NCERT Solutions for Exercise 5.4 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.4 Class 12 Maths Chapter 5 - Continuity and Differentiability

Komal MiglaniUpdated on 23 Apr 2025, 11:09 PM IST

If continuity is like playing a song without any pauses, then differentiability means that there are no high pitches and sudden jumps in tone, just silky smooth transitions. Finding the derivatives of exponential and logarithmic functions is an important aspect of calculus. In exercise 5.4 of the chapter Continuity and Differentiability, we explore different methods to easily differentiate functions involving exponential and logarithmic functions. This article on the NCERT Solutions for exercise 5.4, class 12 maths chapter 5 - Continuity and Differentiability, offers an easy-to-understand and step-by-step solution for the problems present in the exercise, so that students will get a better understanding of the methods and logic. For syllabus, notes, and PDF, refer to this link: NCERT

Class 12 Maths Chapter 5 Exercise 5.4 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.4

Question:1. Differentiate the following w.r.t. x:

$\frac{e ^x }{\sin x }$

Answer:

Given function is
$f(x)=\frac{e ^x }{\sin x }$
We differentiate with the help of Quotient rule
$f^{'}(x) = \frac{\frac{d(e^x)}{dx} \cdot \sin x - e^x \cdot \frac{d(\sin x)}{dx}}{\sin^2 x} = \frac{e^x \cdot \sin x - e^x \cdot \cos x}{\sin^2 x} = \frac{e^x(\sin x - \cos x)}{\sin^2 x}$
Therefore, the answer is $\frac{e^x(\sin x-\cos x)}{\sin^2x}$

Question:2. Differentiate the following w.r.t. x:

$e^{\sin^{-1}x}$

Answer:

Given function is
$f(x)=e ^{\sin ^{-1}x}$
Let $g(x)={\sin ^{-1}x}$
Then,
$f(x)=e^{g(x)}$
Now, differentiation w.r.t. x
$f^{'}(x)=g^{'}(x).e^{g(x)}$ -(i)
$g(x) = \sin^{-1}x \Rightarrow g^{'}(x ) = \frac{1}{\sqrt{1-x^2}}$
Put this value in our equation (i)
$f^{'}(x) = \frac{1}{\sqrt{1-x^2}}.e^{\sin^{-1}x} = \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$

Question:3. Differentiate the following w.r.t. x:

$e^{x^3}$

Answer:

Given function is
$f(x)=e ^{x^3}$
Let $g(x)=x^3$
Then,
$f(x)=e^{g(x)}$
Now, differentiation w.r.t. x
$f^{'}(x)=g^{'}(x).e^{g(x)}$ -(i)

$g(x) = x^3 \Rightarrow g'(x) = 3x^2$

Put this value in our equation (i)
$f^{'}(x) =3x^2.e^{x^3}$
Therefore, the answer is $3x^2.e^{x^3}$

Question:4. Differentiate the following w.r.t. x:

$\sin ( \tan ^ { -1} e ^{-x })$

Answer:

Given function is
$f(x)=\sin ( \tan ^ { -1} e ^{-x })$
Let's take $g(x ) = \tan^{-1}e^{-x}$
Now, our function reduces to
$f(x) = \sin(g(x))$
Now,
$f^{'}(x) = g^{'}(x)\cos(g(x))$ -(i)
And
$g(x)=\tan^{-1}e^{-x}\\\Rightarrow g^{'}(x) = \frac{d(\tan^{-1}e^{-x})}{dx}.\frac{d(e^{-x})}{dx}= \frac{1}{1+(e^{-x})^2}.-e^{-x} = \frac{-e^{-x}}{1+e^{-2x}}$
Put this value in our equation (i)
$f^{'}(x) =\frac{-e^{-x}}{1+e^{-2x}}\cos(\tan^{-1}e^{-x})$
Therefore, the answer is $\frac{-e^{-x}}{1+e^{-2x}}\cos(\tan^{-1}e^{-x})$

Question:5. Differentiate the following w.r.t. x:

$\log (\cos e ^x )$

Answer:

Given function is
$f(x)=\log (\cos e ^x )$
Let's take $g(x ) = \cos e^{x}$
Now, our function reduces to
$f(x) = \log(g(x))$
Now,
$f^{'}(x) = g^{'}(x).\frac{1}{g(x)}$ -(i)
And
$g(x)=\cos e^{x}\\\Rightarrow g^{'}(x) = \frac{d(\cos e^{x})}{dx}.\frac{d(e^{x})}{dx}= (-\sin e^x).e^{x} = -e^x.\sin e^x$
Put this value in our equation (i)
$f^{'}(x) =-e^x.\sin e^x.\frac{1}{\cos e^x} = -e^x.\tan e^x \ \ \ \ \ (\because \frac{\sin x}{\cos x}=\tan x)$
Therefore, the answer is $-e^x.\tan e^x,\ \ \ e^x\neq (2n+1)\frac{\pi}{2},\ \ n\in N$

Question:6. Differentiate the following w.r.t. x:

$e ^x + e ^{x^2} + .....e ^{x^5}$

Answer:

Given function is
$f(x)= e ^x + e ^{x^2} + .....e ^{x^5}$
Now, differentiation w.r.t. x is
$f^{'}(x)= \frac{d(e^x)}{dx}.\frac{d(x)}{dx}+\frac{d(e^{x^2})}{dx}.\frac{d(x^2)}{dx}+\frac{d(e^{x^3})}{dx}.\frac{d(x^3)}{dx}+\frac{d(e^{x^4})}{dx}.\frac{d(x^4)}{dx}+\frac{d(e^{x^5})}{dx}.\frac{d(x^5)}{dx}$
$=e^x.1+e^{x^2}.2x+e^{x^3}.3x^2+e^{x^4}.4x^3+e^{x^5}.5x^4$
$=e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^5}$
Therefore, answer is $e^x+2xe^{x^2}+3x^2e^{x^3}+4x^3e^{x^4}+5x^4e^{x^5}$

Question:7. Differentiate the following w.r.t. x:

$\sqrt { e ^{ \sqrt x }} , x > 0$

Answer:

Given function is
$f(x)=\sqrt { e ^{ \sqrt x }}$
Lets take $g(x ) = \sqrt x$
Now, our function reduces to
$f(x) = \sqrt {e^{g(x)}}$
Now,
$f^{'}(x) = g^{'}(x) \cdot \frac{1}{2\sqrt{e^{g(x)}}} \cdot \frac{d\left(e^{g(x)}\right)}{dx} = g^{'}(x) \cdot \frac{1}{2\sqrt{e^{g(x)}}} \cdot e^{g(x)} = \frac{g^{'}(x) \cdot e^{g(x)}}{2\sqrt{e^{g(x)}}} = \frac{g^{'}(x) \cdot e^{\sqrt{x}}}{2\sqrt{e^{\sqrt{x}}}} \text{ -(i)}$
And
$g(x)=\sqrt x\\\Rightarrow g^{'}(x) = \frac{(\sqrt x)}{dx}=\frac{1}{2\sqrt x}$
Put this value in our equation (i)
$f^{'}(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x} \cdot 2\sqrt{e^{\sqrt{x}}}} = \frac{e^{\sqrt{x}}}{4\sqrt{x e^{\sqrt{x}}}}$
Therefore, the answer is $\frac{e^{\sqrt x}}{4\sqrt{xe^{\sqrt x}}}.\ \ x>0$

Question:8 Differentiate the following w.r.t. x: $\log ( \log x ) , x > 1$

Answer:

Given function is
$f(x)=\log ( \log x )$
Lets take $g(x ) = \log x$
Now, our function reduces to
$f(x) = \log(g(x))$
Now,
$f^{'}(x) = g^{'}(x).\frac{1}{g(x)}$ -(i)
And
$g(x)=\log x\\\Rightarrow g^{'}(x) = \frac{1}{x}$
Put this value in our equation (i)
$f^{'}(x) =\frac{1}{x}.\frac{1}{\log x} = \frac{1}{x\log x}$
Therefore, the answer is $\frac{1}{x\log x}, \ \ x>1$

Question:9. Differentiate the following w.r.t. x:

$\frac{\cos x }{\log x} , x > 0$

Answer:

Given function is
$f(x)=\frac{\cos x }{\log x}$
We differentiate with the help of Quotient rule
$f^{'}(x)=\frac{\frac{d(\cos x)}{dx}.\log x-\cos x.\frac{(\log x)}{dx} }{(\log x)^2 }$
$=\frac{(-\sin x).\log x-\cos x.\frac{1}{x} }{(\log x)^2 } = \frac{-(x\sin x\log x+\cos x)}{x(\log x)^2}$
Therefore, the answer is $\frac{-(x\sin x\log x+\cos x)}{x(\log x)^2}$

Question:10. Differentiate the following w.r.t. x:

$\cos ( log x + e ^x ) , x > 0$

Answer:

Given function is
$f(x)=\cos ( log x + e ^x )$
Lets take $g(x) = ( log x + e ^x )$
Then , our function reduces to
$f(x) = \cos (g(x))$
Now, differentiation w.r.t. x is
$f'(x) = g'(x)(-\sin(g(x))) \tag{i}$
And
$g(x) = ( log x + e ^x )$
$g^{'}(x)= \frac{d(\log x)}{dx}+\frac{d(e^x)}{dx} = \frac{1}{x}+e^x$
Put this value in our equation (i)
$f^{'}(x) = -\left ( \frac{1}{x}+e^x \right )\sin (\log x+e^x)$
Therefore, the answer is $-\left ( \frac{1}{x}+e^x \right )\sin (\log x+e^x), x>0$


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.4

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.4 are:

  • Derivatives of Exponential functions: Differentiation of exponential functions is very basic in calculus. In particular derivative of $e^x$ is very simple.
    $\frac{d}{dx}(e^x)=e^x$
    Also, for the general exponent function, the derivative is as follows:
    $\frac{d}{dx}(a^x)=a^x\ln a$
  • Derivatives of Logarithmic functions: Logarithmic functions help in simplifying many complex calculations. The basic differentiation rule of a logarithmic function is:
    $\frac{d}{dx}(\ln x)=\frac{1}{x}$
Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What is the derivative of e^x ?
A:

The derivative of e^x is e^x.

Q: What is the derivative of log(x) ?
A:

The derivative of log(x) is 1/x.

Q: what is the derivative of sin(x) ?
A:

The derivative of sin(x) is cos(x).

Q: what is the derivative of cos(x) ?
A:

The derivative of cos(x) is -sin(x).

Q: What is the derivative of sin(x^2) ?
A:

The derivative of sin(x^2) is 2x cos(x^2).

Q: Which is the best book for Maths CBSE Class 12 ?
A:

NCERT textbook is the best book for CBSE board exams which you should follow. You don't need any additional books for the CBSE board exams.

Q: How may questions are there in the exercise 5.4 Class 12 Maths ?
A:

A total of 10 questions are there in exercise 5.4 CBSE Class 12 Maths. For more questions students can refer to the NCERT exemplar questions.

Q: Find the derivative of tan (x) ?
A:

The derivative of tan (x) is sec^2(x).

Articles
|
Next
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.

Hello Aspirant,

Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.

Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.

From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .

If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.

The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.