Limits and differentiability are fundamental concepts in calculus that help us understand change and continuity in mathematical functions. You can have a question about what the limit tells us. A limit describes the value that a function approaches as the input (variable) approaches a certain point, while differentiability indicates whether a function is differentiable at that point. These concepts are essential for analysing motion, growth, and change in various fields. For example, in real life, the speed of a moving car at a specific instant is found using differentiation by calculating the limit of the average speed as the time interval approaches zero. The NCERT Class 12 Mathematics book covers everything that will come in the board exams and helps in creating a base for the topics.
The CBSE admit card 2026 for classes 10 and 12 is likely to be out soon. Private students can download their admit card using their Application No/ Previous Roll No/ Candidate name at cbse.nic.in.
This Story also Contains
If anyone wants to learn the topic for exams and also for higher education, solving the NCERT questions is a must. We are here to provide you with all the NCERT Exemplar Class 12 Math Solutions in Chapter 5. Also, you can read the NCERT Class 12 Maths Solutions.
Also, read,
| Class 12 Maths Chapter 5 Exemplar Solutions Exercise: 5.3 Page number: 107-116 Total questions: 106 |
Question 1
Examine the continuity of the function
$f(x) = x^3 + 2x - 1 $at x = 1$
Answer:
We have, $f(x)=x^3+2 x^2-1$
For continuity at $\mathrm{x}=1$
$\begin{aligned} & \therefore \text { R.H.L. }=\lim _{x \rightarrow 1^{+}} f(x) \\ & =\lim _{h \rightarrow 0} f(1+\mathrm{h}) \\ & =\lim _{\mathrm{h} \rightarrow 0}\left[(1+\mathrm{h})^3+2(1+\mathrm{h})^2-1\right]=2\end{aligned}$
And L.H.L. $=\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)$
$\begin{aligned} & =\lim _{h \rightarrow 0} f(1-h) \\ & =\lim _{h \rightarrow 0}\left[(1-h)^3+2(1-h)^2-1\right]=2\end{aligned}$
Also $f(1)=1+2-1=2$
Thus $\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\mathrm{f}(1)$
Thus $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$
Question 2
Answer:
Given,
$f(x)=\left\{\begin{array}{cl} 3 x+5, & \text { if } x \geq 2 \\ x^{2}, & \text { if } x<2 \end{array}\right.$
We need to check its continuity at x = 2
A function f(x) is said to be continuous at x = c if,
Left-hand limit (LHL at x = c) = Right-hand limit (RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, according to the above theory-
f(x) is continuous at x = 2 if -
$\begin{aligned} &\lim _{h \rightarrow 0} \mathrm{f}(2-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(2+\mathrm{h})=\mathrm{f}(2)\\ & \text { Now we can see that, }\\ &LH L=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0}(2-h)^{2} \text {Using equation } \\ & \therefore L H L=(2-0)^{2}=4 \ldots (2) \end{aligned}$
Similarly, we proceed with RHL-
$\begin{aligned} &\lim _{\mathrm{RHL}}=\underset{\mathrm{h} \rightarrow 0}{\mathrm{f}(2+\mathrm{h})}=\lim _{\mathrm{h} \rightarrow 0}\{3(2+\mathrm{h})+5\}\\ &\therefore \mathrm{RHL}=3(2+0)+5=11 \ldots(3)\\ &\text { then, }\\ &f(2)=3(2)+5=11 \ldots(4) \end{aligned}$
Now, from equations 2, 3, and 4, we can conclude that
$\begin{aligned} &\lim _{h \rightarrow 0} f(2-h) \neq \lim _{h \rightarrow 0} f(2+h)\\ &\therefore f(x) \text { is discontinuous at } x=2 \end{aligned}$
Question 3
Find which of the functions is continuous or discontinuous at the indicated points:
$f(x)=\left\{\begin{array}{cl} \frac{1-\cos 2 x}{x^{2}}, & \text { if } x \neq 0 \\ 5, & \text { if } x=0 \end{array}\right. \text { at } x=0$
Answer:
Given,
$f(x)=\left\{\begin{array}{cl} \frac{1-\cos 2 x}{x^{2}}, & \text { if } x \neq 0 \\ 5, & \text { if } x=0 \end{array}\right.$
We need to check its continuity at x = 0
A function f(x) is said to be continuous at x = c if,
Left-hand limit (LHL at x = c) = Right-hand limit (RHL at x = c) = f(c).
Mathematically, we can present it as
$\lim _{h \rightarrow 0} \mathrm{f}(\mathrm{c}-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{c}+\mathrm{h})=\mathrm{f}(\mathrm{c}) \\$
Where $h$ is a very small number very close to $0(\mathrm{~h} \rightarrow 0)$ Now according to above theory-$f(x)$ is continuous at $x=0$ if
$ \lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0) $
$\begin{aligned} &\text { then, }\\ &\lim _{\mathrm{h} \mathrm{HL}=\mathrm{h} \rightarrow 0} \mathrm{f}(-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\cos 2(-\mathrm{h})}{(-\mathrm{h})^{2}} \underbrace{\{\text { using equation } 1\}}\\ &\text { As we know } \cos (-\theta)=\cos \theta\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\cos 2 \mathrm{~h}}{\mathrm{~h}^{2}}\\ &\because 1-\cos 2 x=2 \sin ^{2} x\\ &\therefore \mathrm{lim}_{\mathrm{h} \rightarrow 0} \frac{2 \sin ^{2} \mathrm{~h}}{\mathrm{~h}^{2}}=2 \lim _{\mathrm{h} \rightarrow 0}\left(\frac{\sin \mathrm{h}}{\mathrm{h}}\right)^{2} \end{aligned}$
This limit can be evaluated directly by putting the value of h because it is taking the indeterminate form (0/0)
As we know,
$\begin{aligned} &\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\\ &\therefore \mathrm{LHL}=2 \times 1^{2}=2 \ldots(2)\\ &\text { Similarly, we proceed for RHL- }\\ &\lim _{\mathrm{RHL}} \mathrm{h} \rightarrow 0^+{\mathrm{f}}(\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\cos 2(\mathrm{~h})}{(\mathrm{h})^{2}}\\ &\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{1-\cos 2 \mathrm{~h}}{\mathrm{~h}^{2}}\\ &\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{2 \sin ^{2} \mathrm{~h}}{\mathrm{~h}^{2}}=2 \lim _{\mathrm{h} \rightarrow 0}\left(\frac{\sin \mathrm{h}}{\mathrm{h}}\right)^{2} \end{aligned}$
Again, using the sandwich theorem, we get -
$RHL = 2 \times 1^2 = 2...(3)$
And,
f (0) = 5 …(4)
From equations 2, 3, and 4 we can conclude that
$\lim _{h \rightarrow 0} \mathrm{f}(0-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(0+\mathrm{h}) \neq \mathrm{f}(0)$
∴ f(x) is discontinuous at x = 0
Question 4
Answer:
Given,
$f(x)=\left\{\begin{aligned} \frac{2 x^{2}-3 x-2}{x-2}, \text { if } & x \neq 2 \\ 5,\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: & \text { if } x=2 \end{aligned}\right.$
We need to check its continuity at x = 2
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, according to the above theory-
f(x) is continuous at x = 2 if -
$\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} f(2+h)=f(2)$
Then,
$\begin{aligned} &\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} \frac{2(2-h)^{2}-3(2-h)-2}{(2-h)-2} \quad\{\text { using equation } 1\}\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{2\left(4+\mathrm{h}^{2}-4 \mathrm{~h}\right)-6+3 \mathrm{~h}-2}{-\mathrm{h}}\\ &\Rightarrow \mathrm{lim} \frac{8+2 \mathrm{~h}^{2}-8 \mathrm{~h}-6+3 \mathrm{~h}-2}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0} \frac{2 \mathrm{~h}^{2}-5 \mathrm{~h}}{-\mathrm{h}}\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{-\mathrm{h}(5-2 \mathrm{~h})}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}(5-2 \mathrm{~h})\\ &\therefore \mathrm{LHL}=5-2(0)=5 \ldots(2) \end{aligned}$
Similarly, we proceed with RHL-
$ \lim _{\mathrm{RHL}=\mathrm{h} \rightarrow 0} \mathrm{f}(2+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{2(2+\mathrm{h})^{2}-3(2+\mathrm{h})-2}{(2+\mathrm{h})-2} \text { [using equation } \left.1\right\} $
$\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{2\left(4+\mathrm{h}^{2}+4 \mathrm{~h}\right)-6-3 \mathrm{~h}-2}{\mathrm{~h}}$$\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{8+2+8 \mathrm{~h}-6-3 \mathrm{~h}-2}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0} \frac{2 \mathrm{~h}^{2}+5 \mathrm{~h}}{\mathrm{~h}}$
$\Rightarrow \lim _{h \rightarrow 0} \frac{h(5+2 h)}{h}=\lim _{h \rightarrow 0}(5+2 h)$
$\therefore \mathrm{RHL}=5+2(0)=5 \ldots(3)$
And, $f(2)=5\{$ using equation 1$\} \ldots(4)$
From the above equations 2, 3, and 4, we can say that
$\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} f(2+h)=f(2)=5$
∴ f(x) is continuous at x = 2
Question 5
Answer:
Given,
$f(x)=\left\{\begin{array}{cl} \frac{|x-4|}{2(x-4)}, \text { if } & x \neq 4 \\ 0, & \text { if } x=4 \end{array}\right.$ ...(1)
We need to check its continuity at x = 4
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, according to the above theory-
f(x) is continuous at x = 4 if -
$\lim _{h \rightarrow 0} f(4-h)=\lim _{h \rightarrow 0} f(4+h)=f(4)$
Clearly,
$\begin{aligned} &\lim _{\mathrm{h} \mathrm{HL}} \mathrm{f}(4-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{|4-\mathrm{h}-4|}{2(4-\mathrm{h}-4)}\{\text { using equation } 1\}\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{|-\mathrm{h}|}{-2 \mathrm{~h}}\\ &\because \mathrm{h}>0 \text { as defined above. }\\ &\therefore|-h|=h\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{h}}{-2 \mathrm{~h}}=-\frac{1}{2} \lim _{\mathrm{h} \rightarrow 0} 1\\ &\therefore \mathrm{LHL}=-1 / 2 \ldots(2) \end{aligned}$
Similarly, we proceed with RHL-
$\begin{aligned} &{\mathrm{RHL}}=\lim _{\mathrm{h}\rightarrow 0}{\mathrm{f}}(4+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} \frac{|4+\mathrm{h}-4|}{2(4+\mathrm{h}-4)}\{\text { using equation } 1\}\\ &\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{|\mathrm{h}|}{2(\mathrm{~h})}\\ &\because \mathrm{h}>0 \text { as defined above. }\\ &\therefore|h|=h \end{aligned}$
$\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{h}}{2 \mathrm{~h}}=\frac{1}{2} \lim _{\mathrm{h} \rightarrow 0} 1$
$\therefore \mathrm{RHL}=1 / 2 \ldots(3)$ And, $f(4)=0\{$ using eqn 1$\} \ldots(4)$
From equations 2, 3, and 4, we can conclude that
$ \lim _{h \rightarrow 0} f(4-h) \neq \lim _{h \rightarrow 0} f(4+h) \neq f(4) $
∴ f(x) is discontinuous at x = 4
Question 6
Answer:
We have, $\begin{cases}|x| \cos \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$
At $\mathrm{x}=0$
$\begin{aligned} & \text { L.H.L. }=\lim _{x \rightarrow 0^{-}}|x| \cos \frac{1}{x} \\ & =\lim _{\mathrm{h} \rightarrow 0}|0-\mathrm{h}| \cos \frac{1}{0-\mathrm{h}} \\ & =\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h} \cos \frac{1}{\mathrm{~h}} \\ & =0 \times[\text { an oscillating number between }-1 \text { and } 1]=0\end{aligned}$
$\begin{aligned} & \text { R.H.L. }=\lim _{x \rightarrow 0^{+}}|x| \cos \frac{1}{x} \\ & =\lim _{\mathrm{h} \rightarrow 0}|0+\mathrm{h}| \cos \frac{1}{0+\mathrm{h}} \\ & =\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h} \cos \frac{1}{\mathrm{~h}} \\ & =0 \times[\text { an oscillating number between }-1 \text { and } 1]=0\end{aligned}$
Also $\mathrm{f}(0)=0 \quad \ldots$. (Given)
Thus, L.H.L. $=$ R.H.L. $=f(0)$
So, $f(x)$ is continuous at $x=0$
Question 7
Answer:
We have, $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}|x-\mathrm{a}| \sin \frac{1}{x-\mathrm{a}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=\mathrm{a}\end{array}\right.$ at $\mathrm{x}=\mathrm{a}$ At $\mathrm{x}=\mathrm{a}$
$\begin{aligned} & \text { L.H.L. }=\lim _{x \rightarrow \mathrm{a}^{-}}|x-\mathrm{a}| \sin \frac{1}{x-\mathrm{a}} \\ & =\lim _{\mathrm{h} \rightarrow 0}|\mathrm{a}-\mathrm{h}-\mathrm{a}| \sin \left(\frac{1}{\mathrm{a}-\mathrm{h}-\mathrm{a}}\right) \\ & =\lim _{\mathrm{h} \rightarrow 0}-\mathrm{h} \sin \frac{1}{\mathrm{~h}} \\ & =0 \times[\text { an oscillating number between }-1 \text { and } 1]=0\end{aligned}$
$\begin{aligned} & \text { R.H.L. }=\lim _{x \rightarrow a^{+}}|x-a| \sin \left(\frac{1}{x-a}\right) \\ & =\lim _{\mathrm{h} \rightarrow 0}|\mathrm{a}+\mathrm{h}-\mathrm{a}| \sin \left(\frac{1}{\mathrm{a}+\mathrm{h}-\mathrm{a}}\right) \\ & =\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h} \sin \frac{1}{\mathrm{~h}} \\ & =0 \times[\text { an oscillating number between }-1 \text { and } \mathrm{l}]=0\end{aligned}$
Also $f(a)=0 \quad \ldots($ Given $)$
Thus L.H.L. $=$ R.H.L. $=\mathrm{f}(\mathrm{a})$
So, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
Given,
$f(x)=\left\{\begin{array}{cl} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}, \text { if } & x \neq 0 \\ 0, & \text { if } x=0 \end{array}\right.$
We need to check its continuity at x = 0
A function f(x) is said to be continuous at x = c if,
Left-hand limit (LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, according to the above theory-
f(x) is continuous at x = 4 if -
$\begin{aligned} &\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0)\\ &\text { Clearly, }\\ &\lim _{h \rightarrow 0} f(-h)=\lim _{h \rightarrow 0}\left\{\frac{e^{\frac{1}{-h}}}{1+e^{-\frac{1}{-h}}}\right\}_{\{u \operatorname{sing} \text { equation } 1\}}\\ &\Rightarrow \mathrm{LHL}=\frac{\mathrm{e}^{\frac{1}{-0}}}{1+\mathrm{e}^{-\frac{1}{-0}}}=\frac{\mathrm{e}^{-\infty}}{1+\mathrm{e}^{-\infty}}=\frac{0}{1+0}=0\\ &\therefore \mathrm{LHL}=0 . . .(2) \end{aligned}$
Similarly, we proceed for RHL-
$\begin{array}{l} \lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0}\left\{\frac{\mathrm{e}^{\frac{1}{\mathrm{~h}}}}{1+\mathrm{e}^{\frac{1}{\mathrm{~h}}}}\right\} {\{\text {using equation } 1\}} \\ \quad \quad \lim _{\mathrm{h} \rightarrow 0}\left\{\frac{\mathrm{e}^{\frac{1}{\mathrm{~h}}}}{\mathrm{e}^{\frac{1}{\mathrm{~h}}\left(1+\mathrm{e}^{-\frac{1}{\mathrm{~h}}}\right)}}\right\}=\lim _{\mathrm{h} \rightarrow 0}\left\{\frac{1}{\left(1+\mathrm{e}^{-\frac{1}{\mathrm{~h}}}\right)}\right\} \end{array}$
$\begin{array}{l} \Rightarrow \mathrm{RHL}=\frac{1}{1+\mathrm{e}-0}=\frac{1}{1+\mathrm{e}^{-\infty}}=\frac{1}{1+0}=1 \\ \therefore \mathrm{RHL}=1 \ldots(3) \end{array}$
And,
f(0) = 0 {using eqn 1} …(4)
From equations 2, 3, and 4, we can conclude that
$\lim _{h \rightarrow 0} \mathrm{f}(0-\mathrm{h}) \neq \lim _{h \rightarrow 0} \mathrm{f}(0+\mathrm{h})$
∴ f (x) is discontinuous at x = 0
Question 9
Answer:
We have, $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x^2}{2}, & \text { if } 0 \leq x \leq 1 \\ 2 x^2-3 x+\frac{3}{2}, & \text { if } 1<x \leq 2\end{array}\right.$ at $\mathrm{x}=1$
At $\mathrm{x}=1$
L.H.L. $=\lim _{x \rightarrow 1^{-}} \frac{x^2}{2}$
$\begin{aligned} & =\lim _{\mathrm{h} \rightarrow 0} \frac{(1-\mathrm{h})^2}{2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{1+\mathrm{h}^2-2 \mathrm{~h}}{2} \\ & =\frac{1}{2} \\ & \text { R.H.L. }=\lim _{x \rightarrow 1^{+}}\left(2 x^2-3 x+\frac{3}{2}\right) \\ & =\lim _{\mathrm{h} \rightarrow 0}\left[2(1+\mathrm{h})^2-3(1+\mathrm{h})+\frac{3}{2}\right] \\ & =2-3+\frac{3}{2} \\ & =\frac{1}{2}\end{aligned}$
Also $f(1)=\frac{1^2}{2}=\frac{1}{2}$ Thus L.H.L. $=$ R.H.L. $=f(1)$
Hence, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$.
Question 10
Answer:
We have, $\mathrm{f}(\mathrm{x})=|\mathrm{x}|+|\mathrm{x}-1|$ at $\mathrm{x}=1$ At $x=1$
$\begin{aligned} & \text { L.H.L. }=\lim _{x \rightarrow 1^{-}}[|x|+|x-1|] \\ & =\lim _{\mathrm{h}-? 0^{-}}[|1-\mathrm{h}|+|1-\mathrm{h}-1|] \\ & =1+0 \\ & =1\end{aligned}$
$\begin{aligned} & \text { And R.H.L. }=\lim _{x \rightarrow+}[|x|+x-1 \mid] \\ & =\lim _{\mathrm{h} \rightarrow 0}[|1+\mathrm{h}|+|1+\mathrm{h}-1|] \\ & =1+0 \\ & =1\end{aligned}$
Also $f(1)=|1|+|0|=1$
Thus, L.H.L. $=$ R.H.L $=f(1)$
Hence, $f(x)$ is continuous at $x=1$
Question 11
Answer:
Given,
$f(x)=\begin{array}{cl} 3 x-8, & \text { if } x \leq 5 \\ 2 k, & \text { if } x>5 \end{array} \text { at } x=5$
We need to find the value of k such that f(x) is continuous at x = 5.
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, let’s assume that f(x) is continuous at x = 5.
$\lim _{h \rightarrow 0} f(5-h)=\lim _{h \rightarrow 0} f(5+h)=f(5)$
As we have to find k so pick out a combination so that we get k in our equation.
In this question we take LHL = f(5)
$\\ \therefore \lim _{h \rightarrow 0} f(5-h)=f(5) $
$ \Rightarrow \lim _{h \rightarrow 0}\{3(5-h)-8\}=2 k $
$ \Rightarrow 3(5-0)-8=2 k $
$\Rightarrow 15-8=2 k $
$ \Rightarrow 2 k=7$
$ \therefore k=\frac 72$
Question 12
Answer:
We have, $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{2^{x+2}-16}{4^x-16}, & \text { if } x \neq 2 \\ \mathrm{k}, & \text { if } x=2\end{cases}$ Since, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$
$\begin{aligned} & \therefore \mathrm{f}(2)=\lim _{x \rightarrow 2} \mathrm{f}(x) \\ & \therefore \mathrm{k}=\lim _{x \rightarrow 2} \frac{2^{x+2}-16}{4^x-16} \\ & =\lim _{x \rightarrow 2} \frac{4\left(2^x-4\right)}{\left(2^x-4\right)\left(2^x+4\right)} \\ & =\lim _{x \rightarrow 2} \frac{4}{2^x+4} \\ & =\frac{4}{4+4} \\ & =\frac{1}{2}\end{aligned}$
Question 13
Answer:
Given,
$\mathrm{f}(\mathrm{x})= \begin{cases}\frac{\sqrt{1+\mathrm{k} x}-\sqrt{1-\mathrm{k} x}}{x}, & \text { if }-1 \leq x<0 \\ \frac{2 x+1}{x-1}, & \text { if } 0 \leq x \leq 1\end{cases}$
We need to find the value of k such that f(x) is continuous at x = 0.
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, let’s assume that f(x) is continuous at x = 0.
$\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0)$
Now, to find k, pick out a combination using which we get k in our equation.
In this question we take LHL = f(0)
$\begin{array}{l} \quad \lim _{h \rightarrow 0} f(-h)=f(0) \\ \Rightarrow \lim _{h \rightarrow 0}\left\{\frac{\sqrt{1+k(-h)}-\sqrt{1-k(-h)})}{-h}\right\}=\frac{2(0)+1}{(0)-1}\{\text { using eqn } 1\} \\ \Rightarrow \lim _{h \rightarrow 0}\left\{\frac{\sqrt{1+k h}-\sqrt{1-k h}}{h}\right\}=-1 \end{array}$
We can’t find the limit directly, because it is taking the 0/0 form.
Thus, we will rationalize it.
$\begin{aligned} &\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{\sqrt{1+k h}-\sqrt{1-k h}}{h} \times \frac{\sqrt{1+k h}+\sqrt{1-k h}}{\sqrt{1+k h}+\sqrt{1-k h}}\right\}=-1\\ &\text { Using }(a+b)(a-b)=a^{2}-b^{2}, \text { we have }-\\ &\lim _{h \rightarrow 0}\left\{\frac{(\sqrt{1+k h})^{2}-(\sqrt{1-k h)})^{2}}{h(\sqrt{1+k h}+\sqrt{1-k h})}\right\}=-1\\ &\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{2 k h}{h(\sqrt{1+k h}+\sqrt{1-k h})}\right\}=-1\\ &\lim _{h \rightarrow 0}\left\{\frac{2 k}{(\sqrt{1+k h}+\sqrt{1-k h})}\right\}=\\ &\Rightarrow \frac{2 k}{\sqrt{1+k(0)}+\sqrt{1-k(0)}}=-1\\ &\therefore 2 k / 2=-1 \\&\therefore k =-1 \end{aligned}$
Question 14
Answer:
Given,
$\begin{array}{c} f(x)=\frac{1-\cos \mathrm{kx}}{\mathrm{x} \sin \mathrm{x}}, \quad \text { if } \mathrm{x} \neq 0 \\ \frac{1}{2}, \quad \text { if } \mathrm{x}=0 \end{array}$
We need to find the value of k such that f(x) is continuous at x = 0.
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, let’s assume that f(x) is continuous at x = 0.
$\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0)$
to find k we have to pick out a combination so that we get k in our equation.
In this question we take LHL = f(0)
$\begin{array}{l} \lim _{h \rightarrow 0} f(-h)=f(0) \\ \quad \lim _{h \rightarrow 0}\left\{\frac{1-\cos k(-h)}{(-h) \sin (-h)}\right\}=\frac{1}{2}\{u \text { ing equation } 1\} \end{array}$
$\begin{array}{l} \because \cos (-x)=\cos x \text { and } \sin (-x)=-\sin x \\ \quad \lim _{h \rightarrow 0}\left\{\frac{1-\cos k(h)}{(h) \sin (h)}\right\}=\frac{1}{2} \\ \text { Also, } 1-\cos x=2 \sin ^{2}(x / 2) \\ \quad \lim _{h \rightarrow 0}\left\{\frac{2 \sin ^{2}\left(\frac{k h}{2}\right)}{(h) \sin (h)}\right\}=\frac{1}{2} \end{array}$
This limit can be evaluated directly by putting the value of h because it is taking an indeterminate form (0/0)
Thus, we use the sandwich or squeeze theorem according to which -
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\ \Rightarrow {\lim_{h\rightarrow 0} }\left\{\frac{\sin ^{2}\left(\frac{k h}{2}\right)}{(h) \sin (h)}\right\}=\frac{1}{4}$
Dividing and multiplying by $(kh/2)^2$ to match the form in the formula we have-
$\begin{aligned} &\lim _{h \rightarrow 0}\left\{\frac{\sin ^{2}\left(\frac{\mathrm{kh}}{2}\right)}{(\mathrm{h}) \sin (\mathrm{h}) \times\left(\frac{\mathrm{kh}}{2}\right)^{2}} \times\left(\frac{\mathrm{kh}}{2}\right)^{2}\right\}=\frac{1}{4}\\ &\text { Using algebra of limits we get - }\\ &\lim _{h \rightarrow 0}\left(\frac{\sin \frac{k h}{2}}{\frac{k h}{2}}\right)^{2} \times \lim _{h \rightarrow 0} \frac{k^{2}}{4}\left(\frac{h}{\sin h}\right)=\frac{1}{4} \end{aligned}$
$\begin{aligned} &\text { Applying the formula- }\\ &\Rightarrow 1 \times\left(\mathrm{k}^{2} / 4\right)=(1 / 4)\\ &\Rightarrow \mathrm{k}^{2}=1\\ &\Rightarrow(k+1)(k-1)=0\\ &\therefore \mathrm{k}=1 \text { or } \mathrm{k}=-1 \end{aligned}$
Question 15
Answer:
we have $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{x}{|x|+2 x^2}, & x \neq 0 \\ \mathrm{k} & x=0\end{cases}$
At $x=0$
$\begin{aligned} & \text { L.H.L. }=\lim _{x \rightarrow 0^{+}} \frac{(0-\mathrm{h})}{|0-\mathrm{h}|+2(0-\mathrm{h})^2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{-\mathrm{h}}{\mathrm{h}+2 \mathrm{~h}^2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{-1}{1+2 \mathrm{~h}} \\ & =-1 \\ & \text { R.H.L. }=\lim _{x \rightarrow 0^{+}} \frac{x}{|x|+2 x^2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{0+\mathrm{h}}{|0+\mathrm{h}|+2(0+\mathrm{h})^2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}}{\mathrm{~h}+2 \mathrm{~h}^2} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{1}{1+2 \mathrm{~h}} \\ & =1\end{aligned}$
Since, L.H.L. $\neq$ R.H.L. for any value of $k$.
Hence, $f(x)$ is discontinuous at $x=0$ regardless of the choice of $k$.
Question 16
Answer:
Given,
$f(x)=\left\{\begin{array}{ll} \frac{x-4}{|x-4|}+a, & \text { if } x<4 \\ a+b & , \text { if } x=4 \\ \frac{x-4}{|x-4|}+b, & \text { if } x>4 \end{array}\right.$ …(1)
We need to find the value of a & b such that f(x) is continuous at x = 4.
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, let’s assume that f(x) is continuous at x = 4.
$\therefore \lim _{h \rightarrow 0} \mathrm{f}(4-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(4+\mathrm{h})=\mathrm{f}(4)$
to find a & b, we have to pick out a combination so that we get a or b in our equation.
In this question first, we take LHL = f(4)
$\therefore \lim _{h \rightarrow 0} f(4-h)=f(4)$
$\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{4-h-4}{|4-h-4|}+a\right\}=a+b$ {using equation 1}
$\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{-h}{|-h|}+a\right\}=a+b$
$\because$ h > 0 as defined in the theory above.
$\therefore|-h|=h$
$\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{-h}{h}+a\right\}=a+b$
$\Rightarrow \lim _{h \rightarrow 0}\{a-1\}=a+b$
$\Rightarrow$ a - 1 = a + b
$\therefore$ b = -1
Now, taking another combination,
RHL = f(4)
$\lim _{h \rightarrow 0} \mathrm{f}(4+\mathrm{h})=\mathrm{f}(4)$
$\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{4+h-4}{|4+h-4|}+b\right\}=a+b$ {using equation 1}
$\underset{h \rightarrow 0}{\lim }\left\{\frac{h}{|h|}+b\right\}=a+b$
$\because$ h > 0 as defined in the theory above.
$\therefore$ |h| = h
$\Rightarrow \lim _{h \rightarrow 0}\left\{\frac{h}{h}+b\right\}=a+b$
$\Rightarrow \lim _{h \rightarrow 0}\{b+1\}=a+b$
⇒ b + 1 = a + b
∴ a = 1
Hence,
a = 1 and b = -1
Question 17
Answer:
Given,
$F(x)=\frac{1}{x+2}$
We have to find the points of discontinuity of the composite function f(f(x))
As f(x) is not defined at x = -2 as denominator becomes 0, at x = -2.
$\therefore$ x = -2 is a point of discontinuity
$\because f(f(x))=f\left(\frac{1}{x+2}\right)=\frac{1}{\frac{1}{x+2}+2}=\frac{x+2}{2 x+5}$
And f(f(x)) is not defined at x = -5/2 as the denominator becomes 0, at x = -5/2.
∴ x = -5/2 is another point of discontinuity
Thus f (f(x)) has 2 points of discontinuity at x = -2 and x = -5/2
Question 18
Find all points of discontinuity of the function $f(t)=\frac{1}{t^{2}+t-2}, \quad t=\frac{1}{x-1}$.
Answer:
We have, $\mathrm{f}(\mathrm{t})=\frac{1}{\mathrm{t}^2+\mathrm{t}-2}$
Where $\mathrm{t}=\frac{1}{x-1}$
$\begin{aligned} & \therefore \mathrm{f}(\mathrm{t})=\frac{1}{\left(\frac{1}{x-1}\right)^2+\frac{1}{x-1}-2} \\ & =\frac{(x-1)^2}{1+(x-1)-2(x-1)^2} \\ & =\frac{(x-1)^2}{-\left(2 x^2-5 x+2\right)} \\ & =\frac{(x-1)^2}{(2 x-1)(2-x)}\end{aligned}$
So, $\mathrm{f}(\mathrm{t})$ is discontinuous at $2 \mathrm{x}-1=0$
$\begin{aligned} & \Rightarrow \mathrm{x}=\frac{1}{2} \text { and } 2-\mathrm{x}=0 \\ & \Rightarrow \mathrm{x}=2\end{aligned}$
Also $\mathrm{f}(\mathrm{t})$ is discontinuous at $\mathrm{x}=1$, where $\mathrm{t}=\frac{1}{x-1}$ is discontinuous.
Question 19
Show that the function f(x) = |sin x + cos x| is continuous at x = $\pi$.
Answer:
Given,
$f(x)=|\sin x+\cos x| \underline{\ldots}(1)$
We need to prove that f(x) is continuous at x = π
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
Now, according to the above theory-
f(x) is continuous at x = π if -
$\lim _{h \rightarrow 0} f(\pi-h)=\lim _{h \rightarrow 0} f(\pi+h)=f(\pi)$
Now,
LHL = $\lim _{h \rightarrow 0} f(\pi-h)$
⇒ LHL = $\lim _{h \rightarrow 0}\{|\sin (\pi-h)+\cos (\pi-h)|\}$ {using eqn 1}
$\because \sin (\pi-x)=\sin x \& \cos (\pi-x)=-\cos x$
$\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}|\sinh -\cosh |$
$\Rightarrow \mathrm{LHL}=|\sin 0-\cos 0|=|0-1|$
$\therefore \mathrm{LHL}=1 \underline{\ldots(2)}$
Similarly, we proceed for RHL-
$\operatorname{RHL}=\lim _{h \rightarrow 0} f(\pi+h)$
$\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}\{|\sin (\pi+\mathrm{h})+\cos (\pi+\mathrm{h})|\}$ {using eqn 1}
$\because \sin (\pi+x)=-\sin x \& \cos (\pi+x)=-\cos x$
$\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}|-\sin \mathrm{h}-\cosh |$
$\Rightarrow \mathrm{RHL}=|-\sin 0-\cos 0|=|0-1|$
$\therefore \mathrm{RHL}=1 \ldots(3)$
$\text { Also, } f(\pi)=|\sin \pi+\cos \pi|=|0-1|=1 \underline{\ldots(4)}$
Now, from equations 2, 3, and 4, we can conclude that
$\lim _{h \rightarrow 0} \mathrm{f}(\pi-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(\pi+\mathrm{h})=\mathrm{f}(\pi)=1$
∴ f(x) is continuous at x = π is proved
Question 20
Answer:
Given,
$f(x)=\left\{\begin{array}{cc} x[x], & \text { if } 0 \leq x<2 \\ (x-1) x, & \text { if } 2 \leq x<3 \end{array}\right. \text { at } x=2$ …(1)
We need to check whether f(x) is continuous and differentiable at x = 2
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
And a function is said to be differentiable at x = c if it is continuous there and
Left-hand derivative (LHD at x = c) = Right-hand derivative (RHD at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}$
$\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{c-h-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{c+h-c}$
Finally, we can state that for a function to be differentiable at x = c
$\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{-h}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
Checking for continuity:
Now, according to the above theory-
f(x) is continuous at x = 2 if -
$\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} f(2+h)=f(2)$
$\therefore \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0} \mathrm{f}(2-\mathrm{h})$
$\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}(2-\mathrm{h})[2-\mathrm{h}]_{\{\text {using equation } 1\}}$
Note: As [.] represents the greatest integer function which gives the greatest integer less than the number inside [.].
E.g. [1.29] = 1; [-4.65] = -5 ; [9] = 9
[2-h] is just less than 2 say 1.9999 so [1.999] = 1
⇒ LHL = (2-0) ×1
∴ LHL = 2 …(2)
Similarly,
RHL = $\lim _{h \rightarrow 0} f(2+h)$
⇒ RHL = $\lim _{h \rightarrow 0}(2+h-1)(2+h)_{\{\text {using equation } 1\}}$
$\therefore \mathrm{RHL}=(1+0)(2+0)=2 \ldots(3)$
And, f(2) = (2-1)(2) = 2 …(4) {using equation 1}
From equation 2,3 and 4, we observe that:
$\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} f(2+h)=f(2)=2$
∴ f(x) is continuous at x = 2. So we will proceed now to check the differentiability.
Checking for the differentiability:
Now, according to the above theory-
f(x) is differentiable at x = 2 if -
$\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$\therefore$ LHD = $\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}$
⇒ LHD = $\lim _{h \rightarrow 0} \frac{(2-h)[2-h]-(2-1)(2)}{-h} \quad\{\text { using equation } 1\}$
Note: As [.] represents the greatest integer function which gives the greatest integer less than the number inside [.].
E.g. [1.29] = 1 ; [-4.65] = -5 ; [9] = 9
[2-h] is just less than 2 say 1.9999 so [1.999] = 1
⇒ LHD = $\lim _{h \rightarrow 0} \frac{(2-h) \times 1-2}{-h}$
⇒ LHD = $\lim _{h \rightarrow 0} \frac{-h}{-h}=\lim _{h \rightarrow 0} 1$
$\therefore \mathrm{LHD}=1 \underline{\ldots}(5)$
Now,
RHD = $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
⇒ RHD = $\lim _{h \rightarrow 0} \frac{(2+h-1)(2+h)-(2-1)(2)}{h} \quad\{\text { using equation } 1\}$
⇒ RHD = $\lim _{h \rightarrow 0} \frac{(1+h)(2+h)-2}{h}=\lim _{h \rightarrow 0} \frac{2+h^{2}+3 h-2}{h}$
∴ RHD = $\lim _{h \rightarrow 0} \frac{h(h+3)}{h}=\lim _{h \rightarrow 0}(h+3)$
$\Rightarrow \mathrm{RHD}=0+3=3 \underline{\ldots}(6)$
Clearly, from equations 5 and 6, we can conclude that-
(LHD at x=2) ≠ (RHD at x = 2)
∴ f(x) is not differentiable at x = 2
Question 21
Answer:
Given,
$f(x)=\left\{\begin{array}{cl} x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0 \end{array}\right. \text { at } x=0$
We need to check whether f(x) is continuous and differentiable at x = 0
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically, we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$
Where h is a very small number very close to 0 (h→0)
And a function is said to be differentiable at x = c if it is continuous there and
Left-hand derivative(LHD at x = c) = Right-hand derivative(RHD at x = c) = f(c).
Mathematically we can represent it as
$\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}$
$\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{c-h-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{c+h-c}$
Finally, we can state that for a function to be differentiable at x = c
$\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{-h}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
Checking for the continuity:
Now according to the above theory-
f(x) is continuous at x = 0 if -
$\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0) \\ \therefore L H L=h \rightarrow 0 $
$ \Rightarrow L H L=\lim _{h \rightarrow 0}\left\{(-h)^{2} \sin \left(\frac{1}{-h}\right)\right\}_{\{u \operatorname{sing}} \text { equation } \left.1\right\}$
As sin (-1/h) is going to be some finite value from -1 to 1 as h→0
∴ LHL = $0^2$ × (finite value) = 0
∴ LHL = 0 …(2)
Similarly,
$\lim _{\mathrm{RHL}}=\lim _{h \rightarrow 0} \mathrm{f}(\mathrm{h}) \\ \Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}\left\{(\mathrm{~h})^{2} \sin \left(\frac{1}{\mathrm{~h}}\right)\right\}_{\{\text {using equation } 1\}}$
As sin (1/h) is going to be some finite value from -1 to 1 as h→0
∴ RHL = $0^2$(finite value) = 0 …(3)
And, f(0) = 0 {using equation 1} …(4)
From equation 2,3 and 4, we observe that:
$\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} f(0+h)=f(0)$
∴ f(x) is continuous at x = 0.
So we will proceed now to check the differentiability.
Checking for the differentiability:
Now, according to the above theory-
f(x) is differentiable at x = 0 if -
$\\ \lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} $
$ \therefore L H D=\lim_{h \rightarrow 0 }\frac{f(-h)-f(0)}{-h} $
$ \Rightarrow L H D=\lim_{h \rightarrow 0 }\frac{(-h)^{2} \sin \left(\frac{1}{-h}\right)-0}{-h} \quad\{\text { using equation } 1\} $
$ \Rightarrow L H D=\lim _{h \rightarrow 0} \frac{h^{2} \sin \left(\frac{1}{-h}\right)}{-h}=\lim _{h \rightarrow 0}\left\{h \sin \left(\frac{1}{h}\right)\right\}$
As sin (1/h) is going to be some finite value from -1 to 1 as h→0
∴ LHD = 0×(some finite value) = 0
∴ LHD = 0 …(5)
Now,
$\operatorname{RHD}=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\ \Rightarrow R H D=h \rightarrow 0 \frac{(h)^{2} \sin \left(\frac{1}{h}\right)-0}{h} \quad\{\text { using equation } 1\} \\$
$\Rightarrow \mathrm{RHD}=\lim _{\mathrm{h} \rightarrow 0}\left\{\mathrm{~h} \sin \left(\frac{1}{\mathrm{~h}}\right)\right\}$
As sin (1/h) is going to be some finite value from -1 to 1 as h→0
∴ RHD = 0×(some finite value) = 0
∴ RHD = 0 …(6)
Clearly from equations 5 and 6, we can conclude that-
(LHD at x=0) = (RHD at x = 0)
∴ f(x) is differentiable at x = 0
Question 22
Answer:
Given,
$f(x)=\left\{\begin{array}{ll} 1+x, & \text { if } x \leq 2 \\ 5-x, & \text { if } x>2 \end{array}\right. \text { at } x=2$
We need to check whether f(x) is continuous and differentiable at x = 2
A function f(x) is said to be continuous at x = c if,
Left-hand limit(LHL at x = c) = Right-hand limit(RHL at x = c) = f(c).
