NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability

Komal MiglaniUpdated on 24 Apr 2025, 09:49 AM IST

Continuity means a function does not jump or disappear, while Differentiability means the function does not stumble and keeps going without any sharp or awkward turns. Understanding how functions change is not just about finding their slopes, but we can go one step further and find how those slopes change to get a better look at how the functions behave. This is where the second-order derivative plays an important role in calculus, it helps us to determine the curvature of the function. In exercise 5.7 of the chapter Continuity and Differentiability, we will learn about the concept of the second-order derivative, which can tell us about how the first-order derivative, i.e. the rate of change itself, is changing. This article on the NCERT Solutions for Exercise 5.7 Class 12 Maths Chapter 5 - Continuity and Differentiability provides detailed solutions for the problems given in the exercise, so that students can clear their doubts and get a clear understanding of the method and logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 5 Exercise 5.7 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.7

Question:1 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x^2 + 3x+ 2$

Answer:

Given function is
$y=x^2 + 3x+ 2$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 2x+3$
Now, second order derivative
$\frac{d^2y}{dx^2}= 2$
Therefore, the second order derivative is $\frac{d^2y}{dx^2}= 2$

Question:2 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x ^{20}$

Answer:

Given function is
$y=x ^{20}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= 20x^{19}$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 20.19x^{18}= 380x^{18}$
Therefore, second-order derivative is $\frac{d^2y}{dx^2}= 380x^{18}$

Question:3 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x \cos x$

Answer:

Given function is
$y = x \cos x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}= \cos x + x(-\sin x ) = \cos x-x\sin x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= -\sin x-(\sin x+x\cos x) = -2\sin x - x\sin x$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2}= -2\sin x - x\sin x$

Question:4 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\log x$

Answer:

Given function is
$y=\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{1}{x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2}= \frac{-1}{x^2}$

Question:5 Find the second order derivatives of the functions given in Exercises 1 to 10.

$x ^3 \log x$

Answer:

Given function is
$y=x^3\log x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=3x^2.\log x+x^3.\frac{1}{x}= 3x^2.\log x+ x^2$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}= 6x.\log x+3x^2.\frac{1}{x}+2x=6x.\log x+3x+2x = x(6.\log x+5)$
Therefore, the second-order derivative is $\frac{d^2y}{dx^2} = x(6.\log x+5)$

Question:6 Find the second order derivatives of the functions given in Exercises 1 to 10.

$e ^x \sin5 x$

Answer:

Given function is
$y= e^x\sin 5x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=e^x.\sin 5x +e^x.5\cos 5x = e^x(\sin5x+5\cos5x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= e^x(\sin5x+5\cos5x)+e^x(5\cos5x+5.(-5\sin5x))$
$= e^x(\sin5x+5\cos5x)+e^x(5\cos5x-25\sin5x)=e^x(10\cos5x-24\sin5x)$
$=2e^x(5\cos5x-12\sin5x)$
Therefore, second order derivative is $\frac{dy}{dx}=2e^x(5\cos5x-12\sin5x)$

Question:7 Find the second order derivatives of the functions given in Exercises 1 to 10.

$e ^{6x}\cos 3x$

Answer:

Given function is
$y= e^{6x}\cos 3x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=6e^{6x}.\cos 3x +e^{6x}.(-3\sin 3x)= e^{6x}(6\cos 3x-3\sin 3x)$
Now, second order derivative is
$\frac{d^2y}{dx^2}= 6e^{6x}(6\cos3x-3\sin3x)+e^{6x}(6.(-3\sin3x)-3.3\cos3x)$
$= 6e^{6x}(6\cos3x-3\sin3x)-e^{6x}(18\sin3x+9\cos3x)$
$e^{6x}(27\cos3x-36\sin3x) = 9e^{6x}(3\cos3x-4\sin3x)$
Therefore, second order derivative is $\frac{dy}{dx} = 9e^{6x}(3\cos3x-4\sin3x)$

Question:8 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\tan ^{-1} x$

Answer:

Given function is
$y = \tan^{-1}x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\tan^{-1}x)}{dx}=\frac{1}{1+x^2}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(1+x^2)^2}.2x = \frac{-2x}{(1+x^2)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-2x}{(1+x^2)^2}$

Question:9 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\log (\log x )$

Answer:

Given function is
$y = \log(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\log(\log x))}{dx}=\frac{1}{\log x}.\frac{1}{x}= \frac{1}{x\log x}$
Now, second order derivative is
$\frac{d^2y}{dx^2}= \frac{-1}{(x\log x)^2}.(1.\log x+x.\frac{1}{x}) = \frac{-(\log x+1)}{(x\log x)^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\log x+1)}{(x\log x)^2}$

Question:10 Find the second order derivatives of the functions given in Exercises 1 to 10.

$\sin (\log x )$

Answer:

Given function is
$y = \sin(\log x)$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(\sin(\log x))}{dx}=\cos (\log x).\frac{1}{x}= \frac{\cos (\log x)}{x}$
Now, second order derivative is
Using Quotient rule
$\frac{d^2y}{dx^2}=\frac{-\sin(\log x)\frac{1}{x}.x-\cos(\log x).1}{x^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$
Therefore, second order derivative is $\frac{d^2y}{dx^2} = \frac{-(\sin (\log x)+\cos(\log x))}{x^2}$

Question:11 If $y = 5 \cos x - 3 \sin x$ prove that $\frac{d^2y}{dx^2}+y = 0$

Answer:

Given function is
$y = 5 \cos x - 3 \sin x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(5\cos x-3\sin x)}{dx}=-5\sin x-3\cos x$
Now, the second-order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(-5\sin x-3\cos x)}{dx^2}=-5\cos x+3\sin x$
Now,
$\frac{d^2y}{dx^2}+y=-5\cos x+3\sin x+5\cos x-3\sin x = 0$
Hence proved

Question:12 If $y = \cos ^{-1} x$ Find $\frac{d ^2 y }{dx^2 }$ in terms of y alone.

Answer:

Given function is
$y = \cos ^{-1} x$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d( \cos ^{-1} x)}{dx}=\frac{-1}{\sqrt{1-x^2}}$
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{\sqrt{1-x^2}})}{dx^2}=\frac{-(-1)}{(\sqrt{1-x^2})^2}.(-2x) = \frac{-2x}{1-x^2}$ -(i)
Now, we want $\frac{d^2y}{dx^2}$ in terms of y
$y = \cos ^{-1} x$
$x = \cos y$
Now, put the value of x in (i)

$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y \, \operatorname{cosec} y$
$\frac{d^2y}{dx^2} = \frac{-2\cos y}{1 - \cos^2 y} = \frac{-2\cos y}{\sin^2 y} = -2\cot y\, \mathrm{cosec}\, y$
$\left(\because\ 1 - \cos^2 x = \sin^2 x,\ \frac{\cos x}{\sin x} = \cot x,\ \text{and}\ \frac{1}{\sin x} = \mathrm{cosec}\, x \right)$
Therefore, answer is $\frac{d^2y}{dx^2} = -2 \cot y \, \mathrm{cosec}\, y$

Question:13 If $y = 3 \cos (\log x) + 4 \sin (\log x)$, show that $x^2 y_2 + xy_1 + y = 0$

Answer:

Given function is
$y = 3 \cos (\log x) + 4 \sin (\log x)$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d( 3 \cos (\log x) + 4 \sin (\log x))}{dx}=-3\sin(\log x).\frac{1}{x}+4\cos (\log x).\frac{1}{x}$
$=\frac{4\cos (\log x)-3\sin(\log x)}{x}$ -(i)
Now, second order derivative is
By using the Quotient rule
$y_2 = \frac{d^2y}{dx^2} = \frac{d^2\left(\frac{4\cos(\log x) - 3\sin(\log x)}{x}\right)}{dx^2}$
$= \frac{\left(-4\sin(\log x) \cdot \frac{1}{x} - 3\cos(\log x) \cdot \frac{1}{x}\right) \cdot x - 1 \cdot \left(4\cos(\log x) - 3\sin(\log x)\right)}{x^2}$
$= \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \ \text{-(ii)}$
Now, from equation (i) and (ii) we will get $y_1 \ and \ y_2$
Now, we need to show
$x^2 y_2 + xy_1 + y = 0$
Put the value of $y_1 \ and \ y_2$ from equation (i) and (ii)
$x^2\left( \frac{-\sin(\log x) + 7\cos(\log x)}{x^2} \right) + x\left( \frac{4\cos(\log x) - 3\sin(\log x)}{x} \right) + 3\cos(\log x) + 4\sin(\log x)$
$-\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x)$
$=0$
Hence proved

Question:14 If $y = A e ^{mx} + Be ^{nx}$ , show that $\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$

Answer:

Given function is
$y = A e ^{mx} + Be ^{nx}$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(A e ^{mx} + Be ^{nx})}{dx}=mAe^{mx}+nBe^{nx}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(mAe^{mx}+nBe^{nx})}{dx^2}= m^2Ae^{mx}+n^2Be^{nx}$ -(ii)
Now, we need to show
$\frac{d ^2 y}{dx^2} - (m+n) \frac{dy}{dx} + mny = 0$
Put the value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$m^2Ae^{mx}+n^2Be^{nx}-(m+n)(mAe^{mx}+nBx^{nx}) +mn(Ae^{mx}+Be^{nx})$
$m^2Ae^{mx}+n^2Be^{nx}-m^2Ae^{mx}-mnBx^{nx}-mnAe^{mx} -n^2Be^{nx}+mnAe^{mx}$$+mnBe^{nx}$
$=0$
Hence proved

Question:15 If $y = 500 e ^{7x} + 600 e ^{- 7x }$ , show that $\frac{d^2 y}{dx ^2} = 49 y$
Answer:

Given function is
$y = 500 e ^{7x} + 600 e ^{- 7x }$
Now, differentiation w.r.t. x
$\frac{dy}{dx}=\frac{d(500 e ^{7x} + 600 e ^{- 7x })}{dx}=7.500e^{7x}-7.600e^{-7x} =3500e^{7x}-4200e^{-7x}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(3500e^{7x}-4200e^{-7x})}{dx^2}$
$= 7.3500e^{7x}-(-7).4200e^{-7x}= 24500e^{7x}+29400e^{-7x}$ -(ii)
Now, we need to show
$\frac{d^2 y}{dx ^2} = 49 y$
Put the value of $\frac{d^2y}{dx^2}$ from equation (ii)
$24500e^{7x}+29400e^{-7x}=49(500e^{7x}+600e^{-7x})$
$= 24500e^{7x}+29400e^{-7x}$
Hence, L.H.S. = R.H.S.
Hence proved

Question:16 If $e ^y (x+1) = 1$ show that $\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$

Answer:

Given function is
$e ^y (x+1) = 1$
We can rewrite it as
$e^y = \frac{1}{x+1}$
Now, differentiation w.r.t. x
$\frac{d(e^y)}{dx}=\frac{d(\frac{1}{x+1})}{dx}\\ e^y.\frac{dy}{dx}= \frac{-1}{(x+1)^2}\\ \frac{1}{x+1}.\frac{dy}{dx}= \frac{-1}{(x+1)^2} \ \ \ \ \ \ \ \ \ (\because e^y = \frac{1}{x+1})\\ \frac{dy}{dx}= \frac{-1}{x+1}$ -(i)
Now, second order derivative is
$\frac{d^2y}{dx^2}=\frac{d^2(\frac{-1}{x+1})}{dx^2}=\frac{-(-1)}{(x+1)^2} = \frac{1}{(x+1)^2}$ -(ii)
Now, we need to show
$\frac{d^2 y }{dx^2 } = (\frac{dy}{dx})^2$
Put value of $\frac{d^2y}{dx^2} \ and \ \frac{dy}{dx}$ from equation (i) and (ii)
$\frac{1}{(x+1)^2}=\left ( \frac{-1}{x+1} \right )^2$
$=\frac{1}{(x+1)^2}$
Hence, L.H.S. = R.H.S.
Hence proved

Question:17 If $y = (\tan^{-1} x)^2$ show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$

Answer:

Given function is
$y = (\tan^{-1} x)^2$
Now, differentiation w.r.t. x
$y_1=\frac{dy}{dx}=\frac{d((\tan^{-1}x)^2)}{dx}= 2.\tan^{-1}x.\frac{1}{1+x^2}= \frac{2\tan^{-1}x}{1+x^2}$ -(i)
Now, the second-order derivative is
By using the quotient rule
$y_2=\frac{d^2y}{dx^2}=\frac{d^2(\frac{2\tan^{-1}x}{1+x^2})}{dx^2}=\frac{2.\frac{1}{1+x^2}.(1+x^2)-2\tan^{-1}x(2x)}{(1+x^2)^2}=\frac{2-4x\tan^{-1}x}{(1+x^2)^2}$ -(ii)
Now, we need to show
$(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
Put the value from equation (i) and (ii)
$(x^2+1)^2.\frac{2-4x\tan^{-1}x}{(1+x^2)^2}+2x(x^2+1).\frac{2\tan^{-1}x}{x^2+1}\\ \Rightarrow 2-4x\tan^{-1}x+4x\tan^{-1}x = 2$
Hence, L.H.S. = R.H.S.
Hence proved


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.7

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.7 are:

  • Second-order derivative: Understanding how second-order derivatives work and how to evaluate second-order derivatives. For example the second-order derivatives of $y=f(x)$ can be written as $\frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})$.
  • Applications of second-order derivatives: There are many applications of second-order derivatives, like finding the maxima and minima of a function, determining the curvature of a graph, etc.
Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: If y = c is a function where c is a constant then find dy/dx ?
A:

y = c

dy/dx = 0

Q: If y = c is a function where c is a constant then find the second order derivative of y ?
A:

y = c

dy/dx = 0

d(dy/dx)/dx = 0

Q: Find the first derivative of y = x ?
A:

Given y = x

dy/dx = 1

Q: Find the second order derivative of y = x ?
A:

Given y = x

dy/dx = 1

d(dy/dx)/dx = 0

Q: What is the second order derivative of y = e^x ?
A:

y = e^x

dy/dx = e^x

d(dy/dx)/dx = e^x

d^(2)y/dx^2 = e^x

Q: Can i get CBSE Class 10 exam pattern ?
A:

Click on the link to get CBSE Class 10 Exam Pattern.

Q: Can I get detailed syllabus for CBSE Class 10 ?
A:

Click here to get Syllabus for CBSE Class 10

Q: Can I get detailed syllabus for CBSE Class 10 Maths ?
A:

Click on the given link to get Syllabus for CBSE Class 10 Maths.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
TOSS Intermediate Late Fee Application Date

8 Sep'25 - 20 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

Hello Aspirant,

SASTRA University commonly provides concessions and scholarships based on merit in class 12 board exams and JEE Main purposes with regard to board merit you need above 95% in PCM (or on aggregate) to get bigger concessions, usually if you scored 90% and above you may get partial concessions. I suppose the exact cut offs may change yearly on application rates too.

Hello,

After 12th, if you are interested in computer science, the best courses are:

  • B.Tech in Computer Science Engineering (CSE) – most popular choice.

  • BCA (Bachelor of Computer Applications) – good for software and IT jobs.

  • B.Sc. Computer Science / IT – good for higher studies and research.

  • B.Tech in Information Technology (IT) – focuses on IT and networking.

All these courses have good career scope. Choose based on your interest in coding, software, hardware, or IT field.

Hope it helps !

Hello Vanshika,

CBSE generally forwards the marksheet for the supplementary exam to the correspondence address as identified in the supplementary exam application form. It is not sent to the address indicated in the main exam form. Addresses that differ will use the supplementary exam address.

To find Class 12 Arts board papers, go to the official website of your education board, then click on the Sample Papers, Previous Years Question Papers(PYQ) or Model Papers section, and select the Arts stream. You will find papers for the various academic year. You can then select the year of which you want to solve and do your practice. There are many other educational websites that post pyqs on their website you can also visit that.