NCERT Solutions for Exercise 5.6 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.6 Class 12 Maths Chapter 5 - Continuity and Differentiability

Komal MiglaniUpdated on 22 Apr 2025, 11:35 PM IST

Continuity is like a peaceful river flowing without any gaps, and Differentiability is when each ripple of the river follows a certain pattern smoothly and precisely. Oftentimes, we come across some functions which can not simply be represented as $y=f(x)$, as both the variables are expressed in the form of a third variable. These types of form of functions are generally known as functions in parametric form. In exercise 5.6 of the chapter Continuity and Differentiability, we will learn about the derivatives of functions in parametric form. These concepts will help the students differentiate expressions involving variables $x$ and $y$ given in the form of a third variable or parameter. This article on the NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the problems given in the exercise, so that the students can develop their problem-solving ability and understand the logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE 2026 Admit Card LIVE: CBSE Class 10, 12 hall ticket soon at cbse.gov.in; direct link, datesheet, updatesJan 24, 2026 | 7:25 PM IST

The CBSE admit card 2026 for classes 10 and 12 is likely to be out soon. Private students can download their admit card using their Application No/ Previous Roll No/ Candidate name at cbse.nic.in.

Read More

Class 12 Maths Chapter 5 Exercise 5.6 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.6

Question:1 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx .

$x = 2at^2, y = at^4$

Answer:

Given equations are
$x = 2at^2, y = at^4$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(2at^2)}{dt}= 4at$
Similarly,
$\frac{dy}{dt}=\frac{d(at^4)}{dt}= 4at^3$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{4at^3}{4at} = t^2$
Therefore, the answer is $\frac{dy}{dx}= t^2$

Question:2 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx .

$x= a \cos \theta , y = b \cos \theta$

Answer:

Given equations are
$x= a \cos \theta , y = b \cos \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\cos \theta)}{d\theta}= -a\sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\cos \theta)}{d\theta}= -b\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-b\sin \theta}{-a\sin \theta} = \frac{b}{a}$
Therefore, answer is $\frac{dy}{dx}= \frac{b}{a}$

Question:3 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx . $x = \sin t , y = \cos 2 t$

Answer:

Given equations are
$x = \sin t , y = \cos 2 t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(\sin t)}{dt}= \cos t$
Similarly,
$\frac{dy}{dt}=\frac{d(\cos 2t)}{dt}= -2\sin 2t = -4\sin t \cos t \ \ \ \ \ (\because \sin 2x = \sin x\cos x)$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{-4\sin t \cos t }{\cos t} = -4\sin t$
Therefore, the answer is $\frac{dy}{dx} = -4\sin t$

Question:4 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx

$x = 4t , y = 4/t$

Answer:

Given equations are
$x = 4t , y = 4/t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(4 t)}{dt}= 4$
Similarly,
$\frac{dy}{dt}=\frac{d(\frac{4}{t})}{dt}= \frac{-4}{t^2}$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{ \frac{-4}{t^2} }{4} = \frac{-1}{t^2}$
Therefore, the answer is $\frac{dy}{dx} = \frac{-1}{t^2}$

Question:5 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = \cos \theta - \cos 2\theta , y = \sin \theta - \sin 2 \theta$

Answer:

Given equations are
$x = \cos \theta - \cos 2\theta , y = \sin \theta - \sin 2 \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(\cos \theta-\cos 2\theta)}{d\theta}= -\sin \theta -(-2\sin 2\theta) = 2\sin 2\theta - \sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(\sin \theta - \sin 2\theta)}{d\theta}= \cos \theta -2\cos2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$
Therefore, answer is $\frac{dy}{dx}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$

Question:6 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = a ( \theta - \sin \theta ) , y = a ( 1+ \cos \theta )$

Answer:

Given equations are
$x = a ( \theta - \sin \theta ) , y = a ( 1+ \cos \theta )$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\theta- \sin \theta))}{d\theta}= a(1-\cos \theta)$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(1+\cos \theta))}{d\theta}=-a\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-a\sin \theta}{a(1-\cos \theta)} = \frac{-\sin }{1-\cos \theta} =- \cot \frac{\theta}{2} \ \ \ \ \ \ \ (\cot \frac{x}{2}=\frac{\sin x}{1-\cos x})$
Therefore, the answer is $\frac{dy}{dx}=-\cot \frac{\theta}{2}$

Question:7 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = \frac{\sin ^3 t }{\sqrt {\cos 2t }} , y = \frac{\cos ^3 t }{\sqrt {\cos 2t }}$

Answer:

Given equations are

$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, \quad y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$

Now, differentiate both w.r.t $t$:

$\frac{dx}{dt} = \frac{d\left( \frac{\sin^3 t}{\sqrt{\cos 2t}} \right)}{dt} = \frac{\sqrt{\cos 2t} \cdot \frac{d(\sin^3 t)}{dt} - \sin^3 t \cdot \frac{d(\sqrt{\cos 2t})}{dt}}{(\sqrt{\cos 2t})^2}$

$= \frac{3\sin^2 t \cos t \cdot \sqrt{\cos 2t} - \sin^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$

$= \frac{3\sin^2 t \cos t \cdot \cos 2t + \sin^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$

$= \frac{\sin^3 t \sin 2t \left( 3 \cot t \cot 2t + 1 \right)}{\cos 2t \sqrt{\cos 2t}} \quad (\because \frac{\cos x}{\sin x} = \cot x)$

Similarly,

$\frac{dy}{dt} = \frac{d\left( \frac{\cos^3 t}{\sqrt{\cos 2t}} \right)}{dt} = \frac{\sqrt{\cos 2t} \cdot \frac{d(\cos^3 t)}{dt} - \cos^3 t \cdot \frac{d(\sqrt{\cos 2t})}{dt}}{(\sqrt{\cos 2t})^2}$

$= \frac{3\cos^2 t (-\sin t) \cdot \sqrt{\cos 2t} - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{(\sqrt{\cos 2t})^2}$

$= \frac{-3\cos^2 t \sin t \cos 2t + \cos^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$

$= \frac{\sin 2t \cos^3 t \left( 1 - 3 \tan t \cot 2t \right)}{\cos 2t \sqrt{\cos 2t}}$

Now, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{\sin 2t \cos^3 t \left( 1 - 3 \tan t \cot 2t \right)}{\cos 2t \sqrt{\cos 2t}}}{\frac{\sin^3 t \sin 2t \left( 3 \cot t \cot 2t + 1 \right)}{\cos 2t \sqrt{\cos 2t}}}$

$= \frac{\cot^3 t \left( 1 - 3 \tan t \cot 2t \right)}{3 \cot t \cot 2t + 1}$

$= \frac{\cos^3 t \left( 1 - 3 \frac{\sin t}{\cos t} \frac{\cos 2t}{\sin 2t} \right)}{\sin^3 t \left( 3 \frac{\cos t}{\sin t} \frac{\cos 2t}{\sin 2t} + 1 \right)}$

$= \frac{\cos^2 t \left( \cos t \sin 2t - 3 \sin t \cos 2t \right)}{\sin^2 t \left( 3 \cos t \cos 2t + \sin t \sin 2t \right)}$

$= \frac{\cos^2 t \left( 2 \sin t \cos^2 t - 3 \sin t \cos^2 t + 3 \sin t \right)}{\sin^2 t \left( 3 \cos t - 6 \cos t \sin^2 t + 2 \sin^2 \cos t \right)}$

$= \frac{\sin t \cos t \left( -4 \cos^3 t + 3 \cos t \right)}{\sin t \cos t \left( 3 \sin t - 4 \sin^3 t \right)}$

$\frac{dy}{dx} = \frac{-4 \cos^3 t + 3 \cos t}{3 \sin t - 4 \sin^3 t} = \frac{-\cos 3t}{\sin 3t} = -\cot 3t \quad (\because \sin 3t = 3 \sin t - 4 \sin^3 t \text{ and } \cos 3t = 4 \cos^3 t - 3 \cos t)$
Therefore, the answer is $\frac{dy}{dx} = -\cot 3t$

Question:8 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = a ( \cos t + \log \tan t/2 ),y = a \sin t$

Answer:

Given equations are
$x = a ( \cos t + \log \tan \frac{t}{2} ),y = a \sin t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(a ( \cos t + \log \tan \frac{t}{2} ))}{dt}= a(-\sin t + \frac{1}{\tan\frac{t}{2}}.\sec^2\frac{t}{2}.\frac{1}{2})$
$= a(-\sin t+\frac{1}{2}.\frac{\cos \frac{t}{2}}{\sin\frac{t}{2}}.\frac{1}{\cos^2\frac{t}{2}}) = a(-\sin t+\frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}})$
$=a(-\sin t+\frac{1}{\sin 2.\frac{t}{2}} ) = a(\frac{-\sin^2t+1}{\sin t})= a(\frac{\cos^2t}{\sin t})$
Similarly,
$\frac{dy}{dt}=\frac{d(a\sin t)}{dt}= a\cos t$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{a \cos t }{ a(\frac{\cos^2t}{\sin t})} = \frac{\sin t}{\cos t} = \tan t$
Therefore, the answer is $\frac{dy}{dx} = \tan t$

Question:9 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = a \sec \theta , y = b \ tan \theta$

Answer:

Given equations are
$x = a \sec \theta , y = b \ tan \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\sec \theta)}{d\theta}= a\sec \theta \tan \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\tan \theta)}{d\theta}= b\sec^2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{b\sec^2 \theta}{a\sec\theta\tan \theta} = \frac{b\sec\theta}{a\tan \theta}= \frac{b\frac{1}{\cos\theta}}{a\frac{\sin \theta}{\cos \theta}} = \frac{b }{a\sin \theta} = \frac{b cosec \theta}{a}$
Therefore, the answer is $\frac{dy}{dx} = \frac{b cosec \theta}{a}$

Question:10 If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx $x = a ( \cos \theta + \theta \sin \theta ) , y = a ( \sin \theta - \theta \cos \theta )$

Answer:

Given equations are
$x = a ( \cos \theta + \theta \sin \theta ) , y = a ( \sin \theta - \theta \cos \theta )$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\cos \theta+ \theta\sin \theta))}{d\theta}= a(-\sin \theta+\sin \theta+ \theta\cos \theta)= a \theta\cos \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(\sin \theta- \theta\cos \theta))}{d\theta}= a(\cos \theta-\cos \theta+ \theta\sin \theta) = a \theta\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{a \theta\sin \theta}{a \theta\cos \theta} = \tan \theta$
Therefore, the answer is $\frac{dy}{dx}= \tan \theta$

Answer:

Given equations are
$x = \sqrt {a ^{\sin ^{-1}t}} , y = \sqrt { a ^{ \cos ^{-1}t}}$

$xy=\sqrt{a^{sin^{-1}t+cos^{-1}t}}\\since\ sin^{-1}x+cos^{-1}x=\frac{\pi}{2}\\xy=a^{\frac{\pi}{2}}=constant=c$

differentiating with respect to x

$x\frac{dy}{dx}+y=0\\\frac{dy}{dx}=\frac{-y}{x}$

Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.6

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.6 are:

  • Derivatives of functions in parametric form: Understanding how to differentiate expressions when two variables are expressed as a third variable known as a parameter.
  • Application of the chain rule: Functions in parametric form can easily be differentiated with the help of the chain rule. For example, when $x$ and $y$ are expressed in terms of $t$, we can find the derivative as $\frac{dy}{dx}=\frac{dy}{dt}÷\frac{dx}{dt}$.

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: If x = sin (t) then find differentiation of x w.r.t t ?
A:

Given x = sin (t)

dx/dt = cos(t)

Q: If y = sin (t) then find the differentiation of y w.r.t x. ?
A:

y=sin(t)

As y is not dependent on the x.

dy/dx = 0

Q: Which book is best book for NCERT Class 12 Maths ?
A:

NCERT book is best for CBSE Class 12 Maths. You don't need other books for the CBSE board exams.

Q: Which book should i refer for Maths JEE main ?
A:

Mathematics book by M.L. khana is considered to be good book for the Maths JEE main.

Q: Do I need to but CBSE chapter wise solution book Class 12 Maths ?
A:

You don't need to buy any solution book for CBSE Class 12 Maths. Can follow NCERT book, solutions, NCERT exemplar and previous year solutions.

Q: Can i get chapter-wise solutions for Class 12 Maths ?
Q: Can I get marks distribution for Class 12 Maths ?
Q: Can I get NCERT solutions for Class 11 Maths ?
A:

Here you will get NCERT Solutions for Class 11 Maths. Solutions to each chapter are available with all the necessary steps.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.