If we can imagine a function as a road, then continuity is that the road has no gaps or breaks. While differentiability means that the road is smooth enough to ride a bike comfortably. Together, they make a perfect road for calculus to travel on. In exercise 5.2 of the chapter Continuity and Differentiability, we will look beyond the concepts of continuity and dive deep into the world of differentiability. We will learn if a function is properly smooth and consistent, so that we can differentiate that function. This article on the NCERT Solutions for Exercise 5.2 Class 12 Maths Chapter 5 - Continuity and Differentiability provides clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and improve their understanding about differentiability. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1.Differentiate the functions with respect to x in
Answer:
Given function is
$f(x)=\sin (x^2 +5 )$
when we differentiate it w.r.t. x.
Lets take $t = x^2+5$ . then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (x^2+5)$
$\frac{dt}{dx} = \frac{d(x^2+5 )}{dx} = 2x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (x^2+5).2x$
Therefore, the answer is $2x \cos (x^2+5)$
Question:2. Differentiate the functions with respect to x in
Answer:
Given function is
$f(x)= \cos ( \sin x )$
Lets take $t = \sin x$ then,
$f(t) = \cos t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ ( By chain rule)
$\frac{df(t)}{dt} = \frac{d(\cos t)}{dt} = -\sin t = -\sin (\sin x)$
$\frac{dt}{dx} = \frac{d(\sin x)}{dt} = \cos x$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = -\sin(\sin x).\cos x$
Therefore, the answer is $-\sin(\sin x).\cos x$
Question:3. Differentiate the functions with respect to x in
Answer:
Given function is
$f(x) = \sin (ax +b )$
when we differentiate it w.r.t. x.
Lets take $t = ax+b$ . then,
$f(t) = \sin t$
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(t)}{dt} = \frac{d(\sin t )}{dt} = \cos t = \cos (ax+b)$
$\frac{dt}{dx} = \frac{d(ax+b )}{dx} = a$
Now,
$\frac{df(t)}{dx} = \frac{df(t)}{dt}.\frac{dt}{dx} = \cos (ax+b).a$
Therefore, the answer is $a \cos (ax+b)$
Question:4. Differentiate the functions with respect to x in
Answer:
Given function is
$f(x)=\sec (\tan (\sqrt x) )$
when we differentiate it w.r.t. x.
Lets take $t = \sqrt x$ . then,
$f(t) = \sec (\tan t)$
take $\tan t = k$. then,
$f(k) = \sec k$
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ (By chain rule)
$\frac{df(k)}{dk} = \frac{d(\sec k )}{dk} = \sec k \tan k = \sec(\tan\sqrt x)\tan(\tan\sqrt x)$
$(\because k = \tan t \ and \ t = \sqrt x)$
$\frac{df(t)}{dt} = \frac{d(\tan t )}{dt} = \sec^2 t =\sec^2 (\sqrt x) \ \ \ \ \ \ (\because t = \sqrt x)$
$\frac{dt}{dx} = \frac{d(\sqrt x)}{dx} = \frac{1}{2\sqrt x}$
Now,
$\frac{df(k)}{dx} = \frac{df(k)}{dk}.\frac{dk}{dt}.\frac{dt}{dx} =\sec(\tan \sqrt x)\tan(\tan \sqrt x).\sec^2 (\sqrt x) . \frac{1}{2\sqrt x}$
Therefore, the answer is $\frac{\sec(\tan \sqrt x).\tan(\tan \sqrt x).\sec^2 (\sqrt x)}{2\sqrt x}$
Question:5. Differentiate the functions with respect to x in
$\frac{\sin (ax +b )}{\cos (cx + d)}$
Answer:
Given function is
$f(x) = \frac{\sin (ax +b )}{\cos (cx + d)} = \frac{g(x)}{h(x)}$
We know that,
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)}$
$g(x) = \sin(ax+b)$ and $h(x) = \cos(cx+d)$
Lets take $u = (ax+b) \ and \ v = (cx+d)$
Then,
$\sin (ax+b) = \sin u \ and \ \cos(cx+d) = \cos c$
$g^{'}(x)=\frac{d(g(x))}{dx} = \frac{d(g(x))}{du}.\frac{du}{dx}$ (By chain rule)
$\frac{d(g(x))}{du} = \frac{d(\sin u)}{du} = \cos u = \cos(ax+b) \ \ \ \ \ \ \ \ \ (\because u = ax +b)$
$\frac{du}{dx} = \frac{d(ax+b)}{dx} = a$
$g^{'}(x)=a\cos (ax+b)$ -(i)
Similarly,
$h^{'}(x)=\frac{d(h(x))}{dx} = \frac{d(h(x))}{dv}.\frac{dv}{dx}$
$\frac{d(h(x))}{dv}= \frac{d(\cos v)}{dv} = -\sin v = -\sin (cx+d) \ \ \ \ \ \ \ (\because v = (cx+d))$
$\frac{dv}{dx}= \frac{d(cx+d)}{dv} = c$
$h^{'}(x)=-c\sin(cx+d)$ -(ii)
Now, put (i) and (ii) in
$f^{'}(x) = \frac{g^{'}(x)h(x)-g(x)h^{'}(x)}{h^2(x)} = \frac{a\cos(ax+b).\cos(cx+d)-\sin(ax+b).(-c.\sin(cx+d))}{\cos^2(cx+d)}$
$= \frac{a\cos(ax+b).\cos(cx+d)}{\cos^2(cx+d)}+\frac{\sin(ax+b).c.\sin(cx+d)}{\cos^2(cx+d)}$
$= a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$
Therefore, the answer is $a\cos(ax+b).\sec(cx+d) +c\sin(ax+b).\tan(cx+d).\sec(cx+d)$
Question:6. Differentiate the functions with respect to x in
$\cos x^3 . \sin ^ 2 ( x ^5 )$
Answer:
Given function is
$f(x)=\cos x^3 . \sin ^ 2 ( x ^5 )$
Differentitation w.r.t. x is
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x)$
$g(x) = \cos x^3 \ and \ h(x) = sin^2(x^5)$
Lets take $u = x^3 \ and \ v = x^5$
Our functions become,
$\cos x^3 = \cos u$ and $\sin^2(x^5) = \sin^2v$
Now,
$g^{'}(x) = \frac{d(g(x))}{dx} =\frac{d(g(u))}{du}.\frac{du}{dx}$ ( By chain rule)
$\frac{d(g(u))}{du} = \frac{d(\cos u)}{du} = -\sin u =- \sin x^3 \ \ \ \ (\because u = x^3)$
$\frac{du}{dx} = \frac{d(x^3)}{dx} = 3x^2$
$g^{'}(x) = -\sin x^3.3x^2$ -(i)
Similarly,
$h^{'}(x) = \frac{d(h(x))}{dx} =\frac{d(h(v))}{dv}.\frac{dv}{dx}$
$\frac{d(h(v))}{dv}= \frac{d(\sin^2v)}{dv} =2\sin v \cos v =2\sin x^5\cos x^5 \ \ \ (\because v = x^5)$
$\frac{dv}{dx} = \frac{d(x^5)}{dx} = 5x^4$
$h^{'}(x) = 2\sin x^5\cos x^5.5x^4 = 10x^4\sin x^5\cos x^5$ -(ii)
Put (i) and (ii) in
$f^{'}(x) = g^{'}(x).h(x) + g(x).h^{'}(x) = -3x^2\sin x^3.\sin^2 x^5+\cos x^3.10x^4\sin x^5\cos x^5$
Therefore, the answer is $10x^4\sin x^5\cos x^5.\cos x^3 -3x^2\sin x^3.\sin^2 x^5$
Question:7. Differentiate the functions with respect to x in
Answer:
Give function is
$f(x)=2 \sqrt { \cot ( x^2 )}$
Let's take $t = x^2$
$f(t) = 2\sqrt{\cot t}$
Now, take $\cot t = k^2$
$f(k) = 2k$
Differentiation w.r.t. x
$\frac{d(f(k))}{dx} = \frac{d(f(k))}{dk}.\frac{dk}{dt}.\frac{dt}{dx}$ -(By chain rule)
$\frac{d(f(k))}{dk} = \frac{d(2k)}{dk} = 2$
$\frac{dk}{dt} = \frac{d(\sqrt{\cot t})}{dt} = \frac{1}{2\sqrt{cot t}}.(-cosec^2 t) = \frac{-cosec^2 x^2}{2\sqrt{cot x^2}} \ \ \ (\because t = x^2)$
$\frac{dt}{dx} = \frac{d(x^2)}{dx} = 2x$
So,
$\frac{d(f(k))}{dx} = 2.\frac{-cosec^2 x^2}{2\sqrt{cot x^2}}.2x = \frac{-2\sqrt2x}{\sin^2x^2\sqrt{\frac{2\sin x^2\cos x^2}{\sin^2x^2}} }$ ( Multiply and divide by $\sqrt 2$ and multiply and divide $\sqrt {\cot x^2}$ by $\sqrt{\sin x^2}$
$(\because \cot x = \frac{\cos x}{\sin x} \ and \ cosec x = \frac{1}{\sin x } )$
$=\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}} \ \ \ \ (\because 2\sin x\cos x=\sin2x)$
There, the answer is $\frac{-2\sqrt2x}{\sin x^2\sqrt{\sin2x^2}}$
Question:8 Differentiate the functions with respect to x in
Answer:
Let us assume : $y\ =\ \cos ( \sqrt x )$
Differentiating y with respect to x, we get :
$\frac{dy}{dx}\ =\ \frac{d(\cos ( \sqrt x ))}{dx}$
or $=\ - \sin \sqrt{x}.\frac{d( \sqrt x )}{dx}$
or $=\ \frac{- \sin \sqrt{x}}{2\sqrt{x}}$
Question:9. Prove that the function f given by$f (x) = |x-1 | , x \epsilon R$ is not differentiable at x = 1.
Answer:
Given function is
$f(x) = |x - 1|, \quad x \in \mathbb{R}$
We know that any function is differentiable when both
$\lim\limits_{h \to 0^-} \frac{f(c + h) - f(c)}{h}$ and $\lim\limits_{h \to 0^+} \frac{f(c + h) - f(c)}{h}$ are finite and equal.
The required condition for the function to be differentiable at $x = 1$ is
$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}$.
Now, the Left-hand limit of the function at $x = 1$ is
$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^-} \frac{|1 + h - 1| - |1 - 1|}{h} = \lim\limits_{h \to 0^-} \frac{|h| - 0}{h}$
$= \lim\limits_{h \to 0^-} \frac{-h}{h} = -1 \quad (\because h < 0)$.
The Right-hand limit of the function at $x = 1$ is
$\lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{|1 + h - 1| - |1 - 1|}{h} = \lim\limits_{h \to 0^+} \frac{|h| - 0}{h}$
$= \lim\limits_{h \to 0^+} \frac{h}{h} = 1$.
Now, it is clear that
$\text{R.H.L. at } x = 1 \neq \text{L.H.L. at } x = 1$.
Therefore, function $f (x) = |x-1 |$ is not differentiable at x = 1
Question:10. Prove that the greatest integer function defined by $f (x) = [x] , 0 < x < 3$ is not differentiable at
x = 1 and x = 2.
Answer:
Given function is
$f(x) = \lfloor x \rfloor, \quad 0 < x < 3$
We know that any function is differentiable when both
$\lim\limits_{h \to 0^-} \frac{f(c + h) - f(c)}{h}$ and $\lim\limits_{h \to 0^+} \frac{f(c + h) - f(c)}{h}$ are finite and equal.
The required condition for the function to be differentiable at $x = 1$ is
$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}$.
Now, the Left-hand limit of the function at $x = 1$ is
$\lim\limits_{h \to 0^-} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^-} \frac{\lfloor 1 + h \rfloor - \lfloor 1 \rfloor}{h} = \lim\limits_{h \to 0^-} \frac{0 - 1}{h}$
$= \lim\limits_{h \to 0^-} \frac{-1}{h} = -\infty \quad (\because h < 0 \Rightarrow 1 + h < 1, \therefore \lfloor 1 + h \rfloor = 0)$.
The Right-hand limit of the function at $x = 1$ is
$\lim\limits_{h \to 0^+} \frac{f(1 + h) - f(1)}{h} = \lim\limits_{h \to 0^+} \frac{\lfloor 1 + h \rfloor - \lfloor 1 \rfloor}{h} = \lim\limits_{h \to 0^+} \frac{1 - 1}{h}$
$= \lim\limits_{h \to 0^+} \frac{0}{h} = 0 \quad (\because h > 0 \Rightarrow 1 + h > 1, \therefore \lfloor 1 + h \rfloor = 1)$.
Now, it is clear that
$\text{R.H.L. at } x = 1 \neq \text{L.H.L. at } x = 1$, and $\text{L.H.L.}$ is not finite as well.
Therefore, the function $f(x) = \lfloor x \rfloor$ is not differentiable at $x = 1$.
Similarly, for $x = 2$,
The required condition for the function to be differentiable at $x = 2$ is
$\lim\limits_{h \to 0^-} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^+} \frac{f(2 + h) - f(2)}{h}$.
Now, the Left-hand limit of the function at $x = 2$ is
$\lim\limits_{h \to 0^-} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^-} \frac{\lfloor 2 + h \rfloor - \lfloor 2 \rfloor}{h} = \lim\limits_{h \to 0^-} \frac{1 - 2}{h}$
$= \lim\limits_{h \to 0^-} \frac{-1}{h} = -\infty \quad (\because h < 0 \Rightarrow 2 + h < 2, \therefore \lfloor 2 + h \rfloor = 1)$.
The Right-hand limit of the function at $x = 2$ is
$\lim\limits_{h \to 0^+} \frac{f(2 + h) - f(2)}{h} = \lim\limits_{h \to 0^+} \frac{\lfloor 2 + h \rfloor - \lfloor 2 \rfloor}{h} = \lim\limits_{h \to 0^+} \frac{2 - 2}{h}$
$= \lim\limits_{h \to 0^+} \frac{0}{h} = 0 \quad (\because h > 0 \Rightarrow 2 + h > 2, \therefore \lfloor 2 + h \rfloor = 2)$.
Now, it is clear that
R.H.L. at x= 2 $\neq$ L.H.L. at x= 2 and L.H.L. is not finite as well
Therefore, function $f(x) = [x]$ is not differentiable at x = 2
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.1 are:
If a function $f(x)$ is said to be differentiable at a point $x=c$, then it will also be continuous at that point.
Conversely, if a function $f(x)$ is continuous at a point $x=c$, then it might not be Differentiable at that point.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
d(cos(x/2)/dx = -sin(x/2)/2
Limit of function is defined as the value of functions reaches when the limit reaches.
Some people consider it hard as it is a new concept included in class 11 maths and the level of maths till class 10 is too easy.
As the foundation of your maths is low, you may find it hard to grasp but with more practice, you will grasp the concept easily.
Yes, You can check here for the NCERT Syllabus for Class 12 Maths. NCERT book exercise questions, NCERT exemplar problems and solutions are helpful to practice questions for the CBSE board exam.
A composite function is obtained from other functions where the output of one function is the input of another function.
sin (x/2) is an example of a composite function.
d(sin(x/2)/dx = cos(x/2)/2
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters