Continuity is like a peaceful river flowing without any gaps, and Differentiability is when each ripple of the river follows a certain pattern smoothly and precisely. Oftentimes, we come across some functions which can not simply be represented as $y=f(x)$, as both the variables are expressed in the form of a third variable. These types of form of functions are generally known as functions in parametric form. In exercise 5.6 of the chapter Continuity and Differentiability, we will learn about the derivatives of functions in parametric form. These concepts will help the students differentiate expressions involving variables $x$ and $y$ given in the form of a third variable or parameter. This article on the NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the problems given in the exercise, so that the students can develop their problem-solving ability and understand the logic behind these solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
The CBSE admit card 2026 for classes 10 and 12 is likely to be out soon. Private students can download their admit card using their Application No/ Previous Roll No/ Candidate name at cbse.nic.in.
Answer:
Given equations are
$x = 2at^2, y = at^4$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(2at^2)}{dt}= 4at$
Similarly,
$\frac{dy}{dt}=\frac{d(at^4)}{dt}= 4at^3$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{4at^3}{4at} = t^2$
Therefore, the answer is $\frac{dy}{dx}= t^2$
$x= a \cos \theta , y = b \cos \theta$
Answer:
Given equations are
$x= a \cos \theta , y = b \cos \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\cos \theta)}{d\theta}= -a\sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\cos \theta)}{d\theta}= -b\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-b\sin \theta}{-a\sin \theta} = \frac{b}{a}$
Therefore, answer is $\frac{dy}{dx}= \frac{b}{a}$
Answer:
Given equations are
$x = \sin t , y = \cos 2 t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(\sin t)}{dt}= \cos t$
Similarly,
$\frac{dy}{dt}=\frac{d(\cos 2t)}{dt}= -2\sin 2t = -4\sin t \cos t \ \ \ \ \ (\because \sin 2x = \sin x\cos x)$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{-4\sin t \cos t }{\cos t} = -4\sin t$
Therefore, the answer is $\frac{dy}{dx} = -4\sin t$
Answer:
Given equations are
$x = 4t , y = 4/t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(4 t)}{dt}= 4$
Similarly,
$\frac{dy}{dt}=\frac{d(\frac{4}{t})}{dt}= \frac{-4}{t^2}$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{ \frac{-4}{t^2} }{4} = \frac{-1}{t^2}$
Therefore, the answer is $\frac{dy}{dx} = \frac{-1}{t^2}$
Answer:
Given equations are
$x = \cos \theta - \cos 2\theta , y = \sin \theta - \sin 2 \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(\cos \theta-\cos 2\theta)}{d\theta}= -\sin \theta -(-2\sin 2\theta) = 2\sin 2\theta - \sin \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(\sin \theta - \sin 2\theta)}{d\theta}= \cos \theta -2\cos2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$
Therefore, answer is $\frac{dy}{dx}= \frac{\cos \theta -2\cos 2 \theta}{2\sin2\theta-\sin \theta}$
Answer:
Given equations are
$x = a ( \theta - \sin \theta ) , y = a ( 1+ \cos \theta )$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\theta- \sin \theta))}{d\theta}= a(1-\cos \theta)$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(1+\cos \theta))}{d\theta}=-a\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{-a\sin \theta}{a(1-\cos \theta)} = \frac{-\sin }{1-\cos \theta} =- \cot \frac{\theta}{2} \ \ \ \ \ \ \ (\cot \frac{x}{2}=\frac{\sin x}{1-\cos x})$
Therefore, the answer is $\frac{dy}{dx}=-\cot \frac{\theta}{2}$
Answer:
Given equations are
$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}, \quad y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$
Now, differentiate both w.r.t $t$:
$\frac{dx}{dt} = \frac{d\left( \frac{\sin^3 t}{\sqrt{\cos 2t}} \right)}{dt} = \frac{\sqrt{\cos 2t} \cdot \frac{d(\sin^3 t)}{dt} - \sin^3 t \cdot \frac{d(\sqrt{\cos 2t})}{dt}}{(\sqrt{\cos 2t})^2}$
$= \frac{3\sin^2 t \cos t \cdot \sqrt{\cos 2t} - \sin^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t}$
$= \frac{3\sin^2 t \cos t \cdot \cos 2t + \sin^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$
$= \frac{\sin^3 t \sin 2t \left( 3 \cot t \cot 2t + 1 \right)}{\cos 2t \sqrt{\cos 2t}} \quad (\because \frac{\cos x}{\sin x} = \cot x)$
Similarly,
$\frac{dy}{dt} = \frac{d\left( \frac{\cos^3 t}{\sqrt{\cos 2t}} \right)}{dt} = \frac{\sqrt{\cos 2t} \cdot \frac{d(\cos^3 t)}{dt} - \cos^3 t \cdot \frac{d(\sqrt{\cos 2t})}{dt}}{(\sqrt{\cos 2t})^2}$
$= \frac{3\cos^2 t (-\sin t) \cdot \sqrt{\cos 2t} - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{(\sqrt{\cos 2t})^2}$
$= \frac{-3\cos^2 t \sin t \cos 2t + \cos^3 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$
$= \frac{\sin 2t \cos^3 t \left( 1 - 3 \tan t \cot 2t \right)}{\cos 2t \sqrt{\cos 2t}}$
Now, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{\sin 2t \cos^3 t \left( 1 - 3 \tan t \cot 2t \right)}{\cos 2t \sqrt{\cos 2t}}}{\frac{\sin^3 t \sin 2t \left( 3 \cot t \cot 2t + 1 \right)}{\cos 2t \sqrt{\cos 2t}}}$
$= \frac{\cot^3 t \left( 1 - 3 \tan t \cot 2t \right)}{3 \cot t \cot 2t + 1}$
$= \frac{\cos^3 t \left( 1 - 3 \frac{\sin t}{\cos t} \frac{\cos 2t}{\sin 2t} \right)}{\sin^3 t \left( 3 \frac{\cos t}{\sin t} \frac{\cos 2t}{\sin 2t} + 1 \right)}$
$= \frac{\cos^2 t \left( \cos t \sin 2t - 3 \sin t \cos 2t \right)}{\sin^2 t \left( 3 \cos t \cos 2t + \sin t \sin 2t \right)}$
$= \frac{\cos^2 t \left( 2 \sin t \cos^2 t - 3 \sin t \cos^2 t + 3 \sin t \right)}{\sin^2 t \left( 3 \cos t - 6 \cos t \sin^2 t + 2 \sin^2 \cos t \right)}$
$= \frac{\sin t \cos t \left( -4 \cos^3 t + 3 \cos t \right)}{\sin t \cos t \left( 3 \sin t - 4 \sin^3 t \right)}$
$\frac{dy}{dx} = \frac{-4 \cos^3 t + 3 \cos t}{3 \sin t - 4 \sin^3 t} = \frac{-\cos 3t}{\sin 3t} = -\cot 3t \quad (\because \sin 3t = 3 \sin t - 4 \sin^3 t \text{ and } \cos 3t = 4 \cos^3 t - 3 \cos t)$
Therefore, the answer is $\frac{dy}{dx} = -\cot 3t$
Answer:
Given equations are
$x = a ( \cos t + \log \tan \frac{t}{2} ),y = a \sin t$
Now, differentiate both w.r.t t
We get,
$\frac{dx}{dt}=\frac{d(a ( \cos t + \log \tan \frac{t}{2} ))}{dt}= a(-\sin t + \frac{1}{\tan\frac{t}{2}}.\sec^2\frac{t}{2}.\frac{1}{2})$
$= a(-\sin t+\frac{1}{2}.\frac{\cos \frac{t}{2}}{\sin\frac{t}{2}}.\frac{1}{\cos^2\frac{t}{2}}) = a(-\sin t+\frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}})$
$=a(-\sin t+\frac{1}{\sin 2.\frac{t}{2}} ) = a(\frac{-\sin^2t+1}{\sin t})= a(\frac{\cos^2t}{\sin t})$
Similarly,
$\frac{dy}{dt}=\frac{d(a\sin t)}{dt}= a\cos t$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}= \frac{a \cos t }{ a(\frac{\cos^2t}{\sin t})} = \frac{\sin t}{\cos t} = \tan t$
Therefore, the answer is $\frac{dy}{dx} = \tan t$
Answer:
Given equations are
$x = a \sec \theta , y = b \ tan \theta$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a\sec \theta)}{d\theta}= a\sec \theta \tan \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(b\tan \theta)}{d\theta}= b\sec^2 \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{b\sec^2 \theta}{a\sec\theta\tan \theta} = \frac{b\sec\theta}{a\tan \theta}= \frac{b\frac{1}{\cos\theta}}{a\frac{\sin \theta}{\cos \theta}} = \frac{b }{a\sin \theta} = \frac{b cosec \theta}{a}$
Therefore, the answer is $\frac{dy}{dx} = \frac{b cosec \theta}{a}$
Answer:
Given equations are
$x = a ( \cos \theta + \theta \sin \theta ) , y = a ( \sin \theta - \theta \cos \theta )$
Now, differentiate both w.r.t $\theta$
We get,
$\frac{dx}{d\theta}=\frac{d(a(\cos \theta+ \theta\sin \theta))}{d\theta}= a(-\sin \theta+\sin \theta+ \theta\cos \theta)= a \theta\cos \theta$
Similarly,
$\frac{dy}{d\theta}=\frac{d(a(\sin \theta- \theta\cos \theta))}{d\theta}= a(\cos \theta-\cos \theta+ \theta\sin \theta) = a \theta\sin \theta$
Now, $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}= \frac{a \theta\sin \theta}{a \theta\cos \theta} = \tan \theta$
Therefore, the answer is $\frac{dy}{dx}= \tan \theta$
Answer:
Given equations are
$x = \sqrt {a ^{\sin ^{-1}t}} , y = \sqrt { a ^{ \cos ^{-1}t}}$
$xy=\sqrt{a^{sin^{-1}t+cos^{-1}t}}\\since\ sin^{-1}x+cos^{-1}x=\frac{\pi}{2}\\xy=a^{\frac{\pi}{2}}=constant=c$
differentiating with respect to x
$x\frac{dy}{dx}+y=0\\\frac{dy}{dx}=\frac{-y}{x}$
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.6 are:
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Given x = sin (t)
dx/dt = cos(t)
y=sin(t)
As y is not dependent on the x.
dy/dx = 0
NCERT book is best for CBSE Class 12 Maths. You don't need other books for the CBSE board exams.
Mathematics book by M.L. khana is considered to be good book for the Maths JEE main.
You don't need to buy any solution book for CBSE Class 12 Maths. Can follow NCERT book, solutions, NCERT exemplar and previous year solutions.
Yes, here you will get chapter-wise Solutions for Class 12 Maths.
Click here to get marks distribution for Class 12 Maths.
Here you will get NCERT Solutions for Class 11 Maths. Solutions to each chapter are available with all the necessary steps.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters