If continuity is like a road without any breaks or holes, then differentiability is like when the road is so smooth that there are no bumps or sharp turns, making it easier to measure how steep it is at any given point. In advanced mathematics, continuity and differentiability play a major role in calculus. The miscellaneous exercise of the Continuity and Differentiability chapter combines all the key concepts covered in the chapter, so that the students can enhance their understanding by a comprehensive review of the entire chapter and get better at problem-solving. This article on the NCERT Solutions for Miscellaneous Exercise Chapter 5 Class 12 Maths - Continuity and Differentiability provides clear and step-by-step solutions for the exercise problems given in the exercise and helps the students clear their doubts, so that they can understand the logic behind these solutions and prepare for various examinations. For syllabus, notes, and PDF, refer to this link: NCERT.
After receiving their CBSE Class 12th admit card 2026, students can review the helpful advice listed below:
Question1: Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
$f(x)=( 3x^2 - 9x + 5 )^9$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d((3x^2-9x+5)^9)}{dx}= 9(3x^2-9x+5)^8.(6x-9)$
$= 27(2x-3)(3x^2-9x+5)^8$
Therefore, differentiation w.r.t. x is $27(3x^2-9x+5)^8(2x-3)$
Question 2: Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
$f(x)= \sin ^3 x + \cos ^6 x$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\sin^3x +\cos^6x)}{dx}=3\sin^2x.\frac{d(\sin x)}{dx}+6\cos^5x.\frac{d(\cos x)}{dx}$
$=3\sin^2x.\cos x+6\cos^5x.(-\sin x)$
$=3\sin^2x\cos x- 6\cos^5x\sin x = 3\sin x\cos x(\sin x- 2\cos ^4x)$
Therefore, differentiation w.r.t. x is $3\sin x\cos x(\sin x- 2\cos ^4x)$
Question 3: Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
$y=( 5 x) ^{ 3 \cos 2x }$
Take, log on both the sides
$\log y = 3\cos 2x\log 5x$
Now, differentiation w.r.t. x is
By using product rule
$\frac{1}{y}.\frac{dy}{dx} = 3.(-2\sin 2x)\log 5x + 3\cos 2x.\frac{1}{5x}.5= -6\sin2x\log 5x +\frac{3\cos 2x}{x}\\ \frac{dy}{dx} = y.\left ( -6\sin2x\log 5x +\frac{3\cos 2x}{x} \right )\\ \frac{dy}{dx} = (5x)^{3\cos 2x}.\left ( -6\sin2x\log 5x +\frac{3\cos 2x}{x} \right )$
Therefore, differentiation w.r.t. x is $(5x)^{3\cos 2x}.\left ( \frac{3\cos 2x}{x}-6\sin2x\log 5x \right )$
Question 4: Differentiate w.r.t. x the function in Exercises 1 to 11.
$\sin ^ {-1} (x \sqrt x ) , 0 \leq x\leq 1$
Answer:
Given function is
$f(x)=\sin ^ {-1} (x \sqrt x ) , 0 \leq x\leq 1$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\sin^{-1}x\sqrt x)}{dx}=\frac{1}{\sqrt{1-(x\sqrt x)^2}}.\frac{d(x\sqrt x)}{dx}$
$=\frac{1}{\sqrt{1-x^3}}.\left ( 1.\sqrt x+x\frac{1}{2\sqrt x} \right )$
$=\frac{1}{\sqrt{1-x^3}}.\left ( \frac{3\sqrt x}{2} \right )$
$=\frac{3}{2}.\sqrt{\frac{x}{1-x^3}}$
Therefore, differentiation w.r.t. x is $\frac{3}{2}.\sqrt{\frac{x}{1-x^3}}$
Question 5: Differentiate w.r.t. x the function in Exercises 1 to 11.
$\frac{\cos ^{-1}x/2}{\sqrt {2x+7}} , -2 < x < 2$
Answer:
Given function is
$f(x)=\frac{\cos ^{-1}x/2}{\sqrt {2x+7}} , -2 < x < 2$
Now, differentiation w.r.t. x is
By using the Quotient rule
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}})}{dx}=\frac{\frac{d(\cos^{-1}\frac{x}{2})}{dx}.\sqrt{2x+7}-\cos^{-1}\frac{x}{2}.\frac{d(\sqrt{2x+7})}{dx}}{(\sqrt{2x+7})^2}\\ f^{'}(x) = \frac{\frac{-1}{\sqrt{1-(\frac{x}{2})^2}}.\frac{1}{2}.\sqrt{2x+7}-\cos^{-1}\frac{x}{2}.\frac{1}{2.\sqrt{2x+7}}.2}{2x+7}\\ f^{'}(x)= -\left [\frac{1}{(\sqrt{4-x^2})(\sqrt{2x+7})}+\frac{\cos^{-1}\frac{x}{2}}{(2x+7)^\frac{3}{2}} \right ]$
Therefore, differentiation w.r.t. x is $-\left [\frac{1}{(\sqrt{4-x^2})(\sqrt{2x+7})}+\frac{\cos^{-1}\frac{x}{2}}{(2x+7)^\frac{3}{2}} \right ]$
Question 6: Differentiate w.r.t. x the function in Exercises 1 to 11.
Answer:
Given function is
$f(x)=\cot ^{-1} \left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} \right ] , 0 < x < \pi /2$
Now, rationalize the [] part
$\left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} \right ]= \left [ \frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt {1+ \sin x }- \sqrt {1- \sin x }} .\frac{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}{\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x }}\right ]$
$=\frac{(\sqrt { 1+ \sin x }+ \sqrt { 1- \sin x })^2}{(\sqrt{1+\sin x})^2-(\sqrt{1-\sin x})^2} \ \ \ \ \ \ (Using \ (a-b)(a+b)=a^2-b^2)$
$=\frac{((\sqrt { 1+ \sin x })^2+ (\sqrt { 1- \sin x })^2+2(\sqrt { 1+ \sin x })(\sqrt { 1- \sin x }))}{1+\sin x-1+\sin x}$
$(Using \ (a+b)^2=a^2+b^2+2ab)$
$=\frac{1+\sin x+1-\sin x+2\sqrt{1-\sin^2x} }{2\sin x}$
$=\frac{2(1+\cos x)}{2\sin x} = \frac{1+\cos x}{\sin x}$
$=\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}} \ \ \ \ \ (\because 2\cos^2= 1+\cos2x \ and \ \sin2x = 2\sin x\cos x)$
$=\frac{2\cos\frac{x}{2}}{2\sin\frac{x}{2}} = \cot \frac{x}{2}$
Given function reduces to
$f(x) = \cot^{-1}(\cot \frac{x}{2})\\ f(x) = \frac{x}{2}$
Now, differentiation w.r.t. x is
$f^{'}(x)=\frac{d(f(x))}{dx}=\frac{d(\frac{x}{2})}{dx} = \frac{1}{2}$
Therefore, differentiation w.r.t. x is $\frac{1}{2}$
Question 7: Differentiate w.r.t. x the function in Exercises 1 to 11. $( \log x )^{ \log x } , x > 1$
Answer:
Given function is
$y=( \log x )^{ \log x } , x > 1$
Take log on both sides
$\log y=\log x\log( \log x )$
Now, differentiate w.r.t.
$\frac{1}{y}.\frac{dy}{dx}= \frac{1}{x}.\log (\log x)+\log x.\frac{1}{\log x}.\frac{1}{x} = \frac{\log x+1}{x}$
$\frac{dy}{dx} = y.\left ( \frac{\log x+1}{x} \right )\\$
$\frac{dy}{dx} = (\log x)^{\log x}.\left ( \frac{\log x+1}{x} \right )\\$
Therefore, differentiation w.r.t x is $(\log x)^{\log x}.\left ( \frac{\log x+1}{x} \right )\\$
Question 8: $\cos ( a \cos x + b \sin x )$, for some constant a and b.
Answer:
Given function is
$f(x)=\cos ( a \cos x + b \sin x )$
Now, differentiation w.r.t x
$f^{'}(x)= \frac{d(f(x))}{dx}= \frac{d(\cos(a\cos x+ b \sin x))}{dx}$
$= -\sin(a\cos x+b\sin x).\frac{d(a\cos x+b\sin x)}{dx}$
$= -\sin(a\cos x+b\sin x).(-a\sin x+b\cos x)$
$= (a\sin x-b\cos x)\sin(a\cos x+b\sin x).$
Therefore, differentiation w.r.t x $(a\sin x-b\cos x)\sin(a\cos x+b\sin x)$
Question 9: $(\sin x - \cos x)^{ (\sin x - \cos x), } , \frac{\pi }{4} <x<\frac{3 \pi }{4}$
Answer:
Given function is
$y=(\sin x - \cos x)^{ (\sin x - \cos x), } , \frac{\pi }{4} <x<\frac{3 \pi }{4}$
Take log on both the sides
$\log y=(\sin x - \cos x)\log (\sin x - \cos x)$
Now, differentiate w.r.t. x
$\frac{1}{y}.\frac{dy}{dx} = \frac{d(\sin x-\cos x)}{dx}.\log(\sin x- \cos x)+(\sin x- \cos x).\frac{d(\log(\sin x- \cos x))}{dx}$
$\frac{1}{y}.\frac{dy}{dx} =(\cos x -(-\sin x)).\log(\sin x-\cos x)+(\sin x- \cos x).\frac{(\cos x -(-\sin x))}{(\sin x- \cos x)}$
$\frac{dy}{dx} =y.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right )$
$\frac{dy}{dx} =(\sin x-\cos x)^{(\sin x-\cos x)}.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right )$
Therefore, differentiation w.r.t x is $(\sin x-\cos x)^{(\sin x-\cos x)}.(\cos x +\sin x)\left ( \log(\sin x-\cos x)+1 \right ), sinx>cosx$
Question 10: $x ^x + x ^a + a ^x + a ^a$ , for some fixed a > 0 and x > 0
Answer:
Given function is
$f(x)=x ^x + x ^a + a ^x + a ^a$
Lets take
$u = x^x$
Now, take log on both sides
$\log u = x \log x$
Now, differentiate w.r.t x
$\frac{1}{u}.\frac{du}{dx}= \frac{dx}{dx}.\log x+x.\frac{d(\log x)}{dx}\\ \\ \frac{1}{u}.\frac{du}{dx}= 1.\log x+x.\frac{1}{x}\\ \\ \frac{du}{dx}= y.(\log x+1)\\ \\ \frac{du}{dx}= x^x.(\log x+1)$ -(i)
Similarly, take $v = x^a$
take log on both the sides
$\log v = a\log x$
Now, differentiate w.r.t x
$\frac{1}{v}.\frac{dv}{dx}= a.\frac{d(\log x)}{dx}=a.\frac{1}{x}= \frac{a}{x}\\ \\ \frac{dv}{dx}= v.\frac{a}{x}\\ \\ \frac{dv}{dx}= x^a.\frac{a}{x}$ -(ii)
Similarly, take $z = a^x$
take log on both the sides
$\log z = x\log a$
Now, differentiate w.r.t x
$\frac{1}{z}.\frac{dz}{dx}=\log a.\frac{d(x)}{dx}=\log a.1= \log a\\ \\ \frac{dz}{dx}= z.\log a\\ \\ \frac{dz}{dx}= a^x.\log a$ -(iii)
Similarly, take $w = a^a$
take log on both the sides
$\log w = a\log a= \ constant$
Now, differentiate w.r.t x
$\frac{1}{w}.\frac{dw}{dx}= a.\frac{d(a\log a)}{dx}= 0\\ \\ \frac{dw}{dx} = 0$ -(iv)
Now,
$f(x)=u+v+z+w$
$f^{'}(x) = \frac{du}{dx}+\frac{dv}{dx}+\frac{dz}{dx}+\frac{dw}{dx}$
Put values from equation (i) , (ii) ,(iii) and (iv)
$f^{'}(x)= x^x(\log x+1)+ax^{a-1}+a^x\log a$
Therefore, differentiation w.r.t. x is $x^x(\log x+1)+ax^{a-1}+a^x\log a$
Question 11: $x ^{x^2 -3} + ( x-3 ) ^{x^2} , for\: \: x > 3$
Answer:
Given function is
$f(x)=x ^{x^2 -3} + ( x-3 ) ^{x^2} , for\: \: x > 3$
take $u=x ^{x^2 -3}$
Now, take log on both the sides
$\log u=(x^2-3)\log x$
Now, differentiate w.r.t x
$\frac{1}{u} \cdot \frac{du}{dx} = \frac{d(x^2 - 3)}{dx} \cdot \log x + (x^2 - 3) \cdot \frac{d(\log x)}{dx}$
$\frac{1}{u} \cdot \frac{du}{dx} = 2x \cdot \log x + (x^2 - 3) \cdot \frac{1}{x}$
$\frac{1}{u} \cdot \frac{du}{dx} = \frac{2x^2 \log x + x^2 - 3}{x}$
$\frac{du}{dx} = u \cdot \left( \frac{2x^2 \log x + x^2 - 3}{x} \right)$
$\frac{du}{dx} = x^{(x^2 - 3)} \cdot \left( \frac{2x^2 \log x + x^2 - 3}{x} \right)$ -(i)
Similarly,
take
Now, take log on both the sides
$\log v=x^2\log (x-3)$
Now, differentiate w.r.t x
$\frac{1}{v} \cdot \frac{dv}{dx} = \frac{d(x^2)}{dx} \cdot \log(x - 3) + x^2 \cdot \frac{d(\log(x - 3))}{dx}$
$\frac{1}{v} \cdot \frac{dv}{dx} = 2x \cdot \log(x - 3) + x^2 \cdot \frac{1}{x - 3}$
$\frac{1}{v} \cdot \frac{dv}{dx} = 2x \log(x - 3) + \frac{x^2}{x - 3}$
$\frac{dv}{dx} = v \cdot \left( 2x \log(x - 3) + \frac{x^2}{x - 3} \right)$
$\frac{dv}{dx} = (x - 3)^{x^2} \cdot \left( 2x \log(x - 3) + \frac{x^2}{x - 3} \right)$ -(ii)
Now
$f(x) = u + v$
$f'(x) = \frac{du}{dx} + \frac{dv}{dx}$
Put the value from equation (i) and (ii):
$f'(x) = x^{(x^2 - 3)} \cdot \left( \frac{2x^2 \log x + x^2 - 3}{x} \right) + (x - 3)^{x^2} \cdot \left( 2x \log(x - 3) + \frac{x^2}{x - 3} \right)$
Therefore, differentiation w.r.t. $x$ is:
$x^{(x^2 - 3)} \cdot \left( \frac{2x^2 \log x + x^2 - 3}{x} \right) + (x - 3)^{x^2} \cdot \left( 2x \log(x - 3) + \frac{x^2}{x - 3} \right)$
Question 12: Find dy/dx if $y = 12 (1 - \cos t), x = 10 (t - \sin t),$ $-\frac{\pi }{2} <t< \frac{\pi }{2}$
Answer:
Given equations are
$y = 12 (1 - \cos t), x = 10 (t - \sin t),$
Now, differentiate both y and x w.r.t t independently
$\frac{dy}{dt}=\frac{d(12(1-\cos t))}{dt}= -12(-\sin t)=12\sin t$
And
$\frac{dx}{dt}=\frac{d(10(t-\sin t))}{dt}= 10-10\cos t$
Now
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{12\sin t}{10(1 - \cos t)} = \frac{6}{5} \cdot \frac{2\sin \frac{t}{2} \cos \frac{t}{2}}{2\sin^2 \frac{t}{2}} = \frac{6}{5} \cdot \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}}$
$(\because \sin 2x = 2\sin x\cos x \ and \ 1-\cos 2x = 2\sin^2x)$
$\frac{dy}{dx}=\frac{6}{5}.\cot \frac{t}{2}$
Therefore, differentiation w.r.t x is $\frac{6}{5}.\cot \frac{t}{2}$
Question 13: Find dy/dx if $y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1$
Answer:
Given function is
$y = sin ^{-1} x + sin^{-1} \sqrt{1- x^2} , 0 <x< 1$
Now, differentiatiate w.r.t. x
$\frac{dy}{dx}= \frac{d(sin ^{-1} x + sin^{-1} \sqrt{1- x^2})}{dx} = \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}}.\frac{d(\sqrt{1-x^2})}{dx}\\ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-1+x^2}}.\frac{1}{2\sqrt{1-x^2}}.(-2x)\\ \\ \frac{dy}{dx}= \frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}\\ \frac{dy}{dx}= 0$
Therefore, differentiatiate w.r.t. x is 0
Answer:
Given function is
$x \sqrt {1+ y }+ y \sqrt { 1+ x } = 0$
$x\sqrt{1+y} = - y\sqrt{1+x}$
Now, squaring both sides
$(x\sqrt{1+y})^2 = (- y\sqrt{1+x})^2\\ x^2(1+y)=y^2(1+x)\\ x^2+x^2y=y^2x+y^2\\ x^2-y^2=y^2x-x^2y\\ (x-y)(x+y) = -xy(x-y) \\ x+y =-xy\\ y = \frac{-x}{1+x}$
Now, differentiate w.r.t. x is
$\frac{dy}{dx} = \frac{d(\frac{-x}{1+x})}{dx}= \frac{-1.(1+x)-(-x).(1)}{(1+x)^2}= \frac{-1}{(1+x)^2}$
Hence proved
Answer:
Given function is
$(x - a)^2 + (y - b)^2 = c^2$
$(y - b)^2 = c^2-(x - a)^2$ - (i)
Now, differentiate w.r.t. x
$\frac{d((x - a)^2)}{dx} + \frac{d((y - b)^2)}{dx} = \frac{d(c^2)}{dx} \\ \\
2(x - a) + 2(y - b) \cdot \frac{dy}{dx} = 0 \\ \\
\frac{dy}{dx} = \frac{a - x}{y - b}$ -(ii)
Now, the second derivative
$\frac{d^2y}{dx^2} = \frac{\frac{d(a - x)}{dx} \cdot (y - b) - (a - x) \cdot \frac{d(y - b)}{dx}}{(y - b)^2} \\ \\
\frac{d^2y}{dx^2} = \frac{(-1)(y - b) - (a - x) \cdot \frac{dy}{dx}}{(y - b)^2}$
Now, put values from equation (i) and (ii)
$\frac{d^2y}{dx^2} = \frac{-(y - b) - (a - x) \cdot \frac{a - x}{y - b}}{(y - b)^2} \\ \\
\frac{d^2y}{dx^2} = \frac{-((y - b)^2 + (a - x)^2)}{(y - b)^{\frac{3}{2}}} = \frac{-c^2}{(y - b)^{\frac{3}{2}}}$ $(\because (x - a)^2 + (y - b)^2 = c^2)$
Now,
$\frac{\left [ 1+(\frac{dy}{dx} )^2 \right ]^{3/2}}{\frac{d^2 y }{dx^2}} = \frac{\left ( 1+\left ( \frac{x-a}{y-b} \right )^2 \right )^\frac{3}{2}}{\frac{-c^2}{(y-b)^\frac{3}{2}}} = \frac{\frac{\left ( (y-b)^2 +(x-a)^2\right )^\frac{3}{2}}{(y-b)^\frac{3}{2}}}{\frac{-c^2}{(y-b)^\frac{3}{2}}} = \frac{(c^2)^\frac{3}{2}}{-c^2}= \frac{c^3}{-c^2}= c$ $(\because (x - a)^2 + (y - b)^2 = c^2)$
Which is independent of a and b
Hence proved
Question 16: If $\cos y = x \cos (a + y)$, with $\cos a \neq \pm 1$ , prove that $\frac{dy}{dx} = \frac{\cos ^2 (a+y )}{\sin a }$
Answer:
Given function is
$\cos y = x \cos (a + y)$
Now, Differentiate w.r.t x
$\frac{d(\cos y)}{dx} = \frac{dx}{dx} \cdot \cos(a + y) + x \cdot \frac{d(\cos(a + y))}{dx}$
$-\sin y \cdot \frac{dy}{dx} = \cos(a + y) + x \cdot (-\sin(a + y)) \cdot \frac{dy}{dx}$
$\frac{dy}{dx} \cdot (x \sin(a + y) - \sin y) = \cos(a + y)$
$\frac{dy}{dx} \cdot \left(\frac{\cos y}{\cos(a + b)} \cdot \sin(a + y) - \sin y\right) = \cos(a + b) \quad (\because x = \frac{\cos y}{\cos(a + b)})$
$\frac{dy}{dx} \cdot (\cos y \sin(a + y) - \sin y \cos(a + y)) = \cos^2(a + b)$
$\frac{dy}{dx} \cdot \sin((a + y) - y) = \cos^2(a + b) \quad (\because \cos A \sin B - \sin A \cos B = \sin(A - B))$
$\frac{dy}{dx} = \frac{\cos^2(a + b)}{\sin a}$
Hence proved
Question 17: If $x = a (\cos t + t \sin t)$ and $y = a (\sin t - t \cos t),$ find $\frac{d^2 y }{dx^2 }$
Answer:
Given functions are
$x = a (\cos t + t \sin t)$ and $y = a (\sin t - t \cos t)$
Now, differentiate both the functions w.r.t. t independently
We get
$\frac{dx}{dt} = \frac{d(a(\cos t +t\sin t))}{dt}= a(-\sin t)+a(\sin t+t\cos t)$
$=-a\sin t+a\sin t+at\cos t = at\cos t$
Similarly,
$\frac{dy}{dt} = \frac{d(a(\sin t - t\cos t))}{dt}= a\cos t -a(\cos t+t(-\sin t))$
$= a\cos t -a\cos t+at\sin t =at\sin t$
Now,
$\frac{dy}{dx}= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{at\sin t}{at \cos t} = \tan t$
Now, the second derivative
$\frac{d^2y}{dx^2}=\frac{d}{dx}\frac{dy}{dx}= \sec^2 t.\frac{dt}{dx}=\frac{\sec^2t.\sec t }{at}=\frac{\sec^3t}{at}$
$(\because \frac{dx}{dt} = at\cos t \Rightarrow \frac{dt}{dx}= \frac{1}{at\cos t}=\frac{\sec t}{at})$
Therefore, $\frac{d^2y}{dx^2}=\frac{\sec^3t}{at}$
Question 18: If$f (x) = |x|^3$, show that f ''(x) exists for all real x and find it.
Answer:
Given function is
$f (x) = |x|^3$
$f(x)\left\{\begin{matrix} -x^3 & x<0\\ x^3 & x>0 \end{matrix}\right.$
Now, differentiate in both the cases
$f(x)= x^3\\ f^{'}(x)=3x^2\\ f^{''}(x)= 6x$
And
$f(x)= -x^3\\ f^{'}(x)=-3x^2\\ f^{''}(x)= -6x$
In both, the cases f ''(x) exist
Hence, we can say that f ''(x) exists for all real x
and values are
$f^{''}(x)\left\{\begin{matrix} -6x &x<0 \\ 6x& x>0 \end{matrix}\right.$
Answer:
Given function is
$\sin (A + B) = \sin A \cos B + \cos A \sin B$
Now, differentiate w.r.t. x
$\frac{d(\sin(A+B))}{dx} = \frac{d\sin A}{dx}.\cos B+\sin A.\frac{d\cos B}{dx}+\frac{d\cos A}{dx}.\sin B+\cos A.\frac{d\sin B}{dx}$
$\cos (A+b)\frac{d(A+B)}{dx}$ $=\frac{dA}{dx}(\cos A\cos B-\sin A\cos B)+\frac{dB}{dx}(\cos A \sin B-\sin A\sin B)$
$=(\cos A \sin B-\sin A\sin B).\frac{d(A+B)}{dx}$
$\cos(A+B)= \cos A\sin B-\sin A\cos B$
Hence, we get the formula by differentiation of sin(A + B)
Answer:
Consider f(x) = |x| + |x +1|
We know that modulus functions are continuous everywhere and sum of two continuous function is also a continuous function
Therefore, our function f(x) is continuous
Now,
If Lets differentiability of our function at x = 0 and x= -1
L.H.D. at x = 0
$\lim_{h\rightarrow 0^-}\frac{f(x+h)-f(x)}{h}= \lim_{h\rightarrow 0^-}\frac{f(h)-f(0)}{h}= \lim_{h\rightarrow 0^-}\frac{|h|+|h+1|-|1|}{h}$
$=\lim_{h\rightarrow 0^-}\frac{-h-(h+1)-1}{h}= 0$ $(|h| = - h \ because\ h < 0)$
R.H.L. at x = 0
$\lim_{h\rightarrow 0^+}\frac{f(x+h)-f(x)}{h}= \lim_{h\rightarrow 0^+}\frac{f(h)-f(0)}{h}= \lim_{h\rightarrow 0^+}\frac{|h|+|h+1|-|1|}{h}$
$=\lim_{h\rightarrow 0^+}\frac{h+h+1-1}{h}= \lim_{h\rightarrow 0^+}\frac{2h}{h}= 2$ $(|h| = h \ because \ h > 0)$
R.H.L. is not equal to L.H.L.
Hence.at x = 0 is the function is not differentiable
Now, Similarly
R.H.L. at x = -1
$\lim_{h\rightarrow 0^+}\frac{f(x+h)-f(x)}{h}= \lim_{h\rightarrow 0^+}\frac{f(-1+h)-f(-1)}{h}= \lim_{h\rightarrow 0^+}\frac{|-1+h|+|h|-|-1|}{h}$
$=\lim_{h\rightarrow 0^+}\frac{1-h+h-1}{h}= \lim_{h\rightarrow 0^+}\frac{0}{h}= 0$ $(|h| = h \ because \ h > 0)$
L.H.L. at x = -1
$\lim_{h\rightarrow 0^-}\frac{f(x+h)-f(x)}{h}= \lim_{h\rightarrow 0^-}\frac{f(1+h)-f(1)}{h}= \lim_{h\rightarrow 0^-}\frac{|-1+h|+|h|-|1|}{h}$
$=\lim_{h\rightarrow 1^+}\frac{1-h-h-1}{h}= \lim_{h\rightarrow 0^+}\frac{-2h}{h}= -2$ $(|h| = - h \ because\ h < 0)$
L.H.L. is not equal to R.H.L, so not differentiable at x=-1
Hence, exactly two points where it is not differentiable
Answer:
Given that
$y = \begin{vmatrix} f (x) & g(x) & h (x) \\ l& m &n \\ a& b &c \end{vmatrix}$
We can rewrite it as
$y = f(x)(mc-bn)-g(x)(lc-an)+h(x)(lb-am)$
Now, differentiate w.r.t x
we will get
$\frac{dy}{dx} = f^{'}(x)(mc-bn)-g^{'}(x)(lc-an)+h^{'}(x)(lb-am) \Rightarrow \begin{bmatrix} f^{'}(x) &g^{'}(x) &h^{'}(x) \\ l&m &n \\ a& b &c \end{bmatrix}$
Hence proved
Question 22: If
, show that
Answer:
Given function is

Now, differentiate w.r.t x
we will get
$\frac{dy}{dx} = \frac{d(e^{a\cos^{-1}x})}{dx} \cdot \frac{d(a\cos^{-1}x)}{dx} = e^{a\cos^{-1}x} \cdot \frac{-a}{\sqrt{1 - x^2}} \ \ \ \ \text{-(i)}$
Now, again differentiate w.r.t x
$\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{ -a e^{a\cos^{-1}x} \cdot \frac{-a}{\sqrt{1 - x^2}} \cdot \sqrt{1 - x^2} + a e^{a\cos^{-1}x} \cdot \frac{1 \cdot (-2x)}{2\sqrt{1 - x^2}} }{(\sqrt{1 - x^2})^2}$
$= \frac{a^2 e^{a\cos^{-1}x} - \frac{a x e^{a\cos^{-1}x}}{\sqrt{1 - x^2}}}{1 - x^2}$ -(ii)
Now, we need to show that
$( 1- x^2 ) \frac{d^2 y }{dx ^2} - x \frac{dy}{dx} - a ^2 y = 0$
Put the values from equation (i) and (ii)
$(1-x^2).\left ( \ \frac{a^2e^{a\cos^{-1}x}-\frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}}}{1-x^2} \right )-x.\left ( \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}} \right )-a^2e^{a\cos^{-1}x}$
$a^2e^{a\cos^{-1}x}-\frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}}+\left ( \frac{axe^{a\cos^{-1}x}}{\sqrt{1-x^2}} \right )-a^2e^{a\cos^{-1}x} = 0$
Hence proved
Also, Read,
The main topics covered in Chapter 5 of continuity and differentiability, miscellaneous exercises are:
Also, Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Yes, the multiplication of two continuous functions is a continuous function.
Yes, subtraction of two continuous functions is a continuous function.
Chemistry holds 25% marks weighatge in the NEET exam.
CBSE doesn't provide chapter-wise marks distribution for CBSE Class 12 Maths. A total of 35 marks of questions are asked from the calculus in the CBSE final board exam.
Biology holds the 50% weightage in the NEET exam.
The JEE main has an equal weightage of three subjects Physics, Chemistry, and Maths.
The maximum marks for JEE Main 2021 is 300 marks.
Over 90% of questions in the board exams are not asked from the miscellaneous exercise.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters