NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability

Edited By Ramraj Saini | Updated on Dec 03, 2023 05:24 PM IST | #CBSE Class 12th
Upcoming Event
CBSE Class 12th  Exam Date : 15 Feb' 2025 - 15 Feb' 2025

NCERT Solutions For Class 12 Maths Chapter 5 Exercise 5.1

NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 Continuity and Differentiability are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In the previous class, you have already learned about limits, derivatives, limits, and derivatives of trigonometric functions. In this article, you will get NCERT solutions for Class 12 Maths chapter 5 exercise 5.1. NCERT book Class 12 Maths chapter 5 exercise 5.1 consists of questions related to finding whether a function is continuous or not.

Continuity of functions can't be learned without fundamental knowledge of limit which you have learned already. It is a fundamental concept of calculus that you must know to understand more concepts of calculus. Solving exercise 5.1 Class 12 Maths questions are very important to get conceptual clarity about continuity. There are different theorems to check the continuity of different types of functions mentioned in the NCERT syllabus of Class 12 Maths. 12th class Maths exercise 5.1 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Also, see

Pearson | PTE

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally

Access NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1

Download PDF

Continuity and Differentiability Exercise: 5.1

Question:1. Prove that the function f ( x) = 5 x -3 is continuous at x = 0, at\: \: x = - 3 and at x = 5

Answer:

Given function is
f ( x) = 5 x -3
f(0) = 5(0)-3 = -3
\lim_{x\rightarrow 0} f(x) = 5(0)-3 = -3
\lim_{x\rightarrow 0} f(x) =f(0)
Hence, function is continous at x = 0

f(-3)= 5(-3)-3=-15-3=-18\\\Rightarrow \lim_{x\rightarrow -3} f(x) = 5(-3)-3 = -15-3=-18\\\Rightarrow \lim_{x\rightarrow -3} f(x) = f(-3)
Hence, function is continous at x = -3

f(5)= 5(5)-3=25-3=22\\\Rightarrow \lim_{x\rightarrow 5} f(x) = 5(5)-3 = 25-3=-22\\ \Rightarrow \lim_{x\rightarrow 5} f(x) = f(5)
Hence, function is continuous at x = 5

Question:2.Examine the continuity of the function f (x) = 2x ^2 - 1 \: \: at\: \: x = 3.

Answer:

Given function is
f(x) = 2x^2-1
at x = 3
f(3) = 2(3)^2-1 = 2\times 9 - 1=18-1=17\\ \lim_{x\rightarrow 3}f(x) = 2(3)^2-1=2\times 9-1=18-1=17
\lim_{x\rightarrow 3}f(x) = f(3)
Hence, function is continous at x = 3

Question:3 Examine the following functions for continuity.
(a) f (x) = x - 5

Answer:

Given function is
f(x) = x-5
Our function is defined for every real number say k
and value at x = k , f(k) = k-5
and also,
\lim_{x\rightarrow k} f(x) = k -5\\ \lim_{x\rightarrow k} f(x) = f(k)
Hence, the function f(x) = x-5 is continuous at every real number

Question:3 b) Examine the following functions for continuity.

f (x) = \frac{1}{x-5} , x \neq 5

Answer:

Given function is
f(x ) = \frac{1}{x-5}
For every real number k , k \neq 5
We get,
f(k) = \frac{1}{k-5}\\ \lim_{x\rightarrow k}f(x ) = \frac{1}{k-5}\\ \lim_{x\rightarrow k}f(x ) = f(k)
Hence, function f(x ) = \frac{1}{x-5} continuous for every real value of x, x \neq 5

Question:3 c) Examine the following functions for continuity.

f (x) = \frac{x ^2-25}{x+5}, x \neq -5

Answer:

Given function is
f(x ) = \frac{x^2-25}{x+5}
For every real number k , k \neq -5
We gwt,
f(k) = \frac{k^2-5^2}{k+5}= \frac{(k +5)(k-5)}{k+5} = k-5\\ \lim_{x\rightarrow k}f(x ) = \frac{k^2-5^2}{k+5}= \frac{(k +5)(k-5)}{k+5} = k-5\\ \lim_{x\rightarrow k}f(x ) = f(k)
Hence, function f(x ) = \frac{x^2-25}{x+5} continuous for every real value of x , x \neq -5

Question:3 d) Examine the following functions for continuity. f (x) = | x - 5|

Answer:

Given function is
f (x) = | x - 5|
for x > 5 , f(x) = x - 5
for x < 5 , f(x) = 5 - x
SO, different cases are their
case(i) x > 5
for every real number k > 5 , f(x) = x - 5 is defined
f(k) = k - 5\\ \lim_{x\rightarrow k }f(x) = k -5\\ \lim_{x\rightarrow k }f(x) = f(k)
Hence, function f(x) = x - 5 is continous for x > 5

case (ii) x < 5
for every real number k < 5 , f(x) = 5 - x is defined
f(k) = 5-k\\ \lim_{x\rightarrow k }f(x) = 5 -k\\ \lim_{x\rightarrow k }f(x) = f(k)
Hence, function f(x) = 5 - x is continous for x < 5

case(iii) x = 5
for x = 5 , f(x) = x - 5 is defined
f(5) = 5 - 5=0\\ \lim_{x\rightarrow 5 }f(x) = 5 -5=0\\ \lim_{x\rightarrow 5 }f(x) = f(5)
Hence, function f(x) = x - 5 is continous for x = 5

Hence, the function f (x) = | x - 5| is continuous for each and every real number

Question:4. Prove that the function f (x) = x^n is continuous at x = n, where n is a positive integer

Answer:

GIven function is
f (x) = x^n
the function f (x) = x^n is defined for all positive integer, n
f(n) = n^n\\ \lim_{x\rightarrow n}f(x) = n^n\\ \lim_{x\rightarrow n}f(x) = f(n)
Hence, the function f (x) = x^n is continuous at x = n, where n is a positive integer

Question:5. Is the function f defined by
f (x) = \left\{\begin{matrix} x , & if x \leq 1 \\ 5 & if x \geq 1 \end{matrix}\right.
continuous at x = 0? At x = 1? At x = 2?

Answer:

Given function is
f (x) = \left\{\begin{matrix} x , & if x \leq 1 \\ 5 & if x \geq 1 \end{matrix}\right.
function is defined at x = 0 and its value is 0
f(0) = 0\\ \lim_{x\rightarrow 0}f(x) = f(x) = 0\\ \lim_{x\rightarrow 0}f(x) = f(0)
Hence , given function is continous at x = 0

given function is defined for x = 1
Now, for x = 1 Right-hand limit and left-hand limit are not equal
f(1) = 1\\ \lim_{x\rightarrow 1^-}f(x) = f(x) = 1\\ \lim_{x\rightarrow 1^+}f(x) =f(5) = 5
R.H.L \neq L.H.L.
Therefore, given function is not continous at x =1
Given function is defined for x = 2 and its value at x = 2 is 5
f(2) = 2\\ \lim_{x\rightarrow 2}f(x) = f(5) = 5\\\lim_{x\rightarrow 2}f(x) = f(2)
Hence, given function is continous at x = 2

Question:6. Find all points of discontinuity of f, where f is defined by

f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.

Answer:

Given function is
f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
f(k) = 2k-3\\ \lim_{x\rightarrow k}f(x) = 2k-3\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 2

case(ii) k < 2
f(k) = 2k +3\\ \lim_{x\rightarrow k}f(x) = 2k+3\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 2

case(iii) x = 2

\lim_{x\rightarrow 2^-}f(x) = 2x+3 = 2\times 2 + 3 = 4 + 3 = 7\\ \lim_{x\rightarrow 2^+}f(x) = 2x-3 = 2\times 2-3 = 4-3 = 1
Right hand limit at x= 2 \neq Left hand limit at x = 2
Therefore, x = 2 is the point of discontinuity

Question:7. Find all points of discontinuity of f, where f is defined by

f (x) = \left\{\begin{matrix} |x|+3 & if \: \: x \leq -3 & \\ -2x & if \: \: -3 <x< 3 & \\ 6x +2 & if \: \: x \geq 3 & \end{matrix}\right.

Answer:

Given function is
f (x) = \left\{\begin{matrix} |x|+3 & if \: \: x \leq -3 & \\ -2x & if \: \: -3 <x< 3 & \\ 6x +2 & if \: \: x \geq 3 & \end{matrix}\right.
GIven function is defined for every real number k
Different cases are their
case (i) k < -3
f(k) = -k + 3\\ \lim_{x\rightarrow k}f(x) = -k + 3\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for every value of k < -3

case(ii) k = -3
f(-3) = -(-3) + 3 = 6\\ \lim_{x\rightarrow -3^-}f(x) = -k + 3=-(-3)+3 = 6\\ \lim_{x\rightarrow -3^+}f(x) = -2x = -2(-3) = 6\\ R.H.L. = L.H.L. = f(-3)
Hence, given function is continous for x = -3

case(iii) -3 < k < 3
f(k) = -2k \\ \lim_{x\rightarrow k}f(x) = -2k\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, for every value of k in -3 < k < 3 given function is continous

case(iv) k = 3
f(3) = 6x+2 = 6\times3+2 =18+2=20\\ \lim_{x\rightarrow 3^-}f(x) = -2x = -2(3) = -6\\ \lim_{x\rightarrow 3^+}f(x) = 6x+2 = 6\times3+2 = 20\\ R.H.L. = f(3) \neq L.H.L.
Hence. x = 3 is the point of discontinuity

case(v) k > 3
f(k) = 6k+2 \\ \lim_{x\rightarrow k}f(x) = 6k+2 \\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each and every value of k > 3

Question:8. Find all points of discontinuity of f, where f is defined by

f (x )= \left\{\begin{matrix} \frac{|x|}{x} & if \: \: x \neq 0 \\ 0 & if \: \: x = 0 \end{matrix}\right.

Answer:

Given function is
f (x ) \left\{\begin{matrix} \frac{|x|}{x} & if \: \: x \neq 0 \\ 0 & if \: \: x = 0 \end{matrix}\right.
if x > 0 , f(x)=\frac{x}{x} = 1
if x < 0 , f(x)=\frac{-(x)}{x} = -1
given function is defined for every real number k
Now,
case(i) k < 0
f(k) = -1\\ \lim_{x\rightarrow k }f(x) = -1\\ \lim_{x\rightarrow k }f(x) = f(k)
Hence, given function is continuous for every value of k < 0
case(ii) k > 0
f(k) = 1\\ \lim_{x\rightarrow k }f(x) = 1\\ \lim_{x\rightarrow k }f(x) = f(k)
Hence, given function is continuous for every value of k > 0
case(iii) x = 0
f(0) = 0\\ \lim_{x\rightarrow 0^- }f(x) = -1\\ \lim_{x\rightarrow 0^+}f(x) = 1\\ f(0) \neq R.H.L. \neq L.H.L.
Hence, 0 is the only point of discontinuity

Question:9. Find all points of discontinuity of f, where f is defined by

f (x) = \left\{\begin{matrix} \frac{x }{|x|} & if \: \: x < 0\\ -1 & if x \geq 0 \end{matrix}\right.

Answer:

Given function is
f (x) = \left\{\begin{matrix} \frac{x }{|x|} & if \: \: x < 0\\ -1 & if x \geq 0 \end{matrix}\right.
if x < 0 , f (x) =\frac{x }{|x|} = \frac{x}{-(x)} = -1
Now, for any value of x, the value of our function is -1
Therefore, the given function is continuous for each and every value of x
Hence, no point of discontinuity

Question:10. Find all points of discontinuity of f, where f is defined by

f (x) = \left\{\begin{matrix} x+1 & if \: \: x \geq 1 \\ x^2 +1 & if x \: \: <1 \end{matrix}\right.

Answer:

Given function is
f (x) = \left\{\begin{matrix} x+1 & if \: \: x \geq 1 \\ x^2 +1 & if x \: \: <1 \end{matrix}\right.
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
f(k) = k+1\\ \lim_{x\rightarrow k}f(x) = k+1\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
f(k) = k^2 ++1\\ \lim_{x\rightarrow k}f(x) = k^2+1\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

\lim_{x\rightarrow 1^-}f(x) = x^2+1 = 1^2 + 1 = 1 + 1 = 2\\ \lim_{x\rightarrow 1^+}f(x) = x+1 = 1+1 = 2\\ f(1) = 1^2+1 = 2 \\ R.H.L. = L.H.L. = f(1)

Hence, at x = 2 given function is continuous
Therefore, no point of discontinuity

Question:11. Find all points of discontinuity of f, where f is defined by

f ( x) = \left\{\begin{matrix} x^3 -3 & if \: \: x \leq 2\\ x ^2 +1 & if \: \: x > 2 \end{matrix}\right.

Answer:

Given function is
f ( x) = \left\{\begin{matrix} x^3 -3 & if \: \: x \leq 2\\ x ^2 +1 & if \: \: x > 2 \end{matrix}\right.
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
f(k) = k^2+1\\ \lim_{x\rightarrow k}f(x) = k^2+1\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 2

case(ii) k < 2
f(k) = k^3 -3\\ \lim_{x\rightarrow k}f(x) = k^3-3\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 2

case(iii) x = 2

\lim_{x\rightarrow 2^-}f(x) = x^3-3 = 2^3- 3 = 8- 3 = 5\\ \lim_{x\rightarrow 2^+}f(x) = x^2+1= 2^2+1 = 4+1 = 5\\ f(2) = 2^3-3 = 8 - 3 = 5\\ f(2)=R.H.L.=L.H.L.
Hence, given function is continuous at x = 2
There, no point of discontinuity

Question:12. Find all points of discontinuity of f, where f is defined by

f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.

Answer:

Given function is
f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
f(k) = k^2\\ \lim_{x\rightarrow k}f(x) = k^2\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
f(k) = k^{10} -1\\ \lim_{x\rightarrow k}f(x) = k^{10}-1\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

\lim_{x\rightarrow 1^-}f(x) = x^{10}-1 = 1^{10} - 1 = 1 - 1 = 0\\ \lim_{x\rightarrow 1^+}f(x) = x^2 = 1^2 = 1\\ f(1) = x^{10}-1 = 0\ f(1) = L.H.L. \neq R.H.L.

Hence, x = 1 is the point of discontinuity

Question:13. Is the function defined by

f (x) = \left\{\begin{matrix} x+5 & if x \leq 1\\ x-5 & if x > 1 \end{matrix}\right.

a continuous function?

Answer:

Given function is
f (x) = \left\{\begin{matrix} x+5 & if x \leq 1\\ x-5 & if x > 1 \end{matrix}\right.
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
f(k) = k-5\\ \lim_{x\rightarrow k}f(x) = k-5\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
f(k) = k+5\\ \lim_{x\rightarrow k}f(x) = k+5\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

\lim_{x\rightarrow 1^-}f(x) = x+5 = 1 + 5 = 1 + 5 = 6\\ \lim_{x\rightarrow 1^+}f(x) = x-5 = 1-5 = -4\\ f(1) = x+5 =1+5= 6 \\ L.H.L. = f(1) \neq R.H.S.

Hence, x = 1 is the point of discontinuity

Question:14. Discuss the continuity of the function f, where f is defined by

f (x)\left\{\begin{matrix} 3 & if 0 \leq x \leq 1 \\ 4& if 1 < x < 3 \\ 5& if 3 \leq x \leq 10 \end{matrix}\right.

Answer:

Given function is
f (x)\left\{\begin{matrix} 3 & if 0 \leq x \leq 1 \\ 4& if 1 < x < 3 \\ 5& if 3 \leq x \leq 10 \end{matrix}\right.
GIven function is defined for every real number k
Different cases are their
case (i) k < 1
f(k) = 3\\ \lim_{x\rightarrow k}f(x) = 3\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continous for every value of k < 1

case(ii) k = 1
f(1) = 3 \\ \lim_{x\rightarrow 1^-}f(x) = 3\\ \lim_{x\rightarrow 1^+}f(x) = 4\\ R.H.L. \neq L.H.L. = f(1)
Hence, given function is discontinous at x = 1
Therefore, x = 1 is he point od discontinuity

case(iii) 1 < k < 3
f(k) = 4 \\ \lim_{x\rightarrow k}f(x) = 4\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, for every value of k in 1 < k < 3 given function is continous

case(iv) k = 3
f(3) =5\\ \lim_{x\rightarrow 3^-}f(x) = 4\\ \lim_{x\rightarrow 3^+}f(x) =5\\ R.H.L. = f(3) \neq L.H.L.
Hence. x = 3 is the point of discontinuity

case(v) k > 3
f(k) = 5 \\ \lim_{x\rightarrow k}f(x) = 5 \\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continous for each and every value of k > 3
case(vi) when k < 3

f(k) = 4 \\ \lim_{x\rightarrow k}f(x) = 4\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, for every value of k in k < 3 given function is continous

Question:15 Discuss the continuity of the function f, where f is defined by f(x)\left\{\begin{matrix} 2x & if &x<0 \\ 0& if &0\leq x\leq 1 \\ 4x&if & x>1 \end{matrix}\right.

Answer:

Given function is

Given function is satisfies for the all real values of x
case (i) k < 0


Hence, function is continuous for all values of x < 0

case (ii) x = 0

L.H.L at x= 0

R.H.L. at x = 0

L.H.L. = R.H.L. = f(0)
Hence, function is continuous at x = 0

case (iii) k > 0


Hence , function is continuous for all values of x > 0

case (iv) k < 1


Hence , function is continuous for all values of x < 1

case (v) k > 1


Hence , function is continuous for all values of x > 1

case (vi) x = 1



Hence, function is not continuous at x = 1

Question:16. Discuss the continuity of the function f, where f is defined by

f ( x ) = \left\{\begin{matrix} -2 & if x \leq -1 \\ 2x & if -1< x \leq 1 \\ 2 & if x > 1 \end{matrix}\right.

Answer:

Given function is
f ( x ) = \left\{\begin{matrix} -2 & if x \leq -1 \\ 2x & if -1< x \leq 1 \\ 2 & if x > 1 \end{matrix}\right.
GIven function is defined for every real number k
Different cases are their
case (i) k < -1
f(k) = -2\\ \lim_{x\rightarrow k}f(x) = -2\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continuous for every value of k < -1

case(ii) k = -1
f(-1) = -2 \\ \lim_{x\rightarrow -1^-}f(x) = -2\\ \lim_{x\rightarrow -1^+}f(x) = 2x = 2(-1) = -2\\ R.H.L. =L.H.L. = f(-1)
Hence, given function is continous at x = -1

case(iii) k > -1
f(k) = 2k \\ \lim_{x\rightarrow k}f(x) = 2k\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continous for all values of x > -1

case(vi) -1 < k < 1
f(k) = 2k \\ \lim_{x\rightarrow k}f(x) = 2k\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, for every value of k in -1 < k < 1 given function is continous

case(v) k = 1
f(1) =2x = 2(1)=2\\ \lim_{x\rightarrow 1^-}f(x) = 2x=2(1)=2\\ \lim_{x\rightarrow 1^+}f(x) =2\\ R.H.L. = f(1) = L.H.L.
Hence.at x =1 function is continous

case(vi) k > 1
f(k) = 2 \\ \lim_{x\rightarrow k}f(x) = 2 \\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, given function is continous for each and every value of k > 1
case(vii) when k < 1

f(k) = 2k \\ \lim_{x\rightarrow k}f(x) = 2k\\ \lim_{x\rightarrow k}f(x) = f(k)
Hence, for every value of k in k < 1 given function is continuous

Therefore, continuous at all points

Question:17. Find the relationship between a and b so that the function f defined by
f (x) = \left\{\begin{matrix} ax +1 , &if x < 3 \\ bx +3 & if x > 3 \end{matrix}\right.
is continuous at x = 3.

Answer:

Given function is
f (x) = \left\{\begin{matrix} ax +1 , &if x < 3 \\ bx +3 & if x > 3 \end{matrix}\right.
For the function to be continuous at x = 3 , R.H.L. must be equal to L.H.L.
\lim_{x\rightarrow 3^-}f(x)= ax + 1 = 3a+1\\ \lim_{x\rightarrow 3^+}f(x) = bx+3=3b+3
For the function to be continuous
\lim_{x\rightarrow 3^-}f(x) = \lim_{x\rightarrow 3^+}f(x) \\ 3a + 1= 3b+3\\ 3(a-b)=2\\ a-b = \frac{2}{3}\\ a = b+\frac{2}{3}

Question:18. For what value of l is the function defined by
f (x) = \left\{\begin{matrix} \lambda (x^2 -2x) & if x \leq 0 \\ 4x+1 & if x > 0 \end{matrix}\right.
continuous at x = 0? What about continuity at x = 1?

Answer:

Given function is
f (x) = \left\{\begin{matrix} \lambda (x^2 -2x) & if x \leq 0 \\ 4x+1 & if x > 0 \end{matrix}\right.
For the function to be continuous at x = 0 , R.H.L. must be equal to L.H.L.
\lim_{x\rightarrow 0^-}f(x) = \lambda (x^2-2x) = 0\\ \lim_{x\rightarrow 0^+}f(x) = 4x+1=1
For the function to be continuous
\lim_{x\rightarrow 0^-}f(x) = \lim_{x\rightarrow 0^+}f(x) \\ 0\neq 1
Hence, for no value of function is continuous at x = 0

For x = 1
f(1)=4x+1=4(1)+1=5\\ \lim_{x\rightarrow 1}f(x) =4+1=5 \\\ \lim_{x\rightarrow 1}f(x) = f(x)
Hence, given function is continuous at x =1

Question:19. Show that the function defined by g (x) = x- [x] is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Answer:

Given function is
g (x) = x- [x]
Given is defined for all real numbers k
\lim_{x\rightarrow k^-}f(x) = k - (k-1) = k-k+1 =1\\ \lim_{x\rightarrow k^+}f(x) = k - k = 0\\ \lim_{x\rightarrow k^-}f(x) \neq \lim_{x\rightarrow k^+}f(x)
Hence, by this, we can say that the function defined by g (x) = x- [x] is discontinuous at all integral points

Question:20. Is the function defined by f (x) = x^2 - sin x + 5 continuous at x = \pi?

Answer:

Given function is
f (x) = x^2 - sin x + 5
Clearly, Given function is defined at x =\pi
f(\pi) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim_{x\rightarrow \pi}f(x) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim_{x\rightarrow \pi}f(x) = f(\pi)
Hence, the function defined by f (x) = x^2 - sin x + 5 continuous at x = \pi

Question:21. Discuss the continuity of the following functions:
a) f (x) = \sin x + \cos x

Answer:

Given function is
f (x) = \sin x + \cos x
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) + h(x) = sin x + cos x is also a continuous function

Question:21. b) Discuss the continuity of the following functions:
f (x) = \sin x - \cos x

Answer:

Given function is
f (x) = \sin x - \cos x
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function

Question:21 c) Discuss the continuity of the following functions:
f (x) = \sin x \cdot \cos x

Answer:

Given function is
f (x) = \sin x . \cos x
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x).h(x) = sin x .cos x is also a continuous function

Question:22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Answer:

We, know that if two function g(x) and h(x) are continuous then
\frac{g(x)}{h(x)} , h(x) \neq0\ is \ continuous\\ \frac{1}{h(x)} , h(x) \neq 0\ is \ continuous\\ \frac{1}{g(x)} , g(x) \neq0\ is \ continuous\\
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, the function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is a continous function
So, we can say that
cosec x = \frac{1}{\sin x} = \frac{1}{g(x)} is also continuous except at x=n\pi
sec x = \frac{1}{\cos x} = \frac{1}{h(x)} is also continuous except at x=\frac{(2n+1) \pi}{2}
cot x = \frac{\cos x}{\sin x} = \frac{h(x)}{g(x)} is also continuous except at x=n\pi

Question:23. Find all points of discontinuity of f, where

f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.

Answer:

Given function is
f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.
\lim_{x\rightarrow 0^-}f(x) = \lim_{x\rightarrow 0}\frac{\sin x}{x} = 1\\ \lim_{x\rightarrow 0^+}f(x) = x + 1 = 1\\ \lim_{x\rightarrow 0^-}f(x) = \lim_{x\rightarrow 0^+}f(x)
Hence, the function is continuous
Therefore, no point of discontinuity

Question:24. Determine if f defined by
f (x) = \left\{\begin{matrix} x^2 \sin 1/x & if x \neq 0 \\ 0 & if x = 0 \end{matrix}\right.
is a continuous function?

Answer:

Given function is
f (x) = \left\{\begin{matrix} x^2 \sin 1/x & if x \neq 0 \\ 0 & if x = 0 \end{matrix}\right.
Given function is defined for all real numbers k
when x = 0
f(0) = 0\\ \lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}\left ( x^2\sin\frac{1}{x} \right )=\lim_{x\rightarrow 0}\left ( \frac{x.\sin\frac{1}{x}}{\frac{1}{x}} \right ) = 0(1)=0 \ \ \ \ \ \ (\because\lim_{x\rightarrow 0}\frac{\sin x}{x} = 1)
\lim_{x\rightarrow 0}f(x) = f(0)
Hence, function is continuous at x = 0
when x \neq 0
f(k) = k^2\sin \frac{1}{k}\\ \lim_{x\rightarrow k}f(x)=\lim_{x\rightarrow k}\left ( x^2\sin\frac{1}{x} \right )=k^2\sin \frac{1}{k}\\ \lim_{x\rightarrow k} = f(k)
Hence, the given function is continuous for all points

Question:25. Examine the continuity of f, where f is defined by

f (x) = \left\{\begin{matrix} \sin x - \cos x & if x \neq 0 \\ -1 & if x = 0 \end{matrix}\right.

Answer:

Given function is
f (x) = \sin x - \cos x
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
g(c) = \sin c\\ \lim_{x\rightarrow c}g(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}g(x) = g(c)
Hence, function g(x) = \sin x is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function

When x = 0
f (0) = -1\\ \lim_{x\rightarrow 0^-}f(x) = \sin 0 - \cos 0 = -1\\ \lim_{x\rightarrow 0^+}f(x) = \sin 0 - \cos 0 = -1 \\ R.H.L. = L.H.L. = f(0)
Hence, function is also continuous at x = 0

Question:26. Find the values of k so that the function f is continuous at the indicated point in Exercises

f (x) = \left\{\begin{matrix} \frac{k \cos x }{\pi - 2x } & if x \neq \pi/2 \\ 3 & if x = \pi/2 \end{matrix}\right. \: \: \: at \: \: x = \pi /2

Answer:

Given function is
f (x) = \left\{\begin{matrix} \frac{k \cos x }{\pi - 2x } & if x \neq \pi/2 \\ 3 & if x = \pi/2 \end{matrix}\right.
When x = \frac{\pi}{2}
f(\frac{\pi}{2}) = 3\\let\ x=\pi +h\\ \lim_{x\rightarrow \frac{\pi}{2}}f(x)= \lim_{h\rightarrow 0}\frac{k\cos\left ( \frac{\pi}{2}+h \right )}{\pi-2\left ( \frac{\pi}{2}+h \right )} = k. \lim_{h\rightarrow 0}\frac{-\sin h}{-2h} = \frac{k}{2}\\
For the function to be continuous
\lim_{x\rightarrow \frac{\pi}{2}}f(x)= f(\frac{\pi}{2})\\ \frac{k}{2} = 3\\ k = 6
Therefore, the values of k so that the function f is continuous is 6

Question:27. Find the values of k so that the function f is continuous at the indicated point in Exercises

f (x) = \left\{\begin{matrix} kx^2 &if x \leq 2 \\ 3 & if x > 2 \end{matrix}\right. \: \: at \: \: x = 2

Answer:

Given function is
f (x) = \left\{\begin{matrix} kx^2 &if x \leq 2 \\ 3 & if x > 2 \end{matrix}\right.
When x = 2
For the function to be continuous
f(2) = R.H.L. = LH.L.
f(2) = 4k\\ \lim_{x\rightarrow 2^-}f(x)= 4k\\ \lim_{x\rightarrow 2^+}f(x) = 3\\ f(2) = \lim_{x\rightarrow 2^-}f(x) = \lim_{x\rightarrow 2^+}f(x)\\ 4k = 3\\ k = \frac{3}{4}
Hence, the values of k so that the function f is continuous at x= 2 is \frac{3}{4}

Question:28. Find the values of k so that the function f is continuous at the indicated point in Exercises

f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right. \: \: at \: \: x = \pi

Answer:

Given function is
f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right.
When x = \pi
For the function to be continuous
f(\pi) = R.H.L. = LH.L.
f(\pi) = k\pi+1\\ \lim_{x\rightarrow \pi^-}f(x)= k\pi+1\\ \lim_{x\rightarrow \pi^+}f(x) = \cos \pi = -1\\ f(\pi) = \lim_{x\rightarrow \pi^-}f(x) = \lim_{x\rightarrow \pi^+}f(x)\\ k\pi+1 = -1\\ k = \frac{-2}{\pi}
Hence, the values of k so that the function f is continuous at x= \pi is \frac{-2}{\pi}

Question:29 Find the values of k so that the function f is continuous at the indicated point in Exercises

f (x) = \left\{\begin{matrix} kx +1 & if x \leq 5 \\ 3x-5 & if x > 5 \end{matrix}\right. \: \: at x = 5

Answer:

Given function is
f (x) = \left\{\begin{matrix} kx +1 & if x \leq 5 \\ 3x-5 & if x > 5 \end{matrix}\right.
When x = 5
For the function to be continuous
f(5) = R.H.L. = LH.L.
f(5) = 5k+1\\ \lim_{x\rightarrow 5^-}f(x)= 5k+1\\ \lim_{x\rightarrow 5^+}f(x) = 3(5)-5 = 15-5=10\\ f(5) = \lim_{x\rightarrow 5^-}f(x) = \lim_{x\rightarrow 5^+}f(x)\\ 5k+1 = 10\\ k = \frac{9}{5}
Hence, the values of k so that the function f is continuous at x= 5 is \frac{9}{5}

Question:30 Find the values of a and b such that the function defined by
f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right.
is a continuous function.

Answer:

Given continuous function is
f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right.
The function is continuous so
\lim_{x\rightarrow 2^-}f(x) = \lim_{x\rightarrow 2^+}f(x)\\ and\\ \lim_{x\rightarrow 10^-}f(x)=\lim_{x\rightarrow 10^+}f(x)
\lim_{x\rightarrow 2^-}f(x) = 5\\ \lim_{x\rightarrow 2^+}f(x)=ax+b=2a+b\\ 2a+b = 5 \ \ \ \ \ \ \ \ \ \ \ -(i)\\ and\\ \lim_{x\rightarrow 10^-}f(x)=ax+b=10a+b\\ \lim_{x\rightarrow 10^+}f(x)=21\\ 10a+b=21 \ \ \ \ \ \ \ \ -(ii)
By solving equation (i) and (ii)
a = 2 and b = 1
Hence, values of a and b such that the function defined by f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right. is a continuous function is 2 and 1 respectively

Question:31. Show that the function defined byf (x) = \cos (x^2 ) is a continuous function.

Answer:

Given function is
f (x) = \cos (x^2 )
given function is defined for all real values of x
Let x = k + h
if x\rightarrow k , \ then \ h \rightarrow 0
f(k) = \cos k^2\\ \lim_{x \rightarrow k}f(x) = \lim_{x \rightarrow k}\cos x^2 = \lim_{h \rightarrow 0}\cos (k+h)^2 = \cos k^2\\ \lim_{x \rightarrow k}f(x) = f(k)
Hence, the function f (x) = \cos (x^2 ) is a continuous function

Question:32. Show that the function defined byf (x) = |\cos x | is a continuous function.

Answer:

Given function is
f (x) = |\cos x |
given function is defined for all values of x
f = g o h , g(x) = |x| and h(x) = cos x
Now,
g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}
g(x) is defined for all real numbers k
case(i) k < 0
g(k) = -k\\ \lim_{x\rightarrow k}g(x) = -k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k < 0

case (ii) k > 0
g(k) = k\\ \lim_{x\rightarrow k}g(x) = k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k > 0

case (iii) k = 0
g(0) = 0\\ \lim_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim_{x\rightarrow 0^-}g(x) = g(0) = \lim_{x\rightarrow 0^+}g(x )
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = cos x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \cos c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\cos x = \lim_{h\rightarrow 0}\cos (c+h)\\ We \ know \ that\\ \cos(a+b) = \cos a \cos b + \sin a\sin b\\ \lim_{h\rightarrow 0}\cos (c+h) = \lim_{h\rightarrow 0}(\cos c\cos h + \sin c \sin h) = \lim_{h\rightarrow 0}\cos c\cos h + \lim_{h\rightarrow 0}\sin c \sin h
=\cos c\cos 0 + \sin c \sin 0 = \cos c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \cos x is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = g o h is also continuous

Question:33. Examine that sin | x| is a continuous function.

Answer:

Given function is
f(x) = sin |x|
f(x) = h o g , h(x) = sin x and g(x) = |x|
Now,

g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}
g(x) is defined for all real numbers k
case(i) k < 0
g(k) = -k\\ \lim_{x\rightarrow k}g(x) = -k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k < 0

case (ii) k > 0
g(k) = k\\ \lim_{x\rightarrow k}g(x) = k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k > 0

case (iii) k = 0
g(0) = 0\\ \lim_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim_{x\rightarrow 0^-}g(x) = g(0) = \lim_{x\rightarrow 0^+}g(x )
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = sin x
Let suppose x = c + h
if x \rightarrow c , \ then \ h \rightarrow 0
h(c) = \sin c\\ \lim_{x\rightarrow c}h(x) = \lim_{x\rightarrow c}\sin x = \lim_{h\rightarrow 0}\sin (c+h)\\ We \ know \ that\\ \sin(a+b) = \sin a \cos b + \cos a\sin b\\ \lim_{h\rightarrow 0}\sin (c+h) = \lim_{h\rightarrow 0}(\sin c\cos h + \cos c \sin h) = \lim_{h\rightarrow 0}\sin c\cos h + \lim_{h\rightarrow 0}\cos c \sin h
=\sin c\cos 0 + \cos c \sin 0 = \sin c
\lim_{x\rightarrow c}h(x) = h(c)
Hence, function h(x) = \sin x is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = h o g is also continuous

Question:34. Find all the points of discontinuity of f defined by f (x) = | x| - | x + 1|.

Answer:

Given function is
f (x) = | x| - | x + 1|
Let g(x) = |x| and h(x) = |x+1|
Now,
g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}
g(x) is defined for all real numbers k
case(i) k < 0
g(k) = -k\\ \lim_{x\rightarrow k}g(x) = -k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k < 0

case (ii) k > 0
g(k) = k\\ \lim_{x\rightarrow k}g(x) = k\\ \lim_{x\rightarrow k}g(x) = g(k)
Hence, g(x) is continuous when k > 0

case (iii) k = 0
g(0) = 0\\ \lim_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim_{x\rightarrow 0^-}g(x) = g(0) = \lim_{x\rightarrow 0^+}g(x )
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x

Now,
h(x)\begin{cases} -(x+1) & \text{ if } x<-1 \\ 0 & \text{ if } x= -1\\ (x+1)& \text{ if } x>-1 \end{cases}
g(x) is defined for all real numbers k
case(i) k < -1
h(k) = -(k+1)\\ \lim_{x\rightarrow k}h(x) = -(k+1)\\ \lim_{x\rightarrow k}h(x) = h(k)
Hence, h(x) is continuous when k < -1

case (ii) k > -1
h(k) = k+1\\ \lim_{x\rightarrow k}h(x) = k+1\\ \lim_{x\rightarrow k}h(x) = h(k)
Hence, h(x) is continuous when k > -1

case (iii) k = -1
h(-1) = 0\\ \lim_{x\rightarrow -1^-}h(x) = -(x-1) = 0\\ \lim_{x\rightarrow -1^+}h(x ) = x+1 = 0\\ \lim_{x\rightarrow -1^-}h(x) = h(0) = \lim_{x\rightarrow -1^+}h(x )
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x
g(x) is continuous and h(x) is continuous
Therefore, f(x) = g(x) - h(x) = |x| - |x+1| is also continuous

More About NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1

In Class 12th Maths chapter 5 exercise 5.1 there are 34 long answer types questions only checking your knowledge of continuity. Many questions in Class 12 Maths ch 5 ex 5.1 are related to checking the continuity of trigonometric functions. There are 20 examples and some important theorems given before this exercise in the NCERT textbook. Solving these examples is a must to do before going to the Class 12th Maths chapter 5 exercise 5.1 questions because it will help you in solving NCERT problems.

Also Read| Continuity and Differentiability Class 12th Chapter 5 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1

  • Class 12 Maths chapter 5 exercise 5.1 solutions are described in a detailed manner, so you will get the concept of continuity easily.
  • In Class 12 Maths chapter 5 exercise 5.1 solutions , you will get different ways to approach the problem.
  • There are some properties of continuous functions which make it easy to check the continuity of the given functions.
  • In Class 12 Maths chapter 5 exercise 5.1 solutions, you will learn about the algebra of continuous functions.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 5.1 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 5.1, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 5.1 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 5.1 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 5.1 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 5.1 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

NCERT Solutions of Class 12 Subject Wise

Subject Wise NCERT Exampler Solutions

Happy learning!!!

Frequently Asked Questions (FAQs)

1. Check whether function f(x) = x + 3 is continuous at x = 1 ?

f(1^+)= 1+3 = 4

f(1^-)= 1+3 = 4 = f(1)

Hence f(x) is continuous at x=1.

2. If f(x), g(x) are continuous functions then what about continuity of f(x) + g(x) ?

If f(x), g(x) are continuous functions then f(x) + g(x) is also a continuous function.

3. If f(x), g(x) are continuous functions then what about continuity of f(x) - g(x) ?

If f(x), g(x) are continuous functions then f(x) - g(x) is also a continuous function.

4. If two functions are continuous then check continuity of product of the given two functions.

If two functions are continuous then check the product of the given two functions is also a continuous function.

5. Do every continuous function is a differential function ?

No, every continuous function need not to be a differential function.

6. Do every differential function is a continuous function ?

Yes, every differential function is a continuous function.

7. How many questions are there in the exercise 5.1 Class 12 Maths ?

NCERT book Exercise 5.1 Class 12 Maths is consists of 34 long answer questions related to checking the continuity of the functions. For more questions students can refer to NCERT exemplar problems.

8. How many exercises are in there in the chapter 5 Class 12 Maths ?

There are eight main exercises and one miscellaneous exercise given in the chapter 5 Class 12 Maths.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Admit Card Date:13 December,2024 - 06 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

View All School Exams

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top