Mathematically we can represent it as
$\lim _{h \rightarrow 0} f(c-h)=\lim _{h \rightarrow 0} f(c+h)=f(c)$.
Where h is a very small number very close to 0 (h→0)
And a function is said to be differentiable at x = c if it is continuous there and
LLeft-handderivative(LHD at x = c) = Right-hand derivative(RHD at x = c) = f(c).
Mathematically we can represent it as
$\\ \lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} \\ \lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{c-h-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{c+h-c}$
Finally, we can state that for a function to be differentiable at x = c
$\lim _{h \rightarrow 0} \frac{f(c-h)-f(c)}{-h}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$
Checking for the continuity:
Now according to the above theory-
f(x) is continuous at x = 2 if -
$\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0} f(2+h)=f(2) \\ \therefore L H L=\lim _{h \rightarrow 0} f(2-h)$
$\begin{aligned} &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}\{1+(2-\mathrm{h})\}_{\{\text {using equation } 1\}}\\ &\Rightarrow \mathrm{LHL}=\lim _{\mathrm{h} \rightarrow 0}\{3-\mathrm{h}\}\\ &\therefore L H L=(3-h)=3\\ &\therefore \mathrm{LHL}=3 \ldots(2)\\ &\text { Similarly, }\\ &\lim _{\mathrm{RHL}}=\operatorname{h}_{h \rightarrow 0} \mathrm{f}(2+\mathrm{h})\\ &\Rightarrow \mathrm{RHL}=\lim _{\mathrm{h} \rightarrow 0}\{5-(2+\mathrm{h})\}_{\{\text {using equation } 1\}}\\ &\Rightarrow \mathrm{RHL}=\lim _{h \rightarrow 0}\{3+\mathrm{h}\}\\ &\therefore \mathrm{RHL}=3+0=3 . .0(3) \end{aligned}$
And, f(2) = 1 + 2 = 3 {using equation 1} …(4)
From equation 2,3 and 4, we observe that:
$\lim _{h \rightarrow 0} \mathrm{f}(2-\mathrm{h})=\lim _{h \rightarrow 0} \mathrm{f}(2+\mathrm{h})=\mathrm{f}(2)=3$
∴ f(x) is continuous at x = 2. So we will proceed now to check the differentiability.
Checking for the differentiability:
Now according to the above theory-
f(x) is differentiable at x = 2 if -
$\begin{array}{l} \lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\ \therefore L H D=\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h} \end{array}$
$\begin{aligned} &\Rightarrow \mathrm{LHD}=\lim _{h \rightarrow 0} \frac{1+(2-\mathrm{h})-(1+2)}{-\mathrm{h}} \quad\{\text { using equation } 1\}\\ &\Rightarrow \mathrm{LHD}=\lim _{\mathrm{h} \rightarrow 0} \frac{3-\mathrm{h}-3}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0} 1\\ &\therefore \mathrm{LHD}=1 . .0(5)\\ &\text { Now, }\\ &\lim _{\mathrm{RHD}}=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(2+\mathrm{h})-\mathrm{f}(2)}{\mathrm{h}}\\ &\Rightarrow \mathrm{RHD}=\lim _{\mathrm{h} \rightarrow 0} \frac{5-(2+\mathrm{h})-3}{\mathrm{~h}} \quad\{\text { using equation } 1\}\\ &\Rightarrow \lim _{\mathrm{RHD}}=\underset{\mathrm{h} \rightarrow 0}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}-1\\ &\therefore \mathrm{RHD}=-1 \ldots(6) \end{aligned}$
Clearly from equations 5 and 6, we can conclude that-
(LHD at x=2) ≠ (RHD at x = 2)
∴ f(x) is not differentiable at x = 2
Question 23
Show that f(x) = |x - 5| is continuous but not differentiable at x = 5.
Answer:
We have $f(x)=|x-5|$
$\Rightarrow \mathrm{f}(\mathrm{x})= \begin{cases}-(x-5), & \text { if } x-5<0 \text { or } x<5 \\ x-5, & \text { if } x-5>0 \text { or } x>5\end{cases}$
$\begin{aligned} & \text { L.H.L. } \lim _{h \rightarrow 5^{-}} f(x)=-(x-5) \\ & =\lim _{h \rightarrow 0}-(5-h-5) \\ & =\lim _{h \rightarrow 0} h=0 \\ & \text { R.H.L. } \lim _{x \rightarrow 5^{+}} f(x)=x-5 \\ & =\lim _{h \rightarrow 0}(5+h-5) \\ & =\lim _{h \rightarrow 0} h=0\end{aligned}$
L.H.L. = R.H.L.
So, $f(x)$ is continuous at $x=5$
Now, for differentiability
$\begin{aligned} & \operatorname{Lf}^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5-h)-f(5)}{-h} \\ & =\lim _{h \rightarrow 0} \frac{-(5-h-5)-(5-5)}{-h} \\ & =\lim _{h \rightarrow 0} \frac{h}{-h} \\ & =-1 \\ & \operatorname{Rf}^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h} \\ & =\lim _{h \rightarrow 0} \frac{(5+h-5)-(5-5)}{h} \\ & =\lim _{h \rightarrow 0} \frac{h-0}{h} \\ & =1 \\ & \because \operatorname{Lf}^{\prime}(5) \neq \operatorname{Rd}(5)\end{aligned}$
Hence, $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=5$.
Answer:
Given that, $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R, f(x) \neq 0$.
Let us take any point $\mathrm{x}=0$ at which the function $\mathrm{f}(\mathrm{x})$ is differentiable.
$\begin{aligned} & \therefore \mathrm{f}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(0+\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}} \\ & 2=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(0) \cdot \mathrm{f}(\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}} . \\ & \Rightarrow 2=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(0)[\mathrm{f}(\mathrm{h})-1]}{\mathrm{h}}\end{aligned}$
Now $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\begin{aligned} & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(x) \cdot \mathrm{f}(\mathrm{h})-\mathrm{f}(x)}{\mathrm{h}} \\ & =\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(x)[\mathrm{f}(\mathrm{h})-1]}{\mathrm{h}} \\ & =2 \mathrm{f}(\mathrm{x})\end{aligned}$
Hence, $f^{\prime}(x)=2 f(x)$.
Question 25
Differentiate each of the following w.r.t. x
$2 ^{\cos ^2 x}$
Answer:
Given: $2 ^{\cos ^2 x}$
Let Assume $y=2 ^{\cos ^2 x}$
Now, Taking Log on both sides we get,
$\begin{aligned} &\log y=\log 2^{\cos ^{2} x}\\ &\log \mathrm{y}=\cos ^{2} \mathrm{x} \cdot \log 2\\ &\text { Now, Differentiate w.r.t } x\\ &\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}\left[\cos ^{2} x \cdot \log 2\right]\\ &\frac{1}{y} \frac{d y}{d x}=[2 \cos x \cdot(-\sin x) \cdot \log 2]\\ &\frac{d y}{d x}=y[2 \cos x \cdot(-\sin x) \cdot \log 2] \end{aligned}$
Now, substitute the value of y
$\\ \frac{\mathrm{dy}}{\mathrm{dx}}=-2^{\cos ^{2} x}[2 \cos \mathrm{x} \cdot(\sin \mathrm{x}) \cdot \log 2] \\ $
$\text { Hence, } \frac{\mathrm{dy}}{\mathrm{dx}}=-2^{\cos ^{2} x}[2 \cos \mathrm{x} \cdot(\sin \mathrm{x}) \cdot \log 2]$
Question 26 Differentiate each of the following w.r.t. x
$\frac{8^x}{x^8}$
Answer:
Let $\mathrm{y}=\frac{8^x}{x^8}$
Taking $\log$ on both sides, we get,
$\begin{aligned} & \log \mathrm{y}=\log \frac{8^x}{x^8} \\ & \Rightarrow \log \mathrm{y}=\log 8^x-\log x^8 \\ & \Rightarrow \log \mathrm{y}=\mathrm{x} \log 8-8 \log \mathrm{x}\end{aligned}$
Differentiating both sides w.r.t. X
$\begin{aligned} & \Rightarrow \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\log 8.1-\frac{8}{x} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=y\left[\log 8-\frac{8}{x}\right]\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{8^x}{x^8}\left[\log 8-\frac{8}{x}\right]$
Question 27 Differentiate each of the following w.r.t. x
$\log\left ( x+\sqrt{x^2 +a}\right )$
Answer:
Let $\mathrm{y}=\log \left(x+\sqrt{x^2+\mathrm{a}}\right)$
Differentiating both sides w.r.t. x
$\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \log \left(x+\sqrt{x^2+\mathrm{a}}\right) \\ & =\frac{1}{x+\sqrt{x^2+\mathrm{a}}} \cdot \frac{\mathrm{d}}{\mathrm{dx}}\left(x+\sqrt{x^2+\mathrm{a}}\right) \\ & =\frac{1}{x+\sqrt{x^2+\mathrm{a}}} \cdot\left[1+\frac{1}{2 \sqrt{x^2+\mathrm{a}}} \times \frac{\mathrm{d}}{\mathrm{dx}}\left(x^2+\mathrm{a}\right)\right] \\ & =\frac{1}{x+\sqrt{x^2+\mathrm{a}}} \cdot\left[1+\frac{1}{2 \sqrt{x^2+\mathrm{a}}} \cdot 2 x\right] \\ & =\frac{1}{x+\sqrt{x^2+\mathrm{a}}} \cdot\left[1+\frac{x}{\sqrt{x^2+\mathrm{a}}}\right] \\ & =\frac{1}{x+\sqrt{x^2+\mathrm{a}}} \cdot\left(\frac{\sqrt{x^2+\mathrm{a}+x}}{\sqrt{x^2+\mathrm{a}}}\right) \\ & =\frac{1}{\sqrt{x^2+\mathrm{a}}}\end{aligned}$
Hence. $\frac{d y}{d x}=\frac{1}{\sqrt{x^2+a}}$
Question 28
Differentiate each of the following w.r.t. x
$\log [\log (\log x^5)]$
Answer:
Let $\mathrm{y}=\log \left[\log \left(\log x^5\right)\right]$
Differentiating both sides w.r.t. x
$\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \log \left[\log \left(\log x^5\right)\right] \\ & =\frac{1}{\log \left(\log x^5\right)} \times \frac{\mathrm{d}}{\mathrm{dx}} \log \left(\log x^5\right) \\ & =\frac{1}{\log \left(\log x^5\right)} \times \frac{1}{\log \left(x^5\right)} \times \frac{\mathrm{d}}{\mathrm{dx}} \log x^5 \\ & =\frac{1}{\log \left(\log x^5\right)} \cdot \frac{1}{\log \left(x^5\right)} \cdot \frac{1}{x^5} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} x^5 \\ & =\frac{1}{\log \left(\log x^5\right)} \cdot \frac{1}{\log \left(x^5\right)} \cdot \frac{1}{x^5} \cdot 5 x^4 \\ & =\frac{5}{x \log \left(x^5\right) \cdot \log \left(\log x^5\right)}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{5}{x \log \left(x^5\right) \cdot \log \left(\log x^5\right)}$
Question 29
Differentiate each of the following w.r.t. x
$\sin \sqrt{x}+\cos ^{2} \sqrt{x}$
Answer:
Let $\mathrm{y}=\sin \sqrt{x}+\cos ^2 \sqrt{x}$
Differentiating both sides w.r.t. x
$\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \sqrt{x})+\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^2 \sqrt{x}\right) \\ & =\cos \sqrt{x} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\sqrt{x})+2 \cos \sqrt{x} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\cos \sqrt{x}) \\ & =\cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}+2 \cos \sqrt{x}(-\sin \sqrt{x}) \cdot \frac{\mathrm{d}}{\mathrm{dx}} \sqrt{x} \\ & =\frac{1}{2 \sqrt{x}} \cdot \cos \sqrt{x}-2 \cos \sqrt{x} \cdot \sin \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \\ & =\frac{\cos \sqrt{x}}{2 \sqrt{x}}-\frac{\sin 2 \sqrt{x}}{2 \sqrt{x}}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos \sqrt{x}}{2 \sqrt{x}}-\frac{\sin 2 \sqrt{x}}{2 \sqrt{x}}$.
Question 30
Differentiate each of the following w.r.t. x
$sin^n (ax^2 + bx + c)$
Answer:
We have $sin^n (ax^2 + bx + c)$
$\begin{aligned} &y=\sin^n \left(a x^{2}+b x+c\right)\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin^n\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)\right)\\ &\text { since, we know, } x^{n}=n x^{n-1}\\ &\frac{d y}{d x}=n \cdot \sin^{n-1} \left(a x^{2}+b x+c\right) \cdot \frac{d}{d x} \sin \left(a x^{2}+b x+c\right)\\ &\frac{d y}{d x}=n \cdot \sin^{n-1} \left(a x^{2}+b x+c\right) \cdot \cos \left(a x^{2}+b x+c\right) \cdot \frac{d}{d x}\left(a x^{2}+b x+c\right)\\ &\frac{d y}{d x}=n \cdot \sin^{n-1} \left(a x^{2}+b x+c\right) \cdot \cos \left(a x^{2}+b x+c\right) \cdot(2 a x \cdot+b)\\ &\mathrm{y}^{\prime}=\mathrm{n}(2 \mathrm{ax} \cdot+\mathrm{b}) \cdot \sin ^{\mathrm{n}-1}\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right) \cdot \cos \left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right) \end{aligned}$
Question 31
Differentiate each of the following w.r.t. x
$\cos (\tan \sqrt{x+1})$
Answer:
We have given $\cos (\tan \sqrt{x+1})$
Let us Assume $\sqrt{x+1}=w$
And $\tan \sqrt{x+1}=v$
$\mathrm{So}, \mathrm{y}=\cos \mathrm{v}$
Now, differentiate w.r.t v
$\frac{\mathrm{dy}}{\mathrm{d} \mathrm{v}}=(-\sin \mathrm{v})$
And, $\mathrm{v}=$ tan $\mathrm{w}$
Now, again differentiate w.r.t. w
$\frac{d v}{d w}=\sec ^{2} w$
And, we know, $\sqrt{x+1}=w$
So, differentiate w w.r.t. x we get
$\frac{d w}{d x}=\frac{1}{2 \sqrt{x+1}}$
Now, using the chain rule we get,
$\\\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dv}} \times \frac{\mathrm{dv}}{\mathrm{dw}} \times \frac{\mathrm{d} \mathrm{w}}{\mathrm{dx}}$ \\$\frac{d y}{d x}=(-\sin v) \times \sec ^{2} w \times \frac{1}{2 \sqrt{x+1}}$
Substitute the value of v and w
$\frac{\mathrm{dy}}{\mathrm{dx}}=\left(-\sin (\tan \sqrt{\mathrm{x}+1}) \times \sec ^{2} \sqrt{\mathrm{x}+1} \times \frac{1}{2 \sqrt{\mathrm{x}+1}}\right).$
Question 32 Differentiate each of the following w.r.t. x $sinx^2 + sin^2x + sin^2 (x^2)$
Answer:
Let us Assume $y=sinx^2 + sin^2x + sin^2 (x^2)$
$\begin{aligned} & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} \sin \left(x^2\right)+\frac{\mathrm{d}}{\mathrm{dx}}(\sin x)^2+\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin x^2\right)^2 \\ & =\cos \left(x^2\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(x^2\right)+2 \sin x \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\sin x)+2 \sin x^2 \frac{\mathrm{~d}}{\mathrm{dx}}\left(\sin x^2\right) \\ & =2 x \cos x^2+2 \sin x \cos x+2 \sin x^2 \cos x^2 \frac{\mathrm{~d}}{\mathrm{dx}} x^2 \\ & =2 x \cos x^2+2 \sin x \cos x+2 \sin x^2 \cos x^2 \times 2 x \\ & =2 \mathrm{x} \cos \left(\mathrm{x}^2\right)+\sin 2 \mathrm{x}+2 \mathrm{x} \sin 2\left(\mathrm{x}^2\right)\end{aligned}$
Question 33 Differentiate each of the following w.r.t. x
$\sin ^{-1}\left(\frac{1}{\sqrt{x+1}}\right)$
Answer:
Let $\mathrm{y}=\sin ^{-1} \frac{1}{\sqrt{x+1}}$
$\begin{aligned} & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} \frac{1}{\sqrt{x+1}}\right) \\ & =\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{x+1}}\right)^2}} \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \frac{1}{(x+1)^2} \\ & =\frac{1}{\sqrt{\frac{x+1-1}{x+1}}} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(x+1)^2 \\ & =\sqrt{\frac{x+1}{x}} \cdot \frac{-1}{2}(x+1)^{\frac{-3}{2}} \\ & =\frac{-1}{2 \sqrt{x}} \cdot\left(\frac{1}{x+1}\right)\end{aligned}$
Question 34 Differentiate each of the following w.r.t. x
$(sin x)^{cos x}$
Answer:
Given: $(sin x)^{cos x}$
To Find: Differentiate w.r.t x
We have $(sin x)^{cos x}$
Let $y=(sin x)^{cos x}$
Now, Taking Log on both sides, we get
Log y = cos x.log(sin x)
Now, Differentiate both sides w.r.t. x
$\begin{aligned} &\frac{1}{y} \frac{d y}{d x}=\cos x \cdot \frac{d}{d x}(\log (\sin x))+\log (\sin x) \cdot \frac{d}{d x}(\cos x)\\ &\text { By using product rule of differentiation }\\ &\frac{1}{y} \frac{d y}{d x}=\cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)+\log (\sin x) \cdot(-\sin x)\\ &\frac{1}{y} \frac{d y}{d x}=\cos x \cdot \frac{1}{\sin x}(\cos x)+\log (\sin x) \cdot(-\sin x)\\ &\frac{1}{y} \frac{d y}{d x}=\cos x \cdot \cot x-\log (\sin x) \cdot(\sin x)\\ &\frac{d y}{d x}=y[\cos x \cdot \cot x-\log (\sin x) \cdot(\sin x)] \end{aligned}$
Substitute the value of y, we get
$\begin{array}{l} y^{\prime}=(\sin x)^{\cos x}[\cos x \cdot \cot x-\sin x(\log \sin x)] \\ \text { Hence, } y^{\prime}=(\sin x)^{\cos x}[\cos x \cdot \cot x-\sin x(\log \sin x)] \end{array}$
Question 35
Differentiate each of the following w.r.t. x
$sin^mx . cos^nx$
Answer:
It is given $sin^mx. cos^nx$
$y=sin^mx . cos^nx$
$\begin{aligned} & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[(\sin x)^{\mathrm{m}} \cdot(\cos x)^{\mathrm{n}}\right] \\ & =(\sin x)^{\mathrm{m}} \frac{\mathrm{d}}{\mathrm{dx}}(\cos x)^{\mathrm{n}}+(\cos x)^{\mathrm{n}} \frac{\mathrm{d}}{\mathrm{dx}}(\sin x)^{\mathrm{m}} \\ & =(\sin x)^{\mathrm{m}} \mathrm{n}(\cos x)^{\mathrm{n}-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\cos x)+(\cos x)^{\mathrm{n}} \mathrm{m}(\sin x)^{\mathrm{m}-1} \frac{\mathrm{~d}}{\mathrm{dx}}(\sin x) \\ & =(\sin x)^{\mathrm{m}} \mathrm{n}(\cos x)^{\mathrm{n}-1}(-\sin x)+(\cos x)^{\mathrm{n}} \mathrm{m}(\sin x)^{\mathrm{m}-1} \cos x \\ & =\sin ^{\mathrm{m}} \mathrm{x} \cos ^{\mathrm{n}} \mathrm{x}[-\mathrm{n} \tan \mathrm{x}+\mathrm{m} \cot \mathrm{x}]\end{aligned}$
Question 36 Differentiate each of the following w.r.t. x $(x + 1)^2 (x + 2)^3 (x + 3)^4$
Answer:
Let $y=(x+1)^2(x+2)^3(x+3)^4$
$\begin{aligned} & \therefore \log y=\log \left[(x+1)^2 \cdot(x+2)^3(x+3)^4\right] \\ & =2 \log (x+1)+3 \log (x+2)+4 \log (x+3)\end{aligned}$
Differentiating w.r.t. x both sides, we get
$\begin{aligned} & \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{x+1}+\frac{3}{x+2}+\frac{4}{x+3} \\ & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=y\left[\frac{2}{x+1}+\frac{3}{x+2}+\frac{4}{x+3}\right] \\ & =(x+1)^2 \cdot(x+2)^3 \cdot(x+3)^4\left[\frac{2}{(x+1)}+\frac{3}{(x+2)}+\frac{4}{(x+3)}\right] \\ & =(x+1)^2 \cdot(x+2)^3 \cdot(x+3)^4 \times\left[\frac{2(x+3)(x+3)+3(x+1)(x+3)+4(x+1)(x+2)}{(x+1)(x+2)(x+3)}\right] \\ & =(\mathrm{x}+1)(\mathrm{x}+2)^2(\mathrm{x}+3)^3\left[9 \mathrm{x}^2+34 \mathrm{x}+29\right]\end{aligned}$
Question 37
Answer:
$\begin{aligned} &\cos ^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right)\\ &=\cos ^{-1}\left(\sin \mathrm{x} \frac{1}{\sqrt{2}}+\cos \mathrm{x} \frac{1}{\sqrt{2}}\right)\\ &\text { As we know } \sin \pi / 4=\cos \pi / 4=\frac{1}{\sqrt{2}} \\ &=\cos ^{-1}\left(\sin x \sin \frac{\pi}{4}+\cos x \cos \frac{\pi}{4}\right)\\ &\text { We know } \cos (a-b)=\sin a \sin b+\cos a \cos b\\ &=\cos ^{-1}\left(\cos \left(\frac{\pi}{4}-\mathrm{x}\right)\right)\\ &=\left(\frac{\pi}{4}-\mathrm{x}\right) \end{aligned}$
$\begin{aligned} &\text { Now, }\\ &\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\pi}{4}-x\right)\\ &=-1 \end{aligned}$
Question 38
Answer:
We have $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right),-\frac{\pi}{4}<x<\frac{\pi}{4}$
$\begin{aligned} &\mathrm{y}=\tan ^{-1} \sqrt{\left(\frac{1-\cos \mathrm{x}}{1+\cos \mathrm{x}}\right)}\\ &\text { We know, }\\ &\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\\ &\mathrm{y}=\tan ^{-1} \sqrt{\left(\frac{\sin ^{2} \frac{\mathrm{x}}{2}+\cos ^{2} \frac{\mathrm{x}}{2}-\cos ^{2} \frac{\mathrm{x}}{2}+\sin ^{2} \frac{\mathrm{x}}{2}}{\sin ^{2} \frac{\mathrm{x}}{2}+\cos ^{2} \frac{\mathrm{x}}{2}+\cos ^{2} \frac{\mathrm{x}}{2}-\sin ^{2} \frac{\mathrm{x}}{2}}\right)}\\ &\mathrm{y}=\tan ^{-1} \sqrt{\left(\frac{2 \sin ^{2} \frac{\mathrm{x}}{2}}{2 \cos ^{2} \frac{\mathrm{x}}{2}}\right)}\\ &\mathrm{y}=\tan ^{-1} \sqrt{\left(\tan ^{2} \frac{\mathrm{x}}{2}\right)}\\ &y=\tan ^{-1}\left(\tan \frac{x}{2}\right) \end{aligned}$
$\begin{aligned} &\text { As the interval is }\\ &-\frac{\pi}{4}<x<\frac{\pi}{4}\\ &=\left\{\begin{array}{r} \tan ^{-1}\left(\tan \frac{x}{2}\right),-\frac{\pi}{4}<x<0 \\ \tan ^{-1}\left(\tan \frac{x}{2}\right), 0 \leq x<\frac{\pi}{4} \end{array}\right.\\ &=\left\{\begin{array}{c} -\frac{\mathrm{x}}{2},-\frac{\mathrm{\pi}}{4}<\mathrm{x}<0 \\ \frac{\mathrm{x}}{2}, 0 \leq \mathrm{x}<\frac{\pi}{4} \end{array}\right. \end{aligned}$
Differentiate w.r.t. x
$\frac{d y}{d x}=\left\{\begin{array}{c} -\frac{1}{2},-\frac{\pi}{4}<x<0 \\ \frac{1}{2}, 0 \leq x<\frac{\pi}{4} \end{array}\right.$
Question 39
Answer:
Let $\mathrm{y}=\tan ^{-1}(\sec \mathrm{x}+\tan \mathrm{x})$
Differentiating both sides w.r.t. x
$\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\tan ^{-1}(\sec x+\tan x)\right] \\ & =\frac{1}{1+(\sec x+\tan x)^2} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\sec x+\tan x) \\ & =\frac{1}{1+\sec ^2+\tan ^2 x+2 \sec x \tan x} \cdot\left(\sec x \tan x+\sec ^2 x\right) \\ & =\frac{1}{\left(1+\tan ^2 x\right)+\sec ^2 x+2 \sec x \tan x} \cdot \sec x(\tan x+\sec x) \\ & =\frac{1}{\sec ^2 x+\sec ^2 x+2 \sec x \tan x} \cdot \sec x(\tan x+\sec x) \\ & =\frac{1}{2 \sec ^2 x+2 \sec x \tan x} \cdot \sec x(\tan x+\sec x) \\ & =\frac{1}{2 \sec x(\sec x+\tan x)} \cdot \sec x(\tan x+\sec x) \\ & =\frac{1}{2}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}$
Question 40
Answer:
Let $\mathrm{y}=\tan ^{-1}\left(\frac{\mathrm{a} \cos x-\mathrm{b} \sin x}{\mathrm{~b} \cos x-\mathrm{a} \sin x}\right)$
$\begin{aligned} & \Rightarrow \mathrm{y}=\tan ^{-1}\left[\frac{\frac{\mathrm{a} \cos x}{\mathrm{~b} \cos x}-\frac{\mathrm{b} \sin x}{\mathrm{~b} \cos x}}{\frac{\mathrm{~b} \cos x}{\mathrm{~b} \cos x}+\frac{\mathrm{a} \sin x}{\mathrm{~b} \cos x}}\right] \\ & \Rightarrow \mathrm{y}=\tan ^{-1}\left[\frac{\frac{\mathrm{a}}{\mathrm{b}}-\tan x}{1+\frac{\mathrm{a}}{\mathrm{b}} \tan x}\right] \\ & \Rightarrow \mathrm{y}=\tan ^{-1} \frac{\mathrm{a}}{\mathrm{b}}-\tan ^{-1}(\tan x) \\ & \Rightarrow \mathrm{y}=\tan ^{-1} \frac{\mathrm{a}}{\mathrm{b}}-x\end{aligned}$
Differentiating both sides concerning x
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \frac{\mathrm{a}}{\mathrm{b}}\right)-\frac{\mathrm{d}}{\mathrm{dx}}(x)=0-1=-1$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=-1$.
Question 41
Answer:
Let $\mathrm{y}=\sec ^{-1}\left(\frac{1}{4 x^3-3 x}\right)$
Put $x=\cos \theta$
$\begin{aligned} & \therefore \theta=\cos ^{-1} x \\ & y=\sec ^{-1}\left(\frac{1}{4 \cos ^3 \theta-3 \cos \theta}\right) \\ & \Rightarrow y=\sec ^{-1}\left(\frac{1}{\cos 3 \theta}\right) \ldots \ldots\left[\because \cos 3 \theta=4 \cos ^3 \theta-3 \cos \theta\right] \\ & \Rightarrow y=\sec ^{-1}(\sec 3 \theta) \\ & \Rightarrow y=3 \theta \\ & y=3 \cos ^{-1} x\end{aligned}$
Differentiating both sides w.r.t. X
$\begin{aligned} & \frac{d y}{d}=3 \cdot \frac{d}{d x} \cos ^{-1} x \\ & =3\left(\frac{-1}{\sqrt{1-x^2}}\right) \\ & =\frac{-3}{\sqrt{1-x^2}}\end{aligned}$
Hence, $\frac{d y}{d x}=\frac{-3}{\sqrt{1-x^2}}$.
Answer:
$\\y=\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right)$
$=\tan ^{-1}\left(\frac{3 \frac{x}{a}-\left(\frac{x}{a}\right)^{3}}{1-3\left(\frac{x}{a}\right)^{2}}\right)$
Let $x=a \tan \theta $
$\Rightarrow \theta=\tan ^{-1} \frac{x}{a}$
$\\y=\tan ^{-1}\left[\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right]$
$=\tan ^{-1}(\tan 3 \theta)$
$ =3 \theta$
$=3 \tan ^{-1} \frac{x}{a}$
$\frac{d y}{d x}=3 \frac{d}{d x} \tan ^{-1} \frac{x}{a} $
$=3\left[\frac{1}{1+\frac{x^{2}}{a^{2}}}\right] \cdot \frac{d}{d x}\left(\frac{x}{a}\right)$
$=\frac{3 a^{2}}{a^{2}+x^{2}} \cdot \frac{1}{a}\\=\frac{3 a}{a^{2}+x^{2}}$
Answer:
$\begin{aligned} &\text { We have given }\\ &\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)\\ &y=\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)\\ &\text { Put } x^{2}=\cos 2 \theta\\ &\mathrm{So} \end{aligned}$
$\\ \mathrm{y}=\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta-\sqrt{1-\cos 2 \theta}}}\right) \\ \mathrm{y}=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}\right) \\ \mathrm{y}=\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}\right) \\ \mathrm{y}=\tan ^{-1}\left(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right)$
$\\ \mathrm{y}=\tan ^{-1}\left(\frac{\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta}}\right) \\ \mathrm{y}=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right) \\ \mathrm{y}=\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}+\tan \theta}{1-\tan \frac{\pi}{4} \tan \theta}\right) \\ \mathrm{y}=\tan ^{-1} \tan \left(\frac{\pi}{4}+\theta\right)$
$\begin{aligned} &\mathrm{y}=\frac{\pi}{4}+\theta\\ &\text { Differentiate, y w.r.t x }\\ &\frac{d y}{d x}=\frac{\pi}{4}+\frac{1}{2} \frac{d}{d x} \cos ^{-1} x^{2}\\ &\frac{d y}{d x}=0+\frac{1}{2} \cdot \frac{-1}{\sqrt{1-x^{4}}} \frac{d}{d x}\left(x^{2}\right)\\ &\frac{d y}{d x}=\frac{1}{2} \cdot \frac{-2 x}{\sqrt{1-x^{4}}}\\ &\text { Hence, } \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{x}}{\sqrt{1-\mathrm{x}^{4}}} \end{aligned}$
Answer:
We have given two parametric equations,
$x=t+\frac{1}{t}\: \: ,\: \: y=t-\frac{1}{t}$
Now, differentiate both equations w.r.t x
We know, $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$ and $\frac{d}{d x}(x)=1$
So,
$\frac{d x}{d t}=1-\frac{1}{t^{2}}$
and,
$\frac{d y}{d x}=1+\frac{1}{t^{2}}$
Now,
$\begin{aligned} &\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\\ &\frac{d y}{d x}=\frac{1+\frac{1}{t^{2}}}{1-\frac{1}{t^{2}}}\\ &\text { Hence, }\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{t}^{2}+1}{\mathrm{t}^{2}-1} \end{aligned}$
Question 45
Answer:
Given that, $\mathrm{x}=\mathrm{e}^\theta\left(\theta+\frac{1}{\theta}\right), \mathrm{y}=\mathrm{e}^{-\theta}\left(\theta-\frac{1}{\theta}\right)$
Differentiating both the parametric functions w.r.t. $\theta$
$\begin{aligned} & \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{e}^\theta\left(1-\frac{1}{\theta^2}\right)+\left(\theta+\frac{1}{\theta}\right) \cdot \mathrm{e}^\theta \\ & \frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{e}^\theta\left(1-\frac{1}{\theta^2}+\theta+\frac{1}{\theta}\right) \\ & \Rightarrow \mathrm{e}^\theta\left(\frac{\theta^2-1+\theta^3+\theta}{\theta^2}\right) \\ & =\frac{\mathrm{e}^\theta\left(\theta^3+\theta^2+\theta-1\right)}{\theta^2} \\ & \mathrm{y}=\mathrm{e}^{-\theta}\left(\theta-\frac{1}{\theta}\right) \\ & \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{e}^{-\theta}\left(1+\frac{1}{\theta^2}\right)+\left(\theta-\frac{1}{\theta}\right) \cdot\left(-\mathrm{e}^{-\theta}\right) \\ & \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{e}^{-\theta}\left(1+\frac{1}{\theta^2}-\theta+\frac{1}{\theta}\right)\end{aligned}$
$\begin{aligned} & \Rightarrow \mathrm{e}^{-\theta}\left(\frac{\theta^2+1-\theta^3+\theta}{\theta^2}\right) \\ & =\mathrm{e}^{-\theta} \frac{\left(-\theta^3+\theta^2+\theta+1\right)}{\theta^2} \\ & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{d} \theta}}{\frac{\mathrm{d} x}{\mathrm{~d} \theta}} \\ & =\frac{\mathrm{e}^{-\theta}\left(\frac{-\theta^3+\theta^2+\theta+1}{\theta^2}\right)}{\mathrm{e}^\theta\left(\frac{\theta^3+\theta^2+\theta+1}{\theta^2}\right)} \\ & =\mathrm{e}^{-2 \theta}\left(\frac{-\theta^3+\theta^2+\theta+1}{\theta^3+\theta^2+\theta-1}\right)\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{-2 \theta}\left(\frac{-\theta^3+\theta^2+\theta+1}{\theta^3+\theta^2+\theta-1}\right)$
Question 46 Find dy/dx of each of the functions expressed in the parametric form in
$x=3 \cos \theta-2 \cos ^{3} \theta, y=3 \sin \theta-2 \sin ^{3} \theta$
Answer:
Given that: $\mathrm{x}=3 \cos \theta-2 \cos ^3 \theta$ and $\mathrm{y}=3 \sin \theta-2 \sin ^3 \theta$.
Differentiating both the parametric functions w.r.t. $\theta$
$\begin{aligned} & \frac{\mathrm{dx}}{\mathrm{d} \theta}=-3 \sin \theta-6 \cos ^2 \theta \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta}(\cos \theta) \\ & =-3 \sin \theta-6 \cos ^2 \theta \cdot(-\sin \theta) \\ & =-3 \sin \theta+6 \cos ^2 \theta \cdot \sin \theta \\ & \frac{\mathrm{dy}}{\mathrm{d} \theta}=3 o s \theta-6 \sin ^2 \theta \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta}(\sin \theta) \\ & ==3 \cos \theta-6 \sin ^2 \theta \cdot \cos \theta \\ & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{d y}{\mathrm{~d} \theta}}{\frac{\mathrm{dx}}{\mathrm{d} \theta}}\end{aligned}$
$\begin{aligned} & =\frac{3 \cos \theta-6 \sin ^2 \theta \cos \theta}{-3 \sin \theta+6 \cos ^2 \theta \cdot \sin \theta} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos \theta\left(3-6 \sin ^2 \theta\right)}{\sin \theta\left(-3+6 \cos ^2 \theta\right)} \\ & =\frac{\cos \theta\left[3-6\left(1-\cos ^2 \theta\right)\right]}{\sin \theta\left[-3+6 \cos ^2 \theta\right]} \\ & =\cot \theta\left(\frac{3-6+6 \cos ^2 \theta}{-3+6 \cos ^2 \theta}\right) \\ & =\cot \theta\left(\frac{-3+6 \cos ^2 \theta}{-3+6 \cos ^2 \theta}\right) \\ & =\cot \theta\end{aligned}$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\cot \theta$
Question 47
Answer:
Given that $\sin \mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^2}$ and $\tan \mathrm{y}=\frac{2 \mathrm{t}}{1-\mathrm{t}^2}$
$\therefore$ Taking $\sin \mathrm{x}=\frac{2 \mathrm{t}}{1+\mathrm{t}^2}$
Differentiating both sides w.r.t t, we get
$\begin{aligned} & \cos x \cdot \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\left(1+\mathrm{t}^2\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})-2 \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(1+\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)^2} \\ & \Rightarrow \cos x \cdot \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2\left(1+\mathrm{t}^2\right)-2 \mathrm{t} \cdot 2 \mathrm{t}}{\left(1+\mathrm{t}^2\right)^2} \\ & \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2+2 \mathrm{t}^2-4 \mathrm{t}^2}{\left(1-\mathrm{t}^2\right)^2} \times \frac{1}{\cos x} \\ & \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2-2 \mathrm{t}^2}{\left(1+\mathrm{t}^2\right)^2} \times \frac{1}{\sqrt{1-\sin ^2 x}} \\ & \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)^2} \times \frac{1}{\sqrt{1-\left(\frac{2 \mathrm{t}}{1+\mathrm{t}^2}\right)^2}}\end{aligned}$
$\begin{aligned} & \Rightarrow \frac{d x}{d t}=\frac{2\left(1-t^2\right)}{\left(1+t^2\right)^2} \times \frac{1}{\frac{\sqrt{\left(1+t^2\right)^2-4 t^2}}{\left(1+t^2\right)^2}} \\ & \Rightarrow \frac{d x}{d t}=\frac{2\left(1-t^2\right)}{\left(1+t^2\right)^2} \times \frac{1+t^2}{\sqrt{1+t^4+2 t^2-4 t^2}} \\ & \Rightarrow \frac{d x}{d t}=\frac{2\left(1-t^2\right)}{\left(1+t^2\right)^2} \times \frac{1}{\sqrt{1+t^4-2 t^2}} \\ & \Rightarrow \frac{d x}{d t}=\frac{2\left(1-t^2\right)}{\left(1+t^2\right)^2} \times \frac{1}{\sqrt{\left(1-t^2\right)^2}}\end{aligned}$
$\begin{aligned} & \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2\left(1-\mathrm{t}^2\right)}{\left(1+\mathrm{t}^2\right)^2} \times \frac{1}{\left(1-\mathrm{t}^2\right)} \\ & \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{1+\mathrm{t}^2}\end{aligned}$
Now taking, $\tan \mathrm{y}=\frac{2}{1-\mathrm{t}^2}$
Differentiating both sides w.r.t, t , we get
$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dt}}(\tan y)=\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{2 \mathrm{t}}{1-\mathrm{t}^2}\right) \\ & \Rightarrow \sec ^2 y \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\left(1-\mathrm{t}^2\right) \cdot \frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})-2 \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dt}}\left(1-\mathrm{t}^2\right)}{\left(1-\mathrm{t}^2\right)^2} \\ & \Rightarrow \sec ^2 y \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\left(1-\mathrm{t}^2\right) \cdot 2-2 \mathrm{t} \cdot(-2 \mathrm{t})}{\left(1-\mathrm{t}^2\right)^2} \\ & \Rightarrow \sec ^2 y \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2-2 \mathrm{t}^2+4 \mathrm{t}^2}{\left(1-\mathrm{t}^2\right)^2} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2+2 \mathrm{t}^2}{\left(1-\mathrm{t}^2\right)^2} \times \frac{1}{\sec ^2 y}\end{aligned}$
$\begin{aligned} & \Rightarrow \frac{d y}{d t}=\frac{2\left(1+t^2\right)}{\left(1-t^2\right)^2} \times \frac{1}{1+\tan ^2 y} \\ & \Rightarrow \frac{d y}{d t}=\frac{2\left(1+\mathrm{t}^2\right)}{\left(1-\mathrm{t}^2\right)^2} \times \frac{1}{1+\left(\frac{2 \mathrm{t}}{1-\mathrm{t}^2}\right)^2} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2\left(1+\mathrm{t}^2\right)}{\left(1-\mathrm{t}^2\right)^2} \times \frac{1}{\frac{\left(1-\mathrm{t}^2\right)^2+4 \mathrm{t}^2}{\left(1-\mathrm{t}^2\right)^2}} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2\left(1+\mathrm{t}^2\right)}{\left(1-\mathrm{t}^2\right)^2} \times \frac{\left(1-\mathrm{t}^2\right)^2}{1+\mathrm{t}^2+2 \mathrm{t}^2+4 \mathrm{t}^2} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{2\left(1+\mathrm{t}^2\right)}{\left(1-\mathrm{t}^2\right)^2} \times \frac{\left(1-\mathrm{t}^2\right)^2}{1+\mathrm{t}^4+2 \mathrm{t}^2}\end{aligned}$
$\begin{aligned} & \Rightarrow \frac{d y}{d t}=\frac{2\left(1+t^2\right)}{\left(1-t^2\right)^2} \times \frac{\left(1-t^2\right)^2}{\left(1+t^2\right)^2} \\ & \Rightarrow \frac{d y}{d t}=\frac{2}{1+t^2} \\ & \therefore \frac{d y}{d t}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\ & =\frac{\frac{2}{1+t^2}}{\frac{2}{1+t^2}} \\ & =1\end{aligned}$
Hence $\frac{\mathrm{dy}}{\mathrm{dt}}=1$
Answer:
Given that: $\mathrm{x}=\frac{1+\log \mathrm{t}}{\mathrm{t}^2}, \mathrm{y}=\frac{3+2 \log \mathrm{t}}{\mathrm{t}}$
Differentiating both the parametric functions w.r.t. t
$\begin{aligned} & \frac{d x}{d t}=\frac{t^2 \cdot \frac{d}{d t}(1+\log t)-(1+\log t) \cdot \frac{d}{d t}\left(t^2\right)}{t^4} \\ & =\frac{t^2 \cdot\left(\frac{1}{t}\right)-(1+\log t) \cdot 2 t}{t^4} \\ & =\frac{t-(1+\log t) \cdot 2 t}{t^4} \\ & =\frac{t[1-2-2 \log t]}{t^4} \\ & =\frac{-(1+2 \log t)}{t^3} \\ & y=\frac{3+2 \log t}{t}\end{aligned}$
$\begin{aligned} & \frac{d y}{d t}=\frac{t \cdot \frac{d}{d t}(3+2 \log t)-(3+2 \log t) \cdot \frac{d}{d t}(t)}{t^2} \\ & =\frac{t\left(\frac{2}{t}\right)-(3+2 \log t) \cdot 1}{t^2} \\ & =\frac{2-3-2 \log t}{t^2} \\ & =\frac{-(1+2 \log t)}{t^2} \\ & \therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\ & =\frac{-(1+2 \log t)}{t^2} \\ & \frac{-(1+2 \log t)}{t^3} \\ & =\frac{t^3}{t^2} \\ & =t\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{t}$.
Question 49
Answer:
Given that: $e^{\cos 2 t}$ and $y=e^{\sin 2 t}$
$\Rightarrow \cos 2 t=\log x$ and $\sin 2 t=\log y$
Differentiating both the parametric functions w.r.t. T
$\begin{aligned} & \frac{d x}{d t}=e^{\cos 2 t} \cdot \frac{d}{d t}(\cos 2 t) \\ & =e^{\cos 2 t}(-\sin 2 t) \cdot \frac{d}{d t}(2 t) \\ & =-e^{\cos 2 t} \cdot \sin 2 t \cdot 2 \\ & =2 e^{\cos 2 t} \cdot \sin 2 t\end{aligned}$
Now $y=e^{\sin 2 t}$
$\begin{aligned} & \frac{d y}{d t}=e^{\sin 2 t} \cdot \frac{d}{d t}(\sin 2 t) \\ & =e^{\sin 2 t} \cdot \cos 2 t \cdot \frac{d}{d t}(2 t) \\ & =e^{\sin 2 t} \cdot \cos 2 t \cdot 2 \\ & =2 e^{\sin 2 t} \cdot \cos 2 t \\ & \therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \\ & =\frac{2 e^{\sin 2 t} \cdot \cos 2 t}{-2 e^{\cos 2 t} \cdot \sin 2 t} \\ & =\frac{e^{\sin 2 t} \cdot \cos 2 t}{-e^{\cos 2 t} \cdot \sin 2 t} \\ & =\frac{y \cos 2 t}{-x \sin 2 t}\end{aligned}$
$=\frac{y \log x}{-x \log y}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{y \log x}{x \log y}$.
Question 50
Answer:
$x = a\sin 2t (1 + \cos2t) $and y$ = b\cos2t(1 - \cos2t)$
Differentiate w.r.t t
$\\ x=a \sin 2 t(1+\cos 2 t) \\ \frac{d x}{d t}=\frac{d}{d t}[\operatorname{asin} 2 t(1+\cos 2 t)]$
$ \frac{d x}{d t}=a \frac{d}{d t}[\sin 2 t(1+\cos 2 t)]$
$ \frac{d x}{d t}=a\left[\sin 2 t \frac{d}{d t}(1+\cos 2 t)+(1+\cos 2 t) \frac{d}{d t}(\sin 2 t)\right] $
$ \frac{d x}{d t}=a[\sin 2 t \cdot(-2 \sin 2 t)+(1+\cos 2 t) \cdot 2 \cos 2 t] $
$\frac{d x}{d t}=-2 a\left[\sin ^{2} 2 t-\cos 2 t(1+\cos 2 t)\right]$
Also,
y = bcos2t
$\\ \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{b} \cos 2 \mathrm{t}) $
$ \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{b} \frac{\mathrm{d}}{\mathrm{dt}}(\cos 2 \mathrm{t})$
$ \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{b}\left[-\sin 2 \mathrm{t} \cdot \frac{\mathrm{d}}{\mathrm{dt}}(2 \mathrm{t})\right] $
$ \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{b}[-2 \sin 2 \mathrm{t}]$
Now, for dy/dx
$\\ \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
$ \frac{d y}{d x}=\frac{b[-2 \sin 2 t]}{-2 a\left[\sin ^{2} 2 t-\cos 2 t(1+\cos 2 t)\right]} $
$ \frac{d y}{d x}=\frac{b[\sin 2 t]}{a\left[\sin ^{2} 2 t-\cos 2 t(1+\cos 2 t)\right]} $
$\frac{d y}{d x} \text { at } t=\frac{\pi}{4}$
$\\ \frac{d y}{d x}=\frac{b\left[\sin \frac{2 \pi}{4}\right]}{a\left[\sin ^{2} \frac{2 \pi}{4}-\cos \frac{2 \pi}{4}\left(1+\cos \frac{2 \pi}{4}\right)\right]} $
$ \frac{d y}{d x}=\frac{b\left[\sin \frac{\pi}{2}\right]}{a\left[\sin ^{2} \frac{\pi}{2}-\cos \frac{\pi}{2}\left(1+\cos \frac{\pi}{2}\right)\right]} $
$ \frac{d y}{d x}=\frac{b[1]}{a[1-0(1+0)]} $
$\frac{d y}{d x}=\frac{b}{a}$
Hence Proved.
Question 51
If , find $\frac{\mathrm{dy}}{\mathrm{dx}} \text { at } \mathrm{t}=\frac{\pi}{3}$
Answer:
$x = 3\sin t - \sin 3t, y = 3\cos t - \cos 3t$
Differentiate w.r.t t in both equation
x = 3sint - sin3t
$\begin{aligned} &\frac{d x}{d t}=\frac{d}{d t}(3 \sin t-\sin 3 t)\\ &\frac{d x}{d t}=\frac{d}{d t}(3 \sin t)-\frac{d}{d t}(\sin 3 t)\\ &\left.\frac{d x}{d t}=3 \cos t-3 \cos 3 t\right.\\ &\text { Now, for y }\\ &y=3 \operatorname{cost}-\cos 3 t \end{aligned}$
$\\ \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(3 \cos \mathrm{t}- \cos 3 \mathrm{t}) \\ \frac{\mathrm{dy}}{\mathrm{dt}}=3(-\sin \mathrm{t})- \frac{\mathrm{d}}{\mathrm{dt}}(\cos 3 \mathrm{t}) \\ \frac{\mathrm{dy}}{\mathrm{dt}}=3(-\sin \mathrm{t})-3(-\sin 3 \mathrm{t}) \\ \frac{\mathrm{dy}}{\mathrm{dt}}=-3 \sin \mathrm{t}+3 \sin 3 \mathrm{t} \\ \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}}$
$\\ \frac{d y}{d x}=\frac{-3 \sin t+3 \sin 3 t}{3 \cos t-3 \cos 3 t} \\ \text { At } t=\pi / 3 \\ \frac{d y}{d x}=\frac{-3 \sin \frac{\pi}{3}+3 \sin \frac{3 \pi}{3}}{3 \cos \frac{\pi}{3}-3 \cos \frac{3 \pi}{3}} \\ \frac{d y}{d x}=\frac{-\sin \frac{\pi}{3}+\sin \pi}{\cos \frac{\pi}{3}-\cos \pi} \\ \frac{d y}{d x}=\frac{-\frac{\sqrt{3}}{2}+0}{\frac{1}{2}-(-1)}$
$\\ \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}+1} \\ \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\frac{\sqrt{3}}{2}}{\frac{3}{2}} \\ \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\sqrt{3}}{2} \times \frac{2}{3} \\ \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-1}{\sqrt{3}}$
Question 52
Differentiate $\frac{x}{\sin x}$ w.r.t. sinx.
Answer:
Let us Assume,
$\begin{aligned} &\mathrm{u}=\frac{\mathrm{x}}{\sin \mathrm{x}}, \mathrm{v}=\sin \mathrm{x}\\ &\text { Now, differentiate w.r.t } x\\ &\frac{d u}{d x}=\frac{\sin x \cdot \frac{d}{d x}(x)-x \cdot \frac{d}{d x}(\sin x)}{(\sin x)^{2}}\\ &\frac{d u}{d x}=\frac{\sin x-x \cdot \cos x}{(\sin x)^{2}}\\ &\text { And, } v=\sin x\\ &\frac{\mathrm{d} \mathrm{v}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\sin \mathrm{x}) \end{aligned}$
$\begin{aligned} &\frac{d v}{d x}=\cos x\\ &\text { Now, }\\ &\frac{\mathrm{du}}{\mathrm{dv}}=\frac{\frac{\mathrm{du}}{\mathrm{dx}}}{\frac{\mathrm{dv}}{\mathrm{dx}}}\\ &\frac{\mathrm{du}}{\mathrm{dv}}=\frac{\sin \mathrm{x} \cdot-\mathrm{x} \cdot \cos \mathrm{x}}{(\sin \mathrm{x})^{2}} \times \frac{1}{\cos \mathrm{x}}\\ &\frac{d u}{d v}=\frac{\tan x-x}{\sin ^{2} x} \end{aligned}$
Question 53
Differentiate $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$ w.r.t. $tan^{-1}x$ when $x\neq 0$
Answer:
We have $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$
Let us Assume,
$\begin{aligned} &\mathrm{p}=\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}-1}{\mathrm{x}}\right) \text { and } \theta=\tan ^{-1}{ \mathrm{x}}\\ &\text { And, put } x=\tan \theta\\ &p=\tan ^{-1} \frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\\ &p=\tan ^{-1} \frac{\sqrt{\sec ^{2} \theta}-1}{\tan \theta}\\ &p=\tan ^{-1} \frac{\sec \theta-1}{\tan \theta} \end{aligned}$
$\\ \mathrm{p}=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\ \mathrm{p}=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}\right) \\ \mathrm{p}=\tan ^{-1}\left(\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\right) \\ \mathrm{p}=\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \\ \mathrm{p}=\frac{\theta}{2}$
$\frac{dp}{d\theta} = \frac{1}{2}$
Hence Differentiation of $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)$w.r.t. $\tan^{-1}x$ is $\frac{1}{2}$.
Question 54
Answer:
We have,
$\sin (x y)+\frac{x}{y}=x^{2}-y$
Use the chain rule and quotient rule to get:
Chain Rule
f(x) = g(h(x))
f’(x) = g’(h(x))h’(x)
By Quotient Rule
$\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}\left[\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}\right]=\frac{\mathrm{g}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})}{[\mathrm{g}(\mathrm{x})]^{2}}$
On differentiating both the sides concerning x, we get
$\begin{aligned} &\cos x y \times \frac{d}{d x}(x y)+\frac{y \frac{d}{d x}(x)-x \frac{d}{d x}(y)}{y^{2}}=2 x-\frac{d y}{d x}\\ &\text { By product rule: }\\ &\frac{\mathrm{d}}{\mathrm{dx}}[\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})]=\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{x})\\ &\left[\because \frac{d}{d x} \sin x=\cos x\right] \end{aligned}$
$\begin{aligned} &\Rightarrow \cos (x y)\left[x \frac{d y}{d x}+y \times(1)\right]+\frac{y \times 1-x \frac{d y}{d x}}{y^{2}}=2 x-\frac{d y}{d x}\\ &\text { Multiplying by } y^{2} \text { to both the sides, we get }\\ &\Rightarrow \cos (x y)\left[x y^{2} \frac{d y}{d x}+y^{3}\right]+y-x \frac{d y}{d x}=2 x y^{2}-y^{2} \frac{d y}{d x}\\ &\Rightarrow x y^{2} \cos (x y) \frac{d y}{d x}+y^{3} \cos (x y)+y-x \frac{d y}{d x}=2 x y^{2}-y^{2} \frac{d y}{d x}\\ &\Rightarrow \mathrm{xy}^{2} \cos (\mathrm{xy}) \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}^{2} \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{xy}^{2}-\mathrm{y}^{3} \cos (\mathrm{xy})-\mathrm{y}\\ &\Rightarrow \frac{d y}{d x}\left[x y^{2} \cos (x y)-x+y^{2}\right]=2 x y^{2}-y^{3} \cos (x y)-y\\ &\Rightarrow \frac{d y}{d x}=\frac{2 x y^{2}-y^{3} \cos (x y)-y}{x y^{2} \cos (x y)-x+y^{2}} \end{aligned}$
Question 55
Find $\frac{dy}{dx}$ when x and y are connected by the relation given
Answer:
We have,
sec(x + y) = xy
By the rules given below:
Chain Rule
f(x) = g(h(x))
f’(x) = g’(h(x))h’(x)
Product rule:
$\begin{aligned} &\frac{\mathrm{d}}{\mathrm{d} \mathrm{x}}[\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})]=\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{f}^{\prime}(\mathrm{x})\\ &\text { On differentiating both sides with respect to } x, \text { we get }\\ &\sec (x+y) \tan (x+y) \frac{d}{d x}(x+y)=y+x \frac{d}{d x} y\\ &\left[\because \frac{d}{d x} \sec (x)=\sec x \tan x\right]\\ &\Rightarrow \sec (\mathrm{x}+\mathrm{y}) \tan (\mathrm{x}+\mathrm{y})\left[1+\frac{\mathrm{d} y}{\mathrm{~d} \mathrm{x}}\right]=\mathrm{y}+\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}} \end{aligned}$
$\\ \Rightarrow \sec (x+y) \tan (x+y)+\sec (x+y) \tan (x+y) \frac{d y}{d x}=y+x \frac{d y}{d x} $
$ \Rightarrow \sec (x+y) \tan (x+y) \frac{d y}{d x}-x \frac{d y}{d x}=y-\sec (x+y) \tan (x+y) $
$ \Rightarrow \frac{d y}{d x}[\sec (x+y) \tan (x+y)-x]=y-\sec (x+y) \tan (x+y) $
$ \therefore \frac{d y}{d x}=\frac{y-\sec (x+y) \tan (x+y)}{\sec (x+y) \tan (x+y)-x}$
Question 58
Answer:
Given: $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
Differentiating the above concerning x, we get
$\\ 2 \mathrm{ax}+2 \mathrm{~h}\left[\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}\right]+\mathrm{b} \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{y}^{2}\right)+2 \mathrm{~g}+2 \mathrm{f} \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{y}=0 $
$ \Rightarrow 2 \mathrm{ax}+2 \mathrm{hx} \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{hy}+2 \mathrm{by} \frac{\mathrm{dy}}{\mathrm{dx}}+2 \mathrm{~g}+2 \mathrm{f} \frac{\mathrm{dy}}{\mathrm{dx}}=0 $
$ \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}[2 \mathrm{hx}+2 \mathrm{by}+2 \mathrm{f}]=-2 \mathrm{ax}-2 \mathrm{hy}-2 \mathrm{~g} $
$ \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-[2 \mathrm{ax}+2 \mathrm{hy}+2 \mathrm{~g}]}{2 \mathrm{hx}+2 \mathrm{by}+2 \mathrm{f}} \ldots(\mathrm{ii})$
Now, we again differentiate eq (i) concerning y, we get,
$\\ a \frac{d}{d y}\left(x^{2}\right)+2 h\left[x+y \frac{d}{d y} x\right]+2 y b+2 g \frac{d x}{d y}+2 f=0 $
$ \Rightarrow 2 a x \frac{d x}{d y}+2 h x+2 h y \frac{d x}{d y}+2 b y+2 g \frac{d x}{d y}+2 f=0 $
$\Rightarrow \frac{d x}{d y}[2 a x+2 h y+2 g]=-2 h x-2 b y-2 f $
$ \Rightarrow \frac{d x}{d y}=\frac{-[2 h x+2 b y+2 f]}{2 a x+2 h y+2 g} \ldots(i i i)$
Now, by multiplying Eq. (ii) and (iii), we get
$\\ \Rightarrow \frac{d y}{d x} \times \frac{d x}{d y}=\frac{-[2 a x+2 h y+2 g]}{2 h x+2 b y+2 f} \times \frac{-[2 h x+2 b y+2 f]}{2 a x+2 h y+2 g} =1$
Hence Proved.
Question 59
If $x=e^{x/y}$prove that $\frac{dy}{dx}= \frac{x-y}{x\log x}$
Answer:
Given that: $\mathrm{x}=\mathrm{e}^{\frac{x}{y}}$
Taking $\log$ on both the sides,
$\begin{aligned} & \log \mathrm{x}=\log \mathrm{e}^{\frac{x}{y}} \\ & \Rightarrow \log \mathrm{x}=\frac{x}{y} \log \mathrm{e}\end{aligned}$
$\Rightarrow \log \mathrm{x}=\frac{x}{y}$
Differentiating both sides w.r.t. X
$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dx}} \log x=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{x}{y}\right) \\ & \Rightarrow \frac{1}{x}=\frac{y \cdot 1-x \cdot \frac{\mathrm{dy}}{\mathrm{dx}}}{y^2} \\ & \Rightarrow \mathrm{y}^2=x y-x^2 \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\ & \Rightarrow x^2 \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{xy}-\mathrm{y}^2 \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y(x-y)}{x^2} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{d}}=\frac{y}{x} \cdot\left(\frac{x-y}{x}\right) \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\log x} \cdot\left(\frac{x-y}{x}\right)\end{aligned}$
Hence, ${ }^{\prime}$ "dy"/"dx" = (x - y)/(xlogx).
Question 60
If $y^x = e^{y-x}$, prove that $\frac{d y}{d x}=\frac{(1+\log y)^{2}}{\log y}$
Answer:
Given that: $\mathrm{y}^{\mathrm{x}}=\mathrm{e}^{\mathrm{y}-\mathrm{x}}$
Taking $\log$ on both sides $\log \mathrm{y}^{\mathrm{x}}=\log \mathrm{e}^{\mathrm{y}-\mathrm{x}}$
$\begin{aligned} & \Rightarrow \mathrm{x} \log \mathrm{y}=(\mathrm{y}-\mathrm{x}) \log \mathrm{e} \\ & \Rightarrow \mathrm{x} \log \mathrm{y}=\mathrm{y}-\mathrm{x} \quad \ldots . .[\because \log \mathrm{e}=1] \\ & \Rightarrow \mathrm{x} \log \mathrm{y}+\mathrm{x}=\mathrm{y} \\ & \Rightarrow \mathrm{x}(\log \mathrm{y}+1)=\mathrm{y} \\ & \Rightarrow \mathrm{x}=\frac{y}{\log y+1}\end{aligned}$
Differentiating both sides w.r.t. Y
$\begin{aligned} & \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{d}}{\mathrm{dy}}\left(\frac{y}{\log y+1}\right) \\ & =\frac{(\log y+1) \cdot 1-y \cdot \frac{\mathrm{~d}}{\mathrm{dy}}(\log y+1)}{(\log y+1)^2} \\ & =\frac{\log y+1-y \cdot \frac{1}{2}}{(\log y+1)^2} \\ & =\frac{\log y}{(\log y+1)^2}\end{aligned}$
We know that
$\begin{aligned} & \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\frac{\mathrm{dx}}{\mathrm{dy}}} \\ & =\frac{1}{\frac{\log y}{(\log y+1)^2}} \\ & =\frac{(\log y+1)^2}{\log y}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(\log y+1)^2}{\log y}$.
Question 61
Answer:
Given that $\mathrm{y}=(\cos x)^{(\cos x)^{(\cos x) \ldots \infty}}$,
$\Rightarrow \mathrm{y}=(\cos \mathrm{x})^{\mathrm{y}} \ldots . .\left[y=(\cos x)^{\left.(\cos x)^{(\cos x) \ldots \infty}\right]}\right]$
Taking $\log$ on both sides $\log y=y \cdot \log (\cos x)$
Differentiating both sides w.r.t. x
$\begin{aligned} & \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=y \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \log (\cos x)+\log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\ & \Rightarrow \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=y \cdot \frac{1}{\cos x} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\cos x)+\log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\ & \Rightarrow \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=y \cdot \frac{1}{\cos x} \cdot(-\sin x)+\log (\cos x) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\ & \Rightarrow \frac{1}{y} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}-\log (\cos x) \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y} \tan \mathrm{x} \\ & \Rightarrow\left[\frac{1}{y}-\log (\cos x)\right] \frac{\mathrm{dy}}{\mathrm{dx}}=-\mathrm{y} \tan \mathrm{x} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-y \tan x}{\frac{1}{y}-\log (\cos x)} \\ & =\frac{y^2 \tan x}{y \log \cos x-1}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y^2 \tan x}{y \log \cos x-1}$.
Hence proved.
Question 62
Answer:
Given that: $x \sin (a+y)+\sin a \cos (a+y)=0$
$\begin{aligned} & \Rightarrow x \sin (a+y)=-\sin a \cos (a+y) \\ & \Rightarrow x=\frac{-\sin a \cdot \cos (a+y)}{\sin (a+y)} \\ & \Rightarrow x=-\sin a \cdot \cot (a+y)\end{aligned}$
Differentiating both sides w.r.t. Y
$\begin{aligned} & \Rightarrow \frac{d x}{d y}=-\sin a \cdot \frac{d}{d y} \cot (a+y) \\ & \Rightarrow \frac{d x}{d y}=-\sin a\left[-\operatorname{cosec}^2(a+y)\right. \\ & \Rightarrow \frac{d x}{d y}=\frac{\sin a}{\sin ^2(a+y)} \\ & \therefore \frac{d y}{d x}=\frac{1}{\frac{d x}{d y}} \\ & =\frac{1}{\frac{\sin a}{\sin ^2(a+y)}}\end{aligned}$
Hence, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^2(\mathrm{a}+y)}{\sin \mathrm{a}}$.
Hence proved.
Question 63
Answer:
Given that: $\sqrt{1-x^2}+\sqrt{1-y^2}=\mathrm{a}(x-y)$
Put $\mathrm{x}=\sin \theta$ and $\mathrm{y}=\sin \Phi$.
$\begin{aligned} & \therefore \theta=\sin ^{-1} \mathrm{x} \text { and } \Phi=\sin ^{-1} \mathrm{y} \\ & \sqrt{1-\sin ^2 \theta}+\sqrt{1-\sin ^2 \phi}=\mathrm{a}(\sin \theta-\sin \Phi) \\ & \Rightarrow \sqrt{\cos ^2 \theta}+\sqrt{\cos ^2 \phi}=\mathrm{a}(\sin \theta-\sin \Phi) \\ & \Rightarrow \cos \theta+\cos \Phi=\mathrm{a}(\sin \theta-\sin \Phi) \\ & \Rightarrow \frac{\cos \theta+\cos \phi}{\sin \theta-\sin \phi}=\mathrm{a}\end{aligned}$
$\begin{aligned} & \Rightarrow \frac{2 \cos \frac{\theta+\phi}{2} \cdot \cos \frac{\theta-\phi}{2}}{2 \cos \frac{\theta+\phi}{2} \cdot \sin \frac{\theta-\phi}{2}}=\mathrm{a} \\ & \Rightarrow \frac{\cos \left(\frac{\theta-\phi}{2}\right)}{\sin \left(\frac{\theta-\phi}{2}\right)}=\mathrm{a} \\ & \Rightarrow \cot \left(\frac{\theta-\phi}{2}\right)=\mathrm{a} \\ & \Rightarrow \frac{\theta-\phi}{2}=\cot ^{-1} \mathrm{a} \\ & \Rightarrow \theta-\Phi=2 \cot ^{-1} \mathrm{a} \\ & \Rightarrow \sin ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}=2 \cot ^{-1} \mathrm{a}\end{aligned}$
Differentiating both sides w.r.t. X
$\begin{aligned} & \frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} x\right)-\frac{\mathrm{d}}{\mathrm{dx}}\left(\sin ^{-1} x\right)=2 \cdot \frac{\mathrm{~d}}{\mathrm{dx}} \cot ^{-1} \mathrm{a} \\ & \Rightarrow \frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-y^2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=0 \\ & \Rightarrow \frac{1}{\sqrt{1-y^2}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-x^2}} \\ & \therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}} .\end{aligned}$
Question 64 If $y = tan^{-1}x$ , find $\frac{d^2y}{dx^2}$ in terms of y alone.
Answer:
Given that: $\mathrm{y}=\tan ^{-1} \mathrm{x}$
$\Rightarrow x=\tan y$
Differentiating both sides w.r.t. Y
$\frac{d x}{d y}=\sec ^2 y$
$\frac{\mathrm{dy}}{dx}=\frac{1}{\sec ^2 y}=\cos ^2 y$
Again, differentiating both sides w.r.t. x
$\begin{aligned} & \Rightarrow \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^2 y\right) \\ & \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{dx}^2}=2 \cos y \cdot \frac{\mathrm{~d}}{\mathrm{dx}}(\cos y) \\ & \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{dx}^2}=2 \cos y(-\sin y) \cdot \frac{\mathrm{dy}}{\mathrm{dx}} \\ & \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{dx}^2}=-2 \sin y \cos y \cdot \cos ^2 y \\ & \therefore \frac{\mathrm{~d}^2 y}{\mathrm{dx}^2}=-2 \sin \mathrm{y} \cos ^3 \mathrm{y}\end{aligned}$
Question 65
Verify the Rolle’s theorem for each of the functions
$f(x) = x (x - 1)^2$ in [0, 1].
Answer:
We have, $\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-1)^2$ in $[0,1]$
Since, $f(x)=x(x-1)^2$ is a polynomial function it is continuous in $[0,1]$ and differentiable in $(0,1)$ Now, $f(0)=0$ and $f(1)$
$\Rightarrow \mathrm{f}(0)=\mathrm{f}(1)$
f satisfies the conditions of Rolle's theorem.
Hence, by Rolle's theorem there exists at least one $\mathrm{c} \in(0,1)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\begin{aligned} & \Rightarrow 3 \mathrm{c}^2-4 \mathrm{c}+1=0 \\ & \Rightarrow(3 \mathrm{c}-1)(\mathrm{c}-1)=0 \\ & \Rightarrow \mathrm{c}=\frac{1}{3} \in(0,1)\end{aligned}$
Thus, Rolle’s theorem is verified.
Question 66
Answer:
We have, $\mathrm{f}(\mathrm{x})=\sin ^4 x+\cos ^4 x$ in $\left[0, \frac{\pi}{2}\right]$
We know that $\sin \mathrm{x}$ and $\cos \mathrm{x}$ are conditions and differentiable
$\therefore \sin 4 x$ and $\cos 4 x$ and hence $\sin 4 x+\cos 4 x$ is continuous and differentiable
Now $\mathrm{f}(0)=0+1=1$ and $\mathrm{f}\left(\frac{\pi}{2}\right)=1+0=1$
$\Rightarrow \mathrm{f}(0)=\mathrm{f}\left(\frac{\pi}{2}\right)$
So, the conditions of Rolle's theorem are satisfied.
Hence, there exists at least one $\mathrm{c} \in\left(0, \frac{\pi}{2}\right)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\begin{aligned} & \therefore 4 \sin ^3 \mathrm{c} \cos \mathrm{c}-4 \cos ^3 \mathrm{c} \sin \mathrm{c}=0 \\ & \Rightarrow 4 \sin \mathrm{c} \cos \mathrm{c}\left(\sin ^2 \mathrm{c}-\cos ^2 \mathrm{c}\right)=0 \\ & \Rightarrow 4 \sin \mathrm{c} \cos \mathrm{c}(-\cos 2 \mathrm{c})=0 \\ & \Rightarrow-2 \sin 2 \mathrm{c} \cdot \cos 2 \mathrm{c}=0 \\ & \Rightarrow \sin 4 \mathrm{c}=0 \\ & \Rightarrow 4 \mathrm{c}=\pi \\ & \Rightarrow \mathrm{c}=\frac{\pi}{4} \in\left(0, \frac{\pi}{2}\right)\end{aligned}$
Thus, Rolle’s theorem is verified.
Question 67
Verify Rolle’s theorem for each of the functions
$f(x) = log (x^2 + 2) - log3$ in [- 1, 1].
Answer:
We have, $\mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}^2+2\right)-\log 3$
We know that $\mathrm{x}^2+2$ and the logarithmic function are continuous and differentiable $\therefore \mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}^2+2\right)-\log 3$ is also continuous and differentiable.
Now $f(-1)=f(1)=\log 3-\log 3=0$
So, the conditions of Rolle's theorem are satisfied.
Hence, there exists at least one $\mathrm{c} \in(-1,1)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\begin{aligned} & f(x)=\frac{2 c}{c^2+2}-0=0 \\ & \Rightarrow c=0 \in(-1,1)\end{aligned}$
Hence, Rolle's theorem has been verified.
Question 68
Verify Rolle’s theorem for each of the functions
$f(x) = x(x + 3)e^{-x/2}$ in [-3, 0].
Answer:
Given: $f(x) = x(x + 3)e^{-x/2}$
$\Rightarrow f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$
Now, we have to show that f(x) verifies Rolle’s Theorem
First of all, the Conditions of Rolle’s theorem are:
a) f(x) is continuous at (a,b)
b) f(x) is derivable at (a,b)
c) f(a) = f(b)
If all three conditions are satisfied, then there exists some ‘c’ in (a,b) such that f’(c) = 0
Condition 1:
$\Rightarrow f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$
Since f(x) is the multiplication of algebra and exponential function,n and is defined everywhere in its domain.
$\Rightarrow f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$ is continuous at x ∈ [-3,0]
Hence, condition 1 is satisfied.
Condition 2: $\Rightarrow f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$
On differentiating f(x) concerning x, we get,
$\\ f^{\prime}(x)=e^{\frac{-x}{2}} \frac{d}{d x}\left(x^{2}+3 x\right)+\left(x^{2}+3 x\right) \frac{d}{d x} e^{-\frac{x}{2}} \text { [by product rule }] $
$ \Rightarrow f^{\prime}(x)=e^{-\frac{x}{2}}[2 x+3]+\left(x^{2}+3 x\right) \times\left(-\frac{1}{2} e^{-\frac{x}{2}}\right) $
$ \Rightarrow f^{\prime}(x)=2 x e^{-\frac{x}{2}}+3 e^{-\frac{x}{2}}-\frac{x^{2}}{2} e^{-\frac{x}{2}}-\frac{3 x}{2} \mathrm{e}^{-\frac{x}{2}} $
$ \Rightarrow f^{\prime}(x)=e^{-\frac{x}{2}}\left[2 x+3-\frac{x^{2}}{2}-\frac{3 x}{2}\right] $
$ \Rightarrow f^{\prime}(x)=\frac{e^{-\frac{x}{2}}}{2}\left[x+6-x^{2}\right] $
$ \Rightarrow f^{\prime}(x)=-\frac{e^{-\frac{x}{2}}}{2}\left[x^{2}-x-6\right] $
$ \Rightarrow \quad(x)=-\frac{e^{-\frac{x}{2}}}{2}\left[x^{2}-3 x+2 x-6\right]$
$\\ \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\frac{\mathrm{e}^{-\frac{\mathrm{x}}{2}}}{2}[\mathrm{x}(\mathrm{x}-3)+2(\mathrm{x}-3)] $
$ \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\frac{\mathrm{e}^{-\frac{\mathrm{x}}{2}}}{2}[(\mathrm{x}-3)(\mathrm{x}+2)]$
⇒ f(x) is differentiable at [-3,0]
Hence, condition 2 is satisfied.
Condition 3:
$\\f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$ \\$f(-3)=\left[(-3)^{2}+3(-3)\right] e^{\frac{-(-3)}{2}}$ \\$=[9-9] \mathrm{e}^{2 / 2}$ \\$=0$ \\$f(0)=\left[(0)^{2}+3(0)\right] e^{\frac{-0}{2}}$ \\$=0$
Hence, $f(-3)=f(0)$
Hence, condition 3 is also satisfied.
Now, let us show that $c \in(0,1)$ such that $f^{\prime}(c)=0$ \\$f(x)=\left(x^{2}+3 x\right) e^{\frac{-x}{2}}$
On differentiating above with respect to x , we get $\\ f^{\prime}(x)=-\frac{e^{-\frac{x}{2}}}{2}[(x-3)(x+2)]$
$\\ Put$ x=c in the above equation, we get
$ \mathrm{f}^{\prime}(\mathrm{c})=-\frac{\mathrm{e}^{-\frac{\mathrm{c}}{2}}}{2}[(\mathrm{c}-3)(\mathrm{c}+2)]$
All three conditions of Rolle’s theorem are satisfied
f’(c) = 0
$\begin{aligned} &-\frac{e^{-\frac{c}{2}}}{2}[(c-3)(c+2)]=0\\ &\because-\frac{e^{-\frac{c}{2}}}{2} c a n^{\prime} t \text { be zero }\\ &\Rightarrow(c-3)(c+2)=0\\ &\Rightarrow c-3=0 \text { or } c+2=0\\ &\Rightarrow c=3 \text { or } c=-2\\ &\text { So, value of } c=-2,3\\ &c=-2 \in(-3,0) \text { but } c=3 \in(-3,0)\\ &\therefore c=-2 \end{aligned}$
Thus, Rolle’s theorem is verified.
Question 69 Verify Rolle’s theorem for each of the functions
$f(x)=\sqrt{4-x^{2}} \text { in }[-2,2]$
Answer:
We have, $\sqrt{4-x^2}=\left(4-x^2\right)^{\frac{1}{2}}$
Since $\left(4-x^2\right)$ and the square root function are continuous and differentiable in their domain, given function $f(x)$ is also continuous and differentiable in $[-2,2]$
Also $f(-2)=f(2)=0$
So, the conditions of Rolle's theorem are satisfied.
Hence, there exists a real number $\mathrm{c} \in(-2,2)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Now $f^{\prime}(\mathrm{x})=\frac{1}{2}\left(4-x^2\right)^{\frac{-1}{2}}(-2 x)$
$=-\frac{x}{\sqrt{4-x^2}}$
So, $f^{\prime}(c)=0$
$\begin{aligned} & \Rightarrow \frac{c}{\sqrt{4-c^2}}=0 \\ & \Rightarrow c=0 \in(-2,2)\end{aligned}$
Hence, Rolle's theorem has been verified.
Question 70
Answer:
Given: $f(x)=\begin{array}{ll} x^{2}+1, & \text { if } 0 \leq x \leq 1 \\ 3-x, & \text { if } 1 \leq x \leq 2 \end{array}$
First of all, the Conditions of Rolle’s theorem are:
a) f(x) is continuous at (a,b)
b) f(x) is derivable at (a,b)
c) f(a) = f(b)
If all three conditions are satisfied, then there exists some ‘c’ in (a,b) such that f’(c) = 0
Condition 1:
At x = 1
$\\\lim _{\mathrm{LHL}}\left(\mathrm{x}^{2}+1\right)=1+1=2$ \\$\lim _{\mathrm{RHL}}=\lim _{x \rightarrow 1^{+}}(3-\mathrm{x})=3-1=2$ \\$\because \mathrm{LHL}=\mathrm{RHL}=2$
and $f(1)=3-x=3-1=2$
$\therefore f(x)$ is continuous at $x=1$
Hence, condition 1 is satisfied.
Condition 2:
Now, we have to check f(x) is differentiable
$f(x)=\left\{\begin{array}{l}x^{2}+1, \text { if } 0 \leq x \leq 1 \\ 3-x, \text { if } 1 \leq x \leq 2\end{array}\right.$
On differentiating concerning x, we get
$\Rightarrow f^{\prime}(x)=\left\{\begin{array}{c}2 x+0, \text { if } 0<x<1 \\ 0-1, \text { if } 1<x<2\end{array}\right.$ or
$\mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{l} 2 \mathrm{x}, \text { if } 0<\mathrm{x}<1 \\ -1, \text { if } 1<\mathrm{x}<2 \end{array}\right.$
Now, let us consider the differentiability of f(x) at x = 1
LHD ⇒ f(x) = 2x = 2(1) = 2
RHD ⇒ f(x) = -1 = -1
LHD ≠ RHD
∴ f(x) is not differentiable at x = 1
Thus, Rolle’s theorem does not apply to the given function.
Question 71
Answer:
We have $y=\cos x-1$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=-\sin \mathrm{x}$
For the tangent to be parallel to the x-axis
We must have $\frac{d y}{d x}=0$
$\begin{aligned} & \therefore-\sin \mathrm{x}=0 \\ & \therefore \mathrm{x}=\pi \in[0,2 \pi]\end{aligned}$
$y(\pi)=\cos \pi-1=-2$
Hence, the required point on the curve, where the tangent drawn is parallel to the x-axis $(\pi,-2)$
Question 72
Answer:
We have, $y=x(x-4), x \in[0,4]$
Since the given function is polynomial, it is continuous and differentiable.
Also $y(0)=y(4)=0$
So, the conditions of Role's theorem are satisfied.
Hence there exists a point $\mathrm{c} \in(0,4)$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow 2 c-4=0$
$\Rightarrow c=2$
$\Rightarrow x=2$ and $y(2)$
$\begin{aligned} & =2(2-4) \\ & =-4\end{aligned}$
Therefore, the required point on the curve, where the tangent drawn is parallel to the x-axis is $(2,-4)$.
Question 73
Answer:
We have, $\mathrm{f}(\mathrm{x})=\frac{1}{4 x-1}$ in $[1,4]$
Clearly $f(x)$ is continuous in $[1,4]$
Also, $\mathrm{f}^{\prime}(\mathrm{x})=-\frac{4}{(4 x-1)^2}$, which exists in $(1,4)$
So, it is differentiable in $(1,4)$
Thus conditions of the mean value theorem are satisfied.
Hence, there exists a real number $\mathrm{c} \in(1,4)$ such that
$\begin{aligned} & f(\mathrm{c})=\frac{\mathrm{f}(4)-f(1)}{4-1} \\ & \Rightarrow \frac{-4}{(4 \mathrm{c}-1)^2}=\frac{\frac{1}{16-1}-\frac{1}{4-1}}{4-1} \\ & =\frac{\frac{1}{15}-\frac{1}{3}}{3} \\ & \Rightarrow \frac{-4}{(4-1)^2}=\frac{-4}{45} \\ & \Rightarrow(4 \mathrm{c}-1)^2=45 \\ & \Rightarrow 4 \mathrm{c}-1= \pm 3 \sqrt{5} \\ & \Rightarrow \mathrm{c}=\frac{3 \sqrt{5}+1}{4} \in(1,4)\end{aligned}$
Hence mean value theorem has been verified.
Question 74
Answer:
We have, $f(x)=x^3-2 x^2-x+3$ in $[0,1]$
Since, $f(x)$ is a polynomial function it is continuous in $[0,1]$ and differentiable in $(0,1)$
Thus, the conditions of the mean value theorem are satisfied.
Hence, there exists a real number $\mathrm{c} \in(0,1)$ such that
$\begin{aligned} & f(\mathrm{c})=\frac{\mathrm{f}(1)-\mathrm{f}(0)}{1-0} \\ & \Rightarrow 3 \mathrm{c}^2-4 \mathrm{c}-1=\frac{[1-2-1+3]-[0+3]}{1-0} \\ & \Rightarrow 3 \mathrm{c}^2-4 \mathrm{c}-1=-2 \\ & \Rightarrow 3 \mathrm{c}^2-4 \mathrm{c}+1=0 \\ & \Rightarrow(3 \mathrm{c}-1)(\mathrm{c}-1)=0 \\ & \Rightarrow \mathrm{c}=\frac{1}{3} \in(0,1)\end{aligned}$
Hence, the mean value theorem has been verified.
Question 75
Verify the mean value theorem for each of the functions given
$f(x) = sinx - sin2x$ in $[0,\pi]$
Answer:
We have, $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\sin 2 \mathrm{x}$ in $[0, \pi]$
We know that all trigonometric functions are continuous and differentiable in their domain, a given function is also continuous and differentiable
So, the condition of the mean value theorem is satisfied.
Hence, there exists at least one $\mathrm{c} \in(0, \pi)$ such that,
$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(\pi)-\mathrm{f}(0)}{\pi-0} \\ & \Rightarrow \cos \mathrm{c}-2 \cos 2 \mathrm{c}=\frac{\sin \pi-\sin 2 \pi-\sin 0+\sin 0}{\pi-0} \\ & \Rightarrow 2 \cos 2 \mathrm{c}-\cos \mathrm{c}=0 \\ & \Rightarrow 2\left(2 \cos ^2 \mathrm{c}-1\right)-\cos \mathrm{c}=0 \\ & \Rightarrow 4 \cos ^2 \mathrm{c}-\cos \mathrm{c}-2=0 \\ & \Rightarrow \cos \mathrm{c}=\frac{1 \pm \sqrt{1+32}}{8} \\ & =\frac{1 \pm \sqrt{33}}{8} \\ & \Rightarrow \mathrm{c}=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right) \in(0, \pi)\end{aligned}$
Hence, the mean value theorem has been verified.
Question 76
Verify the mean value theorem for each of the functions given
$f(x)=\sqrt{25-x^2}$ in [1,5]
Answer:
We have, $\mathrm{f}(\mathrm{x})=\sqrt{25-x^2}$ in $[1,5]$
Since $25-x^2$ and the square root function are continuous and differentiable in their domain, given function $f(x)$ is also continuous and differentiable.
So, the condition of the mean value theorem is satisfied.
Hence, there exists at least one $\mathrm{c} \in(1,5)$ such that,
$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(5)-\mathrm{f}(1)}{5-1} \\ & \Rightarrow \frac{-\mathrm{c}}{\sqrt{25-\mathrm{c}^2}}=\frac{0-\sqrt{24}}{4} \\ & \Rightarrow 16 \mathrm{c}^2=24\left(25-\mathrm{c}^2\right) \\ & \Rightarrow 40 \mathrm{c}^2=600 \\ & \Rightarrow \mathrm{c}^2=15 \\ & \Rightarrow \mathrm{c}=\sqrt{15} \in(1,5)\end{aligned}$
Hence, the mean value theorem has been verified.
Question 77
Answer:
We have, $\mathrm{y}=(\mathrm{x}-3)^2$, which is polynomial function.
So it is continuous and differentiable.
Thus conditions of the mean value theorem are satisfied.
Hence, there exists at least one $\mathrm{c} \in(3,4)$ such that,
$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(4)-\mathrm{f}(3)}{4-3} \\ & \Rightarrow 2(\mathrm{c}-3)=\frac{1-0}{1} \\ & \Rightarrow \mathrm{c}-3=\frac{1}{2} \\ & \Rightarrow \mathrm{c}=\frac{7}{2} \in(3,4)\end{aligned}$
$\Rightarrow \mathrm{x}=\frac{7}{2}$, where tangent is parallel to the chord joining points $(3,0)$ and $(4,1)$.
For $\mathrm{x}=\frac{7}{2}, \mathrm{y}=\left(\frac{7}{2}-3\right)^2$
$\begin{aligned} & =\left(\frac{1}{2}\right)^2 \\ & =\frac{1}{4}\end{aligned}$
So, $\left(\frac{7}{2}, \frac{1}{4}\right)$ is the point on the curve, where the tangent drawn is parallel to the chord joining the points $(3,0)$ and $(4,1)$.
Question 78
Answer:
We have, $\mathrm{y}=2 \mathrm{x}^2-5 \mathrm{x}+3$, which is polynomial function.
So it is continuous and differentiable.
Thus conditions of the mean value theorem are satisfied.
Hence, there exists at least one $\mathrm{c} \in(1,2)$ such that,
$\begin{aligned} & \mathrm{f}(\mathrm{c})=\frac{\mathrm{f}(2)-\mathrm{f}(1)}{2-1} \\ & \Rightarrow 4 \mathrm{c}-5=\frac{1-0}{1} \\ & \Rightarrow 4 \mathrm{c}-5=1 \\ & \therefore \mathrm{c}=\frac{3}{2} \in(1,2)\end{aligned}$
For $\mathrm{x}=\frac{3}{2}, \mathrm{y}=2\left(\frac{3}{2}\right)^2-5\left(\frac{3}{2}\right)+3=0$
Hence, $\left(\frac{3}{2}, 0\right)$ is the points on the curve $\mathrm{y}=2 \mathrm{x}^2-5 \mathrm{x}+3$ between the points $\mathrm{A}(1,0)$ and $\mathrm{B}(2,1)$, where tangent is parallel to the chord AB .
Question 79
Answer:
Given that,
$f(x)=\left\{\begin{array}{cl} x^{2}+3 x+p, & \text { if } x \leq 1 \\ q x+2, & \text { if } x>1 \end{array}\right.$
It is differentiable at x = 1.
We know that, f(x) is differentiable at x =1 ⇔ Lf’(1) = Rf’(1).
$\\ {L f^{\prime}(1)}$
$=\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} $
$ =\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{(1-h)-1} $
$ =\lim _{h \rightarrow 0} \frac{\left[\left\{(1-h)^{2}+3(1-h)+p\right]-(1+3+p)\right]}{(1-h)-1} \quad\left(\because f(x)=x^{2}+3 x+p, \text { if } x \leq 1\right) $
$ =\lim _{h \rightarrow 0} \frac{\left[\left(1+h^{2}-2 h+3-3 h+p\right)-(4+p)\right]}{-h} $
$=\lim \frac{\left[h^{2}-5 h+p+4-4-p\right]}{-h} $
$ = \lim _{h \rightarrow 0} \frac{\left[h^{2}-5 h\right]}{-h}=\lim _{h \rightarrow 0} \frac{h(h-5)}{-h} $
$ =\lim _{h \rightarrow 0} h(5-h)$
$\\ =5 \\ \lim _{\operatorname{Rf}^{\prime}(1)}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} $
$=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{(1+h)-1}$
$=\lim _{h \rightarrow 0} \frac{[(q(1+h)+2)-(q+2)]}{(1+h)-1} \quad(v f(x)=q x+2, \text { if } x>1) $
$=\lim _{h \rightarrow 0} \frac{[(q+q h+2)-(q+2)]}{h} $
$=\lim _{h \rightarrow 0} \frac{[q+q h+2-q-2]}{h} \\ =q$
Since, Lf’(1) = Rf’(1)
∴ 5 = q (i)
Now, we know that if a function is differentiable at a point, it is necessarily continuous at that point.
⇒ f(x) is continuous at x = 1.
⇒ f(1-) = f(1+) = f(1)
⇒ 1+3+p = q+2 = 1+3+p
⇒ p-q = 2-4 = -2
⇒ q-p = 2
Now, substituting the value of ‘q’ from (i), we get
⇒ 5-p = 2
⇒ p = 3
∴ p = 3 and q = 5
Question 80
Answer:
A. We have,
$x^m.y^n = (x+y)^{m+n}$
Taking logs on both sides, we get
$\log \left(x^m y^n\right)=\log (x+y)^{m+n} \Rightarrow m \log x+n \log y=(m+n) \log (x+y)$
Differentiating both sides w.r.t x, we get
$\begin{aligned} & \mathrm{m} \cdot \frac{1}{\mathrm{x}}+\mathrm{n} \cdot \frac{1}{\mathrm{y}} \frac{\mathrm{dy}}{\mathrm{dx}}=(\mathrm{m}+\mathrm{n}) \frac{1}{\mathrm{x}+\mathrm{y}} \cdot \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{x}+\mathrm{y})=\frac{m}{x}+\frac{n}{y} \frac{d y}{d x}=\frac{m+n}{x+y} \cdot\left(1+\frac{d y}{d x}\right) \\ & \Rightarrow\left(\frac{n}{y}-\frac{m+n}{x+y}\right) \frac{d y}{d x}=\frac{m+n}{x+y}-\frac{m}{x} \\ & \Rightarrow\left(\frac{n x+n y-m y-n y}{y(x+y)}\right) \frac{d y}{d x}=\left(\frac{m x+n x-m x-m y}{x(x+y)}\right) \\ & \Rightarrow\left(\frac{n x-m y}{y(x+y)}\right) \frac{d y}{d x}=\left(\frac{n x-m x}{x(x+y)}\right) \\ & \Rightarrow \frac{d y}{d x}=\left(\frac{n x-m x}{x(x+y)}\right)\left(\frac{y(x+y)}{n x-m y}\right) \\ & \Rightarrow \frac{d y}{d x}=\frac{y}{x}\end{aligned}$
Hence proved.
B. We have,
$\begin{aligned} &\frac{d y}{d x}=\frac{y}{x}\\ &\text { Differentiating both sides w.r.t } x, \text { we get }\\ &\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y} \cdot 1}{\mathrm{x}^{2}}\\ &\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=\frac{\mathrm{x} \frac{\mathrm{y}}{\mathrm{x}}-\mathrm{y} \cdot \mathrm{.}}{\mathrm{x}^{2}}\left(\because \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}}{\mathrm{x}}\right)\\ &\frac{d^{2} y}{d x^{2}}=\frac{y-y}{x^{2}}=0\\ &\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=0 \end{aligned}$
Hence Proved.
Question 81
If x = sin t and y = sin pt, prove that
$(1-x^2)$$\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$
Answer:
We have,
$\begin{aligned} &x=\sin t \text { and } y=\sin p t\\ &\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\cos \mathrm{t} \text { and } \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{p} \cos \mathrm{pt}\\ &\therefore \frac{\mathrm{d} y}{\mathrm{dx}}=\frac{\mathrm{dy} / \mathrm{dt}}{\mathrm{dx} / \mathrm{dt}}=\frac{\mathrm{p} \cdot \cos \mathrm{pt}}{\cos \mathrm{t}}\\ &\Rightarrow \frac{d y}{d x}=\frac{p \cdot \cos p t}{\cos t}\\ &\text { Differentiating both sides w.r.t } x, \text { we get }\\ &\frac{\mathrm{d}^{2 y}}{\mathrm{dx}^{2}}=\frac{\operatorname{cost} \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{p} \cdot \cos \mathrm{pt}) \frac{\mathrm{dt}}{\mathrm{dx}}-\mathrm{p} \cdot \cos \mathrm{pt} \frac{\mathrm{d}}{\mathrm{dt}} \operatorname{cost} \frac{\mathrm{dt}}{\mathrm{dx}}}{\cos ^{2} \mathrm{t}}\\ \end{aligned}$
$\begin{aligned} &\Rightarrow \frac{d^{2 y}}{d x^{2}}=\frac{\left(-p^{2} \sin p t \cos t+p \cdot s i n t \cos p t\right) \frac{1}{\operatorname{cost}}}{\cos ^{2} t}\left(\because \frac{d x}{d t}=\cos t \Rightarrow \frac{d t}{d x}=\frac{1}{\operatorname{cost}}\right)\\ &\Rightarrow \frac{\mathrm{d}^{2 y}}{\mathrm{dx}^{2}}=\frac{-\mathrm{p}^{2} \sin \mathrm{pt} \cdot \cos t+\mathrm{p} \cdot \operatorname{sint} \cos \mathrm{pt}}{\left(1-\sin ^{2} \mathrm{t}\right) \operatorname{cost}}\\ &\Rightarrow\left(1-\sin ^{2} t\right) \frac{d^{2 y}}{d x^{2}}=\frac{-p^{2} \sin p t \cdot \cos t+p \sin t \cos p t}{\operatorname{cost}}\\ &\Rightarrow\left(1-\sin ^{2} t\right) \frac{d^{2 y}}{d x^{2}}=\frac{-p^{2} \sin p t \cdot \cos t}{\cos t}+\frac{p \cdot s i n t \cos p t}{\operatorname{cost}}\\ \end{aligned}$
$\\ \Rightarrow\left(1-x^{2}\right) \frac{d^{2 y}}{d x^{2}}=-p^{2} y+x \frac{d y}{d x}\left(\because x=\operatorname{sint}, y=\sin p t \text { and } \frac{d y}{d x}=\frac{p \cdot \cos p t}{\cos t}\right)\\ \\\Rightarrow\left(1-x^{2}\right) \frac{d^{2 y}}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$
Hence proved.
Question 82
Find $\frac{d y}{d x}, \text { if } y=x^{\tan x}+\sqrt{\frac{x^{2}+1}{2}}$
Answer:
We have,
$y=x^{\tan x}+\sqrt{\frac{x^{2}+1}{2}}$
Putting $x^{\tan x}=u$ and $\sqrt{\frac{x^2+1}{2}}=v$
$u=x^{\tan x}$
Taking logs on both sides, we get
$\log u=\tan x \log x$
Differentiating w.r.t x , we get
$\begin{aligned} & \Rightarrow \frac{1}{u} \frac{d u}{d x}=\tan x \cdot \frac{1}{x}+\log x \cdot \sec ^2 x \\ & \Rightarrow \frac{d u}{d x}=u\left(\tan x \cdot \frac{1}{x}+\log x \cdot \sec ^2 x\right) \\ & \Rightarrow \frac{d u}{d x}=x^{\tan x}\left(\tan x \cdot \frac{1}{x}+\log x \cdot \sec ^2 x\right)\end{aligned}$
Now, $\mathrm{v}=\sqrt{\frac{\mathrm{x}^2+1}{2}}$
$\Rightarrow v=\left(\frac{x^2+1}{2}\right)^{1 / 2}$
Differentiating w.r.t x, we get
$\Rightarrow \frac{d v}{d x}=\frac{1}{2}\left(\frac{x^2+1}{2}\right)^{-1 / 2} \cdot \frac{2 x}{2} \Rightarrow \frac{d v}{d x}=\frac{x}{2}\left(\frac{2}{x^2+1}\right)^{1 / 2}=\frac{x}{2} \sqrt{\frac{2}{x^2+1}}$
Now, $y=u+v$
$\begin{aligned} & \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} \\ & \Rightarrow \frac{d y}{d x}=x^{\tan x}\left(\tan x \cdot \frac{1}{x}+\log x \cdot \sec ^2 x\right)+\frac{x}{2} \sqrt{\frac{2}{x^2+1}} \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{\tan \mathrm{x}}\left(\frac{\tan \mathrm{x}}{\mathrm{x}}+\log \mathrm{x} \cdot \sec ^2 \mathrm{x}\right)+\frac{\mathrm{x}}{\sqrt{2\left(\mathrm{x}^2+1\right)}}\end{aligned}$
Question 83
If f(x) = 2x and g(x) = $\frac{x^2}{2}+1$ then which of the following can be a discontinuous function?
A. f(x) + g(x)
B. f(x) - g(x)
C. f(x). g(x)
D. $\frac{g(x)}{f(x)}$
Answer:
We know that if two functions f(x) and g(x) are continuous then {f(x) +g(x)},{f(x)-g(x)}, {f(x).g(x)} and $\left\{\left(\frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}\right), \text { when } \mathrm{g}(\mathrm{x}) \neq 0\right\}$ are continuous.
Since, f(x) = 2x and $g(x)=$$\frac{x^2}{2}+1$ are polynomial functions, they are continuous everywhere.
⇒ {f(x) +g(x)},{f(x)-g(x)}, {f(x).g(x)} are continuous functions.
for, $\frac{g(x)}{f(x)}=\frac{\frac{x^{2}}{2}+1}{2 x}=\frac{x^{2}+2}{4 x}$
now, f(x) = 0
⇒ 4x = 0
⇒ x = 0
∴ $\frac{g(x)}{f(x)}$ is discontinuous at x=0.
Hence, the correct answer is option (D).
Question 90
Let $f(x) = |sinx|$. Then
A. f is everywhere differentiable
B. f is everywhere continuous but not differentiable $x = n\pi,n\in Z$
C. f is everywhere continuous but not differentiable at $x = (2n+1)\frac{\pi}{2},n\in Z$
D. None of these
Answer:
Given that, $f(x) = |sinx|$
Let g(x) = sinx and h(x) = |x|
Then, f(x) = hog(x)
We know that the modulus function and sine function are continuous everywhere. Since
The imposition of two continuous functions is a continuous function.
Hence, f(x) = hog(x) is continuous everywhere.
Now, v(x)=|x| is not differentiable at x = 0.
$\begin{aligned} &LHD=\lim _{0^{-}} \frac{\mathrm{v}(\mathrm{x})-\mathrm{v}(0)}{\mathrm{x}-0}\\ &\lim _{h \rightarrow 0} \frac{v(0-h)-v(0)}{(0-h)-0}\\ &\lim _{=h \rightarrow 0} \frac{|0-h|-|0|}{-h} \quad(\because v(x)=|x|)\\ &\lim _{h \rightarrow 0} \frac{|-h|}{-h}\\ &=\lim _{h \rightarrow 0} \frac{h}{-h}\\ &=\lim _{h \rightarrow 0}-1=-1\\ \end{aligned}$
$R H D=\lim _{h \rightarrow 0} \frac{v(0+h)-v(0)}{(0+h)-0}$
$=\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \quad(\because v(x)=|x|) \lim _{h \rightarrow 0} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1 \Rightarrow \mathrm{LY}^{\prime}(0) \neq \mathrm{RC}^{\prime}(0) \Rightarrow|\mathrm{x}|$ is not differentiable at $\mathrm{x}=0 . \Rightarrow \mathrm{h}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$.
So, $\mathrm{f}(\mathrm{x})$ is not differentiable where $\sin x=0$
We know that $\sin x=0$ at $x=n \pi, n \in Z$
Hence, $\mathrm{f}(\mathrm{x})$ is everywhere continuous but not differentiable $x=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$.
Hence, the correct answer is option (B).
Question 91
If $y=\log \left(\frac{1-x^{2}}{1+x^{2}}\right)$ then $\frac{dy}{dx}$ is equal to
$\\A.\frac{4 x^{3}}{1-x^{2}}$ \B.$\frac{-4 x}{1-x^{4}}$ \C. $\frac{1}{4-\mathrm{x}^{4}}$ \D. $\frac{-4 x^{3}}{1-x^{4}}$$
Answer:
$\begin{aligned} &\text { We have, }\\ &y=\log \frac{1-x^{2}}{1+x^{2}}\\ &\Rightarrow \mathrm{y}=\log \left(1-\mathrm{x}^{2}\right)-\log \left(1+\mathrm{x}^{2}\right)\\ &\Rightarrow \frac{d y}{d x}=\frac{1}{1-x^{2}} \frac{d}{d x}\left(1-x^{2}\right)-\frac{1}{1+x^{2}} \frac{d}{d x}\left(1+x^{2}\right)\\ &\Rightarrow \frac{d y}{d x}=\frac{1}{1-x^{2}} \cdot(-2 x)-\frac{1}{1+x^{2}} \cdot(2 x)\\ &\Rightarrow \frac{d y}{d x}=\frac{-2 x}{1-x^{2}}-\frac{2 x}{1+x^{2}}\\ &\frac{d y}{d x}=\frac{-2 x\left(1+x^{2}\right)-2 x\left(1-x^{2}\right)}{\left(1-x^{2}\right)\left(1+x^{2}\right)}\\ &\frac{d y}{d x}=\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1-x^{4}\right)}\\ &\frac{d y}{d x}=\frac{-4 x}{\left(1-x^{4}\right)} \end{aligned}$
Hence, the correct answer is option (B).
Question 92
If $y=\sqrt{\sin x+y}$ then $\frac{d y}{d x}$ is equal to
Answer:
$\mathrm{y}=\sqrt{\sin \mathrm{x}+y}$
Squaring both sides, we get
$y^2=\sin x+y$
Differentiating w.r.t y, we get
$\begin{aligned} & 2 y=\cos x \frac{d x}{d y}+1 \\ & \frac{d x}{d y}=\frac{2 y-1}{\cos x} \\ & \therefore \frac{d y}{d x}=\frac{\cos x}{2 y-1}\end{aligned}$
Hence, the correct answer is option (A).
Question 93
The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ w.r.t $\cos ^{-1} x$ is
$\begin{aligned} & A 2 \\ & B \frac{-1}{2 \sqrt{1-\mathrm{x}^2}} \\ & C \frac{2}{x} \\ & D .1-x^2\end{aligned}$
Answer:
Let $u=\cos ^{-1}\left(2 x^2-1\right)$ and $v=\cos ^{-1} x$
Now, $u=\cos ^{-1}\left(2 x^2-1\right)$
$\begin{aligned} & u=\cos ^{-1}\left(2 \cos ^2 v-1\right)\left[\cdot v=\cos ^{-1} x \rightarrow \cos v=x\right] \\ & u=\cos ^{-1}(\cos 2 v)\left[\because 2 \cos ^2 x-1=\cos 2 x\right] \\ & \Rightarrow u=2 v \\ & \frac{d u}{d v}=2\end{aligned}$
Hence, the correct answer is option (A).
Question 94
If $x = t^2, y = t^3$, then $\frac{d^2y}{dx^2}$ is
A. $\frac{3}{2}$
B. $\frac{3}{4t}$
C. $\frac{3}{2t}$
D. $\frac{3}{4}$
Answer:
$\begin{aligned} &\text { Given that, } x=t ^2, y=t^{3}\\ &\Rightarrow \frac{d x}{d t}=2 t \text { and } \frac{d y}{d t}=3 t^{2}\\ & \frac{d y}{d x}=\frac{d y / d t}{d x / d t}\\ &\frac{d y}{d x}=\frac{3 t^{2}}{2 t}=\frac{3 t}{2}\\ &\frac{d^{2} y}{d x^{2}}=\frac{3}{2} \frac{d t}{d x}\\ &\frac{d^{2} y}{d x^{2}}=\frac{3}{2} \cdot \frac{1}{2 t}\left(\because \frac{d x}{d t}=2 t \Rightarrow \frac{d t}{d x}=\frac{1}{2 t}\right)\\ &\frac{d^{2} y}{d x^{2}}=\frac{3}{4 t} \end{aligned}$
Hence, the correct answer is option (B).
Question 95
The value of c in Rolle’s theorem for the function $f(x) = x^3 - 3x$ in the interval $[0,\sqrt 3]$ is
A. 1
B.-1
C. $\frac{3}{2}$
D.$\frac{1}{3}$
Answer:
The given function is $f(x)=x^3-3 x$.
This is a polynomial function, which is continuous and derivable in $R$.
Therefore, the function is continuous on $[0, \sqrt{3}]$ and derivable on $(0, \sqrt{3})$
Differentiating the given function with respect to $x$, we get
$\begin{aligned} & f^{\prime}(x)=3 x^2-3 \\ & \Rightarrow f^{\prime}(c)=3 c^2-3 \\ & \therefore f^{\prime}(c)=0 \\ & \Rightarrow 3 c^2-3=0 \\ & \Rightarrow c^2=1 \\ & \Rightarrow c= \pm 1\end{aligned}$
Thus, $c=1 \in[0, \sqrt{3}]$ for which Rolle's theorem holds.
Hence, the correct answer is option (B).
Question 96
B. $\sqrt3$
C. 2
D. None of these
Answer:
The Mean Value Theorem states that, let f : [a, b] → R be a continuous function on [a, b] and differentiable on (a, b). Then there exists some c in (a, b) such that
$\\ f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\text {We have, } f(x)=x+\frac{1}{x}$
Since f(x) is a polynomial function, it is continuous on [1,3] and differentiable on (1,3).
Now, as per the ean value Theorem, there exists at least one c ∈ (1,3), such that
$\\ f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} $
$ \Rightarrow 1-\frac{1}{c^{2}}=\frac{\left(3+\frac{1}{3}\right)-(1+1)}{3-1}\left[\because f^{\prime}(x)=1+\frac{1}{x^{2}}\right] $
$ \Rightarrow \quad \frac{c^{2}-1}{c^{2}}=\frac{\left(\frac{10}{3}\right)-(2)}{2}$
$ \Rightarrow \quad \frac{c^{2}-1}{c^{2}}=\frac{\left(\frac{10}{3}\right)-(2)}{2}=\frac{\frac{10-6}{3}}{2}=\frac{2}{3} $
$ \Rightarrow 3\left(c^{2}-1\right)=2 c^{2} $
$\Rightarrow 3 c^{2}-2 c^{2}=3 $
$ \Rightarrow c^{2}=3 $
$ \Rightarrow c=\pm \sqrt{3} $
$\Rightarrow c=\sqrt{3} \in(1,3)$
Hence, the correct answer is option (B).
Answer:
Consider, f(x) = |x-1| + |x-2|
Let’s discuss the continuity of f(x).
We have, f(x) = |x-1| + |x-2|
$\begin{array}{l} f(x)=\left\{\begin{array}{l} -(x-1)-(x-2), \text { if } x<1 \\ (x-1)-(x-2), \text { if } 1 \leq x<2 \\ (x-1)+(x-2), \text { if } x \geq 2 \end{array}\right. \\ f(x)=\left\{\begin{array}{l} -2 x+3, \text { if } x<1 \\ 1, \text { if } 1 \leq x<2 \\ 2 x-3, \text { if } x \geq 2 \end{array}\right. \end{array}$
When x<1, we have f(x) = -2x+3, which is a polynomial function and the polynomial function is continuous everywhere.
When 1≤x<2, we have f(x) = 1, which is a constant function and the constant function is continuous everywhere.
When x≥2, we have f(x) = 2x-3, which is a polynomial function and the polynomial function is continuous everywhere.
Hence, f(x) = |x-1| + |x-2| is continuous everywhere.
Let’s discuss the differentiability of f(x) at x=1 and x=2.
We have
$\begin{array}{l} f(x)=\left\{\begin{array}{l} -(x-1)-(x-2), \text { if } x<1 \\ (x-1)-(x-2), \text { if } 1 \leq x<2 \\ (x-1)+(x-2), \text { if } x \geq 2 \end{array}\right. \\ f(x)=\left\{\begin{array}{l} -2 x+3, \text { if } x<1 \\ 1, \text { if } 1 \leq x<2 \\ 2 x-3, \text { if } x \geq 2 \end{array}\right. \end{array}$
$\\\qquad LHD =\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \\ =\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{(1-h)-1} \\ =\lim _{h \rightarrow 0} \frac{[(-2(1-h)+3)-(-2+3)]}{(1-h)-1} \quad(\because f(x)=-2 x+3, \text { if } x<1)$
$\begin{aligned} &=\lim _{h \rightarrow 0} \frac{[-2+2 h+3-1]}{-h}\\ &\lim _{=h \rightarrow 0} \frac{[2 h]}{-h}=\lim _{h \rightarrow 0} 2=2\\ &RLD =\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\\ &=\lim _{x \rightarrow 1^{+}} \frac{1-1}{1-1}(\because f(x)=1, \text { if } 1 \leq x<2)\\ &=0\\ &\Rightarrow\left\lfloor f^{\prime}(1) \neq \operatorname{Rf}^{\prime}(1)\right.\\ &\Rightarrow f(x) \text { is not differentiable at } x=1 \text { . }\\ &L{ f^{\prime}(2)}=\lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2} \end{aligned}$
$\begin{aligned} &=\lim _{x \rightarrow 2} \frac{1-1}{2-2}(: f(x)=1, \text { if } 1 \leq x<2 \text { and } f(2)=2 \times 2-3=1)\\ &=0\\ &{R f^{\prime}(2)}=\lim_{x \rightarrow 2^{+} }\frac{f(x)-f(2)}{x-2}\\ &=\lim _{h \rightarrow 0} \frac{f(1+h)-f(2)}{(1+h)-2}\\ &=\lim _{h \rightarrow 0} \frac{[(2(1+h)-3)-(2 \times 2-3)]}{(1+h)-2} \quad(\because f(x)=2 x-3, \text { if } x \geq 2)\\ &=\lim _{h \rightarrow 0} \frac{[2+2 h-3-1]}{h-1}\\ &=\lim _{h \rightarrow 0} \frac{[2 h-2]}{h-1}=\lim _{h \rightarrow 0} \frac{2(h-1)}{h-1}=2\\ &\Rightarrow \operatorname{Lf}^{\prime}(2) \neq \mathrm{Rf}^{\prime}(2) \end{aligned}$
⇒ f(x) is not differentiable at x=2.
Thus, f(x) = |x-1| + |X-2| is continuous everywhere but fails to be differentiable exactly at two points x=1 and x=2.
Question 98 Fill in the blanks in each of the
Derivative of $x^2$ w.r.t. $x^3$ is.
Answer:
$\begin{aligned} &\text { Let } u=x^{2} \text { and } v=x^{2}\\ &\Rightarrow \frac{d u}{d x}=2 x \text { and } \frac{d v}{d x}=3 x^{2}\\ &\therefore \frac{\mathrm{du}}{\mathrm{dv}}=\frac{\mathrm{du} / \mathrm{dx}}{\mathrm{dv} / \mathrm{dx}}=\frac{2 \mathrm{x}}{3 \mathrm{x}^{2}}\\ &\Rightarrow \frac{d u}{d v}=\frac{2}{3 x}\\ &\text { Hence, Derivative of }\\ &x^{2} \text { w.r.t. } x^{3} \text { is } \frac{2}{3 x} \text { . } \end{aligned}$
Question 99 Fill in the blanks in each of the
If $f(x) = |cos x|$, then ’$f'(\frac{\pi}{4})$ =.
Answer:
$\begin{aligned} &\text { We have, } f(x)=|\cos x|\\ &\text { Foc. } 0<x<\frac{\pi}{2}, \cos x>0\\ &\begin{array}{l} \therefore f(x)=\cos x \\ \Rightarrow f^{\prime}(x)=-\sin x \\ \Rightarrow f^{\prime}\left(\frac{\pi}{4}\right)=-\sin \frac{\pi}{4}=-\frac{1}{\sqrt{2}} \end{array}\\ &\text { Hence, } \\&f^{\prime}\left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}\\ \end{aligned}$
Question 100 Fill in the blanks in each of the
If $f(x) = |cosx - sinx|$, then $f'\frac{\pi}{3}=$.
Answer:
We have, $f(x)=|\cos x-\sin x|$ Foc $\frac{\pi}{4}<x<\frac{\pi}{2}, \sin x>\cos x$
$\begin{aligned} & \therefore f(x)=\sin x-\cos x \\ & \Rightarrow f^{\prime}(x)=\cos x-(-\sin x)=\cos x+\sin x \\ & \Rightarrow f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}\end{aligned}$
Hence, $f^{\prime}\left(\frac{\pi}{3}\right)=\frac{1+\sqrt{3}}{2}$
Answer:
We have, $\sqrt{x}+\sqrt{y}=1$
Differentiating with respect to x, we get,
$\begin{aligned} & \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=0 \\ & \Rightarrow \frac{1}{2 \sqrt{y}} \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}} \\ & \Rightarrow \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}} \times \frac{2 \sqrt{y}}{1} \\ & \Rightarrow \frac{d y}{d x}=-\frac{\sqrt{y}}{\sqrt{x}}\end{aligned}$
Now, $\left[\frac{d y}{d x}\right]_{\left(\frac{1}{4}, \frac{1}{4}\right)}=-\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}}=-1$
Question 102 State True or False for the statements
Rolle’s theorem is applicable for the function f(x) = |x - 1| in [0, 2].
Answer:
As per Rolle’s Theorem, let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers. Then there exists some c in (a, b) such that f’(c) = 0.
We have f(x) = |x - 1| in [0, 2].
Since polynomial and modulus functions are continuous everywhere f(x) is continuous
Now, x-1=0
⇒ x=1
We need to check if f(x) is differentiable at x = 1 or not.
We have,
$\begin{aligned} &f(x)=\left\{\begin{array}{l} -(x-1), \text { if } x<1 \\ (x-1), \text { if } x>1 \end{array}\right.\\ &\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}\\ &\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{(1-h)-1}\\ &\lim _{h \rightarrow 0} \frac{[1-(1-h)-0]}{(1-h)-1} \quad(\because f(x)=1-x, \text { if } x<1)\\ &\lim _{n \rightarrow 0} \frac{[\mathrm{h}]}{-\mathrm{h}}\\ &\lim _{=h \rightarrow 0} \frac{[\mathrm{h}]}{-\mathrm{h}}=\lim _{\mathrm{h} \rightarrow 0}-1=-1\\ &\lim _{\mathrm{Rf}^{\prime}(1)}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}\\ &\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{(1+h)-1}\\ &\lim _{h \rightarrow 0} \frac{[(1+h)-1-0]}{(1+h)-1}(\because f(x)=x-1, \text { if } 1<x)\\ &\lim _{=h \rightarrow 0} \frac{[\mathrm{h}]}{\mathrm{h}}=\lim _{h \rightarrow 0} 1=1 \end{aligned}$
⇒ Lf’(1) ≠ Rf’(1)
⇒ f(x) is not differentiable at x=1.
Hence, Rolle’s theorem is not applicable to f(x) since it is not differentiable at x=1 ∈ (0,2).
Hence, the statement is False.
Question 103 State True or False for the statements
If f is continuous on its domain D, then |f| is also continuous on D.
Answer:
Given that, f is continuous on its domain D.
Let a be an arbitrary real number in D. Then f is continuous at a.
$\begin{aligned} & \lim _{x \rightarrow a} f(x)=f(a) \\ & \text { Now, } \\ & \lim _{x \rightarrow a}|f|(x)=\lim _{x \rightarrow a}|f(x)|[\because:|f|(x)=\mid f(x) L] \\ & \lim _{x \rightarrow a}|f|(x)=\left|\lim _{x \rightarrow a} f(x)\right| \lim _{x \rightarrow a}|f|(x)=|f(a)|=|f|(a)\end{aligned}$
If |f| is continuous at x=a.
Since a is an arbitrary point in D. Therefore |f| is continuous in D.
Hence, the statement is True.
Question 104 State True or False for the statements
The composition of two continuous functions is a continuous function.
Answer:
Let f be a function defined by f(x) = |1-x + |x||.
Let g(x) = 1-x + |x| and h(x) = |x| be two functions defined on R.
Then,
hog(x) = h(g(x))
⇒ hog(x) = h(1-x + |x|)
⇒ hog(x) = |(1-x + |x|)|
⇒ hog(x) = f(x) ∀ x ∈ R.
Since (1-x) is a polynomial function and |X| is a modulus function is continuous in R.
⇒ g(x) = 1-x + |x| is everywhere continuous.
⇒ h(x) = |x| is everywhere continuous.
Hence, f = hog is everywhere continuous.
Hence, the statement is True.
Answer:
It is an obvious statement. Trigonometric and inverse-trigonometric functions are differentiable within their respective domains. Their derivatives are well-defined and commonly used in calculus.
Hence, the statement is True.
Answer:
Let $f(x)=x$ and $g(x)=\frac{1}{x}$ $f(x) \cdot g(x)=x \cdot \frac{1}{x}=1$, which is a constant function and continuous everywhere.
But, $g(x)=\frac{1}{x}$ is discontinuous at $\mathrm{x}=0$.
Hence, the statement is False.
Students can use the NCERT Exemplar Class 12 Math Solutions Chapter 5 PDF download, prepared by experts, for a better understanding of concepts and topics of probability. The topics and subtopics are mentioned below.
The subtopics covered in this chapter are:
All NCERT Class 12 Maths Exemplar Solutions are gathered together on Careers360 for quick access. Click the links below to view them.
Given below is the chapter-wise list of the NCERT Class 12 Maths solutions with their respective links:
Given below are the subject-wise NCERT Notes of class 12 :
Here, you can find the NCERT Solutions for other subjects as well.
Here, you can find the NCERT Solutions for classes 9 to 11.
Checking the updated syllabus at the start of the academic year helps students stay prepared. Below, you’ll find the syllabus links along with useful reference books.
Frequently Asked Questions (FAQs)
Continuity and differentiability are closely related but distinct concepts in calculus. A function is continuous at a point if there is no break, jump, or hole, meaning the graph flows smoothly through that point. On the other hand, a function is differentiable at a point if it has a defined derivative there, implying the graph has a well-defined tangent and no sharp corners or cusps. All differentiable functions are continuous, but not all continuous functions are differentiable. For example, the absolute value function is continuous everywhere but not differentiable at x=0 due to a sharp corner.
No, a function cannot be differentiable without being continuous. Differentiability implies continuity. If a function is differentiable at a point, it must also be continuous at that point. This is because finding a derivative involves calculating a limit, and for that limit to exist, the function must not break or jump at that point. However, the reverse is not always true, a function can be continuous but not differentiable, such as the absolute value function at x=0, which is continuous but has a sharp corner, making it non-differentiable at that poin
Rolle's Theorem is significant in understanding the behavior of differentiable functions. It states that if a function is continuous on [a, b], differentiable on (a, b), and f(a)=f(b), then there exists at least one point c in (a, b) where f'(c)=0. This means the function has a horizontal tangent (slope zero) at some point between a and b. Rolle's Theorem helps in proving other important results like the Mean Value Theorem and is useful in analyzing turning points, ensuring the existence of critical points in various real-life applications involving motion or optimization.
Logarithmic differentiation is a technique used to differentiate complex functions, especially those involving products, quotients, or variables raised to variable powers. The process involves taking the natural logarithm (ln) of both sides of the function, simplifying using logarithmic identities, and then differentiating implicitly. This method is particularly useful when dealing with functions like y=xx or y=(x2+1)x, where standard rules are difficult to apply directly. Logarithmic differentiation simplifies calculations, making it easier to handle functions with multiple terms or exponents, and is a powerful tool in both calculus and applied mathematics.
Every differentiable function is always continuous because differentiability requires the function's limit to exist and match the function's value at a point. In other words, for a function to be differentiable, it must first be smooth and unbroken-i.e., continuous. However, not all continuous functions are differentiable. A function can be continuous without having a defined derivative at some points, especially where there are sharp turns. For example, the absolute value function |x| is continuous everywhere but not differentiable at x=0, since it has a sharp corner at that point.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters