CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Continuity means a function does not jump or disappear, while Differentiability means the function does not stumble and keeps going without any sharp or awkward turns. Understanding how functions change is not just about finding their slopes, but we can go one step further and find how those slopes change to get a better look at how the functions behave. This is where the second-order derivative plays an important role in calculus, it helps us to determine the curvature of the function. In exercise 5.7 of the chapter Continuity and Differentiability, we will learn about the concept of the second-order derivative, which can tell us about how the first-order derivative, i.e. the rate of change itself, is changing. This article on the NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability provides detailed solutions for the problems given in the exercise, so that students can clear their doubts and get a clear understanding of the method and logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y=x^2 + 3x+ 2$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 2x+3$
Now, second order derivative
$\frac{d^2y}{dx^2}= 2$
Therefore, the second order derivative is $\frac{d^2y}{dx^2}= 2$
Question:2 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y=x ^{20}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 20x^{19}$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 20.19x^{18}= 380x^{18}$
Therefore, second-order derivative is $\frac{d^2y}{dx^2}= 380x^{18}$
Question:3 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = x \cos x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= \cos x + x(-\sin x ) = \cos x-x\sin x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= -\sin x-(\sin x+x\cos x) = -2\sin x - x\sin x$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2}= -2\sin x - x\sin x$
Question:4 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y=\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{1}{x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Question:5 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y=x^3\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=3x^2.\log x+x^3.\frac{1}{x}= 3x^2.\log x+ x^2$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 6x.\log x+3x^2.\frac{1}{x}+2x=6x.\log x+3x+2x = x(6.\log x+5)$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2} = x(6.\log x+5)$
Question:6 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y= e^x\sin 5x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=e^x.\sin 5x +e^x.5\cos 5x = e^x(\sin5x+5\cos5x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= e^x(\sin5x+5\cos5x)+e^x(5\cos5x+5.(-5\sin5x))$
$= e^x(\sin5x+5\cos5x)+e^x(5\cos5x-25\sin5x)=e^x(10\cos5x-24\sin5x)$
$=2e^x(5\cos5x-12\sin5x)$
Therefore, second order derivative is $\frac{dy}{dx}=2e^x(5\cos5x-12\sin5x)$
Question:7 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y= e^{6x}\cos 3x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=6e^{6x}.\cos 3x +e^{6x}.(-3\sin 3x)= e^{6x}(6\cos 3x-3\sin 3x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= 6e^{6x}(6\cos3x-3\sin3x)+e^{6x}(6.(-3\sin3x)-3.3\cos3x)$
$= 6e^{6x}(6\cos3x-3\sin3x)-e^{6x}(18\sin3x+9\cos3x)$
$e^{6x}(27\cos3x-36\sin3x) = 9e^{6x}(3\cos3x-4\sin3x)$
Therefore, second order derivative is $\frac{dy}{dx} = 9e^{6x}(3\cos3x-4\sin3x)$
Question:8 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \tan^{-1}x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\tan^{-1}x)}{dx}=\frac{1}{1+x^2}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(1+x^2)^2}.2x = \frac{-2x}{(1+x^2)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-2x}{(1+x^2)^2}$
Question:9 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \log(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\log(\log x))}{dx}=\frac{1}{\log x}.\frac{1}{x}= \frac{1}{x\log x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(x\log x)^2}.(1.\log x+x.\frac{1}{x}) = \frac{-(\log x+1)}{(x\log x)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\log x+1)}{(x\log x)^2}$
Question:10 Find the second order derivatives of the functions given in Exercises 1 to 10.
Answer:
Given function is
$y = \sin(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\sin(\log x))}{dx}=\cos (\log x).\frac{1}{x}= \frac{\cos (\log x)}{x}$
Now, second order derivative is
Using Quotient rule
$\frac{d^2y}{dx^2}=\frac{-\sin(\log x)\frac{1}{x}.x-\cos(\log x).1}{x^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Question:11 If $y = 5 \cos x - 3 \sin x$ prove that $\frac{d^2y}{dx^2}+y = 0$
Answer:
Given function is
$y = 5 \cos x - 3 \sin x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(5\cos x-3\sin x)}{dx}=-5\sin x-3\cos x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(-5\sin x-3\cos x)}{dx^2}=-5\cos x+3\sin x$
Now,
$\frac{d^2y}{dx^2}+y=-5\cos x+3\sin x+5\cos x-3\sin x = 0$
Hence proved
Question:12 If $y = \cos ^{-1} x$ Find $\frac{d ^2 y }{dx^2 }$ in terms of y alone.
Answer:
Given function is
$y = \cos ^{-1} x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d( \cos ^{-1} x)}{dx}=\frac{-1}{\sqrt{1-x^2}}$
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{\sqrt{1-x^2}})}{dx^2}=\frac{-(-1)}{(\sqrt{1-x^2})^2}.(-2x) = \frac{-2x}{1-x^2}$ -(i)
Now, we want $\frac{d^2y}{dx^2}$ in terms of y
$y = \cos ^{-1} x$
$x = \cos y$
Now, put the value of x in (i)
$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y \, \operatorname{cosec} y$
$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y\, \mathrm{cosec}\, y$
$\left(\because\ 1 - \cos^2 x = \sin^2 x,\ \frac{\cos x}{\sin x} = \cot x,\ \text{and}\ \frac{1}{\sin x} = \mathrm{cosec}\, x \right)$
Therefore, answer is $\frac{d^2y}{dx^2} = -2 \cot y \, \mathrm{cosec}\, y$
Question:13 If $y = 3 \cos (\log x) + 4 \sin (\log x)$, show that $x^2 y_2 + xy_1 + y = 0$
Answer:
Given function is
$y = 3 \cos (\log x) + 4 \sin (\log x)$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d( 3 \cos (\log x) + 4 \sin (\log x))}{dx}=-3\sin(\log x).\frac{1}{x}+4\cos (\log x).\frac{1}{x}$
$=\frac{4\cos (\log x)-3\sin(\log x)}{x}$ -(i)
Now, second order derivative is
By using the Quotient rule
$y_2 = \frac{d^2y}{dx^2} = \frac{d^2\left(\frac{4\cos(\log x) - 3\sin(\log x)}{x}\right)}{dx^2}$
$= \frac{\left(-4\sin(\log x) \cdot \frac{1}{x} - 3\cos(\log x) \cdot \frac{1}{x}\right) \cdot x - 1 \cdot \left(4\cos(\log x) - 3\sin(\log x)\right)}{x^2}$
$= \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \ \text{-(ii)}$
Now, from equation (i) and (ii) we will get $y_1 \ and \ y_2$
Now, we need to show
$x^2 y_2 + xy_1 + y = 0$
Put the value of $y_1 \ and \ y_2$ from equation (i) and (ii)
$x^2\left( \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \right) + x\left( \frac{4\cos(\log x) - 3\sin(\log x)}{x} \right) + 3\cos(\log x) + 4\sin(\log x)$
$-\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x)$
$=0$
Hence proved
Question:14 If $y = A e ^{mx} + Be ^{nx}$ , show that $\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$
Answer:
Given function is
$y = A e ^{mx} + Be ^{nx}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(A e ^{mx} + Be ^{nx})}{dx}=mAe^{mx}+nBe^{nx}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(mAe^{mx}+nBe^{nx})}{dx^2}= m^2Ae^{mx}+n^2Be^{nx}$ -(ii)
Now, we need to show
$\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$
Put the value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$m^2Ae^{mx}+n^2Be^{nx}-(m+n)(mAe^{mx}+nBx^{nx}) +mn(Ae^{mx}+Be^{nx})$
$m^2Ae^{mx}+n^2Be^{nx}-m^2Ae^{mx}-mnBx^{nx}-mnAe^{mx} -n^2Be^{nx}+mnAe^{mx}$$+mnBe^{nx}$
$=0$
Hence proved
Question:15 If $y = 500 e ^{7x} + 600 e ^{- 7x }$ , show that $\frac{d^2 y}{dx ^2} = 49 y$
Answer:
Given function is
$y = 500 e ^{7x} + 600 e ^{- 7x }$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(500 e ^{7x} + 600 e ^{- 7x })}{dx}=7.500e^{7x}-7.600e^{-7x} =3500e^{7x}-4200e^{-7x}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(3500e^{7x}-4200e^{-7x})}{dx^2}$
$= 7.3500e^{7x}-(-7).4200e^{-7x}= 24500e^{7x}+29400e^{-7x}$ -(ii)
Now, we need to show
$\frac{d^2 y}{dx ^2} = 49 y$
Put the value of $\frac{d^2y}{dx^2}$ from equation (ii)
$24500e^{7x}+29400e^{-7x}=49(500e^{7x}+600e^{-7x})$
$= 24500e^{7x}+29400e^{-7x}$
Hence, L.H.S. = R.H.S.
Hence proved
Question:16 If $e ^y (x+1) = 1$ show that $\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Answer:
Given function is
$e ^y (x+1) = 1$
We can rewrite it as
$e^y = \frac{1}{x+1}$
Now, differentiation w.r.t. x
$\frac{d(e^y)}{dx}=\frac{d(\frac{1}{x+1})}{dx}\\ e^y.\frac{dy}{dx}= \frac{-1}{(x+1)^2}\\ \frac{1}{x+1}.\frac{dy}{dx}= \frac{-1}{(x+1)^2} \ \ \ \ \ \ \ \ \ (\because e^y = \frac{1}{x+1})\\ \frac{dy}{dx}= \frac{-1}{x+1}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{x+1})}{dx^2}=\frac{-(-1)}{(x+1)^2} = \frac{1}{(x+1)^2}$ -(ii)
Now, we need to show
$\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Put value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$\frac{1}{(x+1)^2}=\left ( \frac{-1}{x+1} \right )^2$
$=\frac{1}{(x+1)^2}$
Hence, L.H.S. = R.H.S.
Hence proved
Question:17 If $y = (\tan^{-1} x)^2$ show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Answer:
Given function is
$y = (\tan^{-1} x)^2$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d((\tan^{-1}x)^2)}{dx}= 2.\tan^{-1}x.\frac{1}{1+x^2}= \frac{2\tan^{-1}x}{1+x^2}$ -(i)
Now, the second-order derivative is
By using the quotient rule
$y_2=\frac{d^2y}{dx^2}=\frac{d^2(\frac{2\tan^{-1}x}{1+x^2})}{dx^2}=\frac{2.\frac{1}{1+x^2}.(1+x^2)-2\tan^{-1}x(2x)}{(1+x^2)^2}=\frac{2-4x\tan^{-1}x}{(1+x^2)^2}$ -(ii)
Now, we need to show
$(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Put the value from equation (i) and (ii)
$(x^2+1)^2.\frac{2-4x\tan^{-1}x}{(1+x^2)^2}+2x(x^2+1).\frac{2\tan^{-1}x}{x^2+1}\\ \Rightarrow 2-4x\tan^{-1}x+4x\tan^{-1}x = 2$
Hence, L.H.S. = R.H.S.
Hence proved
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.7 are:
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
y = c
dy/dx = 0
y = c
dy/dx = 0
d(dy/dx)/dx = 0
Given y = x
dy/dx = 1
Given y = x
dy/dx = 1
d(dy/dx)/dx = 0
y = e^x
dy/dx = e^x
d(dy/dx)/dx = e^x
d^(2)y/dx^2 = e^x
Click on the link to get CBSE Class 10 Exam Pattern.
Click here to get Syllabus for CBSE Class 10
Click on the given link to get Syllabus for CBSE Class 10 Maths.
On Question asked by student community
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters