NCERT Solutions for Exercise 5.2 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.2 Class 12 Maths Chapter 5 - Continuity and Differentiability

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 23 Apr 2025, 11:00 PM IST

If we can imagine a function as a road, then continuity is that the road has no gaps or breaks. While differentiability means that the road is smooth enough to ride a bike comfortably. Together, they make a perfect road for calculus to travel on. In exercise 5.2 of the chapter Continuity and Differentiability, we will look beyond the concepts of continuity and dive deep into the world of differentiability. We will learn if a function is properly smooth and consistent, so that we can differentiate that function. This article on the NCERT Solutions for Exercise 5.2 Class 12 Maths Chapter 5 - Continuity and Differentiability provides clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and improve their understanding about differentiability. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 5 Exercise 5.2 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.2

Question:1.Differentiate the functions with respect to x in

$\sin (x^2 +5 )$

Answer:

Given function is
$f(x)=\sin (x^2 +5 )$
when we differentiate it w.r.t. x.
Lets take $t = x^2+5$ . then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (x^2+5)$
$\frac{dt}{dx} = \frac{d(x^2+5 )}{dx} = 2x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (x^2+5).2x$
Therefore, the answer is $2x \cos (x^2+5)$

Question:2. Differentiate the functions with respect to x in

$\cos ( \sin x )$

Answer:

Given function is
$f(x)= \cos ( \sin x )$
Lets take $t = \sin x$ then,
$f(t) = \cos t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ ( By chain rule)
$\frac{df(t)}{dt} = \frac{d(\cos t)}{dt} = -\sin t = -\sin (\sin x)$
$\frac{dt}{dx} = \frac{d(\sin x)}{dt} = \cos x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = -\sin(\sin x).\cos x$
Therefore, the answer is $-\sin(\sin x).\cos x$

Question:3. Differentiate the functions with respect to x in

$\sin (ax +b )$

Answer:

Given function is
$f(x) = \sin (ax +b )$
when we differentiate it w.r.t. x.
Lets take $t = ax+b$ . then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (ax+b)$
$\frac{dt}{dx} = \frac{d(ax+b )}{dx} = a$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (ax+b).a$
Therefore, the answer is $a \cos (ax+b)$

Question:4. Differentiate the functions with respect to x in

$\sec (\tan (\sqrt x) )$

Answer:

Given function is
$f(x)=\sec (\tan (\sqrt x) )$
when we differentiate it w.r.t. x.
Lets take $t = \sqrt x$ . then,
$f(t) = \sec (\tan t)$
take $\tan t = k$. then,
$f(k) = \sec k$
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(k)}{dk} = \frac{d(\sec k )}{dk} = \sec k \tan k = \sec(\tan\sqrt x)\tan(\tan\sqrt x)$
$(\because k = \tan t \ and \ t = \sqrt x)$
$\frac{df(t)}{dt} = \frac{d(\tan t )}{dt} = \sec^2 t =\sec^2 (\sqrt x) \ \ \ \ \ \ (\because t = \sqrt x)$
$\frac{dt}{dx} = \frac{d(\sqrt x)}{dx} = \frac{1}{2\sqrt x}$
Now,
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx} =\sec(\tan \sqrt x)\tan(\tan \sqrt x).\sec^2 (\sqrt x) . \frac{1}{2\sqrt x}$
Therefore, the answer is $\frac{\sec(\tan \sqrt x).\tan(\tan \sqrt x).\sec^2 (\sqrt x)}{2\sqrt x}$

Question:5. Differentiate the functions with respect to x in

$\frac{\sin (ax +b )}{\cos (cx + d)}$

Answer:

Given function is
$f(x) = \frac{\sin (ax +b )}{\cos (cx + d)} = \frac{g(x)}{h(x)}$
We know that,
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)}$
$g(x) = \sin(ax+b)$ and $h(x) = \cos(cx+d)$
Lets take $u = (ax+b) \ and \ v = (cx+d)$
Then,
$\sin (ax+b) = \sin u \ and \ \cos(cx+d) = \cos c$
$g^{'}(x)=\frac{d(g(x))}{dx} = \frac{d(g(x))}{du}.\frac{du}{dx}$ (By chain rule)
$\frac{d(g(x))}{du} = \frac{d(\sin u)}{du} = \cos u = \cos(ax+b) \ \ \ \ \ \ \ \ \ (\because u = ax +b)$
$\frac{du}{dx} = \frac{d(ax+b)}{dx} = a$
$g^{'}(x)=a\cos (ax+b)$ -(i)
Similarly,
$h^{'}(x)=\frac{d(h(x))}{dx} = \frac{d(h(x))}{dv}.\frac{dv}{dx}$
$\frac{d(h(x))}{dv}= \frac{d(\cos v)}{dv} = -\sin v = -\sin (cx+d) \ \ \ \ \ \ \ (\because v = (cx+d))$
$\frac{dv}{dx}= \frac{d(cx+d)}{dv} = c$
$h^{'}(x)=-c\sin(cx+d)$ -(ii)
Now, put (i) and (ii) in
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)} = \frac{a\cos(ax+b).\cos(cx+d)-\sin(ax+b).(-c.\sin(cx+d))}{\cos^2(cx+d)}$
$= \frac{a\cos(ax+b).\cos(cx+d)}{\cos^2(cx+d)}+\frac{\sin(ax+b).c.\sin(cx+d)}{\cos^2(cx+d)}$
$= a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$
Therefore, the answer is $a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$

Question:6. Differentiate the functions with respect to x in

$\cos x^3 . \sin ^ 2 ( x ^5 )$

Answer:

Given function is
$f(x)=\cos x^3 . \sin ^ 2 ( x ^5 )$
Differentitation w.r.t. x is
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x)$
$g(x) = \cos x^3 \ and \ h(x) = sin^2(x^5)$
Lets take $u = x^3 \ and \ v = x^5$
Our functions become,
$\cos x^3 = \cos u$ and $\sin^2(x^5) = \sin^2v$
Now,
$g^{'}(x) = \frac{d(g(x))}{dx} =\frac{d(g(u))}{du}.\frac{du}{dx}$ ( By chain rule)
$\frac{d(g(u))}{du} = \frac{d(\cos u)}{du} = -\sin u =- \sin x^3 \ \ \ \ (\because u = x^3)$
$\frac{du}{dx} = \frac{d(x^3)}{dx} = 3x^2$
$g^{'}(x) = -\sin x^3.3x^2$ -(i)
Similarly,
$h^{'}(x) = \frac{d(h(x))}{dx} =\frac{d(h(v))}{dv}.\frac{dv}{dx}$
$\frac{d(h(v))}{dv}= \frac{d(\sin^2v)}{dv} =2\sin v \cos v =2\sin x^5\cos x^5 \ \ \ (\because v = x^5)$

$\frac{dv}{dx} = \frac{d(x^5)}{dx} = 5x^4$
$h^{'}(x) = 2\sin x^5\cos x^5.5x^4 = 10x^4\sin x^5\cos x^5$ -(ii)
Put (i) and (ii) in
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x) = -3x^2\sin x^3.\sin^2 x^5+\cos x^3.10x^4\sin x^5\cos x^5$
Therefore, the answer is $10x^4\sin x^5\cos x^5.\cos x^3 -3x^2\sin x^3.\sin^2 x^5$

Question:7. Differentiate the functions with respect to x in

$2 \sqrt { \cot ( x^2 )}$

Answer:

Give function is
$f(x)=2 \sqrt { \cot ( x^2 )}$
Let's take $t = x^2$
$f(t) = 2\sqrt{\cot t}$
Now, take $\cot t = k^2$
$f(k) = 2k$
Differentiation w.r.t. x
$\frac{d(f(k))}{dx} = \frac{d(f(k))}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ -(By chain rule)
$\frac{d(f(k))}{dk} = \frac{d(2k)}{dk} = 2$
$\frac{dk}{dt} = \frac{d(\sqrt{\cot t})}{dt} = \frac{1}{2\sqrt{cot t}}.(-cosec^2 t) = \frac{-cosec^2 x^2}{2\sqrt{cot x^2}} \ \ \ (\because t = x^2)$
$\frac{dt}{dx} = \frac{d(x^2)}{dx} = 2x$
So,
$\frac{d(f(k))}{dx} = 2.\frac{-cosec^2 x^2}{2\sqrt{cot x^2}}.2x = \frac{-2\sqrt2x}{\sin^2x^2\sqrt{\frac{2\sin x^2\cos x^2}{\sin^2x^2}} }$ ( Multiply and divide by $\sqrt 2$ and multiply and divide $\sqrt {\cot x^2}$ by $\sqrt{\sin x^2}$

$(\because \cot x = \frac{\cos x}{\sin x} \ and \ cosec x = \frac{1}{\sin x } )$
$=\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}} \ \ \ \ (\because 2\sin x\cos x=\sin2x)$
There, the answer is $\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}}$

Question:8 Differentiate the functions with respect to x in

$\cos ( \sqrt x )$

Answer:

Let us assume : $y\ =\ \cos ( \sqrt x )$

Differentiating y with respect to x, we get :

$\frac{dy}{dx}\ =\ \frac{d(\cos ( \sqrt x ))}{dx}$

or $=\ - \sin \sqrt{x}.\frac{d( \sqrt x )}{dx}$

or $=\ \frac{- \sin \sqrt{x}}{2\sqrt{x}}$

Question:9. Prove that the function f given by$f (x) = |x-1 | , x \epsilon R$ is not differentiable at x = 1.

Answer:

Given function is

$f(x) = |x - 1|, \quad x \in \mathbb{R}$

We know that any function is differentiable when both

$\lim\limits_{h \to 0^-} \frac{f(c + h) - f(c)}{h}$ and $\lim\limits_{h \to 0^+} \frac{f(c + h) - f(c)}{h}$ are finite and equal.

The required condition for the function to be differentiable at $x = 1$ is

$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}$.

Now, the Left-hand limit of the function at $x = 1$ is

$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^-} \frac{|1 + h - 1| - |1 - 1|}{h} = \lim\limits_{h \to 0^-} \frac{|h| - 0}{h}$

$= \lim\limits_{h \to 0^-} \frac{-h}{h} = -1 \quad (\because h < 0)$.

The Right-hand limit of the function at $x = 1$ is

$\lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{|1 + h - 1| - |1 - 1|}{h} = \lim\limits_{h \to 0^+} \frac{|h| - 0}{h}$

$= \lim\limits_{h \to 0^+} \frac{h}{h} = 1$.

Now, it is clear that

$\text{R.H.L. at } x = 1 \neq \text{L.H.L. at } x = 1$.
Therefore, function $f (x) = |x-1 |$ is not differentiable at x = 1

Question:10. Prove that the greatest integer function defined by $f (x) = [x] , 0 < x < 3$ is not differentiable at

x = 1 and x = 2.

Answer:

Given function is

$f(x) = \lfloor x \rfloor, \quad 0 < x < 3$

We know that any function is differentiable when both

$\lim\limits_{h \to 0^-} \frac{f(c + h) - f(c)}{h}$ and $\lim\limits_{h \to 0^+} \frac{f(c + h) - f(c)}{h}$ are finite and equal.

The required condition for the function to be differentiable at $x = 1$ is

$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}$.

Now, the Left-hand limit of the function at $x = 1$ is

$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^-} \frac{\lfloor 1 + h \rfloor - \lfloor 1 \rfloor}{h} = \lim\limits_{h \to 0^-} \frac{0 - 1}{h}$

$= \lim\limits_{h \to 0^-} \frac{-1}{h} = -\infty \quad (\because h < 0 \Rightarrow 1 + h < 1, \therefore \lfloor 1 + h \rfloor = 0)$.

The Right-hand limit of the function at $x = 1$ is

$\lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{\lfloor 1 + h \rfloor - \lfloor 1 \rfloor}{h} = \lim\limits_{h \to 0^+} \frac{1 - 1}{h}$

$= \lim\limits_{h \to 0^+} \frac{0}{h} = 0 \quad (\because h > 0 \Rightarrow 1 + h > 1, \therefore \lfloor 1 + h \rfloor = 1)$.

Now, it is clear that

$\text{R.H.L. at } x = 1 \neq \text{L.H.L. at } x = 1$, and $\text{L.H.L.}$ is not finite as well.

Therefore, the function $f(x) = \lfloor x \rfloor$ is not differentiable at $x = 1$.

Similarly, for $x = 2$,

The required condition for the function to be differentiable at $x = 2$ is

$\lim\limits_{h \to 0^-} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^+} \frac{f(2 + h) - f(2)}{h}$.

Now, the Left-hand limit of the function at $x = 2$ is

$\lim\limits_{h \to 0^-} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^-} \frac{\lfloor 2 + h \rfloor - \lfloor 2 \rfloor}{h} = \lim\limits_{h \to 0^-} \frac{1 - 2}{h}$

$= \lim\limits_{h \to 0^-} \frac{-1}{h} = -\infty \quad (\because h < 0 \Rightarrow 2 + h < 2, \therefore \lfloor 2 + h \rfloor = 1)$.

The Right-hand limit of the function at $x = 2$ is

$\lim\limits_{h \to 0^+} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^+} \frac{\lfloor 2 + h \rfloor - \lfloor 2 \rfloor}{h} = \lim\limits_{h \to 0^+} \frac{2 - 2}{h}$

$= \lim\limits_{h \to 0^+} \frac{0}{h} = 0 \quad (\because h > 0 \Rightarrow 2 + h > 2, \therefore \lfloor 2 + h \rfloor = 2)$.
Now, it is clear that
R.H.L. at x= 2 $\neq$ L.H.L. at x= 2 and L.H.L. is not finite as well
Therefore, function $f(x) = [x]$ is not differentiable at x = 2


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.2

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.1 are:

  • Differentiability: Differentiability is the property of a function which denotes that the function has a derivative at the given point or interval. Mathematically, we can say that,
    If $\lim\limits_{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}=\lim\limits _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ then $f(x)$ is said to be differentiable at $x=c$.
  • Related theorems: Some theorems related to differentiability and continuity are-

If a function $f(x)$ is said to be differentiable at a point $x=c$, then it will also be continuous at that point.

Conversely, if a function $f(x)$ is continuous at a point $x=c$, then it might not be Differentiable at that point.

  • Derivatives of composite functions: This refers to finding the derivative of a function that is made up of two or more functions. To solve this type of problem, we can use the chain rule.
  • Chain rule: Let $f$ be a real function which is composed of two functions $u$ and $v$. Suppose $t=u(x)$, then $\frac{d f}{d x}=\frac{d v}{d t} \cdot \frac{d t}{d x}$.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Also Read,

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What is derivative of cos(x/2) ?
A:

d(cos(x/2)/dx = -sin(x/2)/2

Q: what is a limit of a function ?
A:

Limit of function is defined as the value of functions reaches when the limit reaches.

Q: Does calculus is so hard ?
A:

Some people consider it hard as it is a new concept included in class 11 maths and the level of maths till class 10 is too easy.

Q: Why calculus is so hard ?
A:

As the foundation of your maths is low, you may find it hard to grasp but with more practice, you will grasp the concept easily.

Q: Can I get free NCERT Syllabus for Class 12 Maths ?
A:

Yes, You can check here for the NCERT Syllabus for Class 12 Maths. NCERT book exercise questions, NCERT exemplar problems and solutions are helpful to practice questions for the CBSE board exam.

Q: What is the definition of the composite function ?
A:

A composite function is obtained from other functions where the output of one function is the input of another function.

Q: Give an example of composite function ?
A:

sin (x/2)  is an example of a composite function.

Q: What is derivative of sin(x/2) ?
A:

d(sin(x/2)/dx = cos(x/2)/2 

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 17 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !