other classes, you can refer here
Here, you can refer to the latest syllabus and NCERT Books
Frequently Asked Questions (FAQs)
Basic concepts of continuity and differentiability, derivatives of composite functions, derivatives of implicit functions, derivatives of inverse trigonometric functions, exponential and logarithmic functions, logarithmic differentiation, and derivatives of functions in parametric form are the important topics in this chapter. Practice these Class 12 Maths Chapter 5 questions to command the concepts.
NCERT is the best book for CBSE class 12 maths. Most of the questions in the CBSE board exam are directly asked from the NCERT textbook. All you need to do is practice all the problems given in the NCERT textbook.
According to the given information, there are 8 exercises in NCERT Solutions for maths chapter 5 class 12 . The following is the number of questions in each exercise:
Exercise 5.1: 34 questions
Exercise 5.2: 10 questions
Exercise 5.3: 15 questions
Exercise 5.4: 10 questions
Exercise 5.5: 18 questions
Exercise 5.6: 11 questions
Exercise 5.7: 17 questions
Exercise 5.8: 6 questions
Additionally, there is a Miscellaneous Exercise with 23 questions.
Generally, Continuity and differntiability has 9% weightage in the 12th board final examination. if you want to obtain meritious marks or full marks then you should have good command on concepts that can be developed by practice therefore you should practice NCERT solutions and NCERT exercise solutions.
You can download the book and solutions from the Careers360 site for free.
Formulas include the power rule, product rule, quotient rule, and chain rule for differentiation.
Continuity refers to a function having no breaks or gaps in its graph, while differentiability means the function has a defined slope (derivative) at every point in its domain.
In Chapter 5, applications of differentiation focus on understanding and using derivatives to analyse functions, including finding rates of change, determining increasing/decreasing intervals, locating extrema, and sketching curves.
Yes, every differentiable function is always continuous, but the converse is not true; a function can be continuous without being differentiable. For example, the absolute value function, f(x)=|x|, is continuous everywhere but not differentiable at x=0.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters