NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability

Updated on 22 Apr 2025, 12:54 PM IST

In our real world, some of the roads are smooth and uninterrupted, while some are rough and broken into multiple pieces. In mathematics, graphs of the functions behave similarly; some are smooth and without any interruption, while some have jumps, breaks and sudden turns. This is where continuity and differentiability play an important role. In the Class 12 maths chapter 5 NCERT, you find the concepts of continuity and differentiability. This article on NCERT Solutions for exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability, offers clear and step-by-step solutions for the exercise problems, which will help the students build confidence and help them make a strong foundation for advanced calculus.

Class 12 Maths Chapter 5 Exercise 5.1 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.1

Question:1. Prove that the function $f ( x) = 5 x -3$ is continuous at $x = 0, at\: \: x = - 3$ and at $x = 5$

Answer:

Given function is
$f ( x) = 5 x -3$
$f(0) = 5(0)-3 = -3$
$\lim\limits_{x\rightarrow 0} f(x) = 5(0)-3 = -3$
$\lim\limits_{x\rightarrow 0} f(x) =f(0)$
Hence, function is continous at x = 0

$f(-3)= 5(-3)-3=-15-3=-18\\\Rightarrow \lim\limits_{x\rightarrow -3} f(x) = 5(-3)-3 = -15-3=-18\\\Rightarrow \lim\limits_{x\rightarrow -3} f(x) = f(-3)$
Hence, function is continous at x = -3

$f(5)= 5(5)-3=25-3=22\\\Rightarrow \lim\limits_{x\rightarrow 5} f(x) = 5(5)-3 = 25-3=-22\\ \Rightarrow \lim\limits_{x\rightarrow 5} f(x) = f(5)$
Hence, function is continuous at x = 5

Question:2.Examine the continuity of the function $f (x) = 2x ^2 - 1 \: \: at\: \: x = 3.$

Answer:

Given function is
$f(x) = 2x^2-1$
at x = 3
$f(3) = 2(3)^2-1 = 2\times 9 - 1=18-1=17\\ \lim\limits_{x\rightarrow 3}f(x) = 2(3)^2-1=2\times 9-1=18-1=17$
$\lim\limits_{x\rightarrow 3}f(x) = f(3)$
Hence, function is continous at x = 3

Question:3 Examine the following functions for continuity.
$(a) f (x) = x - 5$

Answer:

Given function is
$f(x) = x-5$
Our function is defined for every real number say k
and value at x = k , $f(k) = k-5$
and also,
$\lim\limits_{x\rightarrow k} f(x) = k -5\\ \lim\limits_{x\rightarrow k} f(x) = f(k)$
Hence, the function $f(x) = x-5$ is continuous at every real number

Question:3 b) Examine the following functions for continuity.

$f (x) = \frac{1}{x-5} , x \neq 5$

Answer:

Given function is
$f(x ) = \frac{1}{x-5}$
For every real number k , $k \neq 5$
We get,
$f(k) = \frac{1}{k-5}\\ \lim\limits_{x\rightarrow k}f(x ) = \frac{1}{k-5}\\ \lim\limits_{x\rightarrow k}f(x ) = f(k)$
Hence, function $f(x ) = \frac{1}{x-5}$ continuous for every real value of x, $x \neq 5$

Question:3 c) Examine the following functions for continuity.

$f (x) = \frac{x ^2-25}{x+5}, x \neq -5$

Answer:

Given function is
$f(x ) = \frac{x^2-25}{x+5}$
For every real number k , $k \neq -5$
We gwt,
$f(k) = \frac{k^2-5^2}{k+5}= \frac{(k +5)(k-5)}{k+5} = k-5\\ \lim\limits_{x\rightarrow k}f(x ) = \frac{k^2-5^2}{k+5}= \frac{(k +5)(k-5)}{k+5} = k-5\\ \lim\limits_{x\rightarrow k}f(x ) = f(k)$
Hence, function $f(x ) = \frac{x^2-25}{x+5}$ continuous for every real value of x , $x \neq -5$

Question:3 d) Examine the following functions for continuity. $f (x) = | x - 5|$

Answer:

Given function is
$f (x) = | x - 5|$
for x > 5 , f(x) = x - 5
for x < 5 , f(x) = 5 - x
SO, different cases are their
case(i) x > 5
for every real number k > 5 , f(x) = x - 5 is defined
$f(k) = k - 5\\ \lim\limits_{x\rightarrow k }f(x) = k -5\\ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, function f(x) = x - 5 is continous for x > 5

case (ii) x < 5
for every real number k < 5 , f(x) = 5 - x is defined
$f(k) = 5-k\\ \lim\limits_{x\rightarrow k }f(x) = 5 -k\\ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, function f(x) = 5 - x is continous for x < 5

case(iii) x = 5
for x = 5 , f(x) = x - 5 is defined
$f(5) = 5 - 5=0\\ \lim\limits_{x\rightarrow 5 }f(x) = 5 -5=0\\ \lim\limits_{x\rightarrow 5 }f(x) = f(5)$
Hence, function f(x) = x - 5 is continous for x = 5

Hence, the function $f (x) = | x - 5|$ is continuous for each and every real number

Question:4. Prove that the function $f (x) = x^n$ is continuous at x = n, where n is a positive integer

Answer:

GIven function is
$f (x) = x^n$
the function $f (x) = x^n$ is defined for all positive integer, n
$f(n) = n^n\\ \lim\limits_{x\rightarrow n}f(x) = n^n\\ \lim\limits_{x\rightarrow n}f(x) = f(n)$
Hence, the function $f (x) = x^n$ is continuous at x = n, where n is a positive integer

Question:5. Is the function f defined by
$f (x) = \left\{\begin{matrix} x , & if x \leq 1 \\ 5 & if x \geq 1 \end{matrix}\right.$
continuous at x = 0? At x = 1? At x = 2?

Answer:

Given function is
$f (x) = \left\{\begin{matrix} x , & if x \leq 1 \\ 5 & if x \geq 1 \end{matrix}\right.$
function is defined at x = 0 and its value is 0
$f(0) = 0\\ \lim\limits_{x\rightarrow 0}f(x) = f(x) = 0\\ \lim\limits_{x\rightarrow 0}f(x) = f(0)$
Hence , given function is continous at x = 0

given function is defined for x = 1
Now, for x = 1 Right-hand limit and left-hand limit are not equal

$f(1) = 1,\ \lim\limits_{x \to 1^-} f(x) = f(x) = 1,\ \lim\limits_{x \to 1^+} f(x) = f(5) = 5$

R.H.L $\neq$ L.H.L.
Therefore, given function is not continous at x =1
Given function is defined for x = 2 and its value at x = 2 is 5
$f(2) = 2\\ \lim\limits_{x\rightarrow 2}f(x) = f(5) = 5\\\lim\limits_{x\rightarrow 2}f(x) = f(2)$
Hence, given function is continous at x = 2

Question:6. Find all points of discontinuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} 2x+3 & if x \leq 2 \\ 2x-3 & if x \geq 2 \end{matrix}\right.$
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
$f(k) = 2k-3\\ \lim\limits_{x\rightarrow k}f(x) = 2k-3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k > 2

case(ii) k < 2
$f(k) = 2k +3\\ \lim\limits_{x\rightarrow k}f(x) = 2k+3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k < 2

case(iii) x = 2

$\lim\limits_{x\rightarrow 2^-}f(x) = 2x+3 = 2\times 2 + 3 = 4 + 3 = 7\\ \lim\limits_{x\rightarrow 2^+}f(x) = 2x-3 = 2\times 2-3 = 4-3 = 1$
Right hand limit at x= 2 $\neq$ Left hand limit at x = 2
Therefore, x = 2 is the point of discontinuity

Question:7. Find all points of discontinuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} |x|+3 & if \: \: x \leq -3 & \\ -2x & if \: \: -3 <x< 3 & \\ 6x +2 & if \: \: x \geq 3 & \end{matrix}\right.$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} |x|+3 & if \: \: x \leq -3 & \\ -2x & if \: \: -3 <x< 3 & \\ 6x +2 & if \: \: x \geq 3 & \end{matrix}\right.$
GIven function is defined for every real number k
Different cases are their
case (i) k < -3
$f(k) = -k + 3\\ \lim\limits_{x\rightarrow k}f(x) = -k + 3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for every value of k < -3

case(ii) k = -3
$f(-3) = -(-3) + 3 = 6$
$\lim\limits_{x\rightarrow -3^-}f(x) = -k + 3 = -(-3) + 3 = 6$
$\lim\limits_{x\rightarrow -3^+}f(x) = -2x = -2(-3) = 6$
$R.H.L. = L.H.L. = f(-3)$
Hence, given function is continous for x = -3

case(iii) -3 < k < 3
$f(k) = -2k \\ \lim\limits_{x\rightarrow k}f(x) = -2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in -3 < k < 3 given function is continous

case(iv) k = 3
$f(3) = 6x + 2 = 6 \times 3 + 2 = 18 + 2 = 20$
$\lim\limits_{x \rightarrow 3^-} f(x) = -2x = -2(3) = -6$
$\lim\limits_{x \rightarrow 3^+} f(x) = 6x + 2 = 6 \times 3 + 2 = 20$
$R.H.L. = f(3) \neq L.H.L.$
Hence. x = 3 is the point of discontinuity

case(v) k > 3
$f(k) = 6k+2 \\ \lim\limits_{x\rightarrow k}f(x) = 6k+2 \\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each and every value of k > 3

Question:8. Find all points of discontinuity of f, where f is defined by

$f (x )= \left\{\begin{matrix} \frac{|x|}{x} & if \: \: x \neq 0 \\ 0 & if \: \: x = 0 \end{matrix}\right.$

Answer:

Given function is
$f (x ) \left\{\begin{matrix} \frac{|x|}{x} & if \: \: x \neq 0 \\ 0 & if \: \: x = 0 \end{matrix}\right.$
if x > 0 , $f(x)=\frac{x}{x} = 1$
if x < 0 , $f(x)=\frac{-(x)}{x} = -1$
given function is defined for every real number k
Now,
case(i) k < 0
$f(k) = -1\\ \lim\limits_{x\rightarrow k }f(x) = -1\\ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, given function is continuous for every value of k < 0
case(ii) k > 0
$f(k) = 1\\ \lim\limits_{x\rightarrow k }f(x) = 1\\ \lim\limits_{x\rightarrow k }f(x) = f(k)$
Hence, given function is continuous for every value of k > 0
case(iii) x = 0
$f(0) = 0\\ \lim\limits_{x\rightarrow 0^- }f(x) = -1\\ \lim\limits_{x\rightarrow 0^+}f(x) = 1\\ f(0) \neq R.H.L. \neq L.H.L.$
Hence, 0 is the only point of discontinuity

Question:9. Find all points of discontinuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} \frac{x }{|x|} & if \: \: x < 0\\ -1 & if x \geq 0 \end{matrix}\right.$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} \frac{x }{|x|} & if \: \: x < 0\\ -1 & if x \geq 0 \end{matrix}\right.$
if x < 0 , $f (x) =\frac{x }{|x|} = \frac{x}{-(x)} = -1$
Now, for any value of x, the value of our function is -1
Therefore, the given function is continuous for each and every value of x
Hence, no point of discontinuity

Question:10. Find all points of discontinuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} x+1 & if \: \: x \geq 1 \\ x^2 +1 & if x \: \: <1 \end{matrix}\right.$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} x+1 & if \: \: x \geq 1 \\ x^2 +1 & if x \: \: <1 \end{matrix}\right.$
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
$f(k) = k+1\\ \lim\limits_{x\rightarrow k}f(x) = k+1\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
$f(k) = k^2 ++1\\ \lim\limits_{x\rightarrow k}f(x) = k^2+1\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

$\lim\limits_{x \rightarrow 1^-} f(x) = x^2 + 1 = 1^2 + 1 = 1 + 1 = 2$
$\lim\limits_{x \rightarrow 1^+} f(x) = x + 1 = 1 + 1 = 2$
$f(1) = 1^2 + 1 = 2$
$R.H.L. = L.H.L. = f(1)$

Hence, at x = 2 given function is continuous
Therefore, no point of discontinuity

Question:11. Find all points of discontinuity of f, where f is defined by

$f ( x) = \left\{\begin{matrix} x^3 -3 & if \: \: x \leq 2\\ x ^2 +1 & if \: \: x > 2 \end{matrix}\right.$

Answer:

Given function is
$f ( x) = \left\{\begin{matrix} x^3 -3 & if \: \: x \leq 2\\ x ^2 +1 & if \: \: x > 2 \end{matrix}\right.$
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
$f(k) = k^2+1\\ \lim\limits_{x\rightarrow k}f(x) = k^2+1\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k > 2

case(ii) k < 2
$f(k) = k^3 -3\\ \lim\limits_{x\rightarrow k}f(x) = k^3-3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k < 2

case(iii) x = 2

$\lim\limits_{x \rightarrow 2^-} f(x) = x^3 - 3 = 2^3 - 3 = 8 - 3 = 5$
$\lim\limits_{x \rightarrow 2^+} f(x) = x^2 + 1 = 2^2 + 1 = 4 + 1 = 5$
$f(2) = 2^3 - 3 = 8 - 3 = 5$
$f(2) = R.H.L. = L.H.L.$
Hence, given function is continuous at x = 2
There, no point of discontinuity

Question:12. Find all points of discontinuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} x ^{10} -1 & if x \leq 1 \\ x ^2 & x > 1 \end{matrix}\right.$
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
$f(k) = k^2\\ \lim\limits_{x\rightarrow k}f(x) = k^2\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
$f(k) = k^{10} -1\\ \lim\limits_{x\rightarrow k}f(x) = k^{10}-1\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

$\lim\limits_{x \rightarrow 1^-} f(x) = x^{10} - 1 = 1^{10} - 1 = 1 - 1 = 0$
$\lim\limits_{x \rightarrow 1^+} f(x) = x^2 = 1^2 = 1$
$f(1) = x^{10} - 1 = 0$
$f(1) = L.H.L. \neq R.H.L.$

Hence, x = 1 is the point of discontinuity

Question:13. Is the function defined by

$f (x) = \left\{\begin{matrix} x+5 & if x \leq 1\\ x-5 & if x > 1 \end{matrix}\right.$

a continuous function?

Answer:

Given function is
$f (x) = \left\{\begin{matrix} x+5 & if x \leq 1\\ x-5 & if x > 1 \end{matrix}\right.$
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
$f(k) = k-5\\ \lim\limits_{x\rightarrow k}f(x) = k-5\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k > 1

case(ii) k < 1
$f(k) = k+5\\ \lim\limits_{x\rightarrow k}f(x) = k+5\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for each value of k < 1

case(iii) x = 1

$\lim\limits_{x \rightarrow 1^-} f(x) = x + 5 = 1 + 5 = 6$

$\lim\limits_{x \rightarrow 1^+} f(x) = x - 5 = 1 - 5 = -4$

$f(1) = x + 5 = 1 + 5 = 6$

$L.H.L. = f(1) \neq R.H.L.$

Hence, x = 1 is the point of discontinuity

Question:14. Discuss the continuity of the function f, where f is defined by

$f (x)\left\{\begin{matrix} 3 & if 0 \leq x \leq 1 \\ 4& if 1 < x < 3 \\ 5& if 3 \leq x \leq 10 \end{matrix}\right.$

Answer:

Given function is
$f (x)\left\{\begin{matrix} 3 & if 0 \leq x \leq 1 \\ 4& if 1 < x < 3 \\ 5& if 3 \leq x \leq 10 \end{matrix}\right.$
GIven function is defined for every real number k
Different cases are their
case (i) k < 1
$f(k) = 3\\ \lim\limits_{x\rightarrow k}f(x) = 3\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continous for every value of k < 1

case(ii) k = 1
$f(1) = 3 \\ \lim\limits_{x\rightarrow 1^-}f(x) = 3\\ \lim\limits_{x\rightarrow 1^+}f(x) = 4\\ R.H.L. \neq L.H.L. = f(1)$
Hence, given function is discontinous at x = 1
Therefore, x = 1 is he point od discontinuity

case(iii) 1 < k < 3
$f(k) = 4 \\ \lim\limits_{x\rightarrow k}f(x) = 4\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in 1 < k < 3 given function is continous

case(iv) k = 3
$f(3) =5\\ \lim\limits_{x\rightarrow 3^-}f(x) = 4\\ \lim\limits_{x\rightarrow 3^+}f(x) =5\\ R.H.L. = f(3) \neq L.H.L.$
Hence. x = 3 is the point of discontinuity

case(v) k > 3
$f(k) = 5 \\ \lim\limits_{x\rightarrow k}f(x) = 5 \\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continous for each and every value of k > 3
case(vi) when k < 3

$f(k) = 4 \\ \lim\limits_{x\rightarrow k}f(x) = 4\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in k < 3 given function is continous

Question:15 Discuss the continuity of the function f, where f is defined by $f(x)\left\{\begin{matrix} 2x & if &x<0 \\ 0& if &0\leq x\leq 1 \\ 4x&if & x>1 \end{matrix}\right.$

Answer:

Given function is
$f(x) = \begin{cases}
2x & \text{if } x < 0 \\
0 & \text{if } 0 \leq x \leq 1 \\
4x & \text{if } x > 1
\end{cases}$
Given function is satisfies for the all real values of x
case (i) k < 0
$f(k) = 2k$
$\lim\limits_{x \to 0^-} f(x) = 2k = f(k)$
Hence, function is continuous for all values of x < 0

case (ii) x = 0
$f(0) = 0$
L.H.L at x= 0
$\lim\limits_{x \to 0^-} f(x) = 2(0) = 0$
R.H.L. at x = 0
$\lim\limits_{x \to 0^+} f(x) = 0$
L.H.L. = R.H.L. = f(0)
Hence, function is continuous at x = 0

case (iii) k > 0
$f(k) = 0$
$\lim\limits_{x \to 0^+} f(x) = 0 = f(k)$
Hence , function is continuous for all values of x > 0

case (iv) k < 1

$f(k) = 0$

$\lim\limits_{x \to 1^-} f(x) = 0 = f(k)$

Hence , function is continuous for all values of x < 1

case (v) k > 1

$f(k) = 4k$

$\lim\limits_{x \to 1^+} f(x) = 4k = f(k)$
Hence , function is continuous for all values of x > 1

case (vi) x = 1

$f(1) = 0$

$\lim\limits_{x \to 1^-} f(1) = 0$

$\lim\limits_{x \to 1^+} f(1) = 4(1) = 4$

Hence, function is not continuous at x = 1

Question:16. Discuss the continuity of the function f, where f is defined by

$f ( x ) = \left\{\begin{matrix} -2 & if x \leq -1 \\ 2x & if -1< x \leq 1 \\ 2 & if x > 1 \end{matrix}\right.$

Answer:

Given function is
$f ( x ) = \left\{\begin{matrix} -2 & if x \leq -1 \\ 2x & if -1< x \leq 1 \\ 2 & if x > 1 \end{matrix}\right.$
GIven function is defined for every real number k
Different cases are their
case (i) k < -1
$f(k) = -2\\ \lim\limits_{x\rightarrow k}f(x) = -2\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continuous for every value of k < -1

case(ii) k = -1
$f(-1) = -2 \\ \lim\limits_{x\rightarrow -1^-}f(x) = -2\\ \lim\limits_{x\rightarrow -1^+}f(x) = 2x = 2(-1) = -2\\ R.H.L. =L.H.L. = f(-1)$
Hence, given function is continous at x = -1

case(iii) k > -1
$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continous for all values of x > -1

case(vi) -1 < k < 1
$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in -1 < k < 1 given function is continous

case(v) k = 1
$f(1) =2x = 2(1)=2\\ \lim\limits_{x\rightarrow 1^-}f(x) = 2x=2(1)=2\\ \lim\limits_{x\rightarrow 1^+}f(x) =2\\ R.H.L. = f(1) = L.H.L.$
Hence.at x =1 function is continous

case(vi) k > 1
$f(k) = 2 \\ \lim\limits_{x\rightarrow k}f(x) = 2 \\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, given function is continous for each and every value of k > 1
case(vii) when k < 1

$f(k) = 2k \\ \lim\limits_{x\rightarrow k}f(x) = 2k\\ \lim\limits_{x\rightarrow k}f(x) = f(k)$
Hence, for every value of k in k < 1 given function is continuous

Therefore, continuous at all points

Question:17. Find the relationship between a and b so that the function f defined by
$f (x) = \left\{\begin{matrix} ax +1 , &if x < 3 \\ bx +3 & if x > 3 \end{matrix}\right.$
is continuous at x = 3.

Answer:

Given function is
$f (x) = \left\{\begin{matrix} ax +1 , &if x < 3 \\ bx +3 & if x > 3 \end{matrix}\right.$
For the function to be continuous at x = 3 , R.H.L. must be equal to L.H.L.
$\lim\limits_{x\rightarrow 3^-}f(x)= ax + 1 = 3a+1\\ \lim\limits_{x\rightarrow 3^+}f(x) = bx+3=3b+3$
For the function to be continuous
$\lim\limits_{x\rightarrow 3^-}f(x) = \lim\limits_{x\rightarrow 3^+}f(x) \\ 3a + 1= 3b+3\\ 3(a-b)=2\\ a-b = \frac{2}{3}\\ a = b+\frac{2}{3}$

Question:18. For what value of l is the function defined by
$f (x) = \left\{\begin{matrix} \lambda (x^2 -2x) & if x \leq 0 \\ 4x+1 & if x > 0 \end{matrix}\right.$
continuous at x = 0? What about continuity at x = 1?

Answer:

Given function is
$f (x) = \left\{\begin{matrix} \lambda (x^2 -2x) & if x \leq 0 \\ 4x+1 & if x > 0 \end{matrix}\right.$
For the function to be continuous at x = 0 , R.H.L. must be equal to L.H.L.
$\lim\limits_{x\rightarrow 0^-}f(x) = \lambda (x^2-2x) = 0\\ \lim\limits_{x\rightarrow 0^+}f(x) = 4x+1=1$
For the function to be continuous
$\lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0^+}f(x) \\ 0\neq 1$
Hence, for no value of function is continuous at x = 0

For x = 1
$f(1)=4x+1=4(1)+1=5\\ \lim\limits_{x\rightarrow 1}f(x) =4+1=5 \\\ \lim\limits_{x\rightarrow 1}f(x) = f(x)$
Hence, given function is continuous at x =1

Question:19. Show that the function defined by $g (x) = x- [x]$ is discontinuous at all integral points. Here [x] denotes the greatest integer less than or equal to x.

Answer:

Given function is
$g (x) = x- [x]$
Given is defined for all real numbers k

$\lim\limits_{x \rightarrow k^-} f(x) = k - (k - 1) = k - k + 1 = 1$

$\lim\limits_{x \rightarrow k^+} f(x) = k - k = 0$

$\lim\limits_{x \rightarrow k^-} f(x) \neq \lim\limits_{x \rightarrow k^+} f(x)$

Hence, by this, we can say that the function defined by $g (x) = x- [x]$ is discontinuous at all integral points

Question:20. Is the function defined by $f (x) = x^2 - sin x + 5$ continuous at x = $\pi$?

Answer:

Given function is
$f (x) = x^2 - sin x + 5$
Clearly, Given function is defined at x =$\pi$
$f(\pi) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim\limits_{x\rightarrow \pi}f(x) = \pi^2-\sin \pi+5 =\pi^2-0+5 = \pi^2+5\\ \lim\limits_{x\rightarrow \pi}f(x) = f(\pi)$
Hence, the function defined by $f (x) = x^2 - sin x + 5$ continuous at x = $\pi$

Question:21. Discuss the continuity of the following functions:
a) $f (x) = \sin x + \cos x$

Answer:

Given function is
$f (x) = \sin x + \cos x$
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$g(c) = \sin c$
$\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that
$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h)$
$= \sin c \cdot \lim\limits_{h \rightarrow 0} \cos h + \cos c \cdot \lim\limits_{h \rightarrow 0} \sin h$
$= \sin c \cdot \cos 0 + \cos c \cdot \sin 0$
$= \sin c$

$\lim\limits_{x \rightarrow c} g(x) = g(c)$

Hence, function $g(x) = \sin x$ is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$
$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that
$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h)$
$= \cos c \cdot \lim\limits_{h \rightarrow 0} \cos h - \sin c \cdot \lim\limits_{h \rightarrow 0} \sin h$
$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0$
$= \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) + h(x) = sin x + cos x is also a continuous function

Question:21. b) Discuss the continuity of the following functions:
$f (x) = \sin x - \cos x$

Answer:

Given function is
$f (x) = \sin x - \cos x$
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$g(c) = \sin c$
$\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that
$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h)$
$= \sin c \cdot \lim\limits_{h \rightarrow 0} \cos h + \cos c \cdot \lim\limits_{h \rightarrow 0} \sin h$
$= \sin c \cdot \cos 0 + \cos c \cdot \sin 0$
$= \sin c$

$\lim\limits_{x \rightarrow c} g(x) = g(c)$

Hence, function $g(x) = \sin x$ is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$
$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that
$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h)$
$= \cos c \cdot \lim\limits_{h \rightarrow 0} \cos h - \sin c \cdot \lim\limits_{h \rightarrow 0} \sin h$
$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0$
$= \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function

Question:21 c) Discuss the continuity of the following functions:
$f (x) = \sin x \cdot \cos x$

Answer:

Given function is
$f (x) = \sin x . \cos x$
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$g(c) = \sin c$

$\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that

$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h)$

$= \sin c \cdot \lim\limits_{h \rightarrow 0} \cos h + \cos c \cdot \lim\limits_{h \rightarrow 0} \sin h$

$= \sin c \cdot \cos 0 + \cos c \cdot \sin 0$

$= \sin c$

$\lim\limits_{x \rightarrow c} g(x) = g(c)$

Hence, function $g(x) = \sin x$ is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$

$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that

$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h)$

$= \cos c \cdot \lim\limits_{h \rightarrow 0} \cos h - \sin c \cdot \lim\limits_{h \rightarrow 0} \sin h$

$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0$

$= \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x).h(x) = sin x .cos x is also a continuous function

Question:22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Answer:

We, know that if two function g(x) and h(x) are continuous then
$\frac{g(x)}{h(x)}$, $h(x) \neq 0$ is continuous
$\frac{1}{h(x)}$, $h(x) \neq 0$ is continuous
$\frac{1}{g(x)}$, $g(x) \neq 0$ is continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$g(c) = \sin c$

$\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that

$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h)$

Hence, function $g(x) = \sin x$ is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$

$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that

$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h)$

$= \cos c \cdot \lim\limits_{h \rightarrow 0} \cos h - \sin c \cdot \lim\limits_{h \rightarrow 0} \sin h$

$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0$

$= \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, the function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x is a continous function
So, we can say that
cosec x = $\frac{1}{\sin x} = \frac{1}{g(x)}$ is also continuous except at $x=n\pi$
sec x = $\frac{1}{\cos x} = \frac{1}{h(x)}$ is also continuous except at $x=\frac{(2n+1) \pi}{2}$
cot x = $\frac{\cos x}{\sin x} = \frac{h(x)}{g(x)}$ is also continuous except at $x=n\pi$

Question:23. Find all points of discontinuity of f, where

$f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.$

Answer:

Given function is
$f (x ) = \left\{\begin{matrix} \frac{\sin x }{x} & if x < 0 \\ x+1 & if x > 0 \end{matrix}\right.$
$\lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0}\frac{\sin x}{x} = 1\\ \lim\limits_{x\rightarrow 0^+}f(x) = x + 1 = 1\\ \lim\limits_{x\rightarrow 0^-}f(x) = \lim\limits_{x\rightarrow 0^+}f(x)$
Hence, the function is continuous
Therefore, no point of discontinuity

Question:24. Determine if f defined by
$f (x) = \left\{\begin{matrix} x^2 \sin 1/x & if x \neq 0 \\ 0 & if x = 0 \end{matrix}\right.$
is a continuous function?

Answer:

Given function is
$f (x) = \left\{\begin{matrix} x^2 \sin 1/x & if x \neq 0 \\ 0 & if x = 0 \end{matrix}\right.$
Given function is defined for all real numbers k
when x = 0
$f(0) = 0\\ \lim\limits_{x\rightarrow 0}f(x)=\lim\limits_{x\rightarrow 0}\left ( x^2\sin\frac{1}{x} \right )=\lim\limits_{x\rightarrow 0}\left ( \frac{x.\sin\frac{1}{x}}{\frac{1}{x}} \right ) = 0(1)=0 \ \ \ \ \ \ (\because\lim\limits_{x\rightarrow 0}\frac{\sin x}{x} = 1)$
$\lim\limits_{x\rightarrow 0}f(x) = f(0)$
Hence, function is continuous at x = 0
when $x \neq 0$
$f(k) = k^2\sin \frac{1}{k}\\ \lim\limits_{x\rightarrow k}f(x)=\lim\limits_{x\rightarrow k}\left ( x^2\sin\frac{1}{x} \right )=k^2\sin \frac{1}{k}\\ \lim\limits_{x\rightarrow k} = f(k)$
Hence, the given function is continuous for all points

Question:25. Examine the continuity of f, where f is defined by

$f (x) = \left\{\begin{matrix} \sin x - \cos x & if x \neq 0 \\ -1 & if x = 0 \end{matrix}\right.$

Answer:

Given function is
$f (x) = \sin x - \cos x$
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$g(c) = \sin c$

$\lim\limits_{x \rightarrow c} g(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that

$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h)$

$= \sin c \cdot \lim\limits_{h \rightarrow 0} \cos h + \cos c \cdot \lim\limits_{h \rightarrow 0} \sin h$

$= \sin c \cdot \cos 0 + \cos c \cdot \sin 0$

$= \sin c$

$\lim\limits_{x \rightarrow c} g(x) = g(c)$

Hence, function $g(x) = \sin x$ is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$

$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that

$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h)$

$= \cos c \cdot \lim\limits_{h \rightarrow 0} \cos h - \sin c \cdot \lim\limits_{h \rightarrow 0} \sin h$

$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0$

$= \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \cos x$ is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function

When x = 0
$f (0) = -1\\ \lim\limits_{x\rightarrow 0^-}f(x) = \sin 0 - \cos 0 = -1\\ \lim\limits_{x\rightarrow 0^+}f(x) = \sin 0 - \cos 0 = -1 \\ R.H.L. = L.H.L. = f(0)$
Hence, function is also continuous at x = 0

Question:26. Find the values of k so that the function f is continuous at the indicated point in Exercises

$f (x) = \left\{\begin{matrix} \frac{k \cos x }{\pi - 2x } & if x \neq \pi/2 \\ 3 & if x = \pi/2 \end{matrix}\right. \: \: \: at \: \: x = \pi /2$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} \frac{k \cos x }{\pi - 2x } & if x \neq \pi/2 \\ 3 & if x = \pi/2 \end{matrix}\right.$
When $x = \frac{\pi}{2}$
$f(\frac{\pi}{2}) = 3\\let\ x=\pi +h\\ \lim\limits_{x\rightarrow \frac{\pi}{2}}f(x)= \lim\limits_{h\rightarrow 0}\frac{k\cos\left ( \frac{\pi}{2}+h \right )}{\pi-2\left ( \frac{\pi}{2}+h \right )} = k. \lim\limits_{h\rightarrow 0}\frac{-\sin h}{-2h} = \frac{k}{2}\\$
For the function to be continuous
$\lim\limits_{x\rightarrow \frac{\pi}{2}}f(x)= f(\frac{\pi}{2})\\ \frac{k}{2} = 3\\ k = 6$
Therefore, the values of k so that the function f is continuous is 6

Question:27. Find the values of k so that the function f is continuous at the indicated point in Exercises

$f (x) = \left\{\begin{matrix} kx^2 &if x \leq 2 \\ 3 & if x > 2 \end{matrix}\right. \: \: at \: \: x = 2$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} kx^2 &if x \leq 2 \\ 3 & if x > 2 \end{matrix}\right.$
When x = 2
For the function to be continuous
f(2) = R.H.L. = LH.L.
$f(2) = 4k\\ \lim\limits_{x\rightarrow 2^-}f(x)= 4k\\ \lim\limits_{x\rightarrow 2^+}f(x) = 3\\ f(2) = \lim\limits_{x\rightarrow 2^-}f(x) = \lim\limits_{x\rightarrow 2^+}f(x)\\ 4k = 3\\ k = \frac{3}{4}$
Hence, the values of k so that the function f is continuous at x= 2 is $\frac{3}{4}$

Question:28. Find the values of k so that the function f is continuous at the indicated point in Exercises

$f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right. \: \: at \: \: x = \pi$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} kx + 1 & if x \leq \pi \\ \cos x & if x > \pi \end{matrix}\right.$
When x = $\pi$
For the function to be continuous
f($\pi$) = R.H.L. = LH.L.
$f(\pi) = k\pi + 1$
$\lim\limits_{x \rightarrow \pi^-} f(x) = k\pi + 1$
$\lim\limits_{x \rightarrow \pi^+} f(x) = \cos \pi = -1$
$f(\pi) = \lim\limits_{x \rightarrow \pi^-} f(x) = \lim\limits_{x \rightarrow \pi^+} f(x)$
$k\pi + 1 = -1$
$k = \frac{-2}{\pi}$
Hence, the values of k so that the function f is continuous at x= $\pi$ is $\frac{-2}{\pi}$

Question:29 Find the values of k so that the function f is continuous at the indicated point in Exercises

$f (x) = \left\{\begin{matrix} kx +1 & if x \leq 5 \\ 3x-5 & if x > 5 \end{matrix}\right. \: \: at x = 5$

Answer:

Given function is
$f (x) = \left\{\begin{matrix} kx +1 & if x \leq 5 \\ 3x-5 & if x > 5 \end{matrix}\right.$
When x = 5
For the function to be continuous
f(5) = R.H.L. = LH.L.

$f(5) = 5k + 1$

$\lim\limits_{x \rightarrow 5^-} f(x) = 5k + 1$

$\lim\limits_{x \rightarrow 5^+} f(x) = 3(5) - 5 = 15 - 5 = 10$

$f(5) = \lim\limits_{x \rightarrow 5^-} f(x) = \lim\limits_{x \rightarrow 5^+} f(x)$

$5k + 1 = 10$

$k = \frac{9}{5}$

Hence, the values of k so that the function f is continuous at x= 5 is $\frac{9}{5}$

Question:30 Find the values of a and b such that the function defined by
$f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right.$
is a continuous function.

Answer:

Given continuous function is

$f(x) = \left\{
\begin{matrix}
5 & \text{if } x \leq 2 \\
ax + b & \text{if } 2 < x < 10 \\
21 & \text{if } x > 10
\end{matrix}
\right.$

The function is continuous, so
$\lim\limits_{x \rightarrow 2^-} f(x) = \lim\limits_{x \rightarrow 2^+} f(x)$
and
$\lim\limits_{x \rightarrow 10^-} f(x) = \lim\limits_{x \rightarrow 10^+} f(x)$

$\lim\limits_{x \rightarrow 2^-} f(x) = 5$
$\lim\limits_{x \rightarrow 2^+} f(x) = ax + b = 2a + b$
$2a + b = 5 \quad \quad \quad \quad \quad \quad \quad \quad \text{(i)}$

and

$\lim\limits_{x \rightarrow 10^-} f(x) = ax + b = 10a + b$
$\lim\limits_{x \rightarrow 10^+} f(x) = 21$
$10a + b = 21 \quad \quad \quad \quad \quad \text{(ii)}$
By solving equation (i) and (ii)
a = 2 and b = 1
Hence, values of a and b such that the function defined by $f (x) = \left\{\begin{matrix} 5 & if\: \: x \leq 2 \\ ax + b & if\: \: 2 < x < 10 \\ 21 , & if\: \: x > 10 \end{matrix}\right.$ is a continuous function is 2 and 1 respectively

Question:31. Show that the function defined by$f (x) = \cos (x^2 )$ is a continuous function.

Answer:

Given function is
$f (x) = \cos (x^2 )$
given function is defined for all real values of x
Let x = k + h
if $x\rightarrow k , \ then \ h \rightarrow 0$
$f(k) = \cos k^2\\ \lim\limits_{x \rightarrow k}f(x) = \lim\limits_{x \rightarrow k}\cos x^2 = \lim\limits_{h \rightarrow 0}\cos (k+h)^2 = \cos k^2\\ \lim\limits_{x \rightarrow k}f(x) = f(k)$
Hence, the function $f (x) = \cos (x^2 )$ is a continuous function

Question:32. Show that the function defined by$f (x) = |\cos x |$ is a continuous function.

Answer:

Given function is
$f (x) = |\cos x |$
given function is defined for all values of x
f = g o h , g(x) = |x| and h(x) = cos x
Now,
$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < 0
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k < 0

case (ii) k > 0
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0

case (iii) k = 0
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim\limits_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = cos x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \cos c$

$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \cos x = \lim\limits_{h \rightarrow 0} \cos(c + h)$

We know that

$\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\lim\limits_{h \rightarrow 0} \cos(c + h) = \lim\limits_{h \rightarrow 0} (\cos c \cos h - \sin c \sin h) = \lim\limits_{h \rightarrow 0} \cos c \cos h - \lim\limits_{h \rightarrow 0} \sin c \sin h$

$= \cos c \cdot \cos 0 - \sin c \cdot \sin 0 = \cos c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \cos x$ is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = g o h is also continuous

Question:33. Examine that sin | x| is a continuous function.

Answer:

Given function is
f(x) = sin |x|
f(x) = h o g , h(x) = sin x and g(x) = |x|
Now,

$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < 0
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k < 0

case (ii) k > 0
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0

case (iii) k = 0
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim\limits_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = sin x
Let suppose x = c + h
if $x \rightarrow c , \ then \ h \rightarrow 0$

$h(c) = \sin c$

$\lim\limits_{x \rightarrow c} h(x) = \lim\limits_{x \rightarrow c} \sin x = \lim\limits_{h \rightarrow 0} \sin(c + h)$

We know that

$\sin(a + b) = \sin a \cos b + \cos a \sin b$

$\lim\limits_{h \rightarrow 0} \sin(c + h) = \lim\limits_{h \rightarrow 0} (\sin c \cos h + \cos c \sin h) = \lim\limits_{h \rightarrow 0} \sin c \cos h + \lim\limits_{h \rightarrow 0} \cos c \sin h$

$= \sin c \cdot \cos 0 + \cos c \cdot \sin 0 = \sin c$

$\lim\limits_{x \rightarrow c} h(x) = h(c)$

Hence, function $h(x) = \sin x$ is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = h o g is also continuous

Question:34. Find all the points of discontinuity of f defined by $f (x) = | x| - | x + 1|.$

Answer:

Given function is
$f (x) = | x| - | x + 1|$
Let g(x) = |x| and h(x) = |x+1|
Now,
$g(x)\begin{cases} -x & \text{ if } x<0 \\ 0 & \text{ if } x= 0\\ x& \text{ if } x>0 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < 0
$g(k) = -k\\ \lim\limits_{x\rightarrow k}g(x) = -k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k < 0

case (ii) k > 0
$g(k) = k\\ \lim\limits_{x\rightarrow k}g(x) = k\\ \lim\limits_{x\rightarrow k}g(x) = g(k)$
Hence, g(x) is continuous when k > 0

case (iii) k = 0
$g(0) = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = -x = 0\\ \lim\limits_{x\rightarrow 0^+}g(x ) = x = 0\\ \lim\limits_{x\rightarrow 0^-}g(x) = g(0) = \lim\limits_{x\rightarrow 0^+}g(x )$
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x

Now,
$h(x)\begin{cases} -(x+1) & \text{ if } x<-1 \\ 0 & \text{ if } x= -1\\ (x+1)& \text{ if } x>-1 \end{cases}$
g(x) is defined for all real numbers k
case(i) k < -1
$h(k) = -(k+1)\\ \lim\limits_{x\rightarrow k}h(x) = -(k+1)\\ \lim\limits_{x\rightarrow k}h(x) = h(k)$
Hence, h(x) is continuous when k < -1

case (ii) k > -1
$h(k) = k+1\\ \lim\limits_{x\rightarrow k}h(x) = k+1\\ \lim\limits_{x\rightarrow k}h(x) = h(k)$
Hence, h(x) is continuous when k > -1

case (iii) k = -1
$h(-1) = 0\\ \lim\limits_{x\rightarrow -1^-}h(x) = -(x-1) = 0\\ \lim\limits_{x\rightarrow -1^+}h(x ) = x+1 = 0\\ \lim\limits_{x\rightarrow -1^-}h(x) = h(0) = \lim\limits_{x\rightarrow -1^+}h(x )$
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x
g(x) is continuous and h(x) is continuous
Therefore, f(x) = g(x) - h(x) = |x| - |x+1| is also continuous

Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.1

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.1 are:

  • The basic idea of continuity: In simple words, a function is said to be continuous at a point if there are no breaks or jumps at that point. Mathematically, we can say that a function $f$ is said to be continuous at any point $c$ if $\lim\limits_{x→c}f(x)=f(c)$.
  • Algebra of continuous functions: If the functions $f(x)$ and $g(x)$ are continuous at $x=a$, then $f(x)+g(x)$, $f(x)+g(x)$, $f(x).g(x)$, and $\frac{f(x)}{g(x)}$ [given $g(x)\neq0$] are also continuous at $x=a$.
  • Continuity test using limits: A function $f(x)$ is said to be continuous at $x=a$,

if left-hand limit = right hand limit = function value at $x=a$

i.e. $\lim\limits_{x→a-}f(x)=\lim\limits_{x→a+}f(x)=f(a)$

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Check whether function f(x) = x + 3 is continuous at x = 1 ?
A:

f(1^+)= 1+3 = 4

f(1^-)= 1+3 = 4 = f(1)

Hence f(x) is continuous at x=1.

Q: If f(x), g(x) are continuous functions then what about continuity of f(x) + g(x) ?
A:

If f(x), g(x) are continuous functions then f(x) + g(x) is also a continuous function.

Q: If f(x), g(x) are continuous functions then what about continuity of f(x) - g(x) ?
A:

If f(x), g(x) are continuous functions then f(x) - g(x) is also a continuous function.

Q: If two functions are continuous then check continuity of product of the given two functions.
A:

If two functions are continuous then check the product of the given two functions is also a continuous function.

Q: Do every continuous function is a differential function ?
A:

No, every continuous function need not to be a differential function.

Q: Do every differential function is a continuous function ?
A:

Yes, every differential function is a continuous function.

Q: How many questions are there in the exercise 5.1 Class 12 Maths ?
A:

NCERT book Exercise 5.1 Class 12 Maths is consists of 34 long answer questions related to checking the continuity of the functions. For more questions students can refer to NCERT exemplar problems.

Q: How many exercises are in there in the chapter 5 Class 12 Maths ?
A:

There are eight main exercises and one miscellaneous exercise given in the chapter 5 Class 12 Maths.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

8 Sep'25 - 30 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.

You can download it in pdf form from below link

CBSE DATE SHEET 2026

all the best for your exam!!

Hii neeraj!

You can check CBSE class 12th registration number in:

  • Your class 12th board exam admit card. Please do check admit card for registration number, it must be there.
  • You can also check the registration number in your class 12th marksheet in case you have got it.
  • Alternatively you can also visit your school and ask for the same in the administration office they may tell you the registration number.

Hope it helps!