Pearson | PTE
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally
NCERT Solutions for Exercise 5.1 Class 12 Maths Chapter 5 Continuity and Differentiability are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In the previous class, you have already learned about limits, derivatives, limits, and derivatives of trigonometric functions. In this article, you will get NCERT solutions for Class 12 Maths chapter 5 exercise 5.1. NCERT book Class 12 Maths chapter 5 exercise 5.1 consists of questions related to finding whether a function is continuous or not.
Continuity of functions can't be learned without fundamental knowledge of limit which you have learned already. It is a fundamental concept of calculus that you must know to understand more concepts of calculus. Solving exercise 5.1 Class 12 Maths questions are very important to get conceptual clarity about continuity. There are different theorems to check the continuity of different types of functions mentioned in the NCERT syllabus of Class 12 Maths. 12th class Maths exercise 5.1 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also, see
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally
Question:1. Prove that the function is continuous at and at
Answer:
Given function is
Hence, function is continous at x = 0
Hence, function is continous at x = -3
Hence, function is continuous at x = 5
Question:2.Examine the continuity of the function
Answer:
Given function is
at x = 3
Hence, function is continous at x = 3
Question:3 Examine the following functions for continuity.
Answer:
Given function is
Our function is defined for every real number say k
and value at x = k ,
and also,
Hence, the function is continuous at every real number
Question:3 b) Examine the following functions for continuity.
Answer:
Given function is
For every real number k ,
We get,
Hence, function continuous for every real value of x,
Question:3 c) Examine the following functions for continuity.
Answer:
Given function is
For every real number k ,
We gwt,
Hence, function continuous for every real value of x ,
Question:3 d) Examine the following functions for continuity.
Answer:
Given function is
for x > 5 , f(x) = x - 5
for x < 5 , f(x) = 5 - x
SO, different cases are their
case(i) x > 5
for every real number k > 5 , f(x) = x - 5 is defined
Hence, function f(x) = x - 5 is continous for x > 5
case (ii) x < 5
for every real number k < 5 , f(x) = 5 - x is defined
Hence, function f(x) = 5 - x is continous for x < 5
case(iii) x = 5
for x = 5 , f(x) = x - 5 is defined
Hence, function f(x) = x - 5 is continous for x = 5
Hence, the function is continuous for each and every real number
Question:4. Prove that the function is continuous at x = n, where n is a positive integer
Answer:
GIven function is
the function is defined for all positive integer, n
Hence, the function is continuous at x = n, where n is a positive integer
Question:5. Is the function f defined by
continuous at x = 0? At x = 1? At x = 2?
Answer:
Given function is
function is defined at x = 0 and its value is 0
Hence , given function is continous at x = 0
given function is defined for x = 1
Now, for x = 1 Right-hand limit and left-hand limit are not equal
R.H.L L.H.L.
Therefore, given function is not continous at x =1
Given function is defined for x = 2 and its value at x = 2 is 5
Hence, given function is continous at x = 2
Question:6. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
Hence, given function is continuous for each value of k > 2
case(ii) k < 2
Hence, given function is continuous for each value of k < 2
case(iii) x = 2
Right hand limit at x= 2 Left hand limit at x = 2
Therefore, x = 2 is the point of discontinuity
Question:7. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < -3
Hence, given function is continuous for every value of k < -3
case(ii) k = -3
Hence, given function is continous for x = -3
case(iii) -3 < k < 3
Hence, for every value of k in -3 < k < 3 given function is continous
case(iv) k = 3
Hence. x = 3 is the point of discontinuity
case(v) k > 3
Hence, given function is continuous for each and every value of k > 3
Question:8. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
if x > 0 ,
if x < 0 ,
given function is defined for every real number k
Now,
case(i) k < 0
Hence, given function is continuous for every value of k < 0
case(ii) k > 0
Hence, given function is continuous for every value of k > 0
case(iii) x = 0
Hence, 0 is the only point of discontinuity
Question:9. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
if x < 0 ,
Now, for any value of x, the value of our function is -1
Therefore, the given function is continuous for each and every value of x
Hence, no point of discontinuity
Question:10. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, at x = 2 given function is continuous
Therefore, no point of discontinuity
Question:11. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
Hence, given function is continuous for each value of k > 2
case(ii) k < 2
Hence, given function is continuous for each value of k < 2
case(iii) x = 2
Hence, given function is continuous at x = 2
There, no point of discontinuity
Question:12. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, x = 1 is the point of discontinuity
Question:13. Is the function defined by
a continuous function?
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, x = 1 is the point of discontinuity
Question:14. Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < 1
Hence, given function is continous for every value of k < 1
case(ii) k = 1
Hence, given function is discontinous at x = 1
Therefore, x = 1 is he point od discontinuity
case(iii) 1 < k < 3
Hence, for every value of k in 1 < k < 3 given function is continous
case(iv) k = 3
Hence. x = 3 is the point of discontinuity
case(v) k > 3
Hence, given function is continous for each and every value of k > 3
case(vi) when k < 3
Hence, for every value of k in k < 3 given function is continous
Question:15 Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
Given function is satisfies for the all real values of x
case (i) k < 0
Hence, function is continuous for all values of x < 0
case (ii) x = 0
L.H.L at x= 0
R.H.L. at x = 0
L.H.L. = R.H.L. = f(0)
Hence, function is continuous at x = 0
case (iii) k > 0
Hence , function is continuous for all values of x > 0
case (iv) k < 1
Hence , function is continuous for all values of x < 1
case (v) k > 1
Hence , function is continuous for all values of x > 1
case (vi) x = 1
Hence, function is not continuous at x = 1
Question:16. Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < -1
Hence, given function is continuous for every value of k < -1
case(ii) k = -1
Hence, given function is continous at x = -1
case(iii) k > -1
Hence, given function is continous for all values of x > -1
case(vi) -1 < k < 1
Hence, for every value of k in -1 < k < 1 given function is continous
case(v) k = 1
Hence.at x =1 function is continous
case(vi) k > 1
Hence, given function is continous for each and every value of k > 1
case(vii) when k < 1
Hence, for every value of k in k < 1 given function is continuous
Therefore, continuous at all points
Question:17. Find the relationship between a and b so that the function f defined by
is continuous at x = 3.
Answer:
Given function is
For the function to be continuous at x = 3 , R.H.L. must be equal to L.H.L.
For the function to be continuous
Question:18. For what value of l is the function defined by
continuous at x = 0? What about continuity at x = 1?
Answer:
Given function is
For the function to be continuous at x = 0 , R.H.L. must be equal to L.H.L.
For the function to be continuous
Hence, for no value of function is continuous at x = 0
For x = 1
Hence, given function is continuous at x =1
Answer:
Given function is
Given is defined for all real numbers k
Hence, by this, we can say that the function defined by is discontinuous at all integral points
Question:20. Is the function defined by continuous at x = ?
Answer:
Given function is
Clearly, Given function is defined at x =
Hence, the function defined by continuous at x =
Question:21. Discuss the continuity of the following functions:
a)
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) + h(x) = sin x + cos x is also a continuous function
Question:21. b) Discuss the continuity of the following functions:
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function
Question:21 c) Discuss the continuity of the following functions:
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x).h(x) = sin x .cos x is also a continuous function
Question:22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Answer:
We, know that if two function g(x) and h(x) are continuous then
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, the function is a continuous function
We proved independently that sin x and cos x is a continous function
So, we can say that
cosec x = is also continuous except at
sec x = is also continuous except at
cot x = is also continuous except at
Question:23. Find all points of discontinuity of f, where
Answer:
Given function is
Hence, the function is continuous
Therefore, no point of discontinuity
Question:24. Determine if f defined by
is a continuous function?
Answer:
Given function is
Given function is defined for all real numbers k
when x = 0
Hence, function is continuous at x = 0
when
Hence, the given function is continuous for all points
Question:25. Examine the continuity of f, where f is defined by
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function
When x = 0
Hence, function is also continuous at x = 0
Question:26. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When
For the function to be continuous
Therefore, the values of k so that the function f is continuous is 6
Question:27. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x = 2
For the function to be continuous
f(2) = R.H.L. = LH.L.
Hence, the values of k so that the function f is continuous at x= 2 is
Question:28. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x =
For the function to be continuous
f() = R.H.L. = LH.L.
Hence, the values of k so that the function f is continuous at x= is
Question:29 Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x = 5
For the function to be continuous
f(5) = R.H.L. = LH.L.
Hence, the values of k so that the function f is continuous at x= 5 is
Question:30 Find the values of a and b such that the function defined by
is a continuous function.
Answer:
Given continuous function is
The function is continuous so
By solving equation (i) and (ii)
a = 2 and b = 1
Hence, values of a and b such that the function defined by is a continuous function is 2 and 1 respectively
Question:31. Show that the function defined by is a continuous function.
Answer:
Given function is
given function is defined for all real values of x
Let x = k + h
if
Hence, the function is a continuous function
Question:32. Show that the function defined by is a continuous function.
Answer:
Given function is
given function is defined for all values of x
f = g o h , g(x) = |x| and h(x) = cos x
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = cos x
Let suppose x = c + h
if
Hence, function is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = g o h is also continuous
Question:33. Examine that sin | x| is a continuous function.
Answer:
Given function is
f(x) = sin |x|
f(x) = h o g , h(x) = sin x and g(x) = |x|
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = sin x
Let suppose x = c + h
if
Hence, function is a continuous function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = h o g is also continuous
Question:34. Find all the points of discontinuity of f defined by
Answer:
Given function is
Let g(x) = |x| and h(x) = |x+1|
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
g(x) is defined for all real numbers k
case(i) k < -1
Hence, h(x) is continuous when k < -1
case (ii) k > -1
Hence, h(x) is continuous when k > -1
case (iii) k = -1
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x
g(x) is continuous and h(x) is continuous
Therefore, f(x) = g(x) - h(x) = |x| - |x+1| is also continuous
In Class 12th Maths chapter 5 exercise 5.1 there are 34 long answer types questions only checking your knowledge of continuity. Many questions in Class 12 Maths ch 5 ex 5.1 are related to checking the continuity of trigonometric functions. There are 20 examples and some important theorems given before this exercise in the NCERT textbook. Solving these examples is a must to do before going to the Class 12th Maths chapter 5 exercise 5.1 questions because it will help you in solving NCERT problems.
Also Read| Continuity and Differentiability Class 12th Chapter 5 Notes
Also see-
Happy learning!!!
f(1^+)= 1+3 = 4
f(1^-)= 1+3 = 4 = f(1)
Hence f(x) is continuous at x=1.
If f(x), g(x) are continuous functions then f(x) + g(x) is also a continuous function.
If f(x), g(x) are continuous functions then f(x) - g(x) is also a continuous function.
If two functions are continuous then check the product of the given two functions is also a continuous function.
No, every continuous function need not to be a differential function.
Yes, every differential function is a continuous function.
NCERT book Exercise 5.1 Class 12 Maths is consists of 34 long answer questions related to checking the continuity of the functions. For more questions students can refer to NCERT exemplar problems.
There are eight main exercises and one miscellaneous exercise given in the chapter 5 Class 12 Maths.
Admit Card Date:13 December,2024 - 06 January,2025
Late Fee Application Date:13 December,2024 - 22 December,2024
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters