NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability

Komal MiglaniUpdated on 24 Apr 2025, 09:49 AM IST

Continuity means a function does not jump or disappear, while Differentiability means the function does not stumble and keeps going without any sharp or awkward turns. Understanding how functions change is not just about finding their slopes, but we can go one step further and find how those slopes change to get a better look at how the functions behave. This is where the second-order derivative plays an important role in calculus, it helps us to determine the curvature of the function. In exercise 5.7 of the chapter Continuity and Differentiability, we will learn about the concept of the second-order derivative, which can tell us about how the first-order derivative, i.e. the rate of change itself, is changing. This article on the NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability provides detailed solutions for the problems given in the exercise, so that students can clear their doubts and get a clear understanding of the method and logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE 2026 Admit Card LIVE: CBSE Class 10, 12 hall ticket soon at cbse.gov.in; direct link, datesheet, updatesJan 23, 2026 | 10:21 PM IST

After receiving their CBSE Class 12th admit card 2026, students can review the helpful advice listed below:

  • Have a copy of your 2026 CBSE 12th admission card with you. You must have a photocopy of your admit card on hand in case you misplace the original.
  • Students must review the information on their 2026 Class 12 CBSE admission card. Students must get in touch with the appropriate school official as soon as possible to resolve any discrepancies.
  • Exam day instructions should be read as stated on the 12th-grade admit card on cbse.nic.in.
Read More

Class 12 Maths Chapter 5 Exercise 5.7 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.7

Question:1 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x^2 + 3x+ 2$

Answer:

Given function is
$y=x^2 + 3x+ 2$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 2x+3$
Now, second order derivative
$\frac{d^2y}{dx^2}= 2$
Therefore, the second order derivative is $\frac{d^2y}{dx^2}= 2$

Question:2 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x ^{20}$

Answer:

Given function is
$y=x ^{20}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 20x^{19}$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 20.19x^{18}= 380x^{18}$
Therefore, second-order derivative is $\frac{d^2y}{dx^2}= 380x^{18}$

Question:3 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x \cos x$

Answer:

Given function is
$y = x \cos x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= \cos x + x(-\sin x ) = \cos x-x\sin x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= -\sin x-(\sin x+x\cos x) = -2\sin x - x\sin x$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2}= -2\sin x - x\sin x$

Question:4 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\log x$

Answer:

Given function is
$y=\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{1}{x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2}= \frac{-1}{x^2}$

Question:5 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x ^3 \log x$

Answer:

Given function is
$y=x^3\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=3x^2.\log x+x^3.\frac{1}{x}= 3x^2.\log x+ x^2$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 6x.\log x+3x^2.\frac{1}{x}+2x=6x.\log x+3x+2x = x(6.\log x+5)$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2} = x(6.\log x+5)$

Question:6 Find the second order derivatives of the functions given in Exercises 1 to 10.

$e ^x \sin5 x$

Answer:

Given function is
$y= e^x\sin 5x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=e^x.\sin 5x +e^x.5\cos 5x = e^x(\sin5x+5\cos5x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= e^x(\sin5x+5\cos5x)+e^x(5\cos5x+5.(-5\sin5x))$
$= e^x(\sin5x+5\cos5x)+e^x(5\cos5x-25\sin5x)=e^x(10\cos5x-24\sin5x)$
$=2e^x(5\cos5x-12\sin5x)$
Therefore, second order derivative is $\frac{dy}{dx}=2e^x(5\cos5x-12\sin5x)$

Question:7 Find the second order derivatives of the functions given in Exercises 1 to 10.

$e ^{6x}\cos 3x$

Answer:

Given function is
$y= e^{6x}\cos 3x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=6e^{6x}.\cos 3x +e^{6x}.(-3\sin 3x)= e^{6x}(6\cos 3x-3\sin 3x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= 6e^{6x}(6\cos3x-3\sin3x)+e^{6x}(6.(-3\sin3x)-3.3\cos3x)$
$= 6e^{6x}(6\cos3x-3\sin3x)-e^{6x}(18\sin3x+9\cos3x)$
$e^{6x}(27\cos3x-36\sin3x) = 9e^{6x}(3\cos3x-4\sin3x)$
Therefore, second order derivative is $\frac{dy}{dx} = 9e^{6x}(3\cos3x-4\sin3x)$

Question:8 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\tan ^{-1} x$

Answer:

Given function is
$y = \tan^{-1}x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\tan^{-1}x)}{dx}=\frac{1}{1+x^2}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(1+x^2)^2}.2x = \frac{-2x}{(1+x^2)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-2x}{(1+x^2)^2}$

Question:9 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\log (\log x )$

Answer:

Given function is
$y = \log(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\log(\log x))}{dx}=\frac{1}{\log x}.\frac{1}{x}= \frac{1}{x\log x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(x\log x)^2}.(1.\log x+x.\frac{1}{x}) = \frac{-(\log x+1)}{(x\log x)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\log x+1)}{(x\log x)^2}$

Question:10 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\sin (\log x )$

Answer:

Given function is
$y = \sin(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\sin(\log x))}{dx}=\cos (\log x).\frac{1}{x}= \frac{\cos (\log x)}{x}$
Now, second order derivative is
Using Quotient rule
$\frac{d^2y}{dx^2}=\frac{-\sin(\log x)\frac{1}{x}.x-\cos(\log x).1}{x^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$

Question:11 If $y = 5 \cos x - 3 \sin x$ prove that $\frac{d^2y}{dx^2}+y = 0$

Answer:

Given function is
$y = 5 \cos x - 3 \sin x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(5\cos x-3\sin x)}{dx}=-5\sin x-3\cos x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(-5\sin x-3\cos x)}{dx^2}=-5\cos x+3\sin x$
Now,
$\frac{d^2y}{dx^2}+y=-5\cos x+3\sin x+5\cos x-3\sin x = 0$
Hence proved

Question:12 If $y = \cos ^{-1} x$ Find $\frac{d ^2 y }{dx^2 }$ in terms of y alone.

Answer:

Given function is
$y = \cos ^{-1} x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d( \cos ^{-1} x)}{dx}=\frac{-1}{\sqrt{1-x^2}}$
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{\sqrt{1-x^2}})}{dx^2}=\frac{-(-1)}{(\sqrt{1-x^2})^2}.(-2x) = \frac{-2x}{1-x^2}$ -(i)
Now, we want $\frac{d^2y}{dx^2}$ in terms of y
$y = \cos ^{-1} x$
$x = \cos y$
Now, put the value of x in (i)

$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y \, \operatorname{cosec} y$
$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y\, \mathrm{cosec}\, y$
$\left(\because\ 1 - \cos^2 x = \sin^2 x,\ \frac{\cos x}{\sin x} = \cot x,\ \text{and}\ \frac{1}{\sin x} = \mathrm{cosec}\, x \right)$
Therefore, answer is $\frac{d^2y}{dx^2} = -2 \cot y \, \mathrm{cosec}\, y$

Question:13 If $y = 3 \cos (\log x) + 4 \sin (\log x)$, show that $x^2 y_2 + xy_1 + y = 0$

Answer:

Given function is
$y = 3 \cos (\log x) + 4 \sin (\log x)$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d( 3 \cos (\log x) + 4 \sin (\log x))}{dx}=-3\sin(\log x).\frac{1}{x}+4\cos (\log x).\frac{1}{x}$
$=\frac{4\cos (\log x)-3\sin(\log x)}{x}$ -(i)
Now, second order derivative is
By using the Quotient rule
$y_2 = \frac{d^2y}{dx^2} = \frac{d^2\left(\frac{4\cos(\log x) - 3\sin(\log x)}{x}\right)}{dx^2}$
$= \frac{\left(-4\sin(\log x) \cdot \frac{1}{x} - 3\cos(\log x) \cdot \frac{1}{x}\right) \cdot x - 1 \cdot \left(4\cos(\log x) - 3\sin(\log x)\right)}{x^2}$
$= \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \ \text{-(ii)}$
Now, from equation (i) and (ii) we will get $y_1 \ and \ y_2$
Now, we need to show
$x^2 y_2 + xy_1 + y = 0$
Put the value of $y_1 \ and \ y_2$ from equation (i) and (ii)
$x^2\left( \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \right) + x\left( \frac{4\cos(\log x) - 3\sin(\log x)}{x} \right) + 3\cos(\log x) + 4\sin(\log x)$
$-\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x)$
$=0$
Hence proved

Question:14 If $y = A e ^{mx} + Be ^{nx}$ , show that $\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$

Answer:

Given function is
$y = A e ^{mx} + Be ^{nx}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(A e ^{mx} + Be ^{nx})}{dx}=mAe^{mx}+nBe^{nx}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(mAe^{mx}+nBe^{nx})}{dx^2}= m^2Ae^{mx}+n^2Be^{nx}$ -(ii)
Now, we need to show
$\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$
Put the value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$m^2Ae^{mx}+n^2Be^{nx}-(m+n)(mAe^{mx}+nBx^{nx}) +mn(Ae^{mx}+Be^{nx})$
$m^2Ae^{mx}+n^2Be^{nx}-m^2Ae^{mx}-mnBx^{nx}-mnAe^{mx} -n^2Be^{nx}+mnAe^{mx}$$+mnBe^{nx}$
$=0$
Hence proved

Question:15 If $y = 500 e ^{7x} + 600 e ^{- 7x }$ , show that $\frac{d^2 y}{dx ^2} = 49 y$
Answer:

Given function is
$y = 500 e ^{7x} + 600 e ^{- 7x }$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(500 e ^{7x} + 600 e ^{- 7x })}{dx}=7.500e^{7x}-7.600e^{-7x} =3500e^{7x}-4200e^{-7x}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(3500e^{7x}-4200e^{-7x})}{dx^2}$
$= 7.3500e^{7x}-(-7).4200e^{-7x}= 24500e^{7x}+29400e^{-7x}$ -(ii)
Now, we need to show
$\frac{d^2 y}{dx ^2} = 49 y$
Put the value of $\frac{d^2y}{dx^2}$ from equation (ii)
$24500e^{7x}+29400e^{-7x}=49(500e^{7x}+600e^{-7x})$
$= 24500e^{7x}+29400e^{-7x}$
Hence, L.H.S. = R.H.S.
Hence proved

Question:16 If $e ^y (x+1) = 1$ show that $\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$

Answer:

Given function is
$e ^y (x+1) = 1$
We can rewrite it as
$e^y = \frac{1}{x+1}$
Now, differentiation w.r.t. x
$\frac{d(e^y)}{dx}=\frac{d(\frac{1}{x+1})}{dx}\\ e^y.\frac{dy}{dx}= \frac{-1}{(x+1)^2}\\ \frac{1}{x+1}.\frac{dy}{dx}= \frac{-1}{(x+1)^2} \ \ \ \ \ \ \ \ \ (\because e^y = \frac{1}{x+1})\\ \frac{dy}{dx}= \frac{-1}{x+1}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{x+1})}{dx^2}=\frac{-(-1)}{(x+1)^2} = \frac{1}{(x+1)^2}$ -(ii)
Now, we need to show
$\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Put value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$\frac{1}{(x+1)^2}=\left ( \frac{-1}{x+1} \right )^2$
$=\frac{1}{(x+1)^2}$
Hence, L.H.S. = R.H.S.
Hence proved

Question:17 If $y = (\tan^{-1} x)^2$ show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$

Answer:

Given function is
$y = (\tan^{-1} x)^2$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d((\tan^{-1}x)^2)}{dx}= 2.\tan^{-1}x.\frac{1}{1+x^2}= \frac{2\tan^{-1}x}{1+x^2}$ -(i)
Now, the second-order derivative is
By using the quotient rule
$y_2=\frac{d^2y}{dx^2}=\frac{d^2(\frac{2\tan^{-1}x}{1+x^2})}{dx^2}=\frac{2.\frac{1}{1+x^2}.(1+x^2)-2\tan^{-1}x(2x)}{(1+x^2)^2}=\frac{2-4x\tan^{-1}x}{(1+x^2)^2}$ -(ii)
Now, we need to show
$(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Put the value from equation (i) and (ii)
$(x^2+1)^2.\frac{2-4x\tan^{-1}x}{(1+x^2)^2}+2x(x^2+1).\frac{2\tan^{-1}x}{x^2+1}\\ \Rightarrow 2-4x\tan^{-1}x+4x\tan^{-1}x = 2$
Hence, L.H.S. = R.H.S.
Hence proved


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.7

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.7 are:

  • Second-order derivative: Understanding how second-order derivatives work and how to evaluate second-order derivatives. For example the second-order derivatives of $y=f(x)$ can be written as $\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})$.
  • Applications of second-order derivatives: There are many applications of second-order derivatives, like finding the maxima and minima of a function, determining the curvature of a graph, etc.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: If y = c is a function where c is a constant then find dy/dx ?
A:

y = c

dy/dx = 0

Q: If y = c is a function where c is a constant then find the second order derivative of y ?
A:

y = c

dy/dx = 0

d(dy/dx)/dx = 0

Q: Find the first derivative of y = x ?
A:

Given y = x

dy/dx = 1

Q: Find the second order derivative of y = x ?
A:

Given y = x

dy/dx = 1

d(dy/dx)/dx = 0

Q: What is the second order derivative of y = e^x ?
A:

y = e^x

dy/dx = e^x

d(dy/dx)/dx = e^x

d^(2)y/dx^2 = e^x

Q: Can i get CBSE Class 10 exam pattern ?
A:

Click on the link to get CBSE Class 10 Exam Pattern.

Q: Can I get detailed syllabus for CBSE Class 10 ?
A:

Click here to get Syllabus for CBSE Class 10

Q: Can I get detailed syllabus for CBSE Class 10 Maths ?
A:

Click on the given link to get Syllabus for CBSE Class 10 Maths.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.