NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
In our real world, some of the roads are smooth and uninterrupted, while some are rough and broken into multiple pieces. In mathematics, graphs of the functions behave similarly; some are smooth and without any interruption, while some have jumps, breaks and sudden turns. This is where continuity and differentiability play an important role. In the Class 12 maths chapter 5 NCERT, you find the concepts of continuity and differentiability. This article on NCERT Solutions for exercise 5.1 Class 12 Maths Chapter 5 - Continuity and Differentiability, offers clear and step-by-step solutions for the exercise problems, which will help the students build confidence and help them make a strong foundation for advanced calculus.
Steps to check CBSE Class 12 score sheet through Umang App are as follows.
Question:1. Prove that the function
Answer:
Given function is
Hence, function is continous at x = 0
Hence, function is continous at x = -3
Hence, function is continuous at x = 5
Question:2.Examine the continuity of the function
Answer:
Given function is
at x = 3
Hence, function is continous at x = 3
Question:3 Examine the following functions for continuity.
Answer:
Given function is
Our function is defined for every real number say k
and value at x = k ,
and also,
Hence, the function
Question:3 b) Examine the following functions for continuity.
Answer:
Given function is
For every real number k ,
We get,
Hence, function
Question:3 c) Examine the following functions for continuity.
Answer:
Given function is
For every real number k ,
We gwt,
Hence, function
Question:3 d) Examine the following functions for continuity.
Answer:
Given function is
for x > 5 , f(x) = x - 5
for x < 5 , f(x) = 5 - x
SO, different cases are their
case(i) x > 5
for every real number k > 5 , f(x) = x - 5 is defined
Hence, function f(x) = x - 5 is continous for x > 5
case (ii) x < 5
for every real number k < 5 , f(x) = 5 - x is defined
Hence, function f(x) = 5 - x is continous for x < 5
case(iii) x = 5
for x = 5 , f(x) = x - 5 is defined
Hence, function f(x) = x - 5 is continous for x = 5
Hence, the function
Question:4. Prove that the function
Answer:
GIven function is
the function
Hence, the function
Question:5. Is the function f defined by
continuous at x = 0? At x = 1? At x = 2?
Answer:
Given function is
function is defined at x = 0 and its value is 0
Hence , given function is continous at x = 0
given function is defined for x = 1
Now, for x = 1 Right-hand limit and left-hand limit are not equal
R.H.L
Therefore, given function is not continous at x =1
Given function is defined for x = 2 and its value at x = 2 is 5
Hence, given function is continous at x = 2
Question:6. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
Hence, given function is continuous for each value of k > 2
case(ii) k < 2
Hence, given function is continuous for each value of k < 2
case(iii) x = 2
Right hand limit at x= 2
Therefore, x = 2 is the point of discontinuity
Question:7. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < -3
Hence, given function is continuous for every value of k < -3
case(ii) k = -3
Hence, given function is continous for x = -3
case(iii) -3 < k < 3
Hence, for every value of k in -3 < k < 3 given function is continous
case(iv) k = 3
Hence. x = 3 is the point of discontinuity
case(v) k > 3
Hence, given function is continuous for each and every value of k > 3
Question:8. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
if x > 0 ,
if x < 0 ,
given function is defined for every real number k
Now,
case(i) k < 0
Hence, given function is continuous for every value of k < 0
case(ii) k > 0
Hence, given function is continuous for every value of k > 0
case(iii) x = 0
Hence, 0 is the only point of discontinuity
Question:9. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
if x < 0 ,
Now, for any value of x, the value of our function is -1
Therefore, the given function is continuous for each and every value of x
Hence, no point of discontinuity
Question:10. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, at x = 2 given function is continuous
Therefore, no point of discontinuity
Question:11. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 2
Hence, given function is continuous for each value of k > 2
case(ii) k < 2
Hence, given function is continuous for each value of k < 2
case(iii) x = 2
Hence, given function is continuous at x = 2
There, no point of discontinuity
Question:12. Find all points of discontinuity of f, where f is defined by
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, x = 1 is the point of discontinuity
Question:13. Is the function defined by
a continuous function?
Answer:
Given function is
given function is defined for every real number k
There are different cases for the given function
case(i) k > 1
Hence, given function is continuous for each value of k > 1
case(ii) k < 1
Hence, given function is continuous for each value of k < 1
case(iii) x = 1
Hence, x = 1 is the point of discontinuity
Question:14. Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < 1
Hence, given function is continous for every value of k < 1
case(ii) k = 1
Hence, given function is discontinous at x = 1
Therefore, x = 1 is he point od discontinuity
case(iii) 1 < k < 3
Hence, for every value of k in 1 < k < 3 given function is continous
case(iv) k = 3
Hence. x = 3 is the point of discontinuity
case(v) k > 3
Hence, given function is continous for each and every value of k > 3
case(vi) when k < 3
Hence, for every value of k in k < 3 given function is continous
Question:15 Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
Given function is satisfies for the all real values of x
case (i) k < 0
Hence, function is continuous for all values of x < 0
case (ii) x = 0
L.H.L at x= 0
R.H.L. at x = 0
L.H.L. = R.H.L. = f(0)
Hence, function is continuous at x = 0
case (iii) k > 0
Hence , function is continuous for all values of x > 0
case (iv) k < 1
Hence , function is continuous for all values of x < 1
case (v) k > 1
Hence , function is continuous for all values of x > 1
case (vi) x = 1
Hence, function is not continuous at x = 1
Question:16. Discuss the continuity of the function f, where f is defined by
Answer:
Given function is
GIven function is defined for every real number k
Different cases are their
case (i) k < -1
Hence, given function is continuous for every value of k < -1
case(ii) k = -1
Hence, given function is continous at x = -1
case(iii) k > -1
Hence, given function is continous for all values of x > -1
case(vi) -1 < k < 1
Hence, for every value of k in -1 < k < 1 given function is continous
case(v) k = 1
Hence.at x =1 function is continous
case(vi) k > 1
Hence, given function is continous for each and every value of k > 1
case(vii) when k < 1
Hence, for every value of k in k < 1 given function is continuous
Therefore, continuous at all points
Question:17. Find the relationship between a and b so that the function f defined by
is continuous at x = 3.
Answer:
Given function is
For the function to be continuous at x = 3 , R.H.L. must be equal to L.H.L.
For the function to be continuous
Question:18. For what value of l is the function defined by
continuous at x = 0? What about continuity at x = 1?
Answer:
Given function is
For the function to be continuous at x = 0 , R.H.L. must be equal to L.H.L.
For the function to be continuous
Hence, for no value of function is continuous at x = 0
For x = 1
Hence, given function is continuous at x =1
Answer:
Given function is
Given is defined for all real numbers k
Hence, by this, we can say that the function defined by
Question:20. Is the function defined by
Answer:
Given function is
Clearly, Given function is defined at x =
Hence, the function defined by
Question:21. Discuss the continuity of the following functions:
a)
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) + h(x) = sin x + cos x is also a continuous function
Question:21. b) Discuss the continuity of the following functions:
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function
Question:21 c) Discuss the continuity of the following functions:
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x).h(x) = sin x .cos x is also a continuous function
Question:22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Answer:
We, know that if two function g(x) and h(x) are continuous then
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, the function
We proved independently that sin x and cos x is a continous function
So, we can say that
cosec x =
sec x =
cot x =
Question:23. Find all points of discontinuity of f, where
Answer:
Given function is
Hence, the function is continuous
Therefore, no point of discontinuity
Question:24. Determine if f defined by
is a continuous function?
Answer:
Given function is
Given function is defined for all real numbers k
when x = 0
Hence, function is continuous at x = 0
when
Hence, the given function is continuous for all points
Question:25. Examine the continuity of f, where f is defined by
Answer:
Given function is
Given function is defined for all real number
We, know that if two function g(x) and h(x) are continuous then g(x)+h(x) , g(x)-h(x) , g(x).h(x) allare continuous
Lets take g(x) = sin x and h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
We proved independently that sin x and cos x is continous function
So, we can say that
f(x) = g(x) - h(x) = sin x - cos x is also a continuous function
When x = 0
Hence, function is also continuous at x = 0
Question:26. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When
For the function to be continuous
Therefore, the values of k so that the function f is continuous is 6
Question:27. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x = 2
For the function to be continuous
f(2) = R.H.L. = LH.L.
Hence, the values of k so that the function f is continuous at x= 2 is
Question:28. Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x =
For the function to be continuous
f(
Hence, the values of k so that the function f is continuous at x=
Question:29 Find the values of k so that the function f is continuous at the indicated point in Exercises
Answer:
Given function is
When x = 5
For the function to be continuous
f(5) = R.H.L. = LH.L.
Hence, the values of k so that the function f is continuous at x= 5 is
Question:30 Find the values of a and b such that the function defined by
is a continuous function.
Answer:
Given continuous function is
The function is continuous, so
and
and
By solving equation (i) and (ii)
a = 2 and b = 1
Hence, values of a and b such that the function defined by
Question:31. Show that the function defined by
Answer:
Given function is
given function is defined for all real values of x
Let x = k + h
if
Hence, the function
Question:32. Show that the function defined by
Answer:
Given function is
given function is defined for all values of x
f = g o h , g(x) = |x| and h(x) = cos x
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = cos x
Let suppose x = c + h
if
We know that
Hence, function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = g o h is also continuous
Question:33. Examine that sin | x| is a continuous function.
Answer:
Given function is
f(x) = sin |x|
f(x) = h o g , h(x) = sin x and g(x) = |x|
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
h(x) = sin x
Let suppose x = c + h
if
We know that
Hence, function
g(x) is continuous , h(x) is continuous
Therefore, f(x) = h o g is also continuous
Question:34. Find all the points of discontinuity of f defined by
Answer:
Given function is
Let g(x) = |x| and h(x) = |x+1|
Now,
g(x) is defined for all real numbers k
case(i) k < 0
Hence, g(x) is continuous when k < 0
case (ii) k > 0
Hence, g(x) is continuous when k > 0
case (iii) k = 0
Hence, g(x) is continuous when k = 0
Therefore, g(x) = |x| is continuous for all real values of x
Now,
g(x) is defined for all real numbers k
case(i) k < -1
Hence, h(x) is continuous when k < -1
case (ii) k > -1
Hence, h(x) is continuous when k > -1
case (iii) k = -1
Hence, h(x) is continuous when k = -1
Therefore, h(x) = |x+1| is continuous for all real values of x
g(x) is continuous and h(x) is continuous
Therefore, f(x) = g(x) - h(x) = |x| - |x+1| is also continuous
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.1 are:
if left-hand limit = right hand limit = function value at
i.e.
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
f(1^+)= 1+3 = 4
f(1^-)= 1+3 = 4 = f(1)
Hence f(x) is continuous at x=1.
If f(x), g(x) are continuous functions then f(x) + g(x) is also a continuous function.
If f(x), g(x) are continuous functions then f(x) - g(x) is also a continuous function.
If two functions are continuous then check the product of the given two functions is also a continuous function.
No, every continuous function need not to be a differential function.
Yes, every differential function is a continuous function.
NCERT book Exercise 5.1 Class 12 Maths is consists of 34 long answer questions related to checking the continuity of the functions. For more questions students can refer to NCERT exemplar problems.
There are eight main exercises and one miscellaneous exercise given in the chapter 5 Class 12 Maths.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